【0001】
【発明の属する技術分野】
この発明は、携帯電話等の着信機能にみられる振動モータや各種小型モータなどのモータや、発電機、時計、ギヤなどの小型回転機器などの機器における軸受け構造及び前記軸受け構造を用いたモータに関する。
【0002】
【従来の技術】
図9を参照するに、従来、モータとしての例えば小型モータ101は、モータ軸として例えば支持軸103がモータハウジング105内のプレート107に固定されており、前記支持軸103の周囲には周方向に複数箇所に磁極を持つように軸方向に着磁された環状にN極、S極が交互に配置された永久磁石109が固定されている。さらに、前記支持軸103に回転自在に設けられた回転軸111の周囲に電機子113を固定した回転子115が設けられている。なお、電機子113には複数の例えば3つのコイル117が周方向に配置されている。また、前記回転軸111の外周面には周方向に6分割された整流子119が配置されている。
【0003】
また、2つのブラシ121,123が周方向に隣接する永久磁石109の間の隙間からプレート107の中心部に向かって延びる90度の空間位相をもって配置されており、ブラシ121,123は整流子119に接触している。なお、プレート107の周縁には一方のブラシ121に連結する+端子125と、他方のブラシ123に連結する−端子127が設けられている。
【0004】
したがって、+端子125及び−端子127から供給される電流がブラシ121,123と整流子119の間で転流されてコイル117の磁極がN極、S極と変わることにより、永久磁石109のN極、S極と反発、吸引が繰り返されることにより、回転子115が支持軸103を中心として回転する。
【0005】
このとき、回転子115は回転軸111で支持軸103と接触しながら回転するために摩擦が生じる。この摩擦を低減するために、上記の支持軸103と回転軸111との接触部分には、例えば、飛散の少ないグリース等の潤滑剤129が単に塗布されている。
【0006】
【発明が解決しようとする課題】
ところで、従来のモータにおける軸受け構造においては、支持軸103の外周面と回転軸111の軸穴の内周面との接触面には、図10に拡大して示されているように油膜が切れないように微少な隙間131が設けられている。飛散の少ないグリース等の潤滑剤129が支持軸103と回転軸111との接触面に塗布された場合、前記隙間131に溜まっているのであるが、モータ101の高速回転または長時間の運転が行われると、遠心分離によりグリースと潤滑剤が分離し、潤滑剤が支持軸103系の外に飛散してしまうためにグリースの粘性が上がってしまい、回転子115と支持軸103の摩擦が増えてモータの回転数が遅くなり、モータの寿命が短くなるという問題点があった。
【0007】
あるいは、高粘度のグリースを塗布して飛散しないようにした場合は、粘性が高すぎるために高速回転でモータ101を運転することが出来ないという問題点があった。
【0008】
また、上記の隙間131に異物が入り込んだ場合は、摩擦抵抗が大幅に増加して油膜切れが激しく生じてしまうという問題点があった。
【0009】
ちなみに、モータにおける軸受け構造としては、一般的には軸受け部にボールベアリングや焼結メタルが使用されることにより、潤滑剤の保持が確保され、安定した回転が得られるが、上記のボールベアリングや焼結メタルのいずれにおいても、小型化するには限界がある。また、小型化するためには樹脂製の軸受け構造にすることが一般的であるが、樹脂製の軸受け構造では潤滑剤を保持する機能がないので、上記のボールベアリングや焼結メタルの軸受け構造に比べて安定した回転が得られない。
【0010】
この発明は上述の課題を解決するためになされたもので、その目的は、モータ軸と回転軸の接触部分に潤滑剤を滞留せしめて、回転子の回転時に生じる摩擦抵抗を軽減し、モータの長寿命化を図り得る軸受け構造及びこの軸受け構造を用いたモータを提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために請求項1によるこの発明の軸受け構造は、軸部材と、この軸部材に軸穴を介して相対的に回転する軸受け部材と、からなる軸受け構造において、
前記軸受け部材の軸穴の内周面に、前記軸部材の外周面を内接せしめる内接部と、前記軸部材の外周面に対して離間して油溜まりとなる間隙部とを、前記軸穴の円周方向に交互に複数箇所に設けてなることを特徴とするものである。
【0012】
したがって、軸部材と軸受け部材との接触部分に内接部と油溜まりとなる間隙部があるので、軸受け部材は内接部によって軸部材の周囲に相対的に安定した回転が行われ、間隙部に貯留している潤滑剤によって回転時の摩擦抵抗が軽減される。たとえ、軸部材と軸受け部材との接触部分に異物が入り込んだとしても、異物は移動して間隙部に留まるので油膜切れが生じることなく摩擦抵抗の変化を防止できるので、軸受け構造部材の長寿命化が図られる。
【0013】
また、軸部材と軸受け部材との接触面積が小さいために軸部材がなじみ易くなるので、軸のハメアイ公差を大きくすることが可能となり、製作加工が容易となる。
【0014】
請求項2によるこの発明の軸受け構造は、請求項1記載の軸受け構造において、前記軸受け部材の軸穴が、当該軸穴の円周方向で前記軸部材の外周面を内接せしめる多角形状をなしていることを特徴とするものである。
【0015】
したがって、多角形状の軸穴は軸部材の外周面が内接しているので、軸受け部材が相対的に安定して回転し、多角形の角部付近が間隙部となって潤滑剤が貯留されるので回転時の摩擦抵抗が軽減される。
【0016】
請求項3によるこの発明の軸受け構造は、請求項1記載の軸受け構造において、前記間隙部が、前記内接部の内接円線上に対して凹み形状をなしていることを特徴とするものである。
【0017】
したがって、軸部材の外周面が軸穴の内接部に内接しているので軸受け部材が相対的に安定して回転し、凹み形状の間隙部に潤滑剤が貯留されるので回転時の摩擦抵抗が軽減される。
【0018】
請求項4によるこの発明の軸受け構造は、請求項1〜3のうちのいずれか一つに記載の軸受け構造において、前記軸穴の円周方向の断面形状が、軸受け部材の軸線方向の全長に亘って同一形状で構成し、前記軸穴の両端に間隙部の油漏れを塞ぐための蓋部を設けてなることを特徴とするものである。
【0019】
したがって、内接部と間隙部がある軸穴は軸受け部材の軸線方向の全長に亘って設けられているので、軸受け部材が相対的に安定して回転し且つ回転時の摩擦抵抗が軽減される。また、間隙部の潤滑剤は軸穴の両端の蓋部により油漏れが防止される。
【0020】
請求項5によるこの発明の軸受け構造は、請求項1〜3のうちのいずれか一つに記載の軸受け構造において、前記軸穴の円周方向の断面形状が、軸受け部材の軸線方向の中間部に同一形状で構成してなることを特徴とするものである。
【0021】
したがって、内接部と間隙部がある軸穴は軸受け部材の軸線方向の中間部に設けられているので、間隙部の潤滑剤の油漏れが防止され、内接部によって軸受け部材が相対的に安定して回転し且つ間隙部の油溜まりによって回転時の摩擦抵抗が軽減される。
【0022】
請求項6によるこの発明のモータは、モータハウジング内に固定されたモータ軸と、このモータ軸に軸穴を介して相対的に回転自在に設けた回転軸と、この回転軸の周囲に電機子を固定した回転子と、を備えているモータにおいて、
前記回転軸の軸穴の内周面に、前記モータ軸の外周面を内接せしめる内接部と、前記モータ軸の外周面に対して離間して油溜まりとなる間隙部とを、前記軸穴の円周方向に交互に複数箇所に設けてなることを特徴とするものである。
【0023】
したがって、モータ軸と回転軸との接触部分に内接部と油溜まりとなる間隙部があるので、回転軸は内接部によってモータ軸の周囲に相対的に安定した回転が行われ、間隙部に貯留している潤滑剤によって回転時の摩擦抵抗が軽減される。たとえ、モータ軸と回転軸との接触部分に異物が入り込んだとしても、異物は移動して間隙部に留まるので油膜切れが生じることなく摩擦抵抗の変化を防止できるので、モータの長寿命化が図られる。
【0024】
また、モータ軸と回転軸との接触面積が小さいためにモータ軸がなじみ易くなるので、軸のハメアイ公差を大きくすることが可能となり、製作加工が容易となる。
【0025】
請求項7によるこの発明のモータは、請求項6記載のモータにおいて、前記回転軸の軸穴が、当該軸穴の円周方向で前記モータ軸の外周面を内接せしめる多角形状をなしていることを特徴とするものである。
【0026】
したがって、多角形状の軸穴はモータ軸の外周面が内接しているので、回転軸が相対的に安定して回転し、多角形の角部付近が間隙部となって潤滑剤が貯留されるので回転時の摩擦抵抗が軽減される。
【0027】
請求項8によるこの発明のモータは、請求項6記載のモータにおいて、前記間隙部が、前記内接部の内接円線上に対して凹み形状をなしていることを特徴とするものである。
【0028】
したがって、モータ軸の外周面が軸穴の内接部に内接しているので回転軸が相対的に安定して回転し、凹み形状の間隙部に潤滑剤が貯留されるので回転時の摩擦抵抗が軽減される。
【0029】
請求項9によるこの発明のモータは、請求項6〜8のうちのいずれか一つに記載のモータにおいて、前記軸穴の円周方向の断面形状が、回転軸の軸線方向の全長に亘って同一形状で構成し、前記軸穴の両端に間隙部の油漏れを塞ぐための蓋部を設けてなることを特徴とするものである。
【0030】
したがって、内接部と間隙部がある軸穴は回転軸の軸線方向の全長に亘って設けられているので、回転軸が相対的に安定して回転し且つ回転時の摩擦抵抗が軽減される。また、間隙部の潤滑剤は軸穴の両端の蓋部により油漏れが防止される。
【0031】
請求項10によるこの発明のモータは、請求項6〜8のうちのいずれか一つに記載のモータにおいて、前記軸穴の円周方向の断面形状が、回転軸の軸線方向の中間部に同一形状で構成してなることを特徴とするものである。
【0032】
したがって、内接部と間隙部がある軸穴は回転軸の軸線方向の中間部に設けられているので、間隙部の潤滑剤の油漏れが防止され、内接部によって回転軸が相対的に安定して回転し且つ間隙部の油溜まりによって回転時の摩擦抵抗が軽減される。
【0033】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。
【0034】
図1ないしは図3を参照するに、この実施の形態の軸受け構造を備えたモータとしての例えば小型直流振動モータ1は、固定子3と、この固定子3に回転自在に装着された回転子5と、この回転子5を密閉する円筒形状のモータハウジング7とより構成されている。
【0035】
前記固定子3は、円盤状のプレート9と、このプレート9上にS極とN極が交互に並ぶように、環状に配置されて軸方向に着磁された4つの永久磁石11と、前記プレート9の中央から立ち上がる前記回転子5の支持用のモータ軸としての例えば支持軸13と、周方向に隣接する永久磁石11の間の隙間からプレート9の中心部に向かって延びる90度の空間位相をもって配置された2つのブラシ15A、15Bと、から構成されている。なお、前記プレート9の周縁にはブラシ15Aに連結する+端子17と、ブラシ15Bに連結する−端子19が設けられている。
【0036】
また、前記回転子5は、前記支持軸13に回転自在に支持される上下方向へ延伸した回転軸21と、この回転軸21の周方向に固定された電機子23と、前記回転軸21の外周面に配置され、周方向に6分割された整流子25A、25B(コンミテータ)とを備えて構成されている。この整流子25A、25Bは前記ブラシ15A、15Bと共に電流路形成手段を構成している。
【0037】
前記電機子23は、同一心円上に巻回された第1コイル27と第2コイル29と、第3コイル31と、振動子としての例えば分銅33と、上記の第1コイル27、第2コイル29、第3コイル31、分銅33を一体的に支持する樹脂フレーム35と、から構成されている。
【0038】
この発明の実施の形態の主要部を構成する軸受け構造は、軸部材としての例えば支持軸13の外周面と、軸受け部材としての例えば回転軸21の軸穴37の内周面との接触面には、図1(B)に拡大して二点鎖線で示されているように油膜が切れないように微少な隙間39が設けられている。
【0039】
上記の回転軸21の軸穴37は、当該軸穴37の円周方向において支持軸13の外周面を前記隙間39を介して内接せしめる断面が多角形状であり、この実施の形態では断面六角形状をなしている。
【0040】
言い換えれば、上記の回転軸21の軸穴37の内周面の断面形状は、支持軸13の外周面を内接せしめる内接部41と、支持軸13の外周面に対して前記隙間39より大きく離間して油溜まりとなる間隙部43が、軸穴37の円周方向に交互に複数箇所に設けられて構成されている。つまり、図1(B)の断面六角形状の軸穴37では、二点鎖線の内接円45が軸穴37の断面六角形に内接し、この接点が上記の内接部41に該当するものであり、二点鎖線の内接円45から離間する断面六角形の角部付近の領域〔図1(B)のハッチングの領域〕が間隙部43に該当するものである。
【0041】
さらに、この実施の形態の回転軸21は、軸穴37の断面形状が、図5(A)に示されているように回転軸21の軸線方向の全長に亘って断面六角形状の同一形状で構成されている。支持軸13と回転軸21との接触面には飛散の少ないグリース等の潤滑剤が塗布された後に、回転軸21の両端面には間隙部43内の潤滑剤の油漏れを塞ぐために蓋部47で被蓋される。なお、この蓋部47には支持軸13を挿通可能な穴部49が設けられている。したがって、潤滑剤は隙間39だけでなく上記の間隙部43に貯留されることになる。
【0042】
以上の構成により、上記の第1コイル27と第2コイル29と第3コイル31との合計3つのコイルに整流子25A、25Bを介して電流が供給されると、その電流の向きと永久磁石11からの磁力線の向きとによってフレミングの左手の法則により回転子5の回転方向が決定される。整流子25A、25Bを介した電流は、2つ以上のコイル27、29(31)に同時に供給され、少なくともそのうちの例えば2つコイル27、29は他のコイル31の影響より勝るため、回転子5の停止位置に拘わらず、再起動が可能となる。
【0043】
第1コイル27、第2コイル29、第3コイル31は、例えば図4(A),(B)に示されているようにスター結線される。各整流子25A、25Bは相対向するもの同士が接続され、これらの接続された各整流子25A、25Bのペアがそれぞれ第1コイル27の一端、第2コイル29の一端および第3コイル31の一端にそれぞれ接続されている。
【0044】
第1コイル27、第2コイル29、第3コイル31の他端は共通接続されている。この各整流子25A、25Bに対して90度の空間位相差をもって配置されたブラシ15A、15Bから電流が流れる。このブラシ15A、15Bは、回転子5の回転に伴って、第1コイル27、第2コイル29、第3コイル31の各一端に接続された整流子25A、25Bに順次接続される。
【0045】
これにより、図4(A)に示されているように、回転子5が回転してブラシ15A、15Bの一方が各整流子25A、25Bの境界に位置したとき、電源からブラシ15A→整流子25A、25B→第1乃至第3コイル27、29、31→整流子25A、25B→ブラシ15B→接地の経路で電流が流れる。また、図4(B)に示されているように、回転子5が回転してブラシ15A、15Bが整流子25A、25Bとそれぞれ接触したとき、電源からブラシ15A→整流子25A、25B→第2コイル29、第1コイル27→整流子25A、25B→ブラシ15B→接地の経路で電流が流れる。
【0046】
このように、この直流振動モータ5は3コイルであるから、ブラシ15A、15Bの片方が整流子25A、25Bの隣接する分割片の中間位置に位置し、隣接する分割片がブラシ15A又はブラシ15Bによって短絡されるようにしても、必ず電源間には、第1コイル27、第2コイル29、第3コイル31のうちの少なくとも2つが介在するので短絡電流は流れず、電源ショートは発生しない。
【0047】
以上のように回転子5が回転する際には、支持軸13と回転軸21との接触部分に内接部41と油溜まりとなる間隙部43があるので、回転軸21は内接部41によって支持軸13の周囲に安定した回転が行われると共に間隙部43に貯留している潤滑剤によって摩擦抵抗が軽減されることになる。また、隙間39内に異物が入り込んだとしても、上記の間隙部43へ移動して留まるので油膜切れが生じることなく摩擦抵抗の変化を防止することができる。したがって、小型直流振動モータ1は長寿命化することとなる。
【0048】
また、支持軸13と回転軸21との接触面積が小さいために支持軸13が軸穴37になじみ易くなるので、支持軸13と回転軸21とのハメアイ公差を大きくすることが可能となり、各軸13,21の製作加工が容易となる。
【0049】
次に、この発明の他の実施の形態の軸受け構造について説明する。
【0050】
図5(B)を参照するに、前述した図5(A)の実施の形態では回転軸21の軸穴37の断面が六角形状をなしており、この六角形状の断面が回転軸21の軸線方向の全長に亘って同一断面形状に構成されているが、この実施の形態では軸穴37の断面六角形状が、回転軸21の軸線方向の中間部に同一形状で構成されている。回転軸21の軸線方向の両端部には支持軸13を挿通可能な断面円形をなす挿通穴51が設けられている。したがって、前述した図1及び図5(A)の実施の形態では回転軸21の軸線方向の両端を塞ぐための蓋部47が必要であるが、この図5(B)の実施の形態の場合は蓋部47が不要である。
【0051】
また、回転軸21の軸穴37の断面は多角形状であれば良いので、例えば図7(A)では支持軸13の外周面に隙間39を介して内接円45が内接する四角形状であり、図7(B)では支持軸13の外周面の外周面に隙間39を介して内接円45が内接する五角形状をなしている。各角部付近が油溜まりとなる間隙部43を構成する。その他は、前述した図1の実施の形態の軸受け構造とほぼ同様である。なお、この実施の形態の軸受け構造の作用、効果は前述した図1の実施の形態の場合とほぼ同様である。
【0052】
図6及び図8を参照するに、回転軸21の軸穴37の内周面の断面形状は、支持軸13の外周面に隙間39を介して内接円45が内接する内接部41は、内接円45の線上に位置しており、間隙部43が前記内接円45の線上に対してほぼ半円形の凹み形状をなしている。上記の内接部41と間隙部43は軸穴37の円周方向に交互に複数箇所に設けられている。なお、間隙部43の凹み形状は潤滑剤の油溜まりとなれば良いので、上記の半円形に限らず、その他の種々の形状でも構わない。なお、この実施の形態の軸受け構造の作用、効果は前述した図1の実施の形態の場合とほぼ同様である。
【0053】
また、この実施の形態では上記の軸穴37の断面形状が回転軸21の軸線方向の全長に亘って同一断面形状に構成されているので、回転軸21の軸線方向の両端を塞ぐための蓋部47が設けられているが、前述した図5(B)のように上記の軸穴37の断面形状が回転軸21の軸線方向の中間部に同一形状で構成され、回転軸21の軸線方向の両端部に支持軸13を挿通可能な断面円形をなす挿通穴51を設けても構わない。
【0054】
なお、この発明は前述した実施の形態に限定されることなく、適宜な変更を行うことによりその他の態様で実施し得るものである。この実施の形態ではモータとして扁平型の小型直流振動モータを例にとって説明したが他の振動モータや各種小型モータあるいはその他のモータであっても構わない。
【0055】
なお、軸受け構造としては、例えば小型モータの軸受け、その他、発電機や時計やギヤなどの小型回転機器の軸受け、などの分野に適用される。
【0056】
【発明の効果】
以上のごとき発明の実施の形態の説明から理解されるように、請求項1の発明によれば、軸部材と軸受け部材との接触部分に内接部と油溜まりとなる間隙部を設けたので、内接部によって軸受け部材を軸部材の周囲に相対的に安定して回転せしめることができ、間隙部に貯留している潤滑剤によって回転時の摩擦抵抗を軽減できる。たとえ、軸部材と軸受け部材との接触部分に異物が入り込んだとしても、異物を間隙部に留めることができるので油膜切れが生じることなく摩擦抵抗の変化を防止できるので、軸受け構造部材の長寿命化を図ることができる。
【0057】
また、軸部材と軸受け部材との接触面積が小さいために軸部材がなじみ易くなることから、軸のハメアイ公差を大きくできるので容易に製作加工できる。
【0058】
請求項2の発明によれば、軸部材の外周面を内接する多角形状の軸穴であるので、軸受け部材を相対的に安定して回転でき、多角形の角部付近の間隙部に潤滑剤を貯留できるので回転時の摩擦抵抗を軽減できる。
【0059】
請求項3の発明によれば、軸部材の外周面を軸穴の内接部に内接するので軸受け部材を相対的に安定して回転でき、凹み形状の間隙部に潤滑剤を貯留できるので回転時の摩擦抵抗を軽減できる。
【0060】
請求項4の発明によれば、内接部と間隙部がある軸穴を軸受け部材の軸線方向の全長に亘って設けたので、軸受け部材を相対的に安定して回転せしめ且つ回転時の摩擦抵抗を軽減できる。また、軸穴の両端の蓋部により間隙部の潤滑剤の油漏れを防止できる。
【0061】
請求項5の発明によれば、内接部と間隙部がある軸穴を軸受け部材の軸線方向の中間部に設けたので、間隙部の潤滑剤の油漏れを防止でき、内接部によって軸受け部材を相対的に安定して回転せしめ且つ間隙部の油溜まりによって回転時の摩擦抵抗を軽減できる。
【0062】
請求項6の発明によれば、モータ軸と回転軸との接触部分に内接部と油溜まりとなる間隙部を設けたので、内接部によって回転軸をモータ軸の周囲に相対的に安定して回転せしめることができ、間隙部に貯留している潤滑剤によって回転時の摩擦抵抗を軽減できる。たとえ、モータ軸と回転軸との接触部分に異物が入り込んだとしても、異物を間隙部に留めることができるので油膜切れが生じることなく摩擦抵抗の変化を防止できるので、モータの長寿命化を図ることができる。
【0063】
また、モータ軸と回転軸との接触面積が小さいためにモータ軸がなじみ易くなることから、軸のハメアイ公差を大きくできるので容易に製作加工できる。
【0064】
請求項7の発明によれば、モータ軸の外周面を内接する多角形状の軸穴であるので、回転軸を相対的に安定して回転でき、多角形の角部付近の間隙部に潤滑剤を貯留できるので回転時の摩擦抵抗を軽減できる。
【0065】
請求項8の発明によれば、モータ軸の外周面を軸穴の内接部に内接するので回転軸を相対的に安定して回転でき、凹み形状の間隙部に潤滑剤を貯留できるので回転時の摩擦抵抗を軽減できる。
【0066】
請求項9の発明によれば、内接部と間隙部がある軸穴を回転軸の軸線方向の全長に亘って設けたので、回転軸を相対的に安定して回転せしめ且つ回転時の摩擦抵抗を軽減できる。また、軸穴の両端の蓋部により間隙部の潤滑剤の油漏れを防止できる。
【0067】
請求項10の発明によれば、内接部と間隙部がある軸穴を回転軸の軸線方向の中間部に設けたので、間隙部の潤滑剤の油漏れを防止でき、内接部によって回転軸を相対的に安定して回転せしめ且つ間隙部の油溜まりによって回転時の摩擦抵抗を軽減できる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示すもので、(A)は扁平型の小型直流振動モータの縦断面図で、(B)は(A)の矢視I−I線の断面図である。
【図2】この発明の実施の形態を示すもので、扁平型の小型直流振動モータの分解斜視図である。
【図3】この発明の実施の形態の小型直流振動モータの平面図である。
【図4】(A)、(B)はこの小型直流振動モータの回路図である。
【図5】(A),(B)は、それぞれ他の実施の形態の軸受け構造を示す概略的な斜視図である。
【図6】さらに別の実施の形態の軸受け構造を示す概略的な斜視図である。
【図7】(A),(B)は、多角形状をなす軸穴の軸受け構造を示す概略的な断面図である。
【図8】図6の軸受け構造の概略的な断面図である。
【図9】従来の扁平型の小型直流振動モータの縦断面図である。
【図10】図9の矢視X−X線の断面図である。
【符号の説明】
1 小型直流振動モータ(モータ)
5 回転子
7 モータハウジング
11 永久磁石
13 支持軸(軸部材;モータ軸)
21 回転軸(軸受け部材)
23 電機子
25A、25B 整流子(コンミテータ)
27 第1コイル
29 第2コイル
31 第3コイル
33 分銅
37 軸穴
39 隙間
41 内接部
43 間隙部(油溜まり)
45 内接円
47 蓋部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bearing structure in a motor such as a vibration motor and various small motors which are seen in an incoming call function of a mobile phone and the like, and a bearing structure in a device such as a small rotating device such as a generator, a clock and a gear, and a motor using the bearing structure. .
[0002]
[Prior art]
Referring to FIG. 9, in the related art, for example, a small motor 101 as a motor has, for example, a support shaft 103 fixed to a plate 107 in a motor housing 105 as a motor shaft. A permanent magnet 109 in which N-poles and S-poles are alternately arranged in an annular shape and magnetized in the axial direction so as to have magnetic poles at a plurality of positions is fixed. Further, a rotor 115 having an armature 113 fixed around a rotation shaft 111 rotatably provided on the support shaft 103 is provided. Note that a plurality of, for example, three coils 117 are arranged in the armature 113 in the circumferential direction. A commutator 119 divided into six parts in the circumferential direction is disposed on the outer peripheral surface of the rotating shaft 111.
[0003]
Further, the two brushes 121 and 123 are arranged with a spatial phase of 90 degrees extending from the gap between the circumferentially adjacent permanent magnets 109 toward the center of the plate 107, and the brushes 121 and 123 are commutator 119. Is in contact with A positive terminal 125 connected to one brush 121 and a negative terminal 127 connected to the other brush 123 are provided on the periphery of the plate 107.
[0004]
Therefore, the current supplied from the positive terminal 125 and the negative terminal 127 is commutated between the brushes 121 and 123 and the commutator 119, and the magnetic pole of the coil 117 changes to the N pole and the S pole. The repulsion and suction with the poles and S poles are repeated, so that the rotor 115 rotates about the support shaft 103.
[0005]
At this time, friction occurs because the rotor 115 rotates while being in contact with the support shaft 103 on the rotation shaft 111. In order to reduce this friction, a lubricant 129 such as grease with less scattering is simply applied to a contact portion between the support shaft 103 and the rotating shaft 111.
[0006]
[Problems to be solved by the invention]
By the way, in the bearing structure of the conventional motor, the oil film is cut off on the contact surface between the outer peripheral surface of the support shaft 103 and the inner peripheral surface of the shaft hole of the rotary shaft 111 as shown in an enlarged view in FIG. A minute gap 131 is provided so as not to be present. When a lubricant 129 such as grease with little scattering is applied to the contact surface between the support shaft 103 and the rotating shaft 111, the lubricant 129 is accumulated in the gap 131, but the motor 101 rotates at a high speed or operates for a long time. Then, the grease and the lubricant are separated by centrifugal separation, and the lubricant is scattered out of the support shaft 103 system, so that the viscosity of the grease increases, and the friction between the rotor 115 and the support shaft 103 increases. There has been a problem that the number of rotations of the motor becomes slow and the life of the motor becomes short.
[0007]
Alternatively, when high-viscosity grease is applied so as not to be scattered, there is a problem that the motor 101 cannot be operated at high speed rotation because the viscosity is too high.
[0008]
Further, when foreign matter enters the gap 131, there is a problem that the frictional resistance is greatly increased and the oil film is severely cut.
[0009]
By the way, the bearing structure of the motor generally uses a ball bearing or a sintered metal for the bearing portion to ensure the retention of the lubricant and obtain a stable rotation. There is a limit to miniaturization of any of the sintered metals. In order to reduce the size, a bearing structure made of resin is generally used. However, since the bearing structure made of resin does not have a function of retaining a lubricant, the bearing structure of the above-described ball bearing or sintered metal is used. Stable rotation cannot be obtained as compared with.
[0010]
The present invention has been made to solve the above-described problems, and an object of the present invention is to reduce frictional resistance generated during rotation of a rotor by retaining lubricant in a contact portion between a motor shaft and a rotation shaft, thereby reducing motor rotation. An object of the present invention is to provide a bearing structure capable of extending the life and a motor using the bearing structure.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a bearing structure of the present invention according to claim 1 is a bearing structure comprising a shaft member, and a bearing member that rotates relatively to the shaft member through a shaft hole.
The inner peripheral surface of the shaft hole of the bearing member, an inscribed portion for inscribing the outer peripheral surface of the shaft member, and a gap portion that is separated from the outer peripheral surface of the shaft member and becomes an oil reservoir, A plurality of holes are provided alternately in the circumferential direction of the hole.
[0012]
Therefore, since there is a gap between the inscribed portion and the oil reservoir at the contact portion between the shaft member and the bearing member, the bearing member is relatively stably rotated around the shaft member by the inscribed portion, and the gap portion is formed. The frictional resistance during rotation is reduced by the lubricant stored in the motor. Even if foreign matter enters the contact portion between the shaft member and the bearing member, the foreign matter moves and stays in the gap, so that a change in frictional resistance can be prevented without causing oil film breakage, so that the bearing structure member has a long service life. Is achieved.
[0013]
In addition, since the contact area between the shaft member and the bearing member is small, the shaft member can be easily conformed, so that it is possible to increase the tolerance of the shaft and facilitate the manufacturing process.
[0014]
According to a second aspect of the present invention, in the bearing structure of the first aspect, the shaft hole of the bearing member has a polygonal shape in which an outer peripheral surface of the shaft member is inscribed in a circumferential direction of the shaft hole. It is characterized by having.
[0015]
Therefore, since the outer peripheral surface of the shaft member is inscribed in the polygonal shaft hole, the bearing member rotates relatively stably, and the corners of the polygon become gaps and the lubricant is stored. Therefore, frictional resistance during rotation is reduced.
[0016]
According to a third aspect of the present invention, in the bearing structure of the first aspect, the gap has a concave shape with respect to an inscribed circle of the inscribed portion. is there.
[0017]
Therefore, since the outer peripheral surface of the shaft member is inscribed in the inscribed portion of the shaft hole, the bearing member rotates relatively stably, and the lubricant is stored in the concave gap, so that the frictional resistance during rotation is reduced. Is reduced.
[0018]
According to a fourth aspect of the present invention, in the bearing structure according to any one of the first to third aspects, the cross-sectional shape of the shaft hole in the circumferential direction is equal to the total length of the bearing member in the axial direction. And a lid for closing oil leakage in the gap at both ends of the shaft hole.
[0019]
Therefore, since the shaft hole having the inscribed portion and the gap portion is provided over the entire length of the bearing member in the axial direction, the bearing member rotates relatively stably and frictional resistance during rotation is reduced. . Further, the lubricant in the gap is prevented from oil leakage by the lids at both ends of the shaft hole.
[0020]
According to a fifth aspect of the present invention, in the bearing structure according to any one of the first to third aspects, a circumferential cross-sectional shape of the shaft hole is an intermediate portion of an axial direction of the bearing member. Are characterized by having the same shape.
[0021]
Therefore, since the shaft hole having the inscribed portion and the gap portion is provided in the axially intermediate portion of the bearing member, oil leakage of the lubricant in the gap portion is prevented, and the bearing member is relatively moved by the inscribed portion. It rotates stably and the frictional resistance during rotation is reduced by the oil pool in the gap.
[0022]
According to a sixth aspect of the present invention, there is provided a motor, comprising: a motor shaft fixed in a motor housing; a rotation shaft provided on the motor shaft through a shaft hole so as to be relatively rotatable; and an armature around the rotation shaft. And a rotor fixed with
The inner peripheral surface of the shaft hole of the rotary shaft, an inscribed portion that inscribes the outer peripheral surface of the motor shaft, and a gap portion that is separated from the outer peripheral surface of the motor shaft and forms an oil reservoir, A plurality of holes are provided alternately in the circumferential direction of the hole.
[0023]
Therefore, there is an inscribed portion and a gap that becomes an oil reservoir at a contact portion between the motor shaft and the rotating shaft, so that the rotating shaft is relatively stably rotated around the motor shaft by the inscribed portion, and the gap is formed. The frictional resistance during rotation is reduced by the lubricant stored in the motor. Even if foreign matter enters the contact area between the motor shaft and the rotating shaft, the foreign matter moves and stays in the gap, so that the change in frictional resistance can be prevented without causing the oil film to break, thereby extending the life of the motor. It is planned.
[0024]
In addition, since the contact area between the motor shaft and the rotating shaft is small, the motor shaft is easily adapted, so that the tolerance of the shaft can be increased and the manufacturing process can be facilitated.
[0025]
According to a seventh aspect of the present invention, in the motor according to the sixth aspect, the shaft hole of the rotating shaft has a polygonal shape in which an outer peripheral surface of the motor shaft is inscribed in a circumferential direction of the shaft hole. It is characterized by the following.
[0026]
Therefore, since the outer peripheral surface of the motor shaft is inscribed in the polygonal shaft hole, the rotation shaft rotates relatively stably, and the corners of the polygon become gaps and the lubricant is stored. Therefore, frictional resistance during rotation is reduced.
[0027]
According to an eighth aspect of the present invention, in the motor according to the sixth aspect, the gap portion has a concave shape with respect to an inscribed circle of the inscribed portion.
[0028]
Therefore, since the outer peripheral surface of the motor shaft is inscribed in the inscribed portion of the shaft hole, the rotating shaft rotates relatively stably, and the lubricant is stored in the concave gap, so that the frictional resistance during rotation is reduced. Is reduced.
[0029]
According to a ninth aspect of the present invention, in the motor according to any one of the sixth to eighth aspects, a cross-sectional shape of the shaft hole in a circumferential direction extends over an entire length of the rotary shaft in an axial direction. It is characterized by having the same shape, and providing lids at both ends of the shaft hole for closing oil leakage in the gap.
[0030]
Therefore, since the shaft hole having the inscribed portion and the gap is provided over the entire length of the rotating shaft in the axial direction, the rotating shaft rotates relatively stably and the frictional resistance during rotation is reduced. . Further, the lubricant in the gap is prevented from oil leakage by the lids at both ends of the shaft hole.
[0031]
According to a tenth aspect of the present invention, in the motor according to any one of the sixth to eighth aspects, a cross-sectional shape of the shaft hole in the circumferential direction is the same as an intermediate portion of the rotary shaft in the axial direction. It is characterized by being constituted by a shape.
[0032]
Therefore, since the shaft hole having the inscribed portion and the gap is provided at the intermediate portion in the axial direction of the rotating shaft, oil leakage of the lubricant in the gap is prevented, and the rotating shaft is relatively moved by the inscribed portion. It rotates stably and the frictional resistance during rotation is reduced by the oil pool in the gap.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0034]
Referring to FIGS. 1 to 3, for example, a small DC vibration motor 1 as a motor having a bearing structure according to this embodiment includes a stator 3 and a rotor 5 rotatably mounted on the stator 3. And a cylindrical motor housing 7 that seals the rotor 5.
[0035]
The stator 3 includes a disk-shaped plate 9, four permanent magnets 11 arranged annularly and axially magnetized such that S poles and N poles are alternately arranged on the plate 9, A 90-degree space extending toward the center of the plate 9 from a gap between, for example, a support shaft 13 as a motor shaft for supporting the rotor 5 rising from the center of the plate 9 and the permanent magnet 11 adjacent in the circumferential direction. And two brushes 15A and 15B arranged in phase. In addition, a positive terminal 17 connected to the brush 15A and a negative terminal 19 connected to the brush 15B are provided on the periphery of the plate 9.
[0036]
The rotor 5 includes a vertically extending rotating shaft 21 rotatably supported by the support shaft 13, an armature 23 fixed in a circumferential direction of the rotating shaft 21, and a rotating shaft 21. Commutators 25A and 25B (commutators) arranged on the outer peripheral surface and divided into six in the circumferential direction are provided. The commutators 25A and 25B constitute current path forming means together with the brushes 15A and 15B.
[0037]
The armature 23 includes a first coil 27 and a second coil 29 wound on the same concentric circle, a third coil 31, a weight 33 as a vibrator, and the first coil 27, the second coil And a resin frame 35 that integrally supports the coil 29, the third coil 31, and the weight 33.
[0038]
The bearing structure constituting the main part of the embodiment of the present invention has a contact surface between, for example, the outer peripheral surface of the support shaft 13 as a shaft member and the inner peripheral surface of the shaft hole 37 of the rotary shaft 21 as the bearing member. Is provided with a minute gap 39 so that the oil film does not break as shown by a two-dot chain line in FIG.
[0039]
The shaft hole 37 of the rotating shaft 21 has a polygonal cross section in which the outer peripheral surface of the support shaft 13 is inscribed through the gap 39 in the circumferential direction of the shaft hole 37. In this embodiment, the cross section is hexagonal. It has a shape.
[0040]
In other words, the cross-sectional shape of the inner peripheral surface of the shaft hole 37 of the rotating shaft 21 is determined by the inner contact portion 41 that inscribes the outer peripheral surface of the support shaft 13 and the gap 39 with respect to the outer peripheral surface of the support shaft 13. The gap portions 43 that are largely separated from each other and serve as oil pools are provided at a plurality of locations alternately in the circumferential direction of the shaft hole 37. In other words, in the shaft hole 37 having a hexagonal cross section in FIG. 1B, the inscribed circle 45 indicated by the two-dot chain line is inscribed in the hexagonal cross section of the shaft hole 37, and this contact corresponds to the inscribed portion 41 described above. The region near the corner of the hexagonal cross section separated from the inscribed circle 45 of the two-dot chain line (the hatched region in FIG. 1B) corresponds to the gap 43.
[0041]
Further, in the rotating shaft 21 of this embodiment, the sectional shape of the shaft hole 37 has the same shape as the hexagonal sectional shape over the entire length of the rotating shaft 21 in the axial direction as shown in FIG. It is configured. After a lubricant such as grease with little scattering is applied to a contact surface between the support shaft 13 and the rotating shaft 21, a lid portion is provided on both end surfaces of the rotating shaft 21 in order to block oil leakage of the lubricant in the gap 43. Covered at 47. The cover 47 is provided with a hole 49 through which the support shaft 13 can be inserted. Therefore, the lubricant is stored not only in the gap 39 but also in the gap 43 described above.
[0042]
According to the above configuration, when current is supplied to the three coils of the first coil 27, the second coil 29, and the third coil 31 via the commutators 25A and 25B, the direction of the current and the permanent magnet The direction of rotation of the rotor 5 is determined according to the direction of the magnetic field lines from the Fleming 11 according to Fleming's left-hand rule. The current through the commutators 25A, 25B is simultaneously supplied to two or more coils 27, 29 (31), and at least, for example, two of the coils 27, 29 are superior to the influence of the other coil 31. Regardless of the stop position of No. 5, restart is possible.
[0043]
The first coil 27, the second coil 29, and the third coil 31 are star-connected, for example, as shown in FIGS. Opposite ones of the commutators 25A and 25B are connected to each other, and a pair of the connected commutators 25A and 25B is connected to one end of the first coil 27, one end of the second coil 29, and the third coil 31 respectively. Each is connected to one end.
[0044]
The other ends of the first coil 27, the second coil 29, and the third coil 31 are commonly connected. A current flows from the brushes 15A, 15B arranged with a spatial phase difference of 90 degrees with respect to the commutators 25A, 25B. The brushes 15A, 15B are sequentially connected to commutators 25A, 25B connected to one ends of the first coil 27, the second coil 29, and the third coil 31 as the rotor 5 rotates.
[0045]
Thereby, as shown in FIG. 4A, when the rotor 5 rotates and one of the brushes 15A, 15B is located at the boundary between the commutators 25A, 25B, the brush 15A → the commutator from the power supply. A current flows through a path of 25A, 25B → first to third coils 27, 29, 31 → commutator 25A, 25B → brush 15B → ground. As shown in FIG. 4B, when the rotor 5 rotates and the brushes 15A and 15B come into contact with the commutators 25A and 25B, respectively, the brushes 15A → commutators 25A and 25B → A current flows through the two coils 29, the first coil 27, the commutators 25A and 25B, the brush 15B, and the ground.
[0046]
As described above, since the DC vibration motor 5 has three coils, one of the brushes 15A, 15B is located at an intermediate position between adjacent divided pieces of the commutators 25A, 25B, and the adjacent divided piece is the brush 15A or the brush 15B. Even if the power supply is short-circuited, at least two of the first coil 27, the second coil 29, and the third coil 31 intervene between the power supplies, so that no short-circuit current flows and no power supply short-circuit occurs.
[0047]
As described above, when the rotor 5 rotates, the contact portion between the support shaft 13 and the rotating shaft 21 has the inscribed portion 41 and the gap portion 43 serving as an oil reservoir. As a result, stable rotation is performed around the support shaft 13, and the frictional resistance is reduced by the lubricant stored in the gap 43. Further, even if a foreign substance enters the gap 39, the foreign matter moves to and stays in the above-described gap portion 43, so that a change in frictional resistance can be prevented without causing an oil film breakage. Therefore, the small DC vibration motor 1 has a longer life.
[0048]
In addition, since the contact area between the support shaft 13 and the rotation shaft 21 is small, the support shaft 13 can easily fit into the shaft hole 37. Therefore, it is possible to increase the tolerance between the support shaft 13 and the rotation shaft 21. Manufacturing of the shafts 13 and 21 is facilitated.
[0049]
Next, a bearing structure according to another embodiment of the present invention will be described.
[0050]
Referring to FIG. 5B, in the above-described embodiment of FIG. 5A, the cross section of the shaft hole 37 of the rotary shaft 21 has a hexagonal shape, and the hexagonal cross section has the axis of the rotary shaft 21. In the present embodiment, the cross-sectional hexagonal shape of the shaft hole 37 is the same at the intermediate portion in the axial direction of the rotating shaft 21 in the present embodiment. At both ends in the axial direction of the rotating shaft 21, insertion holes 51 having a circular cross section through which the support shaft 13 can be inserted are provided. Therefore, in the above-described embodiment of FIGS. 1 and 5A, the lid 47 for closing both ends in the axial direction of the rotating shaft 21 is necessary. In the case of the embodiment of FIG. Does not require the lid 47.
[0051]
Also, since the cross section of the shaft hole 37 of the rotary shaft 21 may be polygonal, for example, in FIG. 7A, it is a square shape in which the inscribed circle 45 is inscribed on the outer peripheral surface of the support shaft 13 via the gap 39. 7B, the support shaft 13 has a pentagonal shape in which an inscribed circle 45 is inscribed on the outer peripheral surface of the outer peripheral surface of the support shaft 13 via a gap 39. The vicinity of each corner constitutes a gap 43 that becomes an oil reservoir. Others are substantially the same as the bearing structure of the embodiment of FIG. 1 described above. The operation and effects of the bearing structure of this embodiment are almost the same as those of the embodiment of FIG. 1 described above.
[0052]
Referring to FIGS. 6 and 8, the cross-sectional shape of the inner peripheral surface of the shaft hole 37 of the rotating shaft 21 is such that the inscribed portion 41 in which the inscribed circle 45 inscribes the outer peripheral surface of the support shaft 13 via the gap 39. , Is located on the line of the inscribed circle 45, and the gap 43 has a substantially semicircular concave shape with respect to the line of the inscribed circle 45. The inscribed portion 41 and the gap portion 43 are provided at a plurality of locations alternately in the circumferential direction of the shaft hole 37. Note that the recessed shape of the gap portion 43 is not limited to the above-described semicircular shape, but may be any of various other shapes, as long as the recessed shape serves as an oil reservoir for the lubricant. The operation and effects of the bearing structure of this embodiment are almost the same as those of the embodiment of FIG. 1 described above.
[0053]
Further, in this embodiment, since the cross-sectional shape of the shaft hole 37 is the same cross-sectional shape over the entire length of the rotary shaft 21 in the axial direction, a lid for closing both ends of the rotary shaft 21 in the axial direction is provided. Although the section 47 is provided, as shown in FIG. 5B described above, the cross-sectional shape of the shaft hole 37 is formed in the same shape at the intermediate portion in the axial direction of the rotating shaft 21, and the axial direction of the rotating shaft 21 is May be provided at both ends with insertion holes 51 having a circular cross section through which the support shaft 13 can be inserted.
[0054]
The present invention is not limited to the above-described embodiment, but can be embodied in other modes by making appropriate changes. In this embodiment, a flat type small DC vibration motor has been described as an example of the motor, but other vibration motors, various small motors, or other motors may be used.
[0055]
The bearing structure is applied to, for example, a bearing for a small motor, and a bearing for a small rotating device such as a generator, a timepiece, and a gear.
[0056]
【The invention's effect】
As can be understood from the above description of the embodiment of the invention, according to the invention of claim 1, the contact portion between the shaft member and the bearing member is provided with the inscribed portion and the gap portion serving as the oil reservoir. In addition, the bearing member can be relatively stably rotated around the shaft member by the inscribed portion, and friction resistance during rotation can be reduced by the lubricant stored in the gap. Even if foreign matter enters the contact portion between the shaft member and the bearing member, the foreign matter can be kept in the gap, so that a change in frictional resistance can be prevented without oil film breakage, so that the bearing structure member has a long service life. Can be achieved.
[0057]
In addition, since the contact area between the shaft member and the bearing member is small, the shaft member is easily conformed, so that the tolerance of the shaft can be increased, so that the shaft can be easily manufactured and processed.
[0058]
According to the second aspect of the present invention, since the polygonal shaft hole inscribes the outer peripheral surface of the shaft member, the bearing member can be relatively stably rotated, and the lubricant is provided in the gap near the corner of the polygon. Can reduce frictional resistance during rotation.
[0059]
According to the third aspect of the present invention, since the outer peripheral surface of the shaft member is inscribed in the inscribed portion of the shaft hole, the bearing member can be relatively stably rotated, and the lubricant can be stored in the recessed concave portion, so that the rotation can be achieved. Friction resistance at the time can be reduced.
[0060]
According to the fourth aspect of the present invention, since the shaft hole having the inscribed portion and the gap portion is provided over the entire length of the bearing member in the axial direction, the bearing member can be relatively stably rotated and the friction during rotation can be improved. Resistance can be reduced. Also, the lids at both ends of the shaft hole can prevent the lubricant from leaking from the gap.
[0061]
According to the fifth aspect of the present invention, since the shaft hole having the inscribed portion and the gap portion is provided at the axially intermediate portion of the bearing member, oil leakage of the lubricant in the gap portion can be prevented, and the bearing is formed by the inscribed portion. The member can be relatively stably rotated, and the frictional resistance during rotation can be reduced by the oil pool in the gap.
[0062]
According to the sixth aspect of the present invention, since the gap between the inner shaft and the oil reservoir is provided at the contact portion between the motor shaft and the rotary shaft, the inner shaft relatively stabilizes the rotary shaft around the motor shaft. The frictional resistance during rotation can be reduced by the lubricant stored in the gap. Even if foreign matter enters the contact area between the motor shaft and the rotary shaft, the foreign matter can be kept in the gap, preventing the oil film from breaking and preventing the change in frictional resistance. Can be planned.
[0063]
In addition, since the contact area between the motor shaft and the rotating shaft is small, the motor shaft is easily adapted, and the tolerance of the shaft can be increased.
[0064]
According to the seventh aspect of the invention, since the polygonal shaft hole inscribes the outer peripheral surface of the motor shaft, the rotation shaft can be relatively stably rotated, and the lubricant is provided in the gap near the corner of the polygon. Can reduce frictional resistance during rotation.
[0065]
According to the invention of claim 8, since the outer peripheral surface of the motor shaft is inscribed in the inscribed portion of the shaft hole, the rotation shaft can be relatively stably rotated, and the lubricant can be stored in the concave gap portion, so that the rotation can be performed. Friction resistance at the time can be reduced.
[0066]
According to the ninth aspect of the present invention, since the shaft hole having the inscribed portion and the gap portion is provided over the entire length of the rotating shaft in the axial direction, the rotating shaft can be relatively stably rotated and the friction at the time of rotation can be achieved. Resistance can be reduced. Also, the lids at both ends of the shaft hole can prevent the lubricant from leaking from the gap.
[0067]
According to the tenth aspect of the present invention, since the shaft hole having the inscribed portion and the gap is provided at the intermediate portion in the axial direction of the rotating shaft, oil leakage of the lubricant in the gap can be prevented, and the rotation by the inscribed portion can be prevented. The shaft can be relatively stably rotated, and the frictional resistance during rotation can be reduced by the oil pool in the gap.
[Brief description of the drawings]
1A and 1B show an embodiment of the present invention, in which FIG. 1A is a longitudinal sectional view of a flat type small DC vibration motor, and FIG. 1B is a sectional view taken along line II of FIG. is there.
FIG. 2, showing an embodiment of the present invention, is an exploded perspective view of a flat type small DC vibration motor.
FIG. 3 is a plan view of the small DC vibration motor according to the embodiment of the present invention.
FIGS. 4A and 4B are circuit diagrams of the small DC vibration motor.
FIGS. 5A and 5B are schematic perspective views each showing a bearing structure according to another embodiment.
FIG. 6 is a schematic perspective view showing a bearing structure of still another embodiment.
FIGS. 7A and 7B are schematic cross-sectional views showing a bearing structure of a shaft hole having a polygonal shape.
FIG. 8 is a schematic sectional view of the bearing structure of FIG. 6;
FIG. 9 is a longitudinal sectional view of a conventional flat type small DC vibration motor.
FIG. 10 is a sectional view taken along line XX of FIG. 9;
[Explanation of symbols]
1 small DC vibration motor (motor)
5 rotor 7 motor housing 11 permanent magnet 13 support shaft (shaft member; motor shaft)
21 Rotary shaft (bearing member)
23 Armature 25A, 25B Commutator (commutator)
27 first coil 29 second coil 31 third coil 33 weight 37 shaft hole 39 gap 41 inscribed part 43 gap (oil pool)
45 inscribed circle 47 lid