[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004047495A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2004047495A
JP2004047495A JP2003374725A JP2003374725A JP2004047495A JP 2004047495 A JP2004047495 A JP 2004047495A JP 2003374725 A JP2003374725 A JP 2003374725A JP 2003374725 A JP2003374725 A JP 2003374725A JP 2004047495 A JP2004047495 A JP 2004047495A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
outer peripheral
frame
separators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003374725A
Other languages
Japanese (ja)
Other versions
JP3739769B2 (en
Inventor
Toshihiko Suenaga
末永 寿彦
Shigetoshi Sugita
杉田 成利
Takayuki Ogawa
小川 隆行
Keisuke Ando
安藤 敬祐
Masajiro Inoue
井ノ上 雅次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003374725A priority Critical patent/JP3739769B2/en
Publication of JP2004047495A publication Critical patent/JP2004047495A/en
Application granted granted Critical
Publication of JP3739769B2 publication Critical patent/JP3739769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte film type fuel cell which absorbs a stretch and contraction in a direction of a separator lamination. <P>SOLUTION: In the solid polymer electrolyte film type fuel cell composed of a pair of electrodes formed at both sides of the solid polymer electrolyte film with their outside held by a pair of separators made of a thin metal plate, an insulation member 201 is arranged at the peripheral part of a communication hole formed on the separator, for example, at the peripheral part of an exhaust port side fuel gas communication hole 42b. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、固体高分子電解質膜型の燃料電池及び該燃料電池を複数積層した燃料電池スタックに係り、特に、セパレータ積層方向の伸縮吸収等に有効な技術に関する。 The present invention relates to a solid polymer electrolyte membrane fuel cell and a fuel cell stack in which a plurality of the fuel cells are stacked, and more particularly to a technique effective for absorbing expansion and contraction in the direction of stacking separators.

 燃料電池には、固体高分子電解質膜の両側に一対の電極を設け、その外側を一対のセパレータで挟持した固体高分子電解質膜型燃料電池がある。
 この燃料電池では、一方の電極に対向配置されるセパレータの一面に燃料ガス(例えば、水素)の流路を設けると共に、他方の電極に対向配置されるセパレータの一面に酸化剤ガス(例えば、酸素を含む空気)の流路を設け、いずれか一方の電極に対向する面と反対側の面に冷却媒体の流路を設けている。
2. Description of the Related Art As a fuel cell, there is a solid polymer electrolyte membrane fuel cell in which a pair of electrodes is provided on both sides of a solid polymer electrolyte membrane, and the outside is sandwiched between a pair of separators.
In this fuel cell, a flow path for a fuel gas (for example, hydrogen) is provided on one surface of a separator arranged to face one electrode, and an oxidant gas (for example, oxygen) is formed on one surface of a separator arranged to face the other electrode. Is provided, and a cooling medium flow path is provided on a surface opposite to a surface facing one of the electrodes.

 そして、一方の電極反応面に燃料ガスを供給すると、ここで水素がイオン化され、固体高分子電解質膜を介して、他方の電極に移動する。この間に生じた電子は外部回路に取り出され、直流の電気エネルギーとして利用される。
 前記他方の電極においては、酸化剤ガスが供給されているため、水素イオン,電子,及び酸素が反応して水が生成される。
 セパレータの電極反応面と反対側の面は、セパレータ間を流れる冷却媒体によって冷却される。
When a fuel gas is supplied to one electrode reaction surface, hydrogen is ionized here and moves to the other electrode via the solid polymer electrolyte membrane. The electrons generated during this time are taken out to an external circuit and used as DC electric energy.
Since the oxidizing gas is supplied to the other electrode, hydrogen ions, electrons, and oxygen react to generate water.
The surface of the separator opposite to the electrode reaction surface is cooled by a cooling medium flowing between the separators.

 これら反応ガス及び冷却媒体は、各々独立した流路に通す必要があるため、各流路間を仕切るシール技術が重要となる。
 シール部位としては、反応ガス及び冷却媒体を、燃料電池スタックの各燃料電池に分配供給すべくセパレータに貫通形成された連通孔の周囲,固体高分子電解質膜とその両側に配設される一対の電極とから構成される電極膜構造体の外周,セパレータの冷媒流路面外周,及びセパレータの表裏面の外周等があり、シール材としては、例えば有機ゴム等の柔らかく適度に反発力を有するものが採用される。
Since the reaction gas and the cooling medium need to be passed through independent flow paths, a sealing technique for partitioning between the flow paths is important.
As a seal portion, a pair of solid polymer electrolyte membranes and a pair of solid polymer electrolyte membranes provided on both sides thereof are provided around a communication hole formed through the separator to distribute and supply the reaction gas and the cooling medium to each fuel cell of the fuel cell stack. There are an outer periphery of an electrode membrane structure composed of an electrode, an outer periphery of a coolant flow path surface of a separator, an outer periphery of front and back surfaces of a separator, and the like. As a sealing material, a soft and moderately resilient material such as organic rubber is used. Adopted.

 ところで、燃料電池を複数組積層して燃料電池スタックを構成し、この燃料電池スタックを車両に搭載する場合、その設置位置によっては水滴等が飛散してきて燃料電池が被水したり、セパレータ間の隙間にダストが侵入することがある。
 しかしながら、これら水やダストが反応ガス流路内や冷却媒体流路内に侵入することは、上記シール材によって防止できる。
By the way, when a fuel cell stack is configured by stacking a plurality of fuel cells, and the fuel cell stack is mounted on a vehicle, depending on the installation position, water droplets or the like may be scattered and the fuel cell may be flooded, or between the separators. Dust may enter the gap.
However, it is possible to prevent the water and dust from entering the reaction gas flow path and the cooling medium flow path by the seal material.

 ところが、セパレータを積層する際に、電極膜構造体の厚みにばらつきがあったり、セパレータ(特に、金属製の薄型セパレータ)に反りや歪みがあったり、燃料電池スタックの両端から受ける圧縮荷重が不均一であると、セパレータ同士が平行に積層されず、傾きや捩れが発生するので、各シール材の圧縮量に不均衡が生じ、圧縮量の少ないシール材についてはシール性が悪化する。
 また、セパレータを積層する際に、セパレータ間で電極反応面に沿う相対位置をずらさず正確に積層させることも困難である。
However, when stacking the separators, the thickness of the electrode film structure varies, the separator (particularly, a thin metal separator) is warped or distorted, and the compressive load received from both ends of the fuel cell stack is not sufficient. If it is uniform, the separators will not be stacked in parallel, causing inclination and torsion, so that the amount of compression of each sealing material will be unbalanced, and the sealing performance of the sealing material having a small amount of compression will be deteriorated.
In addition, when stacking the separators, it is also difficult to accurately stack the separators without shifting the relative position along the electrode reaction surface.

 以上の対策として、例えば樹脂製の額縁状部材をセパレータの外縁部に設けることによって、セパレータ間の隙間への異物侵入を防止すると共に、セパレータを平行に積層可能にする方法が考えられる(例えば、特許文献1、特許文献2及び特許文献3参照)。
特開平10−074530号公報 特開平07−249417号公報 特開昭61−279069号公報
As a countermeasure, for example, a method of providing a frame-shaped member made of resin at the outer edge of the separator to prevent foreign matter from entering the gaps between the separators and allowing the separators to be stacked in parallel is considered (for example, See Patent Literature 1, Patent Literature 2, and Patent Literature 3).
JP-A-10-074530 JP 07-249417 A JP-A-61-279069

 しかしながら、経時劣化によってシール材や電極膜構造体がセパレータ積層方向に収縮したり、熱等の影響で燃料電池が伸縮すると、以下の問題が生じる。
 例えば、セパレータからのシール材突出高さが額縁状部材突出高さよりも低位になると、セパレータ間隔の収縮が額縁状部材によって規制されるため、セパレータとシール材又は電極膜構造体との間に隙間が生じ得て、発電性能の低下ひいては発電不能の事態を招く。
However, when the sealing material or the electrode membrane structure shrinks in the separator laminating direction due to aging, or when the fuel cell expands and contracts due to heat or the like, the following problems occur.
For example, if the height of the sealing material projecting from the separator is lower than the height of the frame-shaped member, shrinkage of the separator interval is regulated by the frame-shaped member, so that a gap is formed between the separator and the sealing material or the electrode film structure. May occur, resulting in a decrease in power generation performance and a power failure.

 他方、熱等の影響を受けてセパレータ間隔が広がると、ゴム等からなるシール材については、セパレータ積層方向に弾性復帰して伸長するので、ある程度までなら、セパレータから離間することなくセパレータ間隔の広がりに追従できるが、樹脂等からなる額縁状部材については、セパレータ積層方向に伸長しないため、セパレータ間隔の広がりに追従できない。このため、額縁状部材間に隙間が生じ、そこから異物が侵入する虞を生じる。 On the other hand, when the separator interval is widened due to heat or the like, the sealing material made of rubber or the like elastically returns in the separator laminating direction and expands. However, the frame-shaped member made of resin or the like does not extend in the separator laminating direction, and cannot follow the expansion of the separator interval. For this reason, a gap is generated between the frame-shaped members, and there is a possibility that foreign matter may enter therethrough.

 さらに、冷却媒体流路においては、冷却媒体を通って電流が流れる液絡を防止する必要があり、反応ガス流路においては、隣接するセパレータが電気的に短絡することを防止する必要がある。
 特に、金属製の薄型セパレータを用いた燃料電池の場合は、セパレータ間隔が短いため、反応ガス中にゴミ,カーボン粒子等の異物が混入している虞を考慮して、隣接セパレータ間での電気的な短絡を防止するための対策を特別に講じておくことが望ましい。
Furthermore, it is necessary to prevent a liquid junction through which a current flows through the cooling medium in the cooling medium flow path, and to prevent an electrical short circuit between adjacent separators in the reaction gas flow path.
In particular, in the case of a fuel cell using a thin metal separator, the distance between the separators is short. Therefore, considering the possibility that foreign substances such as dust and carbon particles are mixed in the reaction gas, the electric power between adjacent separators is reduced. It is desirable to take special measures to prevent temporary short circuits.

 本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、固体高分子電解質膜型の燃料電池及び燃料電池スタックにおいて、セパレータ積層方向の伸縮を吸収可能にすること,セパレータ積層時の位置決めを容易にすること,セパレータに形成された連通孔の周囲を絶縁することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to absorb expansion and contraction in a separator stacking direction in a solid polymer electrolyte membrane type fuel cell and a fuel cell stack. The purpose is to facilitate positioning during lamination and to insulate the periphery of the communication hole formed in the separator.

 上記目的を達成するために、請求項1に記載の燃料電池において、固体高分子電解質膜の両側に一対の電極を設け、その外側を一対の金属薄板製セパレータで挟持した固体高分子電解質膜型燃料電池において、前記セパレータに形成された連通孔(例えば、実施の形態における入口側酸化剤ガス連通孔41a,出口側酸化剤ガス連通孔41b,入口側燃料ガス連通孔42a,出口側燃料ガス連通孔42b,入口側冷却媒体連通孔43a,出口側冷却媒体連通孔43b)の周囲に、絶縁性部材(例えば、実施の形態における絶縁性部材201,211,221,231,241,271)を設けたことを特徴とする。 In order to achieve the above object, the fuel cell according to claim 1, wherein a pair of electrodes is provided on both sides of the solid polymer electrolyte membrane, and the outside thereof is sandwiched between a pair of thin metal plate separators. In the fuel cell, the communication holes formed in the separator (for example, the inlet-side oxidant gas communication hole 41a, the outlet-side oxidant gas communication hole 41b, the inlet-side fuel gas communication hole 42a, and the outlet-side fuel gas communication in the embodiment) Insulating members (for example, the insulating members 201, 211, 221, 231, 231 and 241, 271 in the embodiment) are provided around the holes 42b, the inlet-side cooling medium communication holes 43a, and the outlet-side cooling medium communication holes 43b). It is characterized by having.

 この構成によれば、冷却媒体流路での液絡や、反応ガス流路における隣接するセパレータ間の電気的な短絡を防止できる。 According to this configuration, it is possible to prevent a liquid junction in the cooling medium flow path and an electrical short circuit between the adjacent separators in the reaction gas flow path.

 請求項2に記載した発明は、請求項1に記載の燃料電池において、隣接する前記セパレータの各絶縁性部材(例えば、実施の形態における絶縁性部材201)は、セパレータの積層方向に隙間(例えば、実施の形態における隙間203)を有していることを特徴とする。 According to a second aspect of the present invention, in the fuel cell according to the first aspect, each insulating member of the adjacent separator (for example, the insulating member 201 in the embodiment) is provided with a gap (for example, , The gap 203 according to the embodiment.

 この構成によれば、セパレータの積層方向の隙間が広狭することによって、セパレータ間隔の伸縮を吸収することができる。 According to this configuration, the expansion and contraction of the separator interval can be absorbed by increasing and decreasing the gap in the stacking direction of the separators.

 また、以下の構成の燃料電池、燃料電池スタックを採用することもできる。
 第1の構成の燃料電池は、固体高分子電解質膜(例えば、実施の形態における固体高分子電解質膜7)の両側に一対の電極(例えば、実施の形態における電極9)を設け、その外側を一対のセパレータ(例えば、実施の形態におけるセパレータ3)で挟持した燃料電池(例えば、実施の形態における燃料電池1)において、前記セパレータの外縁部に、セパレータ間の隙間をシールしつつセパレータ間隔の伸縮を許容する絶縁性の額縁状部材(例えば、実施の形態における額縁状部材61,81,91,101,111,121,131,141,251,261)を設けたことを特徴とする。
 この構成によれば、セパレータ間隔が広げられる動きに対しては、セパレータと額縁状部材との間に隙間を生じさせることがなくなり、また、セパレータ間隔が狭められる動きに対しては、その動きが額縁状部材によって阻止されることがなくなる。
 したがって、セパレータ間隔が広げられる動きに対しては、セパレータと額縁状部材との間に隙間を生じさせず、また、セパレータ間隔が狭められる動きに対しては、その動きが額縁状部材によっては阻止されなくなるので、セパレータ間隔増大時の異物侵入,及びシール材等の経時劣化に伴うシール不良を有効に防止し得て、良好な発電性能を維持できる。
Further, a fuel cell or a fuel cell stack having the following configuration can be employed.
In the fuel cell of the first configuration, a pair of electrodes (for example, the electrode 9 in the embodiment) is provided on both sides of a solid polymer electrolyte membrane (for example, the solid polymer electrolyte membrane 7 in the embodiment), and the outside thereof is provided. In a fuel cell (for example, the fuel cell 1 in the embodiment) sandwiched between a pair of separators (for example, the separator 3 in the embodiment), expansion and contraction of the separator interval is performed at an outer edge of the separator while sealing a gap between the separators. The present invention is characterized in that an insulating frame-shaped member (for example, the frame-shaped member 61, 81, 91, 101, 111, 121, 131, 141, 251, 261 in the embodiment) is provided.
According to this configuration, a gap between the separator and the frame-shaped member is not generated for the movement in which the separator interval is widened, and the movement is not for the movement in which the separator interval is narrowed. It is no longer blocked by the picture frame.
Therefore, no gap is created between the separator and the frame-shaped member when the separator interval is widened, and the movement is prevented by the frame-shaped member when the separator interval is narrowed. As a result, it is possible to effectively prevent foreign matters from entering when the separator interval is increased and sealing failure due to aging of the sealing material or the like, and maintain good power generation performance.

 第2の構成の燃料電池は、第1の構成の燃料電池において、前記額縁状部材(例えば、実施の形態における額縁状部材101,111,121,131)同士が相対摺動可能に構成されていることを特徴とする。
 この構成によれば、セパレータ間隔の広狭は、額縁状部材同士が相対摺動して機械的に吸収される。
 したがって、セパレータ間隔の広狭を額縁状部材同士の相対摺動によって機械的に吸収し得るようになるので、上記同様、セパレータ間隔増大時の異物侵入,及びシール材等の経時劣化に伴うシール不良を有効に防止し得て、良好な発電性能を維持できる。
The fuel cell of the second configuration is different from the fuel cell of the first configuration in that the frame members (for example, the frame members 101, 111, 121, and 131 in the embodiment) are configured to be relatively slidable. It is characterized by having.
According to this configuration, the width of the separator interval is relatively absorbed by the frame members sliding relative to each other.
Therefore, the gap between the separators can be mechanically absorbed by relative sliding between the frame-shaped members. As described above, foreign matter intrusion at the time when the separator interval is increased, and poor sealing due to deterioration with time of the sealing material or the like can be prevented. It can be effectively prevented and good power generation performance can be maintained.

 第3の構成の燃料電池は、第1又は第2の構成の燃料電池において、前記セパレータは、金属製とされており、前記額縁状部材(例えば、実施の形態における額縁状部材61,81,91,261)は、硬質材料(例えば、実施の形態における本体部61a,81a,91a,261a)と軟質材料(例えば、実施の形態における伸縮吸収部61b,81b,91b,261b)とから構成されていることを特徴とする。
 この構成によれば、軟質部材がセパレータ積層方向に弾性収縮可能であるから、セパレータの相対接近を規制しない。
 また、セパレータ間隔の広がりに対しては、軟質部材がセパレータ積層方向に弾性復帰して伸長してセパレータに追従する。
 したがって、軟質部材がセパレータ積層方向に弾性収縮可能であるから、セパレータの相対接近を規制せず、また、セパレータ間隔の広がりに対しては、軟質部材がセパレータ積層方向に弾性復帰して伸長してセパレータに追従するので、上記同様、セパレータ間隔増大時の異物侵入,及びシール材等の経時劣化に伴うシール不良を有効に防止し得て、良好な発電性能を維持できる。
The fuel cell according to the third configuration is the fuel cell according to the first or second configuration, wherein the separator is made of metal, and the frame-shaped member (for example, the frame-shaped member 61, 81, 91, 261) is composed of a hard material (for example, the main body portions 61a, 81a, 91a, 261a in the embodiment) and a soft material (for example, the expansion-contraction absorbing portions 61b, 81b, 91b, 261b in the embodiment). It is characterized by having.
According to this configuration, since the soft member can elastically contract in the separator laminating direction, the relative approach of the separator is not restricted.
Further, with respect to the expansion of the separator interval, the soft member elastically returns in the separator laminating direction and expands to follow the separator.
Therefore, since the soft member is elastically contractible in the separator laminating direction, it does not restrict the relative approach of the separator. Since it follows the separator, similarly to the above, it is possible to effectively prevent foreign matter from entering when the separator interval is increased, and sealing failure due to aging deterioration of the sealing material or the like, and maintain good power generation performance.

 第4の構成の燃料電池は、第1の構成の燃料電池において、前記額縁状部材は、セパレータ位置決め手段(例えば、実施の形態における凹部123と凸部125との組み合わせ、端面131Aと端面131Bとの組み合わせ、断面三角溝部143と断面三角突条部145との組み合わせ)を備えることを特徴とする。
 この構成によれば、セパレータ積層時に生じ得るセパレータ間の相対的な位置のずれを防止できる。
 したがって、セパレータ積層時にセパレータの位置合わせが自動的に行われるので、組付時や保守時の作業性が向上する。
A fuel cell according to a fourth configuration is the fuel cell according to the first configuration, wherein the frame-shaped member is formed by a separator positioning means (for example, a combination of the concave portion 123 and the convex portion 125 in the embodiment, and the end surfaces 131A and 131B). , And a combination of a triangular groove 143 and a triangular ridge 145).
According to this configuration, it is possible to prevent relative displacement between the separators that may occur when the separators are stacked.
Therefore, the alignment of the separator is automatically performed at the time of laminating the separator, so that workability at the time of assembly and maintenance is improved.

 第5の構成の燃料電池は、第1〜第4のいずれかの構成の燃料電池において、前記セパレータの外周端面が前記額縁状部材(例えば、実施の形態における額縁状部材61,81,91,101,111,121,131,141,251,261)で覆われていることを特徴とする。
 この構成によれば、隣接するセパレータ間の外周端面における電気的な短絡を防止できる。
 したがって、隣接するセパレータ間の外周端面における電気的な短絡を有効に防止し得て、良好な発電性能を維持できる。
A fuel cell according to a fifth configuration is the fuel cell according to any one of the first to fourth configurations, wherein an outer peripheral end surface of the separator is formed of the frame-shaped member (for example, the frame-shaped members 61, 81, 91, and 91 in the embodiments). 101, 111, 121, 131, 141, 251, 261).
According to this configuration, it is possible to prevent an electrical short circuit on the outer peripheral end face between the adjacent separators.
Therefore, it is possible to effectively prevent an electrical short circuit on the outer peripheral end face between the adjacent separators, and it is possible to maintain good power generation performance.

 第6の構成の燃料電池は、第1〜第5のいずれかの構成の燃料電池において、前記セパレータの反応面を囲み反応面外周シール部材(例えば、実施の形態における外周シール材52)を設け、該反応面外周シール部材の外側部分が全面に渡って絶縁性外縁部材(例えば、実施の形態における伸縮吸収部261b)で覆われていることを特徴とする。
 この構成によれば、反応面外周シール部材の外側部分におけるセパレータの金属露出部分が全て絶縁性外縁部材で覆われるため、耐腐食性を向上させ、かつ、隣接するセパレータ間の電気的な短絡を防止できる。
 したがって、セパレータの耐腐食性を向上させ、且つ、隣接するセパレータ間の電気的な短絡を有効に防止し得て、良好な発電性能を維持できる。
A fuel cell according to a sixth configuration is the fuel cell according to any one of the first to fifth configurations, in which a reaction surface outer periphery sealing member (for example, an outer periphery sealing material 52 in the embodiment) is provided to surround the reaction surface of the separator. The outer peripheral portion of the reaction surface outer peripheral sealing member is entirely covered with an insulating outer edge member (for example, the expansion and contraction absorbing portion 261b in the embodiment).
According to this configuration, since the metal exposed portion of the separator in the outer portion of the reaction surface outer peripheral seal member is entirely covered with the insulating outer edge member, the corrosion resistance is improved, and an electrical short circuit between adjacent separators is prevented. Can be prevented.
Therefore, it is possible to improve the corrosion resistance of the separator, effectively prevent an electrical short circuit between adjacent separators, and maintain good power generation performance.

 第7の構成の燃料電池は、第6の構成の燃料電池において、前記反応面外周シール部材(例えば、実施の形態における外周シール材52)の外側部分の両面が全面に渡って、反応面外周シール部材と一体に構成される絶縁性外縁部材(例えば、実施の形態における伸縮吸収部261b)で覆われていることを特徴とする。
 この構成によれば、反応面外周シール部材の外側部分におけるセパレータの金属露出部分が両面共に全て絶縁性外縁部材で覆われるため、耐腐食性をより向上させ、かつ、隣接するセパレータ間の電気的な短絡をより防止できる。
 したがって、セパレータの耐腐食性をより向上させ、且つ、隣接するセパレータ間の電気的な短絡をより有効に防止し得て、良好な発電性能を維持できる。また、反応面外周シール部材と絶縁性外縁部材とを同時に成型することができるため、生産コストの低減が図れる。
The fuel cell according to the seventh configuration is the same as the fuel cell according to the sixth configuration, except that both surfaces of the outer peripheral portion of the reaction surface outer peripheral sealing member (for example, the outer peripheral sealing member 52 in the embodiment) are formed over the entire surface. It is characterized in that it is covered with an insulating outer edge member (for example, the expansion and contraction absorbing portion 261b in the embodiment) integrally formed with the seal member.
According to this configuration, since the metal exposed portion of the separator in the outer portion of the reaction surface outer peripheral seal member is entirely covered with the insulating outer edge member on both surfaces, the corrosion resistance is further improved, and the electrical resistance between the adjacent separators is improved. A short circuit can be further prevented.
Therefore, the corrosion resistance of the separator can be further improved, and an electrical short circuit between the adjacent separators can be more effectively prevented, so that good power generation performance can be maintained. Further, since the reaction surface outer peripheral seal member and the insulating outer edge member can be molded at the same time, production cost can be reduced.

 第8の構成の燃料電池は、第6又は第7の構成の燃料電池において、隣接する前記セパレータにおいて、一方の前記反応面外周シール部材(例えば、実施の形態における外周シール材平坦部52b)は平坦な形状で、これに対抗する他方のセパレータの前記反応面外周シール部材(例えば、実施の形態における外周シール材凸部52a)は凸形状であることを特徴とする。
 この構成によれば、反応面外周シール部材の組み合わせが、一方は平坦な形状、他方は凸形状に設定されているため、平坦な形状の反応面外周シール部材に対応する凸形状の反応面外周シール部材の相対的な位置のずれを吸収することができる。
 したがって、平坦な形状の反応面外周シール部材に対応する凸形状の反応面外周シール部材の相対的な位置のずれを吸収することができるため、生産性が向上する。
The fuel cell according to the eighth configuration is the fuel cell according to the sixth or seventh configuration, wherein one of the reaction surface outer peripheral sealing members (for example, the outer peripheral sealing material flat portion 52b in the embodiment) is adjacent to the separator. The reaction surface outer peripheral sealing member of the other separator (for example, the outer peripheral sealing material convex portion 52a in the embodiment) which has a flat shape and is opposed thereto has a convex shape.
According to this configuration, one of the combinations of the reaction surface outer peripheral seal members is set to a flat shape and the other is set to a convex shape, so that the convex reaction surface outer periphery corresponding to the flat shape reaction surface outer peripheral seal member is combined. The displacement of the relative position of the seal member can be absorbed.
Therefore, the relative position shift of the convex-shaped reaction surface outer peripheral seal member corresponding to the flat-shaped reaction surface outer peripheral seal member can be absorbed, so that productivity is improved.

 第9の構成は、第1〜第8のいずれかの構成の燃料電池を複数積層して構成される燃料電池スタックにおいて、前記額縁状部材は、各セパレータ間の隙間をシールしつつセパレータ間隔の伸縮を許容することを特徴とする。
 この構成によれば、単一の燃料電池内においてだけでなく、隣接する燃料電池間においても、セパレータ間隔が広げられる動きに対しては、セパレータと額縁状部材との間に隙間を生じさせることがなくなり、また、セパレータ間隔が狭められる動きに対しては、その動きが額縁状部材によって阻止されることがなくなる。
 したがって、単一の燃料電池内においてだけでなく、隣接する燃料電池間においても、セパレータ間隔の広狭に追従し得るようになるので、上記同様、セパレータ間隔増大時の異物侵入,及びシール材等の経時劣化に伴うシール不良を有効に防止し得て、良好な発電性能を維持できる。
In a ninth configuration, in the fuel cell stack configured by stacking a plurality of the fuel cells having any one of the first to eighth configurations, the frame-shaped member seals a gap between the separators and forms a gap between the separators. It is characterized by allowing expansion and contraction.
According to this configuration, not only within a single fuel cell but also between adjacent fuel cells, a gap is created between the separator and the frame member for the movement of increasing the separator interval. In addition, when the movement of the separator is reduced, the movement is not prevented by the frame-shaped member.
Therefore, not only within a single fuel cell but also between adjacent fuel cells, the distance between the separators can be followed. Therefore, as described above, foreign matter intrusion at the time of increasing the distance between the separators, and sealing material and the like can be prevented. Insufficient sealing due to aging can be effectively prevented, and good power generation performance can be maintained.

 第10の構成の燃料電池は、固体高分子電解質膜の両側に一対の電極を設け、その外側を一対の金属薄板製セパレータで挟持した固体高分子電解質膜型燃料電池において、前記セパレータに形成された連通孔(例えば、実施の形態における入口側酸化剤ガス連通孔41a,出口側酸化剤ガス連通孔41b,入口側燃料ガス連通孔42a,出口側燃料ガス連通孔42b,入口側冷却媒体連通孔43a,出口側冷却媒体連通孔43b)の周囲に、絶縁性部材(例えば、実施の形態における絶縁性部材201,211,221,231,241,271)を設けたことを前提として、あるいは、この構成に加えて、隣接する前記セパレータの各絶縁性部材(例えば、実施の形態における絶縁性部材201)は、セパレータの積層方向に隙間(例えば、実施の形態における隙間203)を有していることを前提として、隣接する前記セパレータの各絶縁性部材(例えば、実施の形態における絶縁性部材211,221)は、セパレータ間の隙間をシールしつつセパレータ間隔の伸縮を許容するように相対摺動可能に構成されていることを特徴とする。
 この構成によれば、セパレータ間隔の伸縮は、絶縁部材同士が相対摺動して機械的に吸収される。
 したがって、セパレータ間隔の伸縮を機械的に吸収することができるため、セパレータ間隔増大時の異物侵入防止、シール材等の経時劣化に伴うシール性の悪化防止、及びシール面圧の減少防止を図ることができる。
A fuel cell according to a tenth configuration is a solid polymer electrolyte membrane fuel cell in which a pair of electrodes are provided on both sides of a solid polymer electrolyte membrane, and the outside thereof is sandwiched between a pair of thin metal plate separators. (For example, the inlet-side oxidizing gas communication hole 41a, the outlet-side oxidizing gas communication hole 41b, the inlet-side fuel gas communication hole 42a, the outlet-side fuel gas communication hole 42b, and the inlet-side cooling medium communication hole in the embodiment. 43a, the outlet side cooling medium communication holes 43b), or on the assumption that insulating members (for example, insulating members 201, 211, 221, 231, 241, 271 in the embodiment) are provided. In addition to the configuration, each of the insulating members of the adjacent separator (for example, the insulating member 201 in the embodiment) has a gap (for example, On the premise of having the gap 203 in the embodiment, each insulating member of the adjacent separator (for example, the insulating members 211 and 221 in the embodiment) seals the gap between the separators. It is characterized by being relatively slidable so as to allow expansion and contraction of the separator interval.
According to this configuration, the expansion and contraction of the separator interval is mechanically absorbed by the relative sliding of the insulating members.
Therefore, since the expansion and contraction of the separator interval can be mechanically absorbed, foreign matter intrusion when the separator interval is increased, prevention of deterioration of the sealing property due to aging deterioration of the sealing material and the like, and reduction of the seal surface pressure are prevented. Can be.

 第11の構成の燃料電池は、第10の構成の燃料電池において、前記絶縁性部材(例えば、実施の形態における絶縁性部材231,241)は、軟質材料で構成されていることを特徴とする。
 この構成によれば、セパレータ間隔の伸縮は、軟質材料がセパレータ積層方向に弾性収縮可能であるから、セパレータの相対接近を規制せず、また、セパレータ間隔の広がりに対しては、軟質材料がセパレータ積層方向に弾性復帰して伸長してセパレータに追従する。
 したがって、セパレータ間隔の伸縮は、軟質材料がセパレータ積層方向に弾性収縮可能であるから、セパレータの相対接近を規制せず、また、セパレータ間隔の広がりに対しては、軟質材料がセパレータ積層方向に弾性復帰して伸長してセパレータに追従するため、セパレータ間隔増大時の異物侵入防止、シール材等の経時劣化に伴うシール性の悪化防止、及びシール面圧の減少防止を図ることができる。
The fuel cell according to the eleventh configuration is characterized in that, in the fuel cell according to the tenth configuration, the insulating members (for example, the insulating members 231 and 241 in the embodiment) are made of a soft material. .
According to this configuration, the expansion and contraction of the separator interval does not restrict the relative approach of the separator because the soft material can elastically contract in the separator laminating direction. It elastically returns in the stacking direction and expands to follow the separator.
Therefore, the expansion and contraction of the separator interval does not restrict the relative approach of the separator because the soft material can elastically contract in the separator laminating direction. Since it returns and extends to follow the separator, it is possible to prevent foreign matter from entering when the separator interval is increased, to prevent deterioration of the sealing property due to deterioration of the sealing material or the like over time, and to prevent reduction of the sealing surface pressure.

 第12の構成の燃料電池は、第10又は第11の構成の燃料電池において、前記連通孔の内周端面が前記絶縁性部材(例えば、実施の形態における絶縁性部材201,211,221,231,241,271)で覆われていることを特徴とする。
 この構成によれば、隣接するセパレータ間の連通孔の内周端面における電気的な短絡を防止できる。
 したがって、隣接するセパレータ間の連通孔の内周端面における電気的な短絡を有効に防止し得て、良好な発電性能を維持できる。
A fuel cell according to a twelfth configuration is the fuel cell according to the tenth or eleventh configuration, wherein the inner peripheral end surface of the communication hole is formed of the insulating member (for example, the insulating members 201, 211, 221, and 231 in the embodiment). , 241 and 271).
According to this configuration, it is possible to prevent an electrical short circuit on the inner peripheral end face of the communication hole between the adjacent separators.
Therefore, it is possible to effectively prevent an electrical short circuit on the inner peripheral end surface of the communication hole between the adjacent separators, and to maintain good power generation performance.

 第13の構成の燃料電池は、第10〜第12の構成の燃料電池において、隣接する前記セパレータの一方の前記絶縁性部材(例えば、実施の形態における絶縁性部材平坦部271b)は平坦な形状で、これに対抗する他方のセパレータの前記絶縁性部材(例えば、実施の形態における絶縁性部材凸部271a)は凸形状であることを特徴とする。
 この構成によれば、絶縁性部材の組み合わせが、一方は平坦な形状、他方は凸形状に形成されているため、平坦な形状の絶縁性部材に対応する凸形状の絶縁性部材の相対的な位置のずれを吸収することができる。
 したがって、平坦な形状の絶縁性部材に対応する凸形状の絶縁性部材の相対的な位置のずれを吸収することができるため、生産性が向上する。
A fuel cell according to a thirteenth configuration is the fuel cell according to the tenth to twelfth configurations, wherein one of the insulating members of the adjacent separators (for example, the insulating member flat portion 271b in the embodiment) has a flat shape. The insulating member of the other separator (for example, the insulating member convex portion 271a in the embodiment) which opposes this is characterized in that it has a convex shape.
According to this configuration, the combination of the insulating members is formed such that one is formed in a flat shape and the other is formed in a convex shape. The displacement can be absorbed.
Therefore, the relative position shift of the convex insulating member corresponding to the flat insulating member can be absorbed, so that the productivity is improved.

 第14の構成の燃料電池は、第13の構成の燃料電池において、前記セパレータの反応面を囲み反応面外周シール部材(例えば、実施の形態における外周シール材52)を設け、隣接する前記セパレータの一方の前記反応面外周シール部材(例えば、実施の形態における外周シール材平坦部52b)は平坦な形状で、これに対抗する他方のセパレータの前記反応面外周シール部材(例えば、実施の形態における外周シール材凸部52a)は凸形状であることを特徴とする。
 この構成によれば、反応面外周シール部材の組み合わせが、一方は平坦な形状、他方は凸形状に形成されているため、平坦な形状の反応面外周シール部材に対応する凸形状の反応面外周シール部材の相対的な位置のずれを吸収することができる。
 したがって、平坦な形状の外周シール材に対応する凸形状の外周シール材の相対的な位置のずれを吸収することができるため、生産性が向上する。
A fuel cell according to a fourteenth configuration is the same as the fuel cell according to the thirteenth configuration, except that a reaction surface outer peripheral sealing member (for example, an outer peripheral sealing material 52 in the embodiment) is provided so as to surround the reaction surface of the separator. One of the reaction surface outer peripheral seal members (for example, the outer peripheral seal material flat portion 52b in the embodiment) has a flat shape, and the other separator opposes the reaction surface outer peripheral seal member (for example, the outer periphery in the embodiment). The sealing material convex portion 52a) is characterized by having a convex shape.
According to this configuration, one of the combinations of the reaction surface outer peripheral seal members is formed in a flat shape, and the other is formed in a convex shape. The displacement of the relative position of the seal member can be absorbed.
Therefore, the relative position shift of the convex outer peripheral sealing material corresponding to the flat outer peripheral sealing material can be absorbed, and the productivity is improved.

 第15の構成の燃料電池は、第14の構成の燃料電池において、前記反応面外周シール部材(例えば、実施の形態における外周シール材52)の外側部分が全面に渡って前記絶縁性部材(例えば、実施の形態における絶縁性部材271)で覆われていることを特徴とする。
 この構成によれば、反応面外周シール部材の外側部分におけるセパレータの金属露出部分が全て絶縁性部材で覆われるため、耐腐食性を向上させ、かつ、隣接するセパレータ間の電気的な短絡を防止できる。
 したがって、セパレータの耐腐食性を向上させ、且つ、隣接するセパレータ間の電気的な短絡を有効に防止し得て、良好な発電性能を維持できる。
A fuel cell according to a fifteenth configuration is the fuel cell according to the fourteenth configuration, in which an outer portion of the reaction surface outer peripheral sealing member (for example, the outer peripheral sealing material 52 in the embodiment) is entirely covered with the insulating member (for example, , And is covered with the insulating member 271) according to the embodiment.
According to this configuration, the metal exposed portion of the separator in the outer portion of the reaction surface outer peripheral seal member is entirely covered with the insulating member, so that the corrosion resistance is improved and an electrical short circuit between the adjacent separators is prevented. it can.
Therefore, it is possible to improve the corrosion resistance of the separator, effectively prevent an electrical short circuit between adjacent separators, and maintain good power generation performance.

 第16の構成の燃料電池は、第14又は第15の構成の燃料電池において、前記反応面外周シール部材(例えば、実施の形態における外周シール材52)と前記絶縁性部材(例えば、実施の形態における絶縁性部材271)とが一体で構成されていることを特徴とする。
 この構成によれば、反応面外周シール部材と絶縁性外縁部材とを同時に成型することができる。
 したがって、反応面外周シール部材と絶縁性部材とを同時に成型することができるため、生産コストの低減が図れる。
The fuel cell according to a sixteenth configuration is the fuel cell according to the fourteenth or fifteenth configuration, wherein the reaction surface outer peripheral sealing member (for example, the outer peripheral sealing material 52 in the embodiment) and the insulating member (for example, the embodiment) are used. And the insulating member 271) are integrally formed.
According to this configuration, the reaction surface outer peripheral sealing member and the insulating outer edge member can be simultaneously molded.
Therefore, the reaction surface outer peripheral sealing member and the insulating member can be molded at the same time, so that the production cost can be reduced.

 第17の構成の燃料電池は、第14〜第16のいずれかの構成の燃料電池において、前記反応面外周シール部材(例えば、実施の形態における外周シール材52)の外側部分の両面が全面に渡って、反応面外周シール部材と一体に構成される絶縁性外縁部材(例えば、実施の形態における絶縁性部材271)で覆われていることを特徴とする。
 この構成によれば、反応面外周シール部材の外側部分におけるセパレータの金属露出部分が両面共に全て絶縁性部材で覆われるため、耐腐食性をより向上させ、かつ、隣接するセパレータ間の電気的な短絡をより防止できる。
 したがって、セパレータの耐腐食性をより向上させ、且つ、隣接するセパレータ間の電気的な短絡をより有効に防止し得て、良好な発電性能を維持できる。
A fuel cell according to a seventeenth aspect is the fuel cell according to any one of the fourteenth to sixteenth aspects, wherein both surfaces of an outer portion of the reaction surface outer peripheral sealing member (for example, the outer peripheral sealing material 52 in the embodiment) are entirely covered. It is characterized by being covered with an insulating outer edge member (for example, the insulating member 271 in the embodiment) integrally formed with the reaction surface outer peripheral sealing member.
According to this configuration, since the metal exposed portion of the separator in the outer portion of the reaction surface outer peripheral seal member is entirely covered with the insulating member on both surfaces, the corrosion resistance is further improved, and the electrical connection between the adjacent separators is improved. Short circuit can be prevented more.
Therefore, the corrosion resistance of the separator can be further improved, and an electrical short circuit between the adjacent separators can be more effectively prevented, so that good power generation performance can be maintained.

 請求項1記載の発明によれば、冷媒流路での液絡や、反応ガス流路における隣接セパレータ間の電気的な短絡を有効に防止し得るので、良好な発電性能をより一層確実に維持できる。 According to the first aspect of the present invention, it is possible to effectively prevent a liquid junction in the refrigerant flow path and an electrical short circuit between adjacent separators in the reaction gas flow path, so that good power generation performance is more reliably maintained. it can.

 請求項2記載の発明によれば、セパレータ間隔の伸縮を吸収することができるため、セパレータ間隔増大時の異物侵入防止、シール材等の経時劣化に伴うシール性の悪化防止、及びシール面圧の減少防止を図ることができる。 According to the second aspect of the present invention, since expansion and contraction of the separator interval can be absorbed, foreign matter intrusion can be prevented when the separator interval is increased, sealing performance is prevented from deteriorating due to aging of the sealing material, and sealing surface pressure is reduced. Reduction can be prevented.

 以下、添付図面を参照しながら、本発明の実施の形態について説明する。
 図1は、第1実施形態による固体高分子電解質膜型の燃料電池1を構成しているセパレータ3の平面図である。
 この燃料電池1は、図2に示すように、セパレータ3と、固体高分子電解質膜7を一対の電極9で挟持してなる電極膜構造体5とが交互に積層して構成され、これら燃料電池1が複数組積層されることで、燃料電池スタックが構成される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a plan view of a separator 3 constituting a solid polymer electrolyte membrane fuel cell 1 according to the first embodiment.
As shown in FIG. 2, the fuel cell 1 is configured by alternately stacking a separator 3 and an electrode membrane structure 5 in which a solid polymer electrolyte membrane 7 is sandwiched between a pair of electrodes 9. By stacking a plurality of the batteries 1, a fuel cell stack is configured.

 図1に示すように、セパレータ3は、板厚0.2〜0.5mmのステンレス製板材をプレス成形することにより、一定の高さを有する凹部31が一定のピッチで多数形成されてなる波板部33と、各波板部33よりも外側に位置する端部において、シール材を介して互いに接触する平面部35とを備えて構成されている。 As shown in FIG. 1, the separator 3 is formed by pressing a stainless steel plate having a plate thickness of 0.2 to 0.5 mm to form a plurality of concave portions 31 having a constant height at a constant pitch. It is configured to include a plate portion 33 and a flat portion 35 that is in contact with each other via a sealing material at an end located outside of each corrugated plate portion 33.

 このセパレータ3には、その平面内であって外周縁部に位置する水平方向両端上部側に、酸化剤ガスを通過させるための入口側酸化剤ガス連通孔41aと、燃料ガスを通過させるための入口側燃料ガス連通孔42aとが設けられており、また、水平方向両端中央側に、冷却媒体を通過させるための入口側冷却媒体連通孔43aと、使用後の前記冷却媒体を通過させるための出口側冷却媒体連通孔43bとが設けられている。 The separator 3 has an inlet-side oxidant gas communication hole 41a for allowing an oxidant gas to pass therethrough and an upper portion on both ends in the horizontal direction located at the outer peripheral edge in the plane of the separator 3 and a passage for allowing a fuel gas to pass therethrough. An inlet-side fuel gas communication hole 42a is provided, and an inlet-side cooling medium communication hole 43a for allowing a cooling medium to pass therethrough at the center of both ends in the horizontal direction, and a passage for allowing the used cooling medium to pass therethrough. An outlet-side cooling medium communication hole 43b is provided.

 また、セパレータ3には、その平面内であって外周縁部に位置する水平方向両端下部側に、酸化剤ガスを通過させるための出口側酸化剤ガス連通孔41bと、燃料ガスを通過させるための出口側燃料ガス連通孔42bとが、入口側酸化剤ガス連通孔41a及び入口側燃料ガス連通孔42aとそれぞれ対角位置となるように設けられている。 Further, the separator 3 has an outlet-side oxidizing gas communication hole 41b for allowing an oxidizing gas to pass therethrough, and a fuel gas for allowing the fuel gas to pass therethrough, at the lower portion in the horizontal direction located in the plane and at the outer peripheral edge. Are provided so as to be diagonal to the inlet-side oxidizing gas communication hole 41a and the inlet-side fuel gas communication hole 42a, respectively.

 そして、図1に示すカソード側のセパレータ3において、酸化剤ガスは、入口側酸化剤ガス連通孔41aから流入した後、波板部33の各凹部31に流入してセパレータ3の一短辺側(図1では右側)から他短辺側(図1では左側)へ向かい、出口側酸化剤ガス連通孔41bから流出する。
 また、アノード側のセパレータ(平面図の図示を省略)においても同様に、燃料ガスは、入口側燃料ガス連通孔42aから流入した後、波板部の各凹部に流入してセパレータの一短辺側から他短辺側へ向かい、出口側燃料ガス連通孔42bから流出する。
Then, in the cathode-side separator 3 shown in FIG. 1, the oxidizing gas flows from the inlet-side oxidizing gas communication hole 41 a, then flows into each concave portion 31 of the corrugated plate portion 33 and has one short side of the separator 3. From the right side in FIG. 1 to the other short side (the left side in FIG. 1), the gas flows out from the outlet-side oxidant gas communication hole 41b.
Similarly, also in the anode-side separator (not shown in the plan view), the fuel gas flows from the inlet-side fuel gas communication hole 42a, then flows into each concave portion of the corrugated plate portion, and the short side of the separator. From the side to the other short side, and flows out from the outlet side fuel gas communication hole 42b.

 なお、以上説明した入口側酸化剤ガス連通孔41a,入口側燃料ガス連通孔42a,入口側冷却媒体連通孔43a,出口側酸化剤ガス連通孔41b,出口側燃料ガス連通孔42b,及び出口側冷却媒体連通孔43bは、本発明に係る連通孔に対応するものである。 The above-described inlet-side oxidant gas communication hole 41a, inlet-side fuel gas communication hole 42a, inlet-side cooling medium communication hole 43a, outlet-side oxidant gas communication hole 41b, outlet-side fuel gas communication hole 42b, and outlet side The cooling medium communication hole 43b corresponds to the communication hole according to the present invention.

 セパレータ3の表面及び裏面には、波板部33,入口側酸化剤ガス連通孔41a,出口側酸化剤ガス連通孔41b,入口側燃料ガス連通孔42a,及び出口側燃料ガス連通孔42bの外側を取り囲む第1のシール材51が配設されていると共に、入口側冷却媒体連通孔43a及び出口側冷却媒体連通孔43bの外側を囲む第2のシール材53が配設されている。
 ここで、前記波板部33は、セパレータの反応面に対応する部位であり、また、前記第1のシール材51の内、波板部33の外周に相当する部分を囲む外周シール材52は、本発明に係る反応面外周シール部材に対応するものである。
 なお、外周シール材52の入口側酸化剤ガス連通孔41a及び出口側酸化剤ガス連通孔41bに隣接する部分は、酸化剤ガスを流入又は流出させるためにシール部をカットしている。また、アノード側のセパレータ(平面図の図示を省略)においても同様に、外周シール材52の入口側燃料ガス連通孔42a及び出口側燃料ガス連通孔42bに隣接する部分のシール部をカットしている。
On the front and back surfaces of the separator 3, the corrugated plate 33, the inlet-side oxidant gas communication hole 41a, the outlet-side oxidant gas communication hole 41b, the inlet-side fuel gas communication hole 42a, and the outside of the outlet-side fuel gas communication hole 42b. And a second sealant 53 surrounding the outside of the inlet-side cooling medium communication hole 43a and the outlet side cooling medium communication hole 43b.
Here, the corrugated plate portion 33 is a portion corresponding to the reaction surface of the separator, and the outer peripheral sealing material 52 surrounding the portion corresponding to the outer periphery of the corrugated plate portion 33 in the first sealing material 51 is This corresponds to the reaction surface outer peripheral sealing member according to the present invention.
A portion of the outer peripheral seal member 52 adjacent to the inlet-side oxidant gas communication hole 41a and the outlet-side oxidant gas communication hole 41b has a cut portion for allowing the oxidant gas to flow in or out. Similarly, in the anode-side separator (not shown in the plan view), the sealing portion of the portion of the outer peripheral sealing material 52 adjacent to the inlet side fuel gas communication hole 42a and the outlet side fuel gas communication hole 42b is cut. I have.

 さらに、セパレータ3の外縁部には、全周に渡って外周面及び外周端面を覆う絶縁性の額縁状部材61が配設されている。
 この額縁状部材61は、図2に示すように、例えばポリアミドやPTFE等の硬質樹脂材料からなる長方形断面の本体部61aと、該本体部61aよりも軟質で弾性を有する材料、例えば、ゴム等からなる台形断面の伸縮吸収部61bとから構成されている。
Further, an insulating frame-shaped member 61 that covers the outer peripheral surface and the outer peripheral end surface over the entire periphery is provided at the outer peripheral portion of the separator 3.
As shown in FIG. 2, the frame-shaped member 61 includes a main body 61a having a rectangular cross section made of a hard resin material such as polyamide or PTFE, and a material softer and more elastic than the main body 61a, such as rubber. And a stretch absorbing portion 61b having a trapezoidal cross section.

 これら本体部61aと伸縮吸収部61bとの境界面61A、及び伸縮吸収部61bの上端面61bAは、第1及び第2のシール材の上端面51A,53Aよりも低位置に設定されており、これら上端面61bAと上端面51A,53Aとの高低差は、第1及び第2のシール材51,53の圧縮代以下に設定されている。 A boundary surface 61A between the main body portion 61a and the elastic absorption portion 61b, and an upper end surface 61bA of the elastic absorption portion 61b are set at lower positions than the upper end surfaces 51A and 53A of the first and second seal materials. The height difference between the upper end surface 61bA and the upper end surfaces 51A, 53A is set to be equal to or less than the compression allowance of the first and second seal members 51, 53.

 なお、圧縮代とは、セパレータ積層時に第1及び第2のシール材51,53を押し潰すことによって、セパレータ3に所定のシール面圧を作用させる際の潰し代をいう。 圧 縮 The compression allowance refers to a crush allowance when a predetermined sealing surface pressure is applied to the separator 3 by crushing the first and second seal materials 51 and 53 at the time of laminating the separators.

 そして、一の燃料電池1を構成するセパレータ3における凹部31と、他の燃料電池1を構成するセパレータ3における凹部31とを順次突き合わせると、セパレータ3の凹部31と電極9との間に形成される図示台形断面の空間が、酸化剤ガスを流通させるための酸化剤ガス流路71、及び燃料ガスを流通させるための燃料ガス流路73になり、セパレータ3に囲まれて形成される図示六角形断面の空間が、冷却媒体を流通させるための冷却媒体流路75になる。 Then, when the concave portion 31 of the separator 3 constituting one fuel cell 1 and the concave portion 31 of the separator 3 constituting another fuel cell 1 are sequentially butted, a gap is formed between the concave portion 31 of the separator 3 and the electrode 9. The illustrated trapezoidal cross-section space is an oxidizing gas flow path 71 for flowing an oxidizing gas and a fuel gas flow path 73 for flowing a fuel gas, and is formed by being surrounded by the separator 3. A space having a hexagonal cross section serves as a cooling medium passage 75 for flowing the cooling medium.

 このセパレータ積層時において、第1及び第2のシール材51,53は、セパレータ3に所定のシール面圧を作用させて各連通孔41a,42a,43a,41b,42b,43bの周囲を確実にシールすべく、前記圧縮代にて押し潰される。
 このとき、各セパレータ3の外縁部に配設された額縁状部材61の伸縮吸収部61bも、セパレータ3に押圧されて所定寸法、具体的には、第1及び第2のシール材51,53の圧縮代から、上端面61bAと上端面51A,53Aとの高低差を差し引いた分だけ圧縮される。
At the time of stacking the separators, the first and second sealing members 51 and 53 apply a predetermined sealing surface pressure to the separator 3 to reliably surround the communication holes 41a, 42a, 43a, 41b, 42b and 43b. In order to seal, it is crushed by the compression allowance.
At this time, the expansion / contraction absorbing portion 61b of the frame-shaped member 61 disposed at the outer edge of each separator 3 is also pressed by the separator 3 to a predetermined size, specifically, the first and second sealing members 51 and 53. Is compressed by the amount obtained by subtracting the height difference between the upper end face 61bA and the upper end faces 51A and 53A from the compression allowance.

 このため、熱等の影響を受けてセパレータ間隔が広がっても、額縁状部材61の伸縮吸収部61bはセパレータ積層方向に弾性復帰して伸長し、当該伸縮吸収部61bから離間しようとする他の額縁状部材61の本体部61aに追従する。
 よって、セパレータ間隔が広げられても、相互接触していた額縁状部材61は離間しないので、外部からの異物侵入を有効に防止でき、第1及び第2のシール材51,53の耐久性も向上する。
For this reason, even if the separator interval is widened due to the influence of heat or the like, the elastic absorbing portion 61b of the frame-shaped member 61 elastically returns in the separator laminating direction and expands, and tends to separate from the elastic absorbing portion 61b. It follows the main body 61a of the frame-shaped member 61.
Therefore, even if the separator interval is widened, the frame-shaped members 61 that have been in contact with each other are not separated, so that the intrusion of foreign matter from the outside can be effectively prevented, and the durability of the first and second seal members 51 and 53 is also improved. improves.

 また、伸縮吸収部61bは、セパレータ積層方向に弾性収縮可能であるから、弾性収縮可能な範囲であれば、セパレータ3の相対接近を規制しない。
 よって、第1及び第2のシール材51,53又は電極膜構造体5が経時劣化して高さが低くなっても、伸縮吸収部61bがセパレータ積層方向に収縮してセパレータ間隔を減少させ得るので、これらシール材51,53及び電極膜構造体3と、セパレータ3との密接状態を維持し得て、発電性能の低下や発電不能に陥ることがない。
In addition, since the expansion / contraction absorber 61b can elastically contract in the separator laminating direction, the relative approach of the separator 3 is not restricted as long as the elastic contraction is possible.
Therefore, even if the first and second sealing materials 51 and 53 or the electrode film structure 5 deteriorates with time and becomes lower in height, the expansion and contraction absorbing portion 61b contracts in the separator laminating direction and can reduce the separator interval. Therefore, the sealing members 51 and 53 and the electrode film structure 3 can be kept in close contact with the separator 3, so that the power generation performance does not deteriorate and power generation does not occur.

 なお、額縁状部材61を絶縁材料から構成しているので、被水,結露等によって燃料電池スタック表面が濡れても、短絡が発生しなくなるという効果と、隣接するセパレータ同士の接触による短絡も発生しなくなるという効果が得られることはもとよりである。さらに、セパレータ3の外周端面が絶縁材料によって覆われているため、隣接するセパレータ3の外周端面における電気的な短絡を防止できることも同様である。 In addition, since the frame-shaped member 61 is made of an insulating material, even if the surface of the fuel cell stack gets wet due to wetness or dew condensation, a short circuit does not occur, and a short circuit also occurs due to contact between adjacent separators. It goes without saying that the effect of no longer being obtained is obtained. Further, since the outer peripheral end face of the separator 3 is covered with the insulating material, the electrical short circuit on the outer peripheral end face of the adjacent separator 3 can be similarly prevented.

 また、セパレータ3の外縁部全周に配設された額縁状部材61、特に、硬質樹脂材料からなる本体部61aが補強用のリブとして機能するため、薄型金属製のセパレータ3の変形も有効に防止できる。
 なお、この薄型金属製のセパレータ3に代えて、補強機能が不要な厚型セパレータを使用する場合は、額縁状部材61を全て軟質材料で構成してもよい。
Further, since the frame-shaped member 61, particularly the main body 61a made of a hard resin material, functions as a reinforcing rib, the deformation of the thin metal separator 3 is effectively performed. Can be prevented.
When a thick separator that does not require a reinforcing function is used instead of the thin metal separator 3, the frame-shaped member 61 may be entirely made of a soft material.

 図3(a)は第1実施形態の変形例を示す断面図、図3(b)は図3(a)のB−B断面図である。
 以下、本変形例の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
FIG. 3A is a sectional view showing a modification of the first embodiment, and FIG. 3B is a sectional view taken along line BB of FIG. 3A.
Hereinafter, in the description of the present modified example, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2 and the description thereof is omitted.

 本変形例による額縁状部材81は、伸縮吸収部81bが本体部81aを覆うと共に、セパレータ3と平行に延びる伸縮吸収部81b1の少なくとも一方に抜き孔83が形成されてなる。
 これら本体部81a及び伸縮吸収部81bは、例えば、図2の本体部61a及び伸縮吸収部61bと同一材料から構成される。
The frame-shaped member 81 according to the present modified example has a structure in which a stretchable absorbing portion 81b covers the main body portion 81a and a hole 83 is formed in at least one of the stretchable absorbing portions 81b1 extending in parallel with the separator 3.
The main body portion 81a and the expansion and contraction absorption portion 81b are made of, for example, the same material as the main body portion 61a and the expansion and contraction absorption portion 61b in FIG.

 抜き孔83は、セパレータ3間の余剰ガスあるいは生成結露水を排出するものであるが、外部からの異物侵入を防止すべく、図3(b)に示すように、開口部83a,83bの位置をセパレータ幅方向(図3(b)では上下方向)にずらすことにより、略Z字状に屈曲形成されている。 The vent hole 83 is for discharging excess gas or dew condensation water between the separators 3. To prevent foreign matter from entering from outside, the holes 83 a and 83 b are located at positions of the openings 83 a and 83 b as shown in FIG. Are shifted in the width direction of the separator (in the vertical direction in FIG. 3B), thereby being bent substantially in a Z-shape.

 本変形例によっても、額縁状部材81が伸縮吸収部81bを備えているので、第1実施形態と同様に、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止を図ることができる。
 なお、額縁状部材81は、図3(a)の最下段に位置するセパレータ3に配設したもののように、第2のシール材53と連結させてもよい。
Also in this modified example, since the frame-shaped member 81 includes the expansion-contraction absorbing portion 81b, similarly to the first embodiment, prevention of foreign matter intrusion when the separator interval is increased, and deterioration of the sealing property due to deterioration with time of the sealing material and the like. Prevention can be achieved.
Note that the frame member 81 may be connected to the second seal material 53, such as the one disposed on the separator 3 located at the lowermost stage in FIG.

 図18(a)は第1実施形態の他の変形例を示す断面図、図18(b)は外周シール材凸部52aの拡大図である。
 以下、本変形例の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
FIG. 18A is a cross-sectional view showing another modification of the first embodiment, and FIG. 18B is an enlarged view of the outer peripheral sealing material projection 52a.
Hereinafter, in the description of the present modified example, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2 and the description thereof is omitted.

 本変形例による額縁状部材261は、伸縮吸収部261b(絶縁性外縁部材)が本体部261aを覆うと共に、セパレータ3の外周シール材52の外側部分の両面、つまり外側部分の表裏が全面に渡って伸縮吸収部261bによって覆われている。ここで、セパレータ3の外周端面は額縁状部材261によって覆われており、各連通孔41a,42a,43a,41b,42b,43bの内周端面は伸縮吸収部261bによって覆われている。 In the frame-shaped member 261 according to the present modification, the expansion / contraction absorbing portion 261b (insulating outer edge member) covers the main body 261a, and both surfaces of the outer portion of the outer peripheral sealing material 52 of the separator 3, that is, the front and back of the outer portion cover the entire surface. And is covered by the elastic absorption part 261b. Here, the outer peripheral end surface of the separator 3 is covered with a frame-shaped member 261, and the inner peripheral end surface of each of the communication holes 41 a, 42 a, 43 a, 41 b, 42 b, 43 b is covered with a stretch absorbing portion 261 b.

 これら本体部261a及び伸縮吸収部261bは、例えば、図2の本体部61a及び伸縮吸収部61bと同一材料から構成されている。
 また、伸縮吸収部261bは外周シール材52を含む第1のシール材51と一体に構成されており、かつ、第2のシール材53とも一体に構成されている。
 そして、隣接するセパレータ3の一方の外周シール材平坦部52bは平坦な形状に形成され、他方の外周シール材凸部52aは凸形状に形成されている。さらに、外周シール材凸部52aの頂上部は断面R形状に形成されている。
The main body 261a and the expansion / contraction absorber 261b are made of, for example, the same material as the main body 61a and the expansion / contraction absorber 61b in FIG.
Further, the expansion / contraction absorbing portion 261b is formed integrally with the first seal member 51 including the outer peripheral seal member 52, and is also formed integrally with the second seal member 53.
Then, one outer peripheral sealing material flat portion 52b of the adjacent separator 3 is formed in a flat shape, and the other outer peripheral sealing material convex portion 52a is formed in a convex shape. Further, the top of the outer peripheral sealing material projection 52a is formed in an R-shaped cross section.

 本変形例によっても、伸縮吸収部261bがセパレータ積層方向に弾性収縮可能であるため、第1実施形態と同様に、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止を図ることができる。
 また、セパレータ3の外周端面及び各連通孔41a,42a,43a,41b,42b,43bの内周端面が額縁状部材261及び伸縮吸収部261bによって覆われているため、隣接するセパレータ3の外周端面及び各連通孔41a,42a,43a,41b,42b,43bの内周端面における電気的な短絡を防止することができる。
Also in this modification, the elastic member 261b can be elastically contracted in the separator laminating direction. Therefore, similarly to the first embodiment, prevention of intrusion of foreign matter when the separator interval is increased, and sealing performance due to deterioration with time of the sealing material and the like, as in the first embodiment. Deterioration can be prevented.
In addition, since the outer peripheral end surface of the separator 3 and the inner peripheral end surfaces of the communication holes 41a, 42a, 43a, 41b, 42b, 43b are covered by the frame member 261 and the expansion / contraction absorbing portion 261b, the outer peripheral end surface of the adjacent separator 3 is provided. In addition, it is possible to prevent an electrical short circuit on the inner peripheral end surfaces of the communication holes 41a, 42a, 43a, 41b, 42b, 43b.

 また、外周シール材52の外側部分におけるセパレータ3の金属露出部分が全て伸縮吸収部261bで覆われるため、耐腐食性を向上させ、かつ、隣接するセパレータ3間の電気的な短絡を防止することができる。
 また、伸縮吸収部261bと第1のシール材51及び第2のシール材53とが一体に構成されているため、これらを同時に成型することができ、生産コストが削減できる。
In addition, since the metal exposed portion of the separator 3 in the outer portion of the outer peripheral sealing material 52 is entirely covered with the stretch absorbing portion 261b, the corrosion resistance is improved and an electrical short circuit between the adjacent separators 3 is prevented. Can be.
In addition, since the expansion / contraction absorbing portion 261b and the first sealing material 51 and the second sealing material 53 are integrally formed, they can be simultaneously molded, and the production cost can be reduced.

 また、外周シール材52の組み合わせが、一方は平坦な形状、他方は凸形状に設定されているため、外周シール材平坦部52bに対応する外周シール材凸部52aの相対的な位置のずれを吸収することができ、シール位置の調整作業等が不要となって生産性が向上する。
 また、セパレータ積層時に、一方の外周シール材平坦部52bに、他方の外周シール材凸部52aの頂上部の断面R形状の中央部が強く押圧されるため、シール性を向上させることができる。
In addition, since the combination of the outer peripheral seal materials 52 is set to be a flat shape on one side and a convex shape on the other, the relative position shift of the outer peripheral seal material convex portion 52a corresponding to the outer peripheral seal material flat portion 52b can be reduced. This can be absorbed, so that the operation of adjusting the seal position and the like become unnecessary, and the productivity is improved.
Further, at the time of laminating the separators, the central portion of the R-shaped cross section at the top of the other outer peripheral sealing material convex portion 52a is strongly pressed against the one outer peripheral sealing material flat portion 52b, so that the sealing performance can be improved.

 図4は、第1実施形態のさらに他の変形例を示す断面図である。
 以下、本変形例の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
FIG. 4 is a cross-sectional view showing still another modification of the first embodiment.
Hereinafter, in the description of the present modified example, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2 and the description thereof is omitted.

 本変形例による額縁状部材91は、セパレータ3の反応面3A側を覆う本体部91aの覆い代L1が、冷却面3B側を覆う覆い代L2の略半分に設定されると共に、本体部91aの冷却面側内縁部にのみ伸縮吸収部91bが一体化されてなる。
 これら本体部91a及び伸縮吸収部91bは、例えば、図2の本体部61a及び伸縮吸収部61bと同一材料から構成される。
In the frame-shaped member 91 according to this modification, the cover margin L1 of the main body 91a covering the reaction surface 3A side of the separator 3 is set to be approximately half of the cover margin L2 covering the cooling surface 3B side, and the main body 91a The expansion / contraction absorber 91b is integrated only with the inner edge of the cooling surface.
The main body portion 91a and the expansion / contraction absorbing portion 91b are made of, for example, the same material as the main body portion 61a and the expansion / contraction absorbing portion 61b in FIG.

 本変形例によっても、額縁状部材91が伸縮吸収部91bを備えているので、第1実施形態と同様に、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止を図ることができる。
 さらに、本変形例による額縁状部材91の伸縮吸収部91bは、セパレータ3からの突出高さが第1実施形態の伸縮吸収部61bよりも高いので、より多くの伸縮代をとり得るようになり、セパレータ間隔増大時の追従性に特に優れる。
Also in this modified example, since the frame-shaped member 91 includes the expansion-contraction absorbing portions 91b, similarly to the first embodiment, the prevention of foreign substances from entering when the separator interval is increased, and the deterioration of the sealing property due to the deterioration over time of the sealing material and the like. Prevention can be achieved.
Furthermore, since the expansion and contraction absorption portion 91b of the frame-shaped member 91 according to the present modification has a higher protruding height from the separator 3 than the expansion and contraction absorption portion 61b of the first embodiment, more expansion and contraction allowance can be taken. In particular, it is excellent in followability when the separator interval is increased.

 次に、本発明の第2実施形態に係る燃料電池について説明する。
 図5は、該燃料電池の要部断面図である。
 以下、本実施形態の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
Next, a fuel cell according to a second embodiment of the present invention will be described.
FIG. 5 is a sectional view of a main part of the fuel cell.
Hereinafter, in the description of the present embodiment, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof will be omitted.

 本実施の形態による額縁状部材101は、セパレータ積層方向の伸縮を機械的に吸収する点で、弾性変形を利用して伸縮を吸収する上記第1実施形態及びその変形例と基本構成が異なる。 額 The frame-shaped member 101 according to the present embodiment is different from the first embodiment in which elastic deformation is used to absorb expansion and contraction in the first embodiment and its modification in mechanically absorbing expansion and contraction in the separator laminating direction.

 この額縁状部材101は、突条部101aが基部101bから突出してなる断面凸型形状をなしており、その突条部101aはセパレータ積層方向に沿って燃料電池スタックの内側(図5の右側)と外側(図5の左側)を交互に向くように配列されている。
 また、隣接する2つの額縁状部材101は、通常、セパレータ3と平行な面101Bでは接触しておらず、セパレータ積層方向と平行な面101Aにて接触している。
The frame-shaped member 101 has a projecting ridge 101a projecting from the base 101b, and has a convex cross-sectional shape. The ridge 101a is inside the fuel cell stack along the separator laminating direction (right side in FIG. 5). And the outside (the left side in FIG. 5).
In addition, two adjacent frame members 101 are not normally in contact with a surface 101B parallel to the separator 3, but are in contact with a surface 101A parallel to the separator laminating direction.

 つまり、セパレータ間隔は、第1及び第2のシール材51,53(図5では、第2のシール材53のみ図示)のセパレータ3からの突出高さで規定されると共に、この突出高さは、セパレータ3からの突条部101a突出高さと基部101b突出高さの和よりも大きく設定されている。
 その結果、隣接する一方の額縁状部材101の基部101bと、他方の額縁状部材101の突条部101aとの間には、隙間103が形成されている。
That is, the interval between the separators is defined by the height of the first and second seal members 51 and 53 (only the second seal member 53 is shown in FIG. 5) from the separator 3, and the height of the protrusion is The height of the protrusion 101a from the separator 3 and the height of the base 101b are set larger than the height of the protrusion.
As a result, a gap 103 is formed between the base 101b of one adjacent frame-shaped member 101 and the ridge 101a of the other frame-shaped member 101.

 この構成によれば、セパレータ間隔が伸縮する動きは、隣接する一方の額縁状部材101の面101Aと、他方の額縁状部材101の面101Aとが離間することなく相対摺動しながら、これら額縁状部材101間の隙間103が広狭するだけで吸収される。
 よって、第1実施形態と同様に、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止を図ることができる。
According to this configuration, the movement of expanding and contracting the separator interval is caused by the relative sliding of the face 101A of one adjacent frame-shaped member 101 and the face 101A of the other frame-shaped member 101 without separation. The gap 103 between the shaped members 101 is absorbed only by widening.
Therefore, similarly to the first embodiment, it is possible to prevent foreign matter from entering when the separator interval is increased and to prevent deterioration of the sealing property due to the deterioration with time of the sealing material.

 さらに、本実施の形態では、隣接する2つの額縁状部材101に着目すれば、セパレータ3と平行な面101Bが互いに接触しないので、これら2つの額縁状部材101間には、セパレータ積層方向に沿う荷重が発生しない。
 よって、第1及び第2のシール材51,53に作用する圧縮荷重が額縁状部材101に分散しなくなり、シール面圧の減少を有効に防止できる。
Furthermore, in the present embodiment, focusing on the two adjacent frame members 101, the surfaces 101B parallel to the separator 3 do not contact each other, and therefore, between these two frame members 101, along the separator laminating direction. No load occurs.
Therefore, the compressive load acting on the first and second seal members 51 and 53 is not dispersed to the frame-shaped member 101, and a decrease in the seal surface pressure can be effectively prevented.

 図6は、第2実施形態の変形例を示す断面図である。
 以下、本変形例の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
FIG. 6 is a cross-sectional view illustrating a modification of the second embodiment.
Hereinafter, in the description of the present modified example, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2 and the description thereof is omitted.

 本変形例による額縁状部材111によっても、図5の構成と同様に、隣接する一方の額縁状部材111の面111Aと、他方の額縁状部材111の面111Aとが離間することなく相対摺動しながら、額縁状部材111間の隙間113が広狭するので、第2実施形態と同様に、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止,及びシール面圧の減少防止を図ることができる。 Also in the frame-shaped member 111 according to this modification, the surface 111A of the adjacent one of the frame-shaped members 111 and the surface 111A of the other frame-shaped member 111 are relatively slid without being separated from each other, similarly to the configuration of FIG. Meanwhile, since the gap 113 between the frame members 111 is widened and narrowed, as in the second embodiment, prevention of foreign matter intrusion when the separator interval is increased, prevention of deterioration of sealing properties due to aging of the sealing material and the like, and sealing surface The pressure can be prevented from decreasing.

 さらに、本変形例では、各セパレータ3の外縁部に同一断面形状の額縁状部材111を同一形態にて配設している点で、各セパレータ3の外縁部に同一断面形状の額縁状部材101を異形態、すなわち、突条部101aの突出方向をセパレータ積層方向に交互に違えて配設した第2実施形態と構成が異なる。
 よって、射出成形にて額縁状部材111をセパレータ3の外縁部に一体成形する場合は、一種類の金型だけで成形可能になり、生産コストを削減できる。
Furthermore, in this modification, the frame-shaped member 111 having the same cross-sectional shape is provided on the outer edge of each separator 3 in that the frame-shaped member 111 having the same cross-sectional shape is disposed in the same shape at the outer edge of each separator 3. Is different from the second embodiment in which the protrusions 101a are alternately arranged in the direction in which the protrusions 101a protrude in the separator laminating direction.
Therefore, when the frame-shaped member 111 is integrally molded with the outer edge of the separator 3 by injection molding, molding can be performed with only one type of mold, and the production cost can be reduced.

 図7は、第2実施形態の他の変形例を示す断面図である。
 以下、本変形例の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
FIG. 7 is a cross-sectional view illustrating another modified example of the second embodiment.
Hereinafter, in the description of the present modified example, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2 and the description thereof is omitted.

 本変形例による額縁状部材121には、セパレータ3の冷却面3B側の端面に凹部123が形成されると共に、該凹部123に嵌合可能な形状を有する凸部125がセパレータ3の反応面3A側の端面に突出形成されている。 In the frame-shaped member 121 according to the present modification, a concave portion 123 is formed on the end surface of the separator 3 on the cooling surface 3B side, and a convex portion 125 having a shape that can be fitted into the concave portion 123 is formed on the reaction surface 3A of the separator 3. It protrudes from the end face on the side.

 この構成によれば、セパレータ積層方向と平行な凹部内面123Aと、凸部外面125Bとが離間することなく相対摺動しながら、額縁状部材121間の隙間127が広狭することにより伸縮を吸収できると共に、各セパレータ3の外縁部に同一断面形状の額縁状部材121を同一形態にて配設しているので、図6の変形例と同様に、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止,及びシール面圧の減少防止,及び生産コストの削減を図ることができる。 According to this configuration, it is possible to absorb expansion and contraction by widening and narrowing the gap 127 between the frame-shaped members 121 while the recess inner surface 123A parallel to the separator laminating direction and the protrusion outer surface 125B relatively slide without being separated from each other. At the same time, the frame-like members 121 having the same cross-sectional shape are arranged in the same form on the outer edge of each separator 3. Therefore, similarly to the modification of FIG. It is possible to prevent the deterioration of the sealing performance due to the deterioration with time, prevent the reduction of the sealing surface pressure, and reduce the production cost.

 さらに、本変形例による額縁状部材121によれば、隣接する一方のセパレータ3に配設された額縁状部材121の凹部123に、他方のセパレータ3に配設された額縁状部材121の凸部125を嵌め込めば、セパレータ3間の相対位置が自動的に位置合わせされるので、組付時及び保守時の作業性が向上する。
 すなわち、本変形例においては、これら凹部123と凸部125とにより、本発明に係るセパレータ位置決め手段が構成される。
Further, according to the frame-shaped member 121 according to the present modification, the concave portion 123 of the frame-shaped member 121 disposed on the adjacent one of the separators 3 has the convex portion of the frame-shaped member 121 disposed on the other of the separators 3. When 125 is fitted, the relative position between the separators 3 is automatically adjusted, so that the workability at the time of assembly and maintenance is improved.
That is, in the present modification, the concave portion 123 and the convex portion 125 constitute a separator positioning unit according to the present invention.

 次に、本発明の第3実施形態に係る燃料電池について説明する。
 図8は該燃料電池の要部断面図である。
 以下、本実施形態の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
Next, a fuel cell according to a third embodiment of the present invention will be described.
FIG. 8 is a sectional view of a main part of the fuel cell.
Hereinafter, in the description of the present embodiment, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof will be omitted.

 本実施の形態による額縁状部材131は、セパレータ3の冷却面3B側の端面131Aと、セパレータ3の反応面3A側の端面131Bとが、いずれもこれら冷却面3B及び反応面3Aに対して内側下がり(図8の要部断面では、右下がり)に傾斜してなる、すり鉢状の傾斜面とされている。
 本実施の形態においては、これら端面131Aと端面131Bとにより、セパレータ位置決め手段が構成される。
In the frame-shaped member 131 according to the present embodiment, the end surface 131A on the cooling surface 3B side of the separator 3 and the end surface 131B on the reaction surface 3A side of the separator 3 are both inside the cooling surface 3B and the reaction surface 3A. It is a mortar-shaped inclined surface that is inclined downward (downward to the right in the cross section of the main part in FIG. 8).
In the present embodiment, the end face 131A and the end face 131B constitute separator positioning means.

 この構成によれば、隣接する一方の額縁状部材131の端面131Aと、他方の額縁状部材131の端面131Bとが離間することなく相対摺動することにより、セパレータ間隔の伸縮が吸収されると共に、セパレータ3間の相対位置も自動的に位置合わせされ、また、各セパレータ3の外縁部に同一断面形状の額縁状部材131を同一形態にて配設したので、図6の変形例と同様に、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止,及びシール面圧の減少防止,生産コストの削減,及び組付時・保守時の作業性向上を図ることができる。 According to this configuration, the end surface 131A of the adjacent one of the frame members 131 and the end surface 131B of the other frame member 131 relatively slide without being separated from each other, so that expansion and contraction of the separator interval is absorbed. The relative positions between the separators 3 are also automatically aligned, and the frame-like members 131 having the same cross-sectional shape are arranged in the same form at the outer edge of each separator 3. To prevent foreign matter from entering when the separator interval is increased, to prevent deterioration of sealing performance due to deterioration of sealing material over time, to prevent reduction of sealing surface pressure, to reduce production cost, and to improve workability during assembly and maintenance. be able to.

 次に、本発明の第4実施形態に係る燃料電池について説明する。
 図9は該燃料電池の要部断面図である。
 以下、本実施形態の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
Next, a fuel cell according to a fourth embodiment of the present invention will be described.
FIG. 9 is a sectional view of a main part of the fuel cell.
Hereinafter, in the description of the present embodiment, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof will be omitted.

 本実施の形態による額縁状部材141は、例えば図2の伸縮吸収部材61bと同一の軟質材料から断面矢羽状に形成されてなる。
 この額縁状部材141においては、冷却面3B側の端面に形成された断面三角溝部143と、反応面3A側の端面に形成された断面三角突条部145とにより、セパレータ位置決め手段が構成される。
The frame-shaped member 141 according to the present embodiment is formed, for example, from the same soft material as the elastic absorption member 61b in FIG.
In the frame-shaped member 141, the separator positioning means is constituted by the triangular cross-sectional groove 143 formed on the end surface on the cooling surface 3B side and the triangular protruding ridge 145 formed on the end surface on the reaction surface 3A side. .

 この構成によれば、額縁状部材141が弾性伸縮することにより、セパレータ間隔の伸縮が吸収され、また、隣接する一方のセパレータ3に配設された額縁状部材141の断面三角溝部143に、他方のセパレータ3に配設された額縁状部材141の断面三角突条部145を嵌め込めば、セパレータ3間の相対位置が自動的に位置合わせされ、さらに、各セパレータ3の外縁部に同一断面形状の額縁状部材を同一形態にて配設したので、図8の構成と同様に、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止,及びシール面圧の減少防止,生産コストの削減,及び組付時・保守時の作業性向上を図ることができる。 According to this configuration, the frame-like member 141 elastically expands and contracts, so that the expansion and contraction of the separator interval is absorbed, and the triangular groove portion 143 of the frame-like member 141 disposed on the adjacent one of the separators 3 has the other end. When the triangular ridges 145 of the frame-shaped member 141 disposed on the separators 3 are fitted, the relative positions between the separators 3 are automatically aligned, and the outer edges of the separators 3 have the same cross-sectional shape. Since the frame-shaped members are arranged in the same form, as in the configuration of FIG. 8, it is possible to prevent foreign matter from entering when the separator interval is increased, to prevent deterioration of the sealing property due to the aging of the sealing material, and to reduce the sealing surface pressure. Prevention of reduction, reduction of production cost, and improvement of workability during assembly and maintenance can be achieved.

 なお、以上説明した額縁状部材61,81,91,101,111,121,131,141をセパレータ外縁部に備えた構成においては、図10に示すように、セパレータ3の外縁を折り曲げて屈曲部3a,3b,3cを形成してもよい。
 この構成によれば、屈曲部3a,3b,3cが補強用のリブ、及び額縁状部材61,81,91,101,111,121,131,141の抜け止めとして機能するので、薄型金属製のセパレータ3の変形、及び額縁状部材61,81,91,101,111,121,131,141の脱離を有効に防止できる。
In the above-described configuration in which the frame-shaped members 61, 81, 91, 101, 111, 121, 131, and 141 are provided on the outer edge of the separator, as shown in FIG. 3a, 3b and 3c may be formed.
According to this configuration, the bent portions 3a, 3b, and 3c function as reinforcing ribs and retaining members for the frame members 61, 81, 91, 101, 111, 121, 131, and 141. Deformation of the separator 3 and detachment of the frame-shaped members 61, 81, 91, 101, 111, 121, 131, 141 can be effectively prevented.

 次に、本発明の第5実施形態に係る燃料電池について説明する。
 図11は、該燃料電池の要部断面図である。
 以下、本実施形態の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
Next, a fuel cell according to a fifth embodiment of the present invention will be described.
FIG. 11 is a sectional view of a main part of the fuel cell.
Hereinafter, in the description of the present embodiment, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof will be omitted.

 この燃料電池では、セパレータ3に形成された入口側酸化剤ガス連通孔41a,入口側燃料ガス連通孔42a,入口側冷却媒体連通孔43a,出口側酸化剤ガス連通孔41b,出口側燃料ガス連通孔42b,及び出口側冷却媒体連通孔43bの周囲に、内周面及び内周端面を覆う樹脂,ゴム等からなる環状の絶縁性部材201を配設している。
 なお、図11では、出口側燃料ガス連通孔42bのみを図示した。
In this fuel cell, the inlet-side oxidant gas communication hole 41a, the inlet-side fuel gas communication hole 42a, the inlet-side cooling medium communication hole 43a, the outlet-side oxidant gas communication hole 41b, and the outlet-side fuel gas communication formed in the separator 3. An annular insulating member 201 made of resin, rubber, or the like that covers the inner peripheral surface and the inner peripheral end surface is provided around the hole 42b and the outlet-side cooling medium communication hole 43b.
FIG. 11 shows only the outlet side fuel gas communication hole 42b.

 この構成によれば、冷却媒体流路における液絡、及び反応ガス流路での隣接セパレータ間の電気的な短絡を有効に防止できる。
 特に、本実施の形態による燃料電池は、金属製の薄型セパレータ3を用いている関係上、セパレータ間隔が短く、上記セパレータ間の電気的な短絡を防止する上では不利な構造になっているため、その効果は格別である。
 しかも、この薄型金属製セパレータ3の連通孔周囲において、絶縁性部材201が補強用のリブとしても機能するため、その変形も有効に防止できる。
According to this configuration, it is possible to effectively prevent a liquid junction in the cooling medium flow path and an electrical short circuit between adjacent separators in the reaction gas flow path.
In particular, since the fuel cell according to the present embodiment uses the thin metal separator 3, the interval between the separators is short, and the structure is disadvantageous in preventing an electrical short circuit between the separators. , The effect is exceptional.
Moreover, since the insulating member 201 also functions as a reinforcing rib around the communication hole of the thin metal separator 3, the deformation can be effectively prevented.

 また、セパレータ表裏面からの絶縁性部材突出高さが、隣接する一方のセパレータ3に配設された絶縁性部材201と、他方の絶縁性部材201とが互いに接触しないように、すなわち、絶縁性部材201間に隙間203が形成されるように設定されているので、この隙間203が広狭することによって、セパレータ間隔の伸縮を吸収できる構造にもなっている。 In addition, the height of the insulating member protruding from the front and rear surfaces of the separator is set so that the insulating member 201 provided on the adjacent one of the separators 3 and the other insulating member 201 do not come into contact with each other. Since the gap 203 is set between the members 201, the gap 203 is widened and narrowed, so that the structure can absorb the expansion and contraction of the separator interval.

 このため、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止,及びシール面圧の減少防止を図ることができる。
 さらに、各セパレータ3の連通孔周囲に同一断面形状の絶縁性部材201を同一形態にて配設したので、射出成形にて絶縁性部材201をセパレータ3に一体成形する際は、一種類の金型だけで成形可能になり、生産コストも削減できる。
For this reason, it is possible to prevent foreign substances from entering when the separator interval is increased, to prevent deterioration of the sealing property due to the deterioration with time of the sealing material and the like, and to prevent reduction of the sealing surface pressure.
Furthermore, since the insulating members 201 having the same cross-sectional shape are provided in the same form around the communication holes of the separators 3, when the insulating members 201 are integrally formed with the separator 3 by injection molding, one kind of metal is used. Molding can be performed using only a mold, and production costs can be reduced.

 図12及び図13は、第5実施形態の変形例を示す断面図である。
 以下、本変形例の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
FIG. 12 and FIG. 13 are cross-sectional views showing a modification of the fifth embodiment.
Hereinafter, in the description of the present modified example, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2 and the description thereof is omitted.

 図12の変形例では、各連通孔41a,42a,43a,41b,42b,43bの周囲に、例えば図5の額縁状部材101と同一材質かつ同一断面形状をなす環状の絶縁性部材211を配設しており、図13の変形例では、各連通孔41a,42a,43a,41b,42b,43bの周囲に、例えば図6の額縁状部材111と同一材質かつ同一断面形状をなす環状の絶縁性部材221を配設している。 In the modification of FIG. 12, for example, an annular insulating member 211 having the same material and the same cross-sectional shape as the frame-shaped member 101 of FIG. 5 is provided around the communication holes 41a, 42a, 43a, 41b, 42b, and 43b. In the modified example of FIG. 13, an annular insulating member having the same material and the same cross-sectional shape as the frame member 111 of FIG. 6, for example, is provided around the communication holes 41a, 42a, 43a, 41b, 42b, and 43b. The sex member 221 is provided.

 これらの構成によれば、図11の構成と同様に、冷却媒体流路における液絡、及び反応ガス流路における隣接セパレータ間の電気的な短絡防止,セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止,シール面圧の減少防止を図ることができる。
 特に、図13の変形例では、各連通孔41a,42a,43a,41b,42b,43bの周囲に配される絶縁性部材221が全て同一断面形状とされているので、射出成形にて絶縁性部材221をセパレータに一体成形する際には、一種類の金型だけで成形可能になり、生産コストも削減できる。
According to these configurations, as in the configuration of FIG. 11, the liquid junction in the cooling medium flow path, the electrical short circuit between adjacent separators in the reaction gas flow path, the prevention of foreign substances from entering when the separator interval is increased, the sealing material Thus, it is possible to prevent the deterioration of the sealing performance due to the deterioration with time and to prevent the reduction of the seal surface pressure.
In particular, in the modification of FIG. 13, since the insulating members 221 disposed around the communication holes 41a, 42a, 43a, 41b, 42b, 43b all have the same cross-sectional shape, the insulating member 221 is formed by injection molding. When the member 221 is integrally molded with the separator, molding can be performed using only one type of mold, and the production cost can be reduced.

 図14及び図15は、第5実施形態のさらに他の変形例を示す断面図である。
 以下、本変形例の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
FIGS. 14 and 15 are cross-sectional views showing still another modification of the fifth embodiment.
Hereinafter, in the description of the present modified example, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2 and the description thereof is omitted.

 図14の変形例では、各連通孔41a,42a,43a,41b,42b,43bの周囲に、例えば図2の額縁状部材61と同一材質かつ同一断面形状をなす環状の絶縁性部材231を配設しており、図15の変形例では、各連通孔41a,42a,43a,41b,42b,43bの周囲に、例えば図2の伸縮吸収部61bと同一材質からなる、一方の開口端につば部241aを備えた環状の絶縁性部材241を配設している。 In the modification of FIG. 14, for example, an annular insulating member 231 having the same material and the same cross-sectional shape as the frame-shaped member 61 of FIG. 2 is provided around the communication holes 41a, 42a, 43a, 41b, 42b, and 43b. In the modified example of FIG. 15, a flange is formed around each of the communication holes 41a, 42a, 43a, 41b, 42b, 43b, for example, at one open end made of the same material as the elastic absorption part 61b of FIG. An annular insulating member 241 having a portion 241a is provided.

 これらの構成によっても、図11の構成と同様に、冷却媒体流路における液絡、及び反応ガス流路における隣接セパレータ間の電気的な短絡防止,セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止,シール面圧の減少防止,及び射出成形にて絶縁性部材231,241をセパレータに一体成形する際の生産コストも削減できる。 According to these configurations, similarly to the configuration of FIG. 11, the liquid junction in the cooling medium flow path, the prevention of electrical short circuit between adjacent separators in the reaction gas flow path, the prevention of foreign substances from entering when the separator interval is increased, the sealing material, etc. It is also possible to prevent the deterioration of the sealing property due to the deterioration with time, prevent the reduction of the sealing surface pressure, and reduce the production cost when the insulating members 231 and 241 are integrally formed with the separator by injection molding.

 次に、本発明の第6実施形態に係る燃料電池について説明する。
 図19(a)は該燃料電池の要部断面図、図19(b)は外周シール材凸部52aの拡大図である。
 以下、本変形例の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
 この燃料電池では、セパレータ3の外周シール材52の外側部分の両面、つまり外側部分の表裏が全面に渡って絶縁性部材271によって覆われている。また、セパレータ3の外周端面及び各連通孔41a,42a,43a,41b,42b,43bの内周端面も絶縁性部材271によって覆われている。
 この絶縁性部材271は、図2の伸縮吸収部61bと同様に、例えばゴム等の軟質で弾性を有する材料からなる。
Next, a fuel cell according to a sixth embodiment of the present invention will be described.
FIG. 19A is a cross-sectional view of a main part of the fuel cell, and FIG. 19B is an enlarged view of the outer peripheral sealing material projection 52a.
Hereinafter, in the description of the present modified example, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG.
In this fuel cell, both surfaces of the outer portion of the outer peripheral sealing material 52 of the separator 3, that is, the front and back of the outer portion are entirely covered with the insulating member 271. Further, the outer peripheral end surface of the separator 3 and the inner peripheral end surfaces of the communication holes 41a, 42a, 43a, 41b, 42b, 43b are also covered by the insulating member 271.
The insulating member 271 is made of a soft and elastic material such as rubber, for example, like the expansion and contraction absorbing portion 61b of FIG.

 さらに、絶縁性部材271は外周シール材52を含む第1のシール材51と一体に構成されており、かつ、第2のシール材53とも一体に構成されている。
 そして、隣接するセパレータ3の一方の外周シール材平坦部52b(絶縁性部材平坦部271b)は平坦な形状に形成され、他方の外周シール材凸部52a(絶縁性部材凸部271a)は凸形状に形成されている。さらに、外周シール材凸部52aの頂上部は断面R形状に形成されている。
 セパレータ3の外周部及び各連通孔41a,42a,43a,41b,42b,43bの内周部には段差部3dが形成されており、その段差部3dによって、セパレータ3の外周部及び各連通孔41a,42a,43a,41b,42b,43bの内周部がセパレータ3の反応面3A側に変化している。そして、隣接するセパレータ3の反応面3A間には隙間273が形成されている。
Further, the insulating member 271 is formed integrally with the first seal member 51 including the outer peripheral seal member 52, and is also formed integrally with the second seal member 53.
Then, one outer peripheral sealing material flat portion 52b (insulating member flat portion 271b) of the adjacent separator 3 is formed in a flat shape, and the other outer peripheral sealing material convex portion 52a (insulating member convex portion 271a) has a convex shape. Is formed. Further, the top of the outer peripheral sealing material projection 52a is formed in an R-shaped cross section.
An outer peripheral portion of the separator 3 and an inner peripheral portion of each of the communication holes 41a, 42a, 43a, 41b, 42b, 43b are formed with a step portion 3d, and the outer peripheral portion of the separator 3 and each of the communication holes are formed by the step portion 3d. The inner peripheral portions of 41a, 42a, 43a, 41b, 42b, 43b are changed to the reaction surface 3A side of the separator 3. A gap 273 is formed between the reaction surfaces 3A of the adjacent separators 3.

 この構成によれば、隣接するセパレータ3の外周端面及各連通孔41a,42a,43a,41b,42b,43bの内周端面における電気的な短絡を有効に防止できる。
 また、外周シール材52の外側部分におけるセパレータ3の金属露出部分が両面共に全て絶縁性部材271で覆われるため、耐腐食性を向上させ、かつ、隣接するセパレータ3間の電気的な短絡を防止することができる。
 また、絶縁性部材271と第1のシール材51及び第2のシール材53とが一体に構成されているため、これらを同時に成型することができ、生産コストが削減できる。
According to this configuration, it is possible to effectively prevent an electrical short circuit on the outer peripheral end surface of the adjacent separator 3 and the inner peripheral end surfaces of the communication holes 41a, 42a, 43a, 41b, 42b, 43b.
In addition, since the metal exposed portion of the separator 3 in the outer portion of the outer peripheral sealing material 52 is entirely covered with the insulating member 271 on both surfaces, the corrosion resistance is improved and an electrical short circuit between the adjacent separators 3 is prevented. can do.
Further, since the insulating member 271 and the first sealing material 51 and the second sealing material 53 are integrally formed, they can be simultaneously molded, and the production cost can be reduced.

 また、外周シール材52の組み合わせが、一方は平坦な形状、他方は凸形状に形成されているため、外周シール材平坦部52bに対応する外周シール材凸部52aの相対的な位置のずれを吸収することができ、シール位置の調整作業等が不要となって生産性が向上する。
 また、セパレータ積層時に、一方の外周シール材平坦部52bに、他方の外周シール材凸部52aの頂上部の断面R形状の中央部が強く押圧されるため、シール性を向上させることができる。
In addition, since one of the combinations of the outer peripheral seal materials 52 is formed in a flat shape and the other is formed in a convex shape, the relative positional shift of the outer peripheral seal material convex portions 52a corresponding to the outer peripheral seal material flat portions 52b is reduced. This can be absorbed, so that the operation of adjusting the seal position and the like become unnecessary, and the productivity is improved.
Further, at the time of laminating the separators, the central portion of the R-shaped cross section at the top of the other outer peripheral sealing material convex portion 52a is strongly pressed against the one outer peripheral sealing material flat portion 52b, so that the sealing performance can be improved.

 また、この薄型金属製セパレータ3の外縁部及び連通孔周囲において、段差部3dが補強用のリブとしても機能するため、その変形も有効に防止できる。
 また、セパレータ3表裏面からの段差部突出高さが、隣接するセパレータ3の反応面3A間において互いに接触しないように、つまり隙間273が形成されるように設定されているので、この隙間273が広狭することによって、セパレータ3間隔の伸縮を吸収できる構造にもなっている。
 このため、セパレータ間隔増大時の異物侵入防止,シール材等の経時劣化に伴うシール性の悪化防止,及びシール面圧の減少防止を図ることができる。
In addition, since the step portion 3d also functions as a reinforcing rib around the outer edge portion and the periphery of the communication hole of the thin metal separator 3, the deformation can be effectively prevented.
Further, since the step height from the front and back surfaces of the separator 3 is set so as not to contact each other between the reaction surfaces 3A of the adjacent separators 3, that is, the gap 273 is formed. By widening, the structure can also absorb the expansion and contraction of the space between the separators 3.
For this reason, it is possible to prevent foreign matter from entering when the separator interval is increased, to prevent deterioration of sealing performance due to deterioration of the sealing material with time, and to prevent reduction in sealing surface pressure.

 図16は、第6実施形態を示す断面図である。
 以下、本実施形態の説明において、図2と同一の構成要素には、図2と同一符号を付すと共にその説明を省略する。
FIG. 16 is a sectional view showing the sixth embodiment.
Hereinafter, in the description of the present embodiment, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof will be omitted.

 本実施の形態による額縁状部材251は、セパレータ3の外縁部に配設した本体部251aの外周をゴム等の防振材料からなる伸縮吸収部251bで覆い、この伸縮吸収部251bに車両本体へのマウント部としての機能を兼用させたものである。 The frame-shaped member 251 according to the present embodiment covers the outer periphery of the main body 251a disposed on the outer edge of the separator 3 with a stretchable absorbing portion 251b made of a vibration-proof material such as rubber, and the stretchable absorbing portion 251b is attached to the vehicle body. This also serves as a mount part.

 この構成によっても、図2の構成と同様、セパレータ間隔増大時の異物侵入防止,及びシール材等の経時劣化に伴うシール性の悪化防止を図ることができる。
 さらに、燃料電池1を横方向(水平方向)に積層して取り付け面300に載置した場合に、額縁状部材251の伸縮吸収部251bが燃料電池1の取り付け面300と接することによって防振機能も兼ねるので、燃料電池スタックに防振部品を別体にて取り付ける必要がなくなり、低コスト化を図ることもできる。
According to this configuration, similarly to the configuration of FIG. 2, it is possible to prevent foreign matter from entering when the separator interval is increased, and to prevent deterioration of the sealing property due to the deterioration with time of the sealing material.
Furthermore, when the fuel cells 1 are stacked in the horizontal direction (horizontal direction) and placed on the mounting surface 300, the expansion / contraction absorbing portion 251 b of the frame-shaped member 251 comes into contact with the mounting surface 300 of the fuel cell 1, thereby providing an anti-vibration function. Therefore, it is not necessary to separately mount the vibration isolating component to the fuel cell stack, and the cost can be reduced.

 ここで、防振材料からなる伸縮吸収部251bは、一又は複数の燃料電池毎に設けるようにしてもよい。
 図17に示す変形例は、防振材料からなる伸縮吸収部251bを一の燃料電池毎に設けた燃料電池スタックを示しており、この燃料電池スタックでは、防振材料からなる伸縮吸収部251bと、図2の伸縮吸収部61bと同一材質からなる伸縮吸収部251cとを一のセパレータ3おきに交互に配設している。
Here, the expansion-contraction absorber 251b made of a vibration-proof material may be provided for each of one or more fuel cells.
The modified example shown in FIG. 17 shows a fuel cell stack in which an expansion-contraction absorber 251b made of an anti-vibration material is provided for each fuel cell. The elastic absorbers 251c made of the same material as the elastic absorbers 61b of FIG. 2 are alternately arranged for every other separator 3.

 なお、以上の実施形態及び変形例では、セパレータ3をステンレス鋼から構成しているが、その他チタン等の金属材料や炭素質材料から構成してもよい。 In the above-described embodiments and modified examples, the separator 3 is made of stainless steel, but may be made of a metal material such as titanium or a carbonaceous material.

本発明の第1の実施形態による固体高分子電解質膜型燃料電池のセパレータを示す平面図である。1 is a plan view illustrating a separator of a polymer electrolyte membrane fuel cell according to a first embodiment of the present invention. 図1のセパレータを備えた固体高分子電解質膜型燃料電池を複数積層して構成した燃料電池スタックを、図1のA−A線に相当する位置で切断した断面図である。FIG. 2 is a cross-sectional view of a fuel cell stack configured by stacking a plurality of solid polymer electrolyte membrane fuel cells including the separator of FIG. 1 at a position corresponding to line AA in FIG. 1. (a)は第1の実施形態の変形例を示す要部断面図、(b)は(a)のB−B断面図である。(A) is a sectional view of a main part showing a modification of the first embodiment, and (b) is a BB sectional view of (a). 第1の実施形態のさらに他の変形例を示す要部断面図である。It is a principal part sectional view which shows another modification of 1st Embodiment. 本発明の第2の実施形態を示す要部断面図である。It is principal part sectional drawing which shows 2nd Embodiment of this invention. 第2の実施形態の変形例を示す要部断面図である。It is a principal part sectional view showing a modification of a 2nd embodiment. 第2の実施形態の他の変形例を示す要部断面図である。It is a principal part sectional view which shows the other modification of 2nd Embodiment. 本発明の第3の実施形態を示す要部断面図である。It is principal part sectional drawing which shows 3rd Embodiment of this invention. 第3の実施形態の変形例を示す要部断面図である。It is a principal part sectional view showing a modification of a 3rd embodiment. 第3の実施形態の他の変形例を示す要部断面図である。It is a principal part sectional view showing another modification of a 3rd embodiment. 本発明の第4の実施形態を示す要部断面図である。It is principal part sectional drawing which shows 4th Embodiment of this invention. 第4の実施形態の変形例を示す要部断面図である。It is a principal part sectional view showing a modification of a 4th embodiment. 第4の実施形態の他の変形例を示す要部断面図である。It is principal part sectional drawing which shows the other modification of 4th Embodiment. 本発明の第5の実施形態を示す要部断面図である。It is principal part sectional drawing which shows 5th Embodiment of this invention. 第5の実施形態の変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of 5th Embodiment. 本発明の第6の実施形態を示す要部断面図である。It is principal part sectional drawing which shows 6th Embodiment of this invention. 第6の実施形態の変形例を示す要部断面図である。It is a principal part sectional view showing a modification of a 6th embodiment. (a)は第1の実施形態の他の変形例を示す要部断面図、(b)は外周シール材凸部の拡大図である。(A) is a principal part sectional view showing another modification of the first embodiment, and (b) is an enlarged view of an outer peripheral sealing material convex portion. (a)は第5の実施形態を示す要部断面図、(b)は外周シール材凸部の拡大図である。(A) is sectional drawing of the principal part which shows 5th Embodiment, (b) is an enlarged view of an outer periphery sealing material convex part.

符号の説明Explanation of reference numerals

 1 燃料電池
 3 セパレータ
 7 固体高分子電解質膜
 9 電極
 41a 入口側酸化剤ガス連通孔
 41b 出口側酸化剤ガス連通孔
 42a 入口側燃料ガス連通孔
 42b 出口側燃料ガス連通孔
 43a 入口側冷却媒体連通孔
 43b 出口側冷却媒体連通孔
 52 外周シール材(反応面外周シール部材)
 52a 外周シール材凸部(凸形状))
 52b 外周シール材平坦部(平坦な形状)
 61、81、91、101、111、121、131、141、251、261 額縁状部材
 61a,81a,91a,261a 本体部(硬質材料で構成される部分)
 61b,81b,91b,261b(絶縁性外縁部材) 伸縮吸収部(軟質材料で構成される部分)
 123 凹部(位置決め手段の一部)
 125 凸部(位置決め手段の一部)
 131A 端面(位置決め手段の一部)
 131B 端面(位置決め手段の一部)
 143 断面三角溝部(位置決め手段の一部)
 145 断面三角突条部(位置決め手段の一部)
 201、211、221、231、241、271 絶縁性部材
 203 隙間
 271a 絶縁性部材凸部(凸形状)
 271b 絶縁性部材平坦部(平坦な形状)
DESCRIPTION OF SYMBOLS 1 Fuel cell 3 Separator 7 Solid polymer electrolyte membrane 9 Electrode 41a Inlet side oxidant gas communication hole 41b Outlet side oxidant gas communication hole 42a Inlet side fuel gas communication hole 42b Outlet side fuel gas communication hole 43a Inlet side cooling medium communication hole 43b Outlet side cooling medium communication hole 52 Outer peripheral seal material (reactor surface outer peripheral seal member)
52a Outer peripheral seal material convex (convex shape)
52b Peripheral seal material flat part (flat shape)
61, 81, 91, 101, 111, 121, 131, 141, 251, 261 Frame member 61a, 81a, 91a, 261a Main body (portion made of hard material)
61b, 81b, 91b, 261b (insulating outer edge member) Expansion / contraction absorber (portion made of soft material)
123 recess (part of positioning means)
125 convex part (part of positioning means)
131A end face (part of positioning means)
131B end face (part of positioning means)
143 Triangular groove section (part of positioning means)
145 Triangular ridge section (part of positioning means)
201, 211, 221, 231, 241, 271 Insulating member 203 Gap 271a Insulating member convex portion (convex shape)
271b Flat part of insulating member (flat shape)

Claims (2)

 固体高分子電解質膜の両側に一対の電極を設け、その外側を一対の金属薄板製セパレータで挟持してなる燃料電池において、前記セパレータに形成された連通孔の周囲に、絶縁性部材を設けたことを特徴とする燃料電池。 In a fuel cell in which a pair of electrodes are provided on both sides of a solid polymer electrolyte membrane and the outside of which is sandwiched between a pair of thin metal plate separators, an insulating member is provided around a communication hole formed in the separator. A fuel cell, characterized in that:  隣接する前記セパレータの各絶縁性部材は、セパレータの積層方向に隙間を有していることを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein each of the insulating members of the adjacent separators has a gap in a direction in which the separators are stacked.
JP2003374725A 2001-01-30 2003-11-04 Fuel cell Expired - Fee Related JP3739769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374725A JP3739769B2 (en) 2001-01-30 2003-11-04 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001022047 2001-01-30
JP2003374725A JP3739769B2 (en) 2001-01-30 2003-11-04 Fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002005333A Division JP3571696B2 (en) 2001-01-30 2002-01-11 Fuel cell and fuel cell stack

Publications (2)

Publication Number Publication Date
JP2004047495A true JP2004047495A (en) 2004-02-12
JP3739769B2 JP3739769B2 (en) 2006-01-25

Family

ID=31719214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374725A Expired - Fee Related JP3739769B2 (en) 2001-01-30 2003-11-04 Fuel cell

Country Status (1)

Country Link
JP (1) JP3739769B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267868A (en) * 2004-03-16 2005-09-29 Honda Motor Co Ltd Fuel cell
JP2005285497A (en) * 2004-03-29 2005-10-13 Honda Motor Co Ltd Fuel cell
JP2006040792A (en) * 2004-07-29 2006-02-09 Tokai Rubber Ind Ltd Separator for solid polymer fuel cell, and cell for solid polymer fuel battery using it
JP2006040791A (en) * 2004-07-29 2006-02-09 Tokai Rubber Ind Ltd Cell for solid polymer fuel battery
JP2006100021A (en) * 2004-09-28 2006-04-13 Honda Motor Co Ltd Fuel cell stack
JP2007213971A (en) * 2006-02-09 2007-08-23 Tokai Rubber Ind Ltd Cell for polymer electrolyte fuel cell and polymer electrolyte fuel cell using it
WO2007126095A1 (en) * 2006-04-25 2007-11-08 Toyota Jidosha Kabushiki Kaisha Separator for fuel cells
US7601459B2 (en) 2004-04-21 2009-10-13 Samsung Sdi Co., Ltd. Fuel cell system
JP2009283469A (en) * 2009-07-24 2009-12-03 Honda Motor Co Ltd Fuel cell stack
JP2010123432A (en) * 2008-11-20 2010-06-03 Honda Motor Co Ltd Fuel cell
JP2010199084A (en) * 2010-05-10 2010-09-09 Honda Motor Co Ltd Fuel cell
WO2012035585A1 (en) * 2010-09-16 2012-03-22 トヨタ自動車株式会社 Separator for fuel cell, fuel cell, and method for manufacturing fuel cell
US8202666B2 (en) 2008-04-04 2012-06-19 Toyota Jidosha Kabushiki Kaisha Unit cell assembly, fuel cell, and method for manufacturing unit cell assembly
CN113013433A (en) * 2019-12-19 2021-06-22 住友理工株式会社 Separator for fuel cell and method for producing same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267868A (en) * 2004-03-16 2005-09-29 Honda Motor Co Ltd Fuel cell
JP4723196B2 (en) * 2004-03-16 2011-07-13 本田技研工業株式会社 Fuel cell
US8053125B2 (en) 2004-03-16 2011-11-08 Honda Motor Co., Ltd. Fuel cell having buffer and seal for coolant
US8148032B2 (en) 2004-03-29 2012-04-03 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP2005285497A (en) * 2004-03-29 2005-10-13 Honda Motor Co Ltd Fuel cell
JP4547177B2 (en) * 2004-03-29 2010-09-22 本田技研工業株式会社 Fuel cell
US7601459B2 (en) 2004-04-21 2009-10-13 Samsung Sdi Co., Ltd. Fuel cell system
JP2006040791A (en) * 2004-07-29 2006-02-09 Tokai Rubber Ind Ltd Cell for solid polymer fuel battery
US7951481B2 (en) 2004-07-29 2011-05-31 Tokai Rubber Industries, Ltd. Separator and cell using the same for use in solid polymer electrolyte fuel cell
JP2006040792A (en) * 2004-07-29 2006-02-09 Tokai Rubber Ind Ltd Separator for solid polymer fuel cell, and cell for solid polymer fuel battery using it
JP4621970B2 (en) * 2004-07-29 2011-02-02 東海ゴム工業株式会社 Separator for polymer electrolyte fuel cell and cell for polymer electrolyte fuel cell using the same
JP2006100021A (en) * 2004-09-28 2006-04-13 Honda Motor Co Ltd Fuel cell stack
JP4690688B2 (en) * 2004-09-28 2011-06-01 本田技研工業株式会社 Fuel cell stack
JP2007213971A (en) * 2006-02-09 2007-08-23 Tokai Rubber Ind Ltd Cell for polymer electrolyte fuel cell and polymer electrolyte fuel cell using it
WO2007126095A1 (en) * 2006-04-25 2007-11-08 Toyota Jidosha Kabushiki Kaisha Separator for fuel cells
US8202666B2 (en) 2008-04-04 2012-06-19 Toyota Jidosha Kabushiki Kaisha Unit cell assembly, fuel cell, and method for manufacturing unit cell assembly
JP2010123432A (en) * 2008-11-20 2010-06-03 Honda Motor Co Ltd Fuel cell
JP2009283469A (en) * 2009-07-24 2009-12-03 Honda Motor Co Ltd Fuel cell stack
JP2010199084A (en) * 2010-05-10 2010-09-09 Honda Motor Co Ltd Fuel cell
WO2012035585A1 (en) * 2010-09-16 2012-03-22 トヨタ自動車株式会社 Separator for fuel cell, fuel cell, and method for manufacturing fuel cell
CN113013433A (en) * 2019-12-19 2021-06-22 住友理工株式会社 Separator for fuel cell and method for producing same
CN113013433B (en) * 2019-12-19 2023-06-27 住友理工株式会社 Separator for fuel cell and method for manufacturing same

Also Published As

Publication number Publication date
JP3739769B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
JP3571696B2 (en) Fuel cell and fuel cell stack
JP4800443B2 (en) Gasket for polymer electrolyte fuel cell
JP3739769B2 (en) Fuel cell
US9099693B2 (en) Fuel cell and fuel cell separator
US20090130519A1 (en) Fuel cell
JP2009199888A (en) Fuel cell
US7951481B2 (en) Separator and cell using the same for use in solid polymer electrolyte fuel cell
JP2011023161A (en) Sealing structure of fuel cell
US20060024557A1 (en) Fuel cell apparatus
US20140011110A1 (en) Fuel battery cell
US7534518B2 (en) Cell for solid polymer electrolyte fuel cell with improved gas flow sealing
JP6520666B2 (en) Fuel cell seal structure
JP4337394B2 (en) Fuel cell
CA2564237C (en) Resilient seals between separator plates in a fuel cell stack
JP5734823B2 (en) Fuel cell stack
JP2007250206A (en) Fuel cell
JP5976509B2 (en) Gasket for fuel cell
JP7565752B2 (en) Power generating cells and gaskets for polymer electrolyte fuel cells
KR102719634B1 (en) Fuel cell
JP6569503B2 (en) Fuel cell seal structure
GB2387477A (en) fuel cell and fuel cell stack
JP6520679B2 (en) Seal structure
CN116895780A (en) Enhanced sealed fuel cell assembly
JP2019216008A (en) Seal structure of fuel cell
JP2008004477A (en) Fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Ref document number: 3739769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees