[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004047701A - Planar magnetic element for noncontact charger - Google Patents

Planar magnetic element for noncontact charger Download PDF

Info

Publication number
JP2004047701A
JP2004047701A JP2002202514A JP2002202514A JP2004047701A JP 2004047701 A JP2004047701 A JP 2004047701A JP 2002202514 A JP2002202514 A JP 2002202514A JP 2002202514 A JP2002202514 A JP 2002202514A JP 2004047701 A JP2004047701 A JP 2004047701A
Authority
JP
Japan
Prior art keywords
planar
coil
magnetic element
magnetic
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002202514A
Other languages
Japanese (ja)
Inventor
Yasutaka Fukuda
福田 泰隆
Hideaki Kohiki
小日置 英明
Kazuhiko Echizenya
越前谷 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Mineral Co Ltd
Original Assignee
JFE Steel Corp
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kawatetsu Mining Co Ltd filed Critical JFE Steel Corp
Priority to JP2002202514A priority Critical patent/JP2004047701A/en
Publication of JP2004047701A publication Critical patent/JP2004047701A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To particularly suppress local heating of a planar surface magnetic element and to perform a large reduction in thickness, and to improve a charging efficiency in the planar magnetic element placed on a noncontact charger. <P>SOLUTION: In the planar magnetic element for the noncontact charger of the structure, in which a spiral planar coil is embedded in one side surface of a magnetic layer, a plurality of planar coils are disposed in series on the same planar surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非接触充電器に搭載される平面磁気素子に関し、特に該平面磁気素子の局所的な発熱を抑え、かつ、大幅な薄型化と充電効率向上を達成するものである。
【0002】
【従来の技術】
近年の情報技術の普及に伴い、携帯電話や電子情報端末等の小型化、薄型化、軽量化が急速に進み、Liイオン電池やニッケル水素電池のような2次電池駆動の電源が多用されるようになってきている。
しかしながら、携帯機器は人体の近くに常備されることが多く、充電用の接点が露出した形では信頼性に問題を生じる恐れがあり、非接触式の充電システムが要望されている。
【0003】
これまで、非接触充電システムとしては、主にシェーバーや電動歯ブラシなどの水回りの機器に用いられてきたが、最近では、例えば特開平2000−78763号公報に記載のように携帯電話やPHS などの携帯用電子機器にも用いられるようになってきている。
また、特に薄型のものとして、カード型非接触給電装置の例をあげることができる(Kanai et al.:IEEE APEC Record,pp.1157−1162(2000)、金井ら:電気学会マグネティクス研究会MAG−00−150等参照)。
【0004】
このような非接触充電システム(非接触給電装置)における磁気素子としては、従来、 フェライト板やアモルファス薄帯上に銅線を巻き回した構造、あるいは空心コイル構造を採用してきた。
しかしながら、これら従来の磁気素子には、構造上、次に述べるような問題があった。
(1) コイル厚が1mm程度でかつ寸法が数cm角と大きいため、占有面積や体積が大きく、機器の小型化、薄型化を阻害する。
(2) 送電側からの磁束がコイル中を横切るため、受電コイル内で発生する渦電流による損失が大きい。
【0005】
ところで、極薄型のコイルとしては、印刷法やシート法で形成したフェライト磁性膜を用いた平面型の磁気素子が知られている(特開平11−26239号公報等参照)。この平面型の磁気素子は、まず、フェライト粉にバインダを混ぜた磁性ペーストをSi基板上に印刷、焼成することによって高抵抗のフェライト磁性膜を形成し、次に、 この膜上にコイルパターンをめっき法などで形成した後、さらにその上に磁性膜を形成して製作される。そして、薄型化はもちろん、コイル損失を効果的に抑制することに成功している。
【0006】
【発明が解決しようとする課題】
しかしながら、かかる構造の磁気素子では、コイルの両側に磁性体を配置しているため、外部への磁束の取り出しおよび外部からの磁束の取り込みが充分とはいえず、受送電コイル間の磁束が充分に相互のコイルを横切らない。そのため、非接触充電器用としては充分な能力を発揮することができず、本発明が対象とする非接触充電器用平面磁気素子として適用することができなかった。
【0007】
本発明は、非接触充電器に搭載される平面磁気素子について、その更なる小型化、薄型化を可能とし、良好な充電効率を実現する非接触充電器用の平面磁気素子を提供するものである。
更に、本発明は、上記の非接触充電器に搭載される平面磁気素子において、局所的な発熱を抑え、一段の効率の向上を実現するものである。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ね、磁性層の片面に、スパイラル型の平面コイルを埋設して平面磁気素子を形成するとともに、 さらに、当該平面コイルを複数個に分割形成し、直列接続することで所期の目的が有利に達成されることを見出した。
【0009】
すなわち、本発明は、磁性層の片面に、スパイラル型の平面コイルを埋設した構造となる非接触充電器用平面磁気素子であって、同一平面上に複数個の平面コイルを直列に配置してなることを特徴とする非接触充電器用平面磁気素子によって上記課題を解決したのである。
また、本発明は、前記磁性層がフェライト磁粉から構成され、前記磁性層中のフェライト磁粉の体積密度が25vol %以上であることを好適とする。
【0010】
【発明の実施の形態】
図1、図2に基づき、本発明の非接触充電器用平面磁気素子の好適な実施の形態について説明する。
平面コイルとしては、スパイラル状、ミアンダ状等の形状があるが、スパイラル状とすることがインダクタンスを大きくすることができ、本発明において好適である。
【0011】
図1の平面磁気素子1は、磁性層2の片面に2つのスパイラル型の平面コイル3を直列に配置したものであり、平面コイル3の巻き線方向が逆向きとなるように配置している。こうすることで、隣り合ったコイル線間の磁気結合をおおきくすることができ、特に好適である。
また、図2に示すように、4つの平面コイル3を磁性層2の片面に配置して平面磁気素子1を構成するようにしてもよい。この場合、図示のように平面コイルの所定の端子間を配線5で接続し、直列接続となす。
【0012】
このように、平面磁気素子1に形成する平面コイル3を分割して形成・配置し、直列に接続することで、コイルのターン数を分割することができ、コイルに集中して発生する局所的な発熱を分散することが可能となる。
また、1つのコイル内のコイル線を短くすることができ、直流抵抗を低減できる。さらに、平面コイルのコイルに囲まれた中窓の面積を大きくとることが可能となり、相対的にコイル中を横切る磁束を低減することができ、発熱を抑えて、受電効率を向上できる。
【0013】
一方、比較のため図3に示すように、磁性層2の片面に1つのスパイラル型の平面コイルのみを形成した構成とすると、発熱が1つのコイルに集中することになり、また、平面コイル中のコイル線の長さが長くなって直流抵抗が増してしまう。更に、コイルに囲まれた中窓の面積を大きくとることもできない。
なお、磁性層中のフェライト磁粉としては、NiZnフェライトを好適とする。平面コイルのコイル線間にフェライト磁性樹脂を充填し、磁性層を形成するには、フェライト磁粉と樹脂バインダの混合物をスクリーン印刷法で刷り込むなどの方法があり、容易に達成することができる。
【0014】
本発明の平面磁気素子は、図4に示すように、非磁性の基板7、例えば、Si基板、アルミナ基板等に絶縁樹脂層6を介して平面コイル3を形成し、この非磁性の基板7側が送電装置10側となるように配置することで非接触充電を行うようにする。
また、図5に示すように、フェライト基板8上に平面コイル3を形成し、コイル線間に磁性層2を充填して形成するようにしてもよい。この場合、平面コイル3の表面を絶縁樹脂層6で被膜する。
【0015】
なお、送電装置10は、本発明の平面磁気素子と同じ平面コイルを採用しても良く、また、図4、図5に示すように巻線コイルとしても良い。どの方式を採用するかは、送電条件等によって適宜選択することができる。ただし、送電側コイルは、図4、図5に示すように、受電側の平面磁気素子中の平面コイルに対向する配置に一致させる配置とすることを好適とする。
【0016】
次に、 磁性層がフェライト磁粉から構成され、前記磁性層中のフェライト磁性粉の体積密度を25vol %以上とすることを好適とする点について説明する。
フェライト磁粉の体積密度を25vol %以上とするのは、25vol %未満であると、 充電器側の送電コイルと機器本体側の受電コイル間の磁気的な結合、すなわち、次式に示す結合係数kが小さくなり、 充分な充電特性が得られないからである。
【0017】
k=M/(L1 ×L2 1/2 
ここで、M:相互インダクタンス(H)
1 :送電コイルの自己インダクタンス(H)
2 :受電コイルの自己インダクタンス(H)
なお、このような磁性層は、所望の組成のフェライト磁粉をエポキシ樹脂などのバインダで固着して形成することができる。
【0018】
また、この体積密度は、磁気素子全体において、必ずしも同一である必要はなく、磁性層、中窓およびコイル線間など、場所に応じて1種または2種以上の体積密度の磁性体を用いることができる。
また、本発明において、磁性層の厚みを5〜500 μm程度とすることが好ましい。例えば、フェライト磁粉の体積密度の調整により、適切な磁性層の厚みを調整することができるが、この厚みが5μmに満たないと送電側からの磁束の取り込み効果が乏しくなり、一方、500 μmを超えると磁気素子が厚くなって機器の薄型化を阻害するからである。
【0019】
なお、本発明の平面磁気素子は、 コイルを形成したままの状態でそのまま使用しても構わないが、表面を保護するために、図5に示すように、コイル形成側に、エポキシ樹脂、ポリイミド樹脂などの絶縁樹脂やガラス等の非磁性でかつ電気的絶縁体からなる保護被膜である絶縁樹脂層6を被覆することが有利である。また、図4に示すように、当該絶縁樹脂層6に加えて、 アルミナ等のセラミックスやシリコンなど非磁性の薄い板状の非磁性の基板7で覆うことは、強度を確保する上で有効である。
【0020】
【実施例】
本発明の平面磁気素子の代表的な製造方法を説明する。なお、以下に記載の寸法等の具体的数値は、代表的な構成を例示するものであり、 何ら数値を限定するものではない。
(1) Si基板上にNiZn系のフェライトペーストをスクリーン印刷・焼成することで40μm厚となるように形成する。
(2) その上に、ポリイミド樹脂を塗布し、さらにCuシード層を0.5 μm厚として成膜する。
(3) その上に、レジストを塗布し、例えば、片側10ターン、両側で計20ターンの平面コイルパターンを露光・現像し、レジストフレームを形成する。
(4) 上記レジストフレーム内に、電気めっき法でCuを析出させる。
(5) レジスト剥離後、エッチングにより不要なCuシード層を除去する。
(6) フェライト磁粉をエポキシ樹脂に混ぜたペーストを、スクリーン印刷法にて、形成した平面コイルの線間および中窓に充填・熱硬化する。
【0021】
以上の工程で、図4に例示の平面磁気素子が完成する。また、フェライト基板上に、上記と同様にCuを形成して平面コイルとなし、その線間および中窓にフェライト磁粉をエポキシ樹脂に混ぜたペーストを充填・熱硬化させ、最後に、保護被覆として絶縁樹脂層を形成することで、図5に例示する平面磁気素子を完成することができる。
【0022】
次に、図1および図4に例示のように、2つの平面コイルを直列接続して形成した本発明の平面磁気素子(以下、本発明例とよぶ。)を製作し、その特性評価を行った結果について説明する。
なお、比較のため、図3に示す平面コイルを1つとした平面磁気素子(以下、比較例とよぶ。)を製作して同様の特性評価を実施している。
【0023】
フェライト組成は、すべて、Fe2 3 :49 mol%、ZnO:23 mol%、NiO:28
mol%の組成とした。
まず、Si基板上に上記組成のフェライトペーストを印刷後、焼成し、40μm厚のフェライト層を形成した。この上に、ポリイミド樹脂をスピンコートによって3μm厚に成膜した後、無電解めっき法で0.5 μm厚のCuをシード層として全面に成膜した。その上に、レジストの塗布・露光・現像処理を行い、スパイラル形状の平面コイル形成用のレジストフレームを形成した。この後、電気Cuめっきを行い、レジスト剥離後、不要のCuシード層をエッチング除去した。完成した平面コイルは、厚さ80μm、片側15ターン、両側で計30ターンである。次に、フェライト磁粉の体積率を60vol %としたエポキシ樹脂ペーストの充填を行い、熱硬化させて磁性層を形成し、本発明例の平面磁気素子を完成させた。
【0024】
一方、上記と同じ製法で比較例の平面磁気素子を作成した。比較例の平面コイルは、20ターンのものを1つとした。
送電装置側は、それぞれの平面コイルに対応する送電コイルを配置して形成した。それぞれの送電コイルは、焼結フェライトコアに導線をコイルに巻いて形成した。送電装置の駆動周波数は100 kHz、送受電コイル間のギャップを2mmに設定した。得られた特性の比較を表1に示す。
【0025】
【表1】

Figure 2004047701
【0026】
表1から明らかなように、比較例に比べて、本発明例では、その誘起電圧が上回っており、また、コイル直流抵抗が小さくなっている。また、発熱による昇温(ΔT)についても比較例よりも本発明例の方が小さくなっており、本発明の効果は明らかである。
【0027】
【発明の効果】
本発明によれば、きわめて薄型化され、充電効率の高い非接触充電器用磁気素子を得ることができ、局所的な発熱も抑えることができるようになった。
【図面の簡単な説明】
【図1】本発明の非接触充電器用平面磁気素子の模式平面図である。
【図2】本発明の別形態の非接触充電器用平面磁気素子の模式平面図である。
【図3】1つの平面コイルで構成した非接触充電器用平面磁気素子(比較例)の模式平面図である。
【図4】本発明の非接触充電器用平面磁気素子と給電装置の模式断面図である。
【図5】構造の異なる本発明の非接触充電器用平面磁気素子と給電装置の模式断面図である。
【符号の説明】
1、1a、1b    非接触充電器用平面磁気素子
2    磁性層
3    平面コイル
4    端子
5    配線
6    絶縁樹脂層
7  非磁性の基板(Si基板、アルミナ基板)
8  フェライト基板
10    送電装置
11  フェライトコア
12  巻線コイル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a planar magnetic element mounted on a non-contact charger, and more particularly, to suppressing local heat generation of the planar magnetic element, and achieving a significant reduction in thickness and improvement in charging efficiency.
[0002]
[Prior art]
With the spread of information technology in recent years, the size, thickness, and weight of mobile phones and electronic information terminals have been rapidly reduced, and secondary battery-driven power sources such as Li-ion batteries and nickel-metal hydride batteries are frequently used. It is becoming.
However, portable devices are often provided near a human body, and there is a possibility that reliability may be deteriorated when the charging contact is exposed. Therefore, a non-contact type charging system is demanded.
[0003]
Until now, non-contact charging systems have been mainly used for water-related devices such as shavers and electric toothbrushes, but recently, for example, as described in Japanese Patent Application Laid-Open No. 2000-78763, cellular phones and PHSs have been used. Of portable electronic devices.
In particular, as a particularly thin type, an example of a card-type non-contact power supply device can be given (Kanai et al .: IEEE APEC Records, pp. 1157-1162 (2000), Kanai et al .: MAG of the Institute of Electrical Engineers of Japan). -00-150 etc.).
[0004]
As a magnetic element in such a contactless charging system (contactless power supply device), a structure in which a copper wire is wound on a ferrite plate or an amorphous ribbon, or an air-core coil structure has conventionally been adopted.
However, these conventional magnetic elements have the following structural problems.
(1) Since the coil thickness is as large as about 1 mm and the dimensions are as large as several cm square, the occupied area and volume are large, which hinders miniaturization and thinning of the device.
(2) Since the magnetic flux from the power transmission side crosses the inside of the coil, the loss due to the eddy current generated in the power receiving coil is large.
[0005]
Meanwhile, as an extremely thin coil, a planar magnetic element using a ferrite magnetic film formed by a printing method or a sheet method is known (see Japanese Patent Application Laid-Open No. H11-26239). This planar type magnetic element first forms a high-resistance ferrite magnetic film by printing and firing a magnetic paste in which a binder is mixed with ferrite powder on a Si substrate, and then forms a coil pattern on this film. After being formed by a plating method or the like, a magnetic film is further formed thereon to manufacture. In addition to the reduction in thickness, the coil loss has been effectively suppressed.
[0006]
[Problems to be solved by the invention]
However, in the magnetic element having such a structure, since magnetic materials are arranged on both sides of the coil, it is not sufficient to take out the magnetic flux to the outside and take in the magnetic flux from the outside. Do not cross each other's coils. Therefore, it could not exhibit sufficient performance for a non-contact charger and could not be applied as a planar magnetic element for a non-contact charger targeted by the present invention.
[0007]
An object of the present invention is to provide a planar magnetic element for a non-contact charger which enables a further reduction in size and thickness of the planar magnetic element mounted on the non-contact charger and realizes good charging efficiency. .
Further, the present invention is to achieve a further improvement in efficiency by suppressing local heat generation in the planar magnetic element mounted on the non-contact charger.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and formed a planar magnetic element by embedding a spiral type planar coil on one surface of a magnetic layer, and further dividing the planar coil into a plurality of pieces. It has been found that the intended purpose is advantageously achieved by forming and connecting in series.
[0009]
That is, the present invention is a planar magnetic element for a non-contact charger having a structure in which a spiral type planar coil is embedded on one surface of a magnetic layer, and a plurality of planar coils are arranged in series on the same plane. The above problem has been solved by a planar magnetic element for a non-contact charger characterized by the above.
In the present invention, the magnetic layer is preferably made of ferrite magnetic powder, and the volume density of the ferrite magnetic powder in the magnetic layer is preferably 25 vol% or more.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the planar magnetic element for a non-contact charger according to the present invention will be described with reference to FIGS.
The planar coil has a shape such as a spiral shape or a meander shape, but a spiral shape is preferable in the present invention because the inductance can be increased.
[0011]
The planar magnetic element 1 of FIG. 1 has two spiral planar coils 3 arranged in series on one surface of a magnetic layer 2, and the planar coils 3 are arranged so that the winding directions thereof are opposite. . By doing so, magnetic coupling between adjacent coil wires can be increased, which is particularly preferable.
Further, as shown in FIG. 2, four planar coils 3 may be arranged on one side of the magnetic layer 2 to constitute the planar magnetic element 1. In this case, predetermined terminals of the planar coil are connected by a wiring 5 as shown in the drawing, and are connected in series.
[0012]
As described above, by dividing and forming the planar coil 3 formed on the planar magnetic element 1 and connecting them in series, it is possible to divide the number of turns of the coil and to locally generate the coil concentratedly. It is possible to disperse a large amount of heat.
Further, the length of the coil wire in one coil can be shortened, and the DC resistance can be reduced. Further, it is possible to increase the area of the middle window surrounded by the coil of the planar coil, to relatively reduce the magnetic flux crossing the inside of the coil, suppress heat generation, and improve the power receiving efficiency.
[0013]
On the other hand, as shown in FIG. 3 for comparison, when only one spiral planar coil is formed on one side of the magnetic layer 2, heat is concentrated on one coil, and The length of the coil wire becomes longer and the DC resistance increases. Furthermore, the area of the middle window surrounded by the coil cannot be increased.
Note that NiZn ferrite is preferable as the ferrite magnetic powder in the magnetic layer. There is a method of filling a ferrite magnetic resin between the coil wires of the planar coil to form a magnetic layer by printing a mixture of a ferrite magnetic powder and a resin binder by a screen printing method, which can be easily achieved.
[0014]
As shown in FIG. 4, the planar magnetic element of the present invention is formed by forming a planar coil 3 on a non-magnetic substrate 7, for example, a Si substrate, an alumina substrate, or the like, with an insulating resin layer 6 therebetween. Contactless charging is performed by arranging the power transmission device 10 on the side thereof.
Alternatively, as shown in FIG. 5, a planar coil 3 may be formed on a ferrite substrate 8, and the magnetic layer 2 may be filled between the coil wires to form the coil. In this case, the surface of the planar coil 3 is coated with the insulating resin layer 6.
[0015]
The power transmission device 10 may employ the same planar coil as the planar magnetic element of the present invention, or may be a wound coil as shown in FIGS. Which method is adopted can be appropriately selected depending on power transmission conditions and the like. However, as shown in FIG. 4 and FIG. 5, it is preferable that the power transmission side coil be arranged so as to match the arrangement facing the planar coil in the planar magnetic element on the power receiving side.
[0016]
Next, the point that the magnetic layer is made of ferrite magnetic powder and the volume density of the ferrite magnetic powder in the magnetic layer is preferably 25 vol% or more will be described.
When the volume density of the ferrite magnetic powder is set to 25 vol% or more, if the volume density is less than 25 vol%, the magnetic coupling between the power transmitting coil on the charger side and the power receiving coil on the device main body, that is, the coupling coefficient k expressed by the following equation: Is small, and sufficient charging characteristics cannot be obtained.
[0017]
k = M / (L 1 × L 2 ) 1/2
Here, M: mutual inductance (H)
L 1 : Self-inductance of power transmission coil (H)
L 2 : Self-inductance of receiving coil (H)
Such a magnetic layer can be formed by fixing ferrite magnetic powder having a desired composition with a binder such as an epoxy resin.
[0018]
The volume density is not necessarily the same in the entire magnetic element, and one or two or more magnetic materials having different volume densities should be used depending on the location, such as between the magnetic layer, the middle window and the coil wire. Can be.
In the present invention, it is preferable that the thickness of the magnetic layer is about 5 to 500 μm. For example, the thickness of the appropriate magnetic layer can be adjusted by adjusting the volume density of the ferrite magnetic powder. However, if the thickness is less than 5 μm, the effect of taking in the magnetic flux from the power transmission side is poor. If it exceeds, the magnetic element becomes thick, which hinders the thinning of the device.
[0019]
The planar magnetic element of the present invention may be used as it is with the coil formed. However, in order to protect the surface, as shown in FIG. It is advantageous to cover the insulating resin layer 6 which is a protective coating made of a non-magnetic and electric insulator such as an insulating resin such as a resin or glass. As shown in FIG. 4, covering with a non-magnetic thin plate-shaped non-magnetic substrate 7 such as ceramics such as alumina or silicon in addition to the insulating resin layer 6 is effective for securing strength. is there.
[0020]
【Example】
A typical method for manufacturing the planar magnetic element of the present invention will be described. Note that specific numerical values such as dimensions described below are only examples of typical configurations, and do not limit the numerical values at all.
(1) A NiZn-based ferrite paste is screen-printed and fired on a Si substrate to have a thickness of 40 μm.
(2) A polyimide resin is applied thereon, and a Cu seed layer is formed to a thickness of 0.5 μm.
(3) A resist is applied thereon, and, for example, a planar coil pattern of 10 turns on one side and a total of 20 turns on both sides is exposed and developed to form a resist frame.
(4) Cu is deposited in the resist frame by electroplating.
(5) After removing the resist, the unnecessary Cu seed layer is removed by etching.
(6) A paste in which ferrite magnetic powder is mixed with an epoxy resin is filled and thermally hardened between the lines of the formed planar coil and the middle window by a screen printing method.
[0021]
Through the above steps, the planar magnetic element illustrated in FIG. 4 is completed. In addition, on the ferrite substrate, Cu is formed in the same manner as above to form a planar coil, and between the lines and the middle window, a paste obtained by mixing ferrite magnetic powder with epoxy resin is filled and thermoset, and finally, as a protective coating By forming the insulating resin layer, the planar magnetic element illustrated in FIG. 5 can be completed.
[0022]
Next, as shown in FIGS. 1 and 4, a planar magnetic element of the present invention (hereinafter, referred to as an example of the present invention) formed by connecting two planar coils in series is manufactured and its characteristics are evaluated. The results will be described.
For comparison, a planar magnetic element having one planar coil shown in FIG. 3 (hereinafter, referred to as a comparative example) was manufactured and the same characteristic evaluation was performed.
[0023]
Ferrite composition are all, Fe 2 O 3: 49 mol %, ZnO: 23 mol%, NiO: 28
The composition was mol%.
First, a ferrite paste having the above composition was printed on a Si substrate and baked to form a ferrite layer having a thickness of 40 μm. On this, a polyimide resin was formed into a film having a thickness of 3 μm by spin coating, and then a film having a thickness of 0.5 μm was formed as a seed layer over the entire surface by electroless plating. A resist coating, exposure, and development treatment was performed thereon to form a resist frame for forming a spiral planar coil. Thereafter, electric Cu plating was performed, and after removing the resist, unnecessary Cu seed layers were removed by etching. The completed planar coil has a thickness of 80 μm, 15 turns on one side, and a total of 30 turns on both sides. Next, the ferrite magnetic powder was filled with an epoxy resin paste having a volume ratio of 60 vol%, and thermally cured to form a magnetic layer, thereby completing the planar magnetic element of the present invention.
[0024]
On the other hand, a planar magnetic element of a comparative example was manufactured by the same manufacturing method as described above. The flat coil of the comparative example was one having 20 turns.
The power transmission device side was formed by arranging power transmission coils corresponding to the respective planar coils. Each power transmission coil was formed by winding a conductive wire around a coil on a sintered ferrite core. The driving frequency of the power transmitting device was set to 100 kHz, and the gap between the power transmitting and receiving coils was set to 2 mm. Table 1 shows a comparison of the obtained characteristics.
[0025]
[Table 1]
Figure 2004047701
[0026]
As is clear from Table 1, the induced voltage is higher and the coil DC resistance is smaller in the example of the present invention than in the comparative example. Further, the temperature rise (ΔT) due to heat generation is smaller in the example of the present invention than in the comparative example, and the effect of the present invention is clear.
[0027]
【The invention's effect】
According to the present invention, it is possible to obtain a magnetic element for a non-contact charger which is extremely thin and has a high charging efficiency, and can suppress local heat generation.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a planar magnetic element for a non-contact charger of the present invention.
FIG. 2 is a schematic plan view of a planar magnetic element for a non-contact charger according to another embodiment of the present invention.
FIG. 3 is a schematic plan view of a planar magnetic element (comparative example) for a non-contact charger configured with one planar coil.
FIG. 4 is a schematic sectional view of a planar magnetic element for a non-contact charger and a power supply device of the present invention.
FIG. 5 is a schematic sectional view of a planar magnetic element for a non-contact charger and a power supply device of the present invention having different structures.
[Explanation of symbols]
1, 1a, 1b Non-contact charger planar magnetic element 2 Magnetic layer 3 Planar coil 4 Terminal 5 Wiring 6 Insulating resin layer 7 Non-magnetic substrate (Si substrate, alumina substrate)
8 Ferrite substrate 10 Power transmission device 11 Ferrite core 12 Winding coil

Claims (2)

磁性層の片面に、スパイラル型の平面コイルを埋設した構造となる非接触充電器用平面磁気素子であって、
同一平面上に複数個の平面コイルを直列に配置してなることを特徴とする非接触充電器用平面磁気素子。
A planar magnetic element for a non-contact charger having a structure in which a spiral type planar coil is embedded on one surface of a magnetic layer,
A planar magnetic element for a non-contact charger, comprising a plurality of planar coils arranged in series on the same plane.
前記磁性層がフェライト磁粉から構成され、
前記磁性層中のフェライト磁粉の体積密度が25vol %以上であることを特徴とする請求項1に記載の非接触充電器用の平面磁気素子。
The magnetic layer is composed of ferrite magnetic powder,
2. The planar magnetic element for a non-contact charger according to claim 1, wherein the volume density of the ferrite magnetic powder in the magnetic layer is 25 vol% or more.
JP2002202514A 2002-07-11 2002-07-11 Planar magnetic element for noncontact charger Pending JP2004047701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202514A JP2004047701A (en) 2002-07-11 2002-07-11 Planar magnetic element for noncontact charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202514A JP2004047701A (en) 2002-07-11 2002-07-11 Planar magnetic element for noncontact charger

Publications (1)

Publication Number Publication Date
JP2004047701A true JP2004047701A (en) 2004-02-12

Family

ID=31708679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202514A Pending JP2004047701A (en) 2002-07-11 2002-07-11 Planar magnetic element for noncontact charger

Country Status (1)

Country Link
JP (1) JP2004047701A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128397A (en) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd Noncontact power supply and its manufacturing method
WO2007063884A1 (en) * 2005-11-30 2007-06-07 Holy Loyalty International Co., Ltd. Surface inductor device
WO2008066143A1 (en) * 2006-11-29 2008-06-05 Linkcom Manufacturing Co., Ltd. Transformer device
JP2008141203A (en) * 2006-11-29 2008-06-19 Ud Tech Kk Transformer device
JP2008294385A (en) * 2007-04-24 2008-12-04 Panasonic Electric Works Co Ltd Contactless power transmitting device, and manufacturing method of its coil block for electric power receiving
US8020772B2 (en) 2004-12-20 2011-09-20 Toppan Forms Co., Ltd. Noncontact data receiver/transmiter
US8042742B2 (en) 2004-10-13 2011-10-25 Toppan Forms Co., Ltd. Noncontact IC label and method and apparatus for manufacturing the same
JP2012119662A (en) * 2011-09-22 2012-06-21 Panasonic Corp Noncontact charging module and noncontact charger
JP2012134217A (en) * 2010-12-20 2012-07-12 Showa Aircraft Ind Co Ltd Non-contact power supply device with multipolar coil structure
US8421574B2 (en) 2007-06-20 2013-04-16 Panasonic Corporation Contactless power transmission apparatus and a method of manufacturing a secondary side thereof
WO2013057913A1 (en) * 2011-10-17 2013-04-25 パナソニック 株式会社 Non-contact power supply apparatus and primary coil block for non-contact power supply apparatus
JP2013140880A (en) * 2012-01-05 2013-07-18 Nitto Denko Corp Power reception module for mobile terminal using wireless power transmission and rechargeable battery for mobile terminal including the same
WO2013133255A1 (en) * 2012-03-08 2013-09-12 日産自動車株式会社 Contactless power transfer device
JP2013187378A (en) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd Non-contact power supply device
JP2013247822A (en) * 2012-05-29 2013-12-09 Sharp Corp Wireless power feeding device, wireless power receiving device, wireless power feeding system, and electrical instrument
JP2014001094A (en) * 2012-06-18 2014-01-09 Nippon Electric Glass Co Ltd Support member for non-contact power supply
JP2014027880A (en) * 2013-11-08 2014-02-06 Panasonic Corp Noncontact charging module and noncontact charger
US8749334B2 (en) 2007-05-10 2014-06-10 Auckland Uniservices Ltd. Multi power sourced electric vehicle
WO2014097571A1 (en) * 2012-12-17 2014-06-26 昭和電線デバイステクノロジー株式会社 Litz wire coil
US9071061B2 (en) 2009-02-05 2015-06-30 Auckland Uniservices Ltd. Inductive power transfer apparatus
KR20150115271A (en) * 2014-04-03 2015-10-14 엘지이노텍 주식회사 Wireless power transmitting apparatus
EP2870675A4 (en) * 2012-07-09 2016-04-27 Auckland Uniservices Ltd Flux coupling device and magnetic structures therefor
US9466419B2 (en) 2007-05-10 2016-10-11 Auckland Uniservices Limited Apparatus and system for charging a battery
US9607757B2 (en) 2011-11-02 2017-03-28 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US9667086B2 (en) 2012-06-28 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal
US9735606B2 (en) 2012-06-28 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including charging coil and wireless communication coil, wireless charging module including charging coil and wireless communication coil
US9935481B2 (en) 2012-02-17 2018-04-03 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging module and battery pack
US9954396B2 (en) 2011-06-14 2018-04-24 Panasonic Corporation Electronic device including non-contact charging module
US10204734B2 (en) 2011-11-02 2019-02-12 Panasonic Corporation Electronic device including non-contact charging module and near field communication antenna
US10218222B2 (en) 2011-01-26 2019-02-26 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging module having a wireless charging coil and a magnetic sheet
US10379649B1 (en) 2018-02-08 2019-08-13 Focaltech Electronics, Ltd. Touch screen, electronic device, wireless charging method and wireless charging system
US10673274B2 (en) 2011-10-17 2020-06-02 Auckland Uniservices Limited Inductive power transfer apparatus

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8042742B2 (en) 2004-10-13 2011-10-25 Toppan Forms Co., Ltd. Noncontact IC label and method and apparatus for manufacturing the same
JP2006128397A (en) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd Noncontact power supply and its manufacturing method
JP4498096B2 (en) * 2004-10-28 2010-07-07 大日本印刷株式会社 Manufacturing method of non-contact power feeding device
US8020772B2 (en) 2004-12-20 2011-09-20 Toppan Forms Co., Ltd. Noncontact data receiver/transmiter
US7999650B2 (en) 2005-11-30 2011-08-16 Ryutaro Mori Coil device
WO2007063884A1 (en) * 2005-11-30 2007-06-07 Holy Loyalty International Co., Ltd. Surface inductor device
TWI425533B (en) * 2005-11-30 2014-02-01 Ryutaro Mori Transformer device
TWI425535B (en) * 2006-11-29 2014-02-01 Ryutaro Mori Coil device
JP2008141203A (en) * 2006-11-29 2008-06-19 Ud Tech Kk Transformer device
WO2008066141A1 (en) * 2006-11-29 2008-06-05 Linkcom Manufacturing Co., Ltd. Coil device
WO2008066143A1 (en) * 2006-11-29 2008-06-05 Linkcom Manufacturing Co., Ltd. Transformer device
JP2008294385A (en) * 2007-04-24 2008-12-04 Panasonic Electric Works Co Ltd Contactless power transmitting device, and manufacturing method of its coil block for electric power receiving
US9466419B2 (en) 2007-05-10 2016-10-11 Auckland Uniservices Limited Apparatus and system for charging a battery
US8749334B2 (en) 2007-05-10 2014-06-10 Auckland Uniservices Ltd. Multi power sourced electric vehicle
US8421574B2 (en) 2007-06-20 2013-04-16 Panasonic Corporation Contactless power transmission apparatus and a method of manufacturing a secondary side thereof
US9767955B2 (en) 2008-05-09 2017-09-19 Auckland Uniservices Limited Multi power sourced electric vehicle
US9071061B2 (en) 2009-02-05 2015-06-30 Auckland Uniservices Ltd. Inductive power transfer apparatus
JP2012134217A (en) * 2010-12-20 2012-07-12 Showa Aircraft Ind Co Ltd Non-contact power supply device with multipolar coil structure
US10218222B2 (en) 2011-01-26 2019-02-26 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging module having a wireless charging coil and a magnetic sheet
US10003219B1 (en) 2011-06-14 2018-06-19 Panasonic Corporation Electronic device including non-contact charging module
US10044225B2 (en) 2011-06-14 2018-08-07 Panasonic Corporation Electronic device including non-contact charging module
US10468913B2 (en) 2011-06-14 2019-11-05 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module
US9954396B2 (en) 2011-06-14 2018-04-24 Panasonic Corporation Electronic device including non-contact charging module
JP2012119662A (en) * 2011-09-22 2012-06-21 Panasonic Corp Noncontact charging module and noncontact charger
US10673274B2 (en) 2011-10-17 2020-06-02 Auckland Uniservices Limited Inductive power transfer apparatus
JP2013089728A (en) * 2011-10-17 2013-05-13 Panasonic Corp Non-contact power supply device and primary coil block thereof
WO2013057913A1 (en) * 2011-10-17 2013-04-25 パナソニック 株式会社 Non-contact power supply apparatus and primary coil block for non-contact power supply apparatus
US10204734B2 (en) 2011-11-02 2019-02-12 Panasonic Corporation Electronic device including non-contact charging module and near field communication antenna
US9941048B2 (en) 2011-11-02 2018-04-10 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US9634515B2 (en) 2011-11-02 2017-04-25 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US9607757B2 (en) 2011-11-02 2017-03-28 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
JP2013140880A (en) * 2012-01-05 2013-07-18 Nitto Denko Corp Power reception module for mobile terminal using wireless power transmission and rechargeable battery for mobile terminal including the same
US9466994B2 (en) 2012-01-05 2016-10-11 Nitto Denko Corporation Mobile terminal power receiving module utilizing wireless power transmission and mobile terminal rechargeable battery including mobile terminal power receiving module
US10574082B2 (en) 2012-02-17 2020-02-25 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US9991735B1 (en) 2012-02-17 2018-06-05 Panasonic Intellectual Property Management Co., Ltd. Electronic device including non-contact charging module and battery
US10020673B2 (en) 2012-02-17 2018-07-10 Panasonic Intellectual Property Management Co., Ltd. Electronic device including non-contact charging module and battery
US11070075B2 (en) 2012-02-17 2021-07-20 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US12040562B2 (en) 2012-02-17 2024-07-16 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US9997952B2 (en) 2012-02-17 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Wireless charging module and mobile terminal including the same
US9935481B2 (en) 2012-02-17 2018-04-03 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging module and battery pack
JP2013187378A (en) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd Non-contact power supply device
JP2013184586A (en) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd Contactless power supply device
WO2013133255A1 (en) * 2012-03-08 2013-09-12 日産自動車株式会社 Contactless power transfer device
JP2013247822A (en) * 2012-05-29 2013-12-09 Sharp Corp Wireless power feeding device, wireless power receiving device, wireless power feeding system, and electrical instrument
JP2014001094A (en) * 2012-06-18 2014-01-09 Nippon Electric Glass Co Ltd Support member for non-contact power supply
US9667086B2 (en) 2012-06-28 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal
US9735606B2 (en) 2012-06-28 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including charging coil and wireless communication coil, wireless charging module including charging coil and wireless communication coil
US11616395B2 (en) 2012-06-28 2023-03-28 Sovereign Peak Ventures, Llc Mobile terminal and chargeable communication module
US10230272B2 (en) 2012-06-28 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging coil and magnetic sheet having inwardly receding portion
US10291069B2 (en) 2012-06-28 2019-05-14 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal and chargeable communication module
US10574090B2 (en) 2012-06-28 2020-02-25 Sovereign Peak Ventures, Llc Mobile terminal including wireless charging coil and magnetic sheet having inwardly receding portion
EP2870675A4 (en) * 2012-07-09 2016-04-27 Auckland Uniservices Ltd Flux coupling device and magnetic structures therefor
JP2014120325A (en) * 2012-12-17 2014-06-30 Swcc Showa Device Technology Co Ltd Litz wire coil
WO2014097571A1 (en) * 2012-12-17 2014-06-26 昭和電線デバイステクノロジー株式会社 Litz wire coil
US9842681B2 (en) 2012-12-17 2017-12-12 Swcc Showa Cable System Co., Ltd. Litz wire coil
CN104838459A (en) * 2012-12-17 2015-08-12 昭和电线配件技术株式会社 Litz wire coil
JP2014027880A (en) * 2013-11-08 2014-02-06 Panasonic Corp Noncontact charging module and noncontact charger
KR20150115271A (en) * 2014-04-03 2015-10-14 엘지이노텍 주식회사 Wireless power transmitting apparatus
KR102166881B1 (en) 2014-04-03 2020-10-16 엘지이노텍 주식회사 Wireless power transmitting apparatus
TWI687019B (en) * 2018-02-08 2020-03-01 英屬開曼群島商敦泰電子有限公司 A touch screen, an electronic device, a wireless charging method and system
US10379649B1 (en) 2018-02-08 2019-08-13 Focaltech Electronics, Ltd. Touch screen, electronic device, wireless charging method and wireless charging system

Similar Documents

Publication Publication Date Title
JP2004047701A (en) Planar magnetic element for noncontact charger
JP2002299138A (en) Planar magnetic element for noncontact charger
JP2004047700A (en) Planar magnetic element for non-contact charger
EP2980949A1 (en) Thin-film coil component and charging apparatus and method for manufacturing the component
KR101903804B1 (en) Thin film inductor with integrated gaps
JP5364745B2 (en) Magnetic element for wireless power transmission and power supply device
WO2014017351A1 (en) Coil module and power receiver
JP4043306B2 (en) Planar magnetic element
JP2010534389A (en) Linear battery for wireless charging
JP2003173921A (en) Planar magnetic element for non-contact charger
KR101973439B1 (en) Coil component
JP4420586B2 (en) Planar magnetic element and switching power supply
JP2005109173A (en) Planar magnetic element for non-contact charger
JP2004014837A (en) Plane magnetic element
JP2001267155A (en) Planar magnetic element
TW201837929A (en) Coil component
JP2002222712A (en) Lc composite device
CN109416967B (en) Inductor
JP2003332163A (en) Flat magnetic element
CN112447359B (en) Electronic component and method for manufacturing the same
KR102560966B1 (en) Method of manufaturing wireless charging module coated with magnetic material on the coil surface
JP7022979B2 (en) Transmission coil for non-contact power supply, its manufacturing method, and non-contact power supply device
JP2003133136A (en) Magnetic part and its manufacturing method
KR102557111B1 (en) Wireless charging module coated with magnetic material on the coil surface
JP2002299120A (en) Planar magnetic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807