JP2004043242A - Organic-inorganic hybrid low melting glass and method for manufacturing the same - Google Patents
Organic-inorganic hybrid low melting glass and method for manufacturing the same Download PDFInfo
- Publication number
- JP2004043242A JP2004043242A JP2002203149A JP2002203149A JP2004043242A JP 2004043242 A JP2004043242 A JP 2004043242A JP 2002203149 A JP2002203149 A JP 2002203149A JP 2002203149 A JP2002203149 A JP 2002203149A JP 2004043242 A JP2004043242 A JP 2004043242A
- Authority
- JP
- Japan
- Prior art keywords
- organic
- inorganic hybrid
- glass
- melting glass
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 72
- 238000002844 melting Methods 0.000 title claims abstract description 51
- 230000008018 melting Effects 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 title description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 229910001510 metal chloride Inorganic materials 0.000 claims abstract description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052693 Europium Inorganic materials 0.000 claims description 4
- 229910052689 Holmium Inorganic materials 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 229910052771 Terbium Inorganic materials 0.000 claims description 4
- 229910052775 Thulium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910001428 transition metal ion Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 7
- 230000007704 transition Effects 0.000 abstract description 7
- 229910052797 bismuth Inorganic materials 0.000 abstract description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 abstract description 5
- 230000007774 longterm Effects 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 description 19
- 230000009477 glass transition Effects 0.000 description 13
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 11
- 239000013590 bulk material Substances 0.000 description 9
- 235000011007 phosphoric acid Nutrition 0.000 description 7
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 6
- -1 siloxane skeleton Chemical group 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 235000005074 zinc chloride Nutrition 0.000 description 3
- 239000011592 zinc chloride Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000006103 coloring component Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Silicon Polymers (AREA)
- Glass Compositions (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、低い軟化点を有する新規な低融点ガラスに関し、例えば、光導波路などの光機能性材料として有用な、低融点ガラスおよびその製造方法に関する。
【0002】
【従来の技術】
低融点ガラスは、一般的には600℃以下の軟化点をもつガラスで、市販されている板ガラスと比べて、軟化開始温度、いわゆる「融点」が低いことから、低融点ガラスと称されている。この低融点ガラスは、古くから封着・封止材料、パッシベーションガラス、釉薬などとして広く用いられてきた。また、有機分子が熱分解しない程度の「低温」での焼成が可能なため、機能性有機分子を透明なガラスに分散する事によりフォトニクスを支える基幹光機能性材料ともなり得る特徴をもっている。
【0003】
低融点ガラスは種々の組成系が提案されている。例えば、Tickらが開発したSn−Pb−P−F−O系のガラスは100℃前後と低い温度域にガラス転移点を持ち、しかも優れた耐水性を示す。しかしながら、低融点ガラスと称されるガラスの大半はその主要構成成分に鉛を含んでいるので、環境保護の観点から問題がある。近年、鉛を含まないガラス系も提案されているが、ビスマス、カドミウムを始めとする安全性に問題を有す組成因子を含んでおり、環境保護に対応した低融点ガラスが提案されているとはいえない状況下にある。また、鉛を含まないガラス組成系では転移点が100℃前後のガラスは知られていない。
【0004】
ガラス状バルク体の低温合成法としてはゾル−ゲル法や液相反応法がある。ゾル−ゲル法は金属アルコキシドを加水分解−脱水縮重合することによりバルク体を得ることができるが、600℃以下の熱処理では完全に緻密なバルク体は得ることはできない。一方、液相反応法は、収率が低いという致命的な問題がある上、反応系にフッ酸を用いるため、極めて腐食性の高いHFを発生することになり、環境的な面からもコスト高となり、現実的にはガラス状バルク体を生産するのは不可能に近い状態にある。
【0005】
また、シリコーンを高分子ガラス的非晶質バルク体として用いることも考えられている。シリコーンの場合は、シロキサン骨格を有する高分子が絡み合うことにより、あるいは高分子間をある種の有機物で架橋することにより、バルク体を得ることができる。このようにして得られたシリコーンによるバルク体は、プラスチックよりも高温において安定であるという特徴をもつ一方、気密性や長期安定性など低融点ガラスに劣るという基本的な問題を有している。
【0006】
【発明が解決しようとする課題】
従来のいわゆる低融点ガラスは鉛を含んでおり、環境保護の面から問題がある。鉛を含まない低融点ガラスでは、ビスマス、カドミウムを始めとする安全性に問題を有する組成因子を含んでいる上、転移点が100℃前後のガラスは知られていない。
【0007】
ガラス状バルク体については、ゾル−ゲル法では完全な緻密なバルク体が得られないので、実用材料としてみた場合、それ自身の強度不足や導入物質の酸化、水によるアタックが重大な問題であったし、液相反応法では収率が低く、また反応中にHFが発生することから現実的にガラス状バルク体を合成することは不可能に近い状態にあった。
【0008】
すなわち、転移点が100℃近傍又は100℃未満で、鉛やビスマスなどの環境に問題のある物質をガラス組成因子とせず、材料としての気密性、長期安定性や強度、さらには水によるアタックなどの問題がない、生産可能な材料は実質的になかった。
【0009】
【課題を解決するための手段】
本発明は、転移点が100℃未満の低融点ガラスを、鉛やビスマス、カドミウムなど環境保護に問題がある物質を組成因子とせず、シール材としての気密性、長期安定性や強度、さらには水によるアタックなどの問題がない、生産可能な材料の提供に関する。
【0010】
本発明は、R3SiO0.5−R2SiO−MO−P2O5系の有機−無機ハイブリッド低融点ガラス(但し、Rはメチル基又はエチル基、Mは2価金属)である。
【0011】
更に、本発明は、上記の有機−無機ハイブリッド低融点ガラスに、Nb、Zr、Tiのうち少なくともいずれか一つの酸化物、V、Cr、Mn、Fe、Co、Cu、Niのうち少なくともいずれか一つの遷移金属イオン、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tmのうち少なくともいずれか一つの希土類金属イオン、および有機色素からなる少なくとも1種以上の着色成分を含有してなることを特徴とする有機−無機ハイブリッド低融点ガラスである。
【0012】
更に、本発明は、トリアルキルクロロシランとリン酸を加熱し反応させることを特徴とする上記の有機−無機ハイブリッド低融点ガラスの製造方法である。
【0013】
更に、本発明は、トリアルキルクロロシランとリン酸及び金属塩化物を加熱し反応させることを特徴とする上記の有機−無機ハイブリッド低融点ガラスの製造方法である。
【0014】
本発明において、反応時に共存させて用いる金属塩化物としては、2価の金属の塩化物が好ましく、具体的にはSn、Ge、Al、およびZnの塩化物を用いることが好適である。
【0015】
本発明の製造方法の特徴としては、出発原料としてトリアルキルクロロシランRxSiClを用いる点が挙げられ、本発明の有機−無機ハイブリッド低融点ガラスは、シリコーンとは全く異なる新しいコンセプトに基づき合成製造される。
【0016】
即ち、シロキサン骨格を有機官能基でターミネートすることにより、ネットワーク次元を下げ、ガラス自体を低融点化しているために、その物性はプラスチックよりもむしろ低融点ガラスに類似している。
【0017】
本発明の有機−無機ハイブリッド低融点ガラスは、シール剤として用いると気密性がよい。更に、光機能性等を有する機能性有機物のホストとして多くの応用が期待される。
【0018】
また、このガラスに対しては、Nb、Zr、Ti、Inなどを酸化物として導入することにより耐水性などのガラス物性を向上させたり、V、Cr、Mn、Fe、Co、Cu、Niなどの遷移金属イオンを導入することもできる。さらには、希土類イオン(Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tmなど)や有機色素も含有させることが出来る。これらは、有機−無機ハイブリッド低融点ガラスとしての物性を損なわない範囲で含有すべきである。すなわち、Nb、Zr、Ti、Inなどを多量に含有すると軟化点が高くなりすぎるという問題が発生する。V、Cr、Mn、Fe、Co、Cu、Niなどを多量に含有すると、着色が濃くなりすぎる。希土類イオン(Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tmなど)は非常に高価であると同時に、多量に含有すると発光時に濃度消光を起こしやすい。
【0019】
本発明で得られる低融点ガラス及び製法の特徴を列挙すると次のようになる。・均一なバルク体である。
・反応系に水を含まないために容易に無水のバルク体を得ることができる。
・低温で合成できるため、有機色素を分解せずに含有することが出来、その溶解度も高い。
・得られた非晶質バルク体はガラスの性質を備えている。
・得られたバルク体はガラスの特徴である高い成形性を有しており、ファイバーや薄膜形状への加工が容易である。
・目的生成物以外の反応生成物は気化し、系外へと放出される。
・酸化物骨格およびそれに結合した有機官能基により形成されているため、従来の有機−無機複合体と比べて組成による物性の制御性が高い。
・有機官能基の存在により、多量の機能性有機物をガラス中に導入することができる。また、その種類を変えることによる導入する有機物の種類を選択することができる。
【0020】
【発明の実施の形態】
本発明は、出発原料としてトリアルキルクロロシラン(R3SiCl)、ジメチルジクロロシラン(Me2SiCl2)およびリン酸(例えば、H3PO4、H3PO3)を用いた場合、次に示す反応の概念に基づいて有機−無機ハイブリッド低融点ガラスが形成される。
P−OH + Si−Cl → Si−O−P + HCl↑
この反応において、反応生成物であるHClがガスとして系外に放出されるので、反応は一方向に進行するため、緻密なバルク体が形成される。また、これらの系に塩化スズ等の金属塩化物を共存させて反応させても同じく緻密でかつ、低融点バルク体が得られる。他の金属の塩化物を用いた場合でも、基本的な反応機構は同じである。HClがガスとして系外にすべて放出される場合が理想的ではあるが、いずれの場合においても、塩素化合物がガラスとして残存することがある。
【0021】
本発明の有機−無機ハイブリッド低融点ガラスの反応は、室温から300℃以下の低温で合成でき、得られたガラスは低い軟化温度と高い成形性(再溶融も可能)を有し、ファイバーや薄膜形状への加工が容易で、有機分子の熱分解しない程度の低温で機能性有機分子を分散させるホスト材料と成り得る。
【0022】
本発明において得られる、有機−無機ハイブリッド低融点ガラスの好ましい組成は、R3SiO0.5−R2SiO−MO−P2O5(但し、Rはメチル基又はエチル基、Mは2価の金属)系の有機−無機ハイブリッド低融点ガラス(但し、Rはメチル基又はエチル基、Mは2価金属)であり、トリアルキルクロロシランとリン酸、又はトリアルキルクロロシランとリン酸及び金属塩化物を水を使用することなしに加熱反応させることより製造される。例えば、Sn系ガラスの場合、R3SiO0.5−R2SiO−SnO−P2O5を主体としたガラスとなるが、SiのまわりにはR(例えば、メチル基)が3個存在する場合が多くなることから、ガラスとしての結合性が低くなり、結果として低い転移点のガラスを得ることができる。
【0023】
反応温度は室温から300℃以下程度と、従来と比較して低温で行われ、バルク体合成時のエネルギーを抑制することができるため、環境負荷が小さいことも特徴の一つである。
【0024】
【実施例】
以下実施例をあげて本発明を説明するが、本発明は以下の実施例により限定されるものではない。
【0025】
(実施例1)
出発原料にはリン酸(H3PO4)、ジメチルジクロロシラン(Me2SiCl2)、塩化スズ(SnCl2)を用いる。作製サンプルの組成はH3PO4:Me3SiCl:Me2SiCl2:SnCl2の混合比を2:2x:2.5x:0.5と定め、xが0、0.5、1および1.5の4条件で検討した。窒素雰囲気の反応装置中でオルトリン酸を40℃に加熱して液体にした後にトリアルキルクロロシランを加え、3時間加熱・撹拌した。この過程で徐々に昇温し、100℃まで加熱した。この段階で塩化スズを添加した。これを同じく窒素雰囲気下250℃でさらに1時間加熱し、最終生成物である有機−無機ハイブリッド低融点ガラスを、計6個の試料として得た。2段階の加熱反応としたのは、より緻密なバルク体を得るためであり、加熱反応の温度や時間の組み合わせは任意である。
【0026】
本発明の有機−無機ハイブリッド低融点ガラスの作製スキームを図1に示す。図2は、塩化スズを用いた有機−無機ハイブリッド低融点ガラスのガラス転移温度の組成依存性を示すグラフである。xは0、0.5、1および1.5の4条件で検討した。
【0027】
図2のグラフのように、得られた試料は組成と反応時間に応じて様々なガラス転移点を示す。ガラス転移温度は−47〜30℃まで組成と時間に応じて変化し、低融点ガラスの特徴である低いガラス転移温度を自在に変化させることができ、極めて低い転移点のガラスをも得ることができた。
【0028】
高分子ガラスと異なりネットワーク次元だけではなく、バルク体構成元素間の化学結合性もガラス転移温度に影響を与え、アルキルクロロシランの有機部分又は同時に添加する金属を適切に選択することにより、非常に広範囲な物性制御(ガラス転移温度)が可能となる。
【0029】
(実施例2)
実施例1において、塩化スズの代わりに塩化ゲルマニウムを使った他は同様な反応を行ったところ、塩化スズの場合と同様な淡黄色透明な板状体の最終生成物が得られた。作製サンプルの組成は H3PO4:Me3SiCl:Me2SiCl2:GeCl2の混合比を2:2x:2.5x:0.5と定め、xが0、0.5、1および1.5の4条件で検討した。また、この試料のガラス転移点(Tg)は組成に応じて様々な傾向を示す。結果を塩化ゲルマニウム、塩化アルミニウム、塩化亜鉛を各々用いた各有機−無機ハイブリッド低融点ガラスのガラス転移温度の組成依存性を示すグラフである図3の中に示す。
【0030】
(実施例3)
実施例1において、塩化スズの代わりに塩化アルミニウムを使った他は同様な反応を行ったところ、塩化スズの場合と同様な淡黄色透明な板状体の最終生成物が得られた。作製サンプルの組成はH3PO4:Me3SiCl:Me2SiCl2:AlCl3 の混合比を2:2x:2.5x:0.5と定め、xが0、0.5、1および1.5の4条件で検討した。結果を図3の中に示す。そのガラス転移点(Tg)は組成に応じて様々な傾向を示すことが分かる。
【0031】
(実施例4)
実施例1において、塩化スズの代わりに塩化亜鉛を使った他は同様な反応を行ったところ、塩化スズの場合と同様な淡黄色透明な板状体の最終生成物が得られた。作製サンプルの組成はH3PO4:Me2SiCl2:ZnCl2 の混合比を2:x:2と定め、xが0、0.5、1および1.5の4条件で検討した。結果を図3の中に示す。そのガラス転移点(Tg)は組成に応じて様々な傾向を示すことが分かる。
【0032】
【発明の効果】
本発明の有機−無機ハイブリッド低融点ガラスは、これまでなされていない特性を有す。すなわち、室温から300℃以下の低温で合成でき、低い軟化温度と高い成形性(再溶融も可能)を有し、ファイバーや薄膜形状への加工が容易で、有機分子の熱分解しない程度の低温で機能性有機分子を分散させるホスト材料と成り得る。
【図面の簡単な説明】
【図1】本発明の有機−無機ハイブリッド低融点ガラス反応スキームの概念図である。
【図2】塩化スズを用いた有機−無機ハイブリッド低融点ガラスのガラス転移温度の組成依存性を示すグラフである。
【図3】塩化ゲルマニウム、塩化アルミニウム、塩化亜鉛を各々用いた各有機−無機ハイブリッド低融点ガラスのガラス転移温度の組成依存性を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel low-melting glass having a low softening point, for example, a low-melting glass useful as an optical functional material such as an optical waveguide, and a method for producing the same.
[0002]
[Prior art]
Low-melting glass is generally referred to as low-melting glass because it has a softening point of 600 ° C. or lower and has a lower softening start temperature, so-called “melting point”, than commercially available plate glass. . This low-melting glass has been widely used as a sealing / sealing material, passivation glass, glaze, and the like since ancient times. In addition, since firing can be performed at "low temperature" to the extent that organic molecules are not thermally decomposed, by dispersing functional organic molecules in transparent glass, it can be used as a basic optical functional material supporting photonics.
[0003]
Various composition systems have been proposed for the low-melting glass. For example, Sn-Pb-PFO-based glass developed by Tick et al. Has a glass transition point in a temperature range as low as about 100 ° C. and shows excellent water resistance. However, most of the glasses called low-melting glass contain lead as a main component, and therefore have a problem from the viewpoint of environmental protection. In recent years, lead-free glass systems have been proposed, but bismuth, cadmium and other compositional factors that have safety issues are included, and low-melting glass that is environmentally friendly has been proposed. I can't say it. Further, there is no known glass having a transition point of about 100 ° C. in a glass composition system containing no lead.
[0004]
As a low-temperature synthesis method of the glassy bulk material, there are a sol-gel method and a liquid phase reaction method. In the sol-gel method, a bulk body can be obtained by hydrolysis-dehydration condensation polymerization of a metal alkoxide. However, a completely dense bulk body cannot be obtained by heat treatment at 600 ° C. or lower. On the other hand, the liquid phase reaction method has a fatal problem of a low yield, and since hydrofluoric acid is used in the reaction system, extremely corrosive HF is generated. It is almost impossible to produce a glassy bulk material in practice.
[0005]
It has also been considered to use silicone as a polymer glassy amorphous bulk material. In the case of silicone, a bulk body can be obtained by entanglement of polymers having a siloxane skeleton or by crosslinking between polymers with a certain organic substance. The silicone-made bulk material thus obtained has a characteristic that it is more stable than plastics at higher temperatures, but has a fundamental problem that it is inferior to low-melting glass in airtightness and long-term stability.
[0006]
[Problems to be solved by the invention]
Conventional so-called low-melting glass contains lead, which is problematic in terms of environmental protection. Low-melting glass that does not contain lead contains bismuth, cadmium and other compositional factors having safety problems, and a glass having a transition point of around 100 ° C. is not known.
[0007]
For a glassy bulk material, a sol-gel method cannot provide a completely dense bulk material, and therefore, when viewed as a practical material, lack of strength of itself, oxidation of a substance to be introduced, and attack by water are serious problems. However, in the liquid phase reaction method, the yield was low and HF was generated during the reaction, so that it was almost impossible to synthesize a glassy bulk material in reality.
[0008]
That is, the transition point is around 100 ° C. or less than 100 ° C., and substances having environmental problems such as lead and bismuth are not regarded as glass composition factors, and the hermeticity, long-term stability and strength of the material, and the attack by water, etc. There was virtually no producible material without problems.
[0009]
[Means for Solving the Problems]
The present invention does not use low melting point glass having a transition point of less than 100 ° C., a material having environmental protection problems such as lead, bismuth, and cadmium as a composition factor, and hermeticity as a sealing material, long-term stability and strength, and It relates to the provision of materials that can be produced without problems such as water attack.
[0010]
The present invention is an organic-inorganic hybrid low-melting glass based on R 3 SiO 0.5 —R 2 SiO—MO—P 2 O 5 (where R is a methyl group or an ethyl group, and M is a divalent metal).
[0011]
Further, the present invention provides the above-mentioned organic-inorganic hybrid low-melting glass, wherein at least one of oxides of at least one of Nb, Zr, and Ti, at least one of V, Cr, Mn, Fe, Co, Cu, and Ni. Contains at least one rare earth metal ion of one transition metal ion, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, and Tm, and at least one or more coloring components of an organic dye An organic-inorganic hybrid low-melting glass characterized in that:
[0012]
Further, the present invention is the above-mentioned method for producing an organic-inorganic hybrid low-melting glass, wherein the trialkylchlorosilane is reacted with phosphoric acid by heating.
[0013]
Further, the present invention is the above-mentioned method for producing an organic-inorganic hybrid low-melting glass, wherein the trialkylchlorosilane is reacted with phosphoric acid and a metal chloride by heating.
[0014]
In the present invention, as the metal chloride used in the coexistence during the reaction, a chloride of a divalent metal is preferable, and specifically, a chloride of Sn, Ge, Al, and Zn is preferably used.
[0015]
A feature of the production method of the present invention is that a trialkylchlorosilane R x SiCl is used as a starting material. The organic-inorganic hybrid low-melting glass of the present invention is synthesized and produced based on a new concept completely different from silicone. You.
[0016]
That is, by terminating the siloxane skeleton with an organic functional group, the network dimension is reduced and the glass itself has a low melting point. Therefore, its physical properties are similar to those of a low-melting glass rather than a plastic.
[0017]
The organic-inorganic hybrid low melting point glass of the present invention has good airtightness when used as a sealant. Further, many applications are expected as a host of a functional organic material having optical functionality or the like.
[0018]
For this glass, Nb, Zr, Ti, In, or the like is introduced as an oxide to improve glass properties such as water resistance, or V, Cr, Mn, Fe, Co, Cu, Ni, or the like. Can be introduced. Further, rare earth ions (such as Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, and Tm) and organic dyes can also be contained. These should be contained within a range that does not impair the physical properties of the organic-inorganic hybrid low-melting glass. That is, when a large amount of Nb, Zr, Ti, In or the like is contained, a problem occurs that the softening point becomes too high. If a large amount of V, Cr, Mn, Fe, Co, Cu, Ni, etc. is contained, the coloring becomes too dark. Rare earth ions (Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, etc.) are very expensive, and when contained in large amounts, concentration quenching tends to occur during light emission.
[0019]
The characteristics of the low melting point glass and the production method obtained by the present invention are listed as follows. -It is a uniform bulk body.
-Since the reaction system does not contain water, an anhydrous bulk body can be easily obtained.
-Because it can be synthesized at low temperature, it can contain organic dyes without decomposition and has high solubility.
-The obtained amorphous bulk body has the property of glass.
-The obtained bulk body has a high formability characteristic of glass, and is easily processed into a fiber or a thin film shape.
-Reaction products other than the target product are vaporized and released out of the system.
-Since it is formed by an oxide skeleton and an organic functional group bonded thereto, controllability of physical properties by composition is higher than that of a conventional organic-inorganic composite.
-Due to the presence of the organic functional groups, a large amount of functional organic substances can be introduced into the glass. Further, the type of the organic substance to be introduced by changing the type can be selected.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to the following reaction when trialkylchlorosilane (R 3 SiCl), dimethyldichlorosilane (Me 2 SiCl 2 ) and phosphoric acid (eg, H 3 PO 4 , H 3 PO 3 ) are used as starting materials. The organic-inorganic hybrid low-melting glass is formed based on the concept of (1).
P-OH + Si-Cl → Si-OP + HCl ↑
In this reaction, HCl as a reaction product is released out of the system as a gas, so that the reaction proceeds in one direction, so that a dense bulk body is formed. In addition, even if a metal chloride such as tin chloride is allowed to coexist with these systems and reacted, a dense and low-melting bulk material can be obtained. Even when chlorides of other metals are used, the basic reaction mechanism is the same. Ideally, all HCl is released out of the system as a gas, but in any case, the chlorine compound may remain as glass.
[0021]
The reaction of the organic-inorganic hybrid low-melting glass of the present invention can be synthesized at a low temperature of from room temperature to 300 ° C. or less, and the obtained glass has a low softening temperature and a high moldability (possible re-melting), and can be a fiber or thin film It can be easily processed into a shape and can be a host material that disperses functional organic molecules at a low temperature that does not cause thermal decomposition of the organic molecules.
[0022]
The preferred composition of the organic-inorganic hybrid low-melting glass obtained in the present invention is R 3 SiO 0.5 —R 2 SiO—MO—P 2 O 5 (where R is a methyl group or an ethyl group, and M is a divalent Organic-inorganic hybrid low-melting glass (where R is a methyl group or an ethyl group, M is a divalent metal), and is a trialkylchlorosilane and phosphoric acid, or a trialkylchlorosilane and phosphoric acid and metal chloride. Is produced by reacting with heat without using water. For example, in the case of Sn-based glass, the glass is mainly composed of R 3 SiO 0.5 —R 2 SiO—SnO—P 2 O 5 , but there are three R (eg, methyl groups) around Si. In many cases, the bonding property of the glass decreases, and as a result, a glass having a low transition point can be obtained.
[0023]
One of the features is that the reaction temperature is from room temperature to about 300 ° C. or lower, which is lower than the conventional one, and the energy required for bulk synthesis can be suppressed.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
[0025]
(Example 1)
Phosphoric acid (H 3 PO 4), dimethyldichlorosilane (Me 2 SiCl 2 ), and tin chloride (SnCl 2 ) are used as starting materials. The composition of the prepared samples H 3 PO 4: Me 3 SiCl : Me 2 SiCl 2: SnCl a mixing ratio of 2 2: 2x: 2.5x: 0.5 defined as, x is from 0, 0.5, 1 and 1 The study was conducted under four conditions of 0.5. Orthophosphoric acid was heated to 40 ° C. in a reactor under a nitrogen atmosphere to make it a liquid, and then trialkylchlorosilane was added, followed by heating and stirring for 3 hours. In this process, the temperature was gradually increased and heated to 100 ° C. At this stage, tin chloride was added. This was further heated for 1 hour at 250 ° C. in a nitrogen atmosphere to obtain an organic-inorganic hybrid low-melting glass as a final product as a total of six samples. The two-step heating reaction is performed to obtain a more dense bulk body, and the combination of the heating reaction temperature and time is arbitrary.
[0026]
FIG. 1 shows a production scheme of the organic-inorganic hybrid low-melting glass of the present invention. FIG. 2 is a graph showing the composition dependence of the glass transition temperature of an organic-inorganic hybrid low-melting glass using tin chloride. x was examined under four conditions of 0, 0.5, 1, and 1.5.
[0027]
As shown in the graph of FIG. 2, the obtained sample shows various glass transition points depending on the composition and the reaction time. The glass transition temperature varies according to the composition and time from −47 to 30 ° C., and the low glass transition temperature, which is a characteristic of low-melting glass, can be freely changed, and glass with an extremely low transition point can be obtained. did it.
[0028]
Unlike polymer glass, not only the network dimensions, but also the chemical bonding between the constituent elements of the bulk material affect the glass transition temperature, and by selecting the organic portion of alkylchlorosilane or the metal to be added at the same time, a very wide range can be achieved. Control of the physical properties (glass transition temperature) becomes possible.
[0029]
(Example 2)
A similar reaction was carried out in Example 1 except that germanium chloride was used instead of tin chloride. As a result, a pale yellow transparent plate-like final product similar to that of tin chloride was obtained. The composition of the prepared samples H 3 PO 4: Me 3 SiCl : Me 2 SiCl 2: GeCl the mixing ratio of 2 2: 2x: 2.5x: 0.5 defined as, x is from 0, 0.5, 1 and 1 The study was conducted under four conditions of 0.5. The glass transition point (Tg) of this sample shows various tendencies depending on the composition. The results are shown in FIG. 3, which is a graph showing the composition dependence of the glass transition temperature of each organic-inorganic hybrid low melting point glass using germanium chloride, aluminum chloride, and zinc chloride.
[0030]
(Example 3)
The same reaction as in Example 1 was carried out except that aluminum chloride was used instead of tin chloride, and a pale yellow transparent plate-like final product similar to that of tin chloride was obtained. The composition of the manufactured sample was determined by setting the mixing ratio of H 3 PO 4 : Me 3 SiCl: Me 2 SiCl 2 : AlCl 3 to 2: 2x: 2.5x: 0.5, and x was 0, 0.5, 1, and 1. The study was conducted under four conditions of 0.5. The results are shown in FIG. It can be seen that the glass transition point (Tg) shows various tendencies depending on the composition.
[0031]
(Example 4)
The same reaction as in Example 1 was carried out except that zinc chloride was used instead of tin chloride, and a pale yellow transparent plate-like final product similar to the case of tin chloride was obtained. The composition of the manufactured sample was determined under the following conditions: a mixture ratio of H 3 PO 4 : Me 2 SiCl 2 : ZnCl 2 was set to 2: x: 2, and x was 0, 0.5, 1, and 1.5. The results are shown in FIG. It can be seen that the glass transition point (Tg) shows various tendencies depending on the composition.
[0032]
【The invention's effect】
The organic-inorganic hybrid low melting glass of the present invention has properties that have not been achieved so far. That is, it can be synthesized from room temperature to a low temperature of 300 ° C. or less, has a low softening temperature and high moldability (remelting is also possible), is easy to process into a fiber or thin film shape, and has a low temperature that does not cause thermal decomposition of organic molecules. Can be a host material for dispersing the functional organic molecules.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an organic-inorganic hybrid low-melting glass reaction scheme of the present invention.
FIG. 2 is a graph showing the composition dependence of the glass transition temperature of an organic-inorganic hybrid low-melting glass using tin chloride.
FIG. 3 is a graph showing the composition dependence of the glass transition temperature of each organic-inorganic hybrid low-melting glass using germanium chloride, aluminum chloride, and zinc chloride.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002203149A JP4109027B2 (en) | 2002-07-11 | 2002-07-11 | Organic-inorganic hybrid low-melting glass and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002203149A JP4109027B2 (en) | 2002-07-11 | 2002-07-11 | Organic-inorganic hybrid low-melting glass and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004043242A true JP2004043242A (en) | 2004-02-12 |
JP4109027B2 JP4109027B2 (en) | 2008-06-25 |
Family
ID=31709125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002203149A Expired - Fee Related JP4109027B2 (en) | 2002-07-11 | 2002-07-11 | Organic-inorganic hybrid low-melting glass and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4109027B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003095690A (en) * | 2001-09-18 | 2003-04-03 | Central Glass Co Ltd | Organic-inorganic hybrid low-melting glass and method for manufacturing it |
WO2004081086A1 (en) * | 2003-03-14 | 2004-09-23 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
JP2004277207A (en) * | 2003-03-14 | 2004-10-07 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material and its production method |
JP2004277208A (en) * | 2003-03-14 | 2004-10-07 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material |
WO2005000943A1 (en) * | 2003-06-26 | 2005-01-06 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
WO2005082975A1 (en) * | 2004-02-27 | 2005-09-09 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
JP2006096833A (en) * | 2004-09-29 | 2006-04-13 | Central Glass Co Ltd | Organic and inorganic hybrid glass-like substance and method for producing the same |
WO2007114270A1 (en) * | 2006-03-30 | 2007-10-11 | Kyoto University | Lead-free low-melting glass and method for production thereof |
WO2007148637A1 (en) * | 2006-06-21 | 2007-12-27 | Sumitomo Chemical Company, Limited | Composite material, substrate, and method for manufacturing composite material |
KR100935157B1 (en) * | 2006-04-19 | 2010-01-06 | 연세대학교 산학협력단 | Surface Modification Method of Surface-Modified Organic / Inorganic Hybrid Glass and Organic / Inorganic Hybrid Glass |
US7802450B2 (en) | 2003-03-14 | 2010-09-28 | Central Glass Company, Limited | Organic-inorganic hybrid glassy materials and their production processes |
CN103449730A (en) * | 2013-08-22 | 2013-12-18 | 吴江骏达电梯部件有限公司 | Heat-insulating glass for panoramic lift and preparation method thereof |
JP2018150216A (en) * | 2017-03-15 | 2018-09-27 | 石塚硝子株式会社 | Method for producing zinc-containing oxide glass and zinc-containing oxide glass member |
-
2002
- 2002-07-11 JP JP2002203149A patent/JP4109027B2/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003095690A (en) * | 2001-09-18 | 2003-04-03 | Central Glass Co Ltd | Organic-inorganic hybrid low-melting glass and method for manufacturing it |
WO2004081086A1 (en) * | 2003-03-14 | 2004-09-23 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
JP2004277207A (en) * | 2003-03-14 | 2004-10-07 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material and its production method |
JP2004277208A (en) * | 2003-03-14 | 2004-10-07 | Central Glass Co Ltd | Organic-inorganic hybrid glassy material |
US7802450B2 (en) | 2003-03-14 | 2010-09-28 | Central Glass Company, Limited | Organic-inorganic hybrid glassy materials and their production processes |
WO2005000943A1 (en) * | 2003-06-26 | 2005-01-06 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
US7451619B2 (en) | 2003-06-26 | 2008-11-18 | Central Glass Company, Limited | Organic-inorganic hybrid glassy materials and their production processes |
KR100740804B1 (en) * | 2003-06-26 | 2007-07-19 | 샌트랄 글래스 컴퍼니 리미티드 | Organic-inorganic hybrid vitreous material and method for producing same |
KR100756398B1 (en) * | 2004-02-27 | 2007-09-10 | 샌트랄 글래스 컴퍼니 리미티드 | Organic-inorganic hybrid vitreous material and method for producing same |
WO2005082975A1 (en) * | 2004-02-27 | 2005-09-09 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
JP2006096833A (en) * | 2004-09-29 | 2006-04-13 | Central Glass Co Ltd | Organic and inorganic hybrid glass-like substance and method for producing the same |
WO2007114270A1 (en) * | 2006-03-30 | 2007-10-11 | Kyoto University | Lead-free low-melting glass and method for production thereof |
JP2007269530A (en) * | 2006-03-30 | 2007-10-18 | Kyoto Univ | Lead-free low-melting glass and method for producing the same |
KR100935157B1 (en) * | 2006-04-19 | 2010-01-06 | 연세대학교 산학협력단 | Surface Modification Method of Surface-Modified Organic / Inorganic Hybrid Glass and Organic / Inorganic Hybrid Glass |
WO2007148637A1 (en) * | 2006-06-21 | 2007-12-27 | Sumitomo Chemical Company, Limited | Composite material, substrate, and method for manufacturing composite material |
JP2008001765A (en) * | 2006-06-21 | 2008-01-10 | Sumitomo Chemical Co Ltd | Organic inorganic composite material |
CN103449730A (en) * | 2013-08-22 | 2013-12-18 | 吴江骏达电梯部件有限公司 | Heat-insulating glass for panoramic lift and preparation method thereof |
JP2018150216A (en) * | 2017-03-15 | 2018-09-27 | 石塚硝子株式会社 | Method for producing zinc-containing oxide glass and zinc-containing oxide glass member |
Also Published As
Publication number | Publication date |
---|---|
JP4109027B2 (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Maeder* | Review of Bi2O3 based glasses for electronics and related applications | |
JP2004043242A (en) | Organic-inorganic hybrid low melting glass and method for manufacturing the same | |
Zhao et al. | From phase separation to nanocrystallization in fluorosilicate glasses: structural design of highly luminescent glass-ceramics | |
JP3910101B2 (en) | Organic-inorganic hybrid low-melting glass and method for producing the same | |
Zhang et al. | Fabrication and properties of novel low-melting glasses in the ternary system ZnO–Sb2O3–P2O5 | |
WO2007114270A1 (en) | Lead-free low-melting glass and method for production thereof | |
JP4046963B2 (en) | Organic-inorganic hybrid low-melting glass and method for producing the same | |
KR100768577B1 (en) | Organic-inorganic hybrid vitreous material and method for producing same | |
US7802450B2 (en) | Organic-inorganic hybrid glassy materials and their production processes | |
JP4079898B2 (en) | Organic inorganic hybrid glassy material | |
Xie et al. | Effect of Ca and B incorporation into silicon oxycarbide on its microstructure and phase composition | |
CN1914250B (en) | Organic-inorganic hybrid vitreous material and method for producing same | |
Zaitizila et al. | THERMAL STABILITY, STRUCTURAL AND OPTICAL PROPERTIES OF RICE HUSK SILLICA BOROTELLURITE GLASSES CONTAINING MnO 2. | |
Djouama et al. | Fluorophosphate glasses containing manganese | |
JP2005097030A (en) | Organic inorganic hybrid glass-like material and its manufacturing method | |
JPH06256523A (en) | Polysiloxane containing transition metal element and optical wave guide produced by using the polymer | |
JP4375982B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
JP6811657B2 (en) | Manufacturing method of zinc-containing oxide glass | |
Hamza et al. | Borotellurite bio-silica glasses doped by erbium nanoparticles: structural and thermal properties | |
JP2005290104A (en) | Glassy substance for low dielectric material and glass plate used for display | |
JP4516766B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
US20160289115A1 (en) | Alkali selenogermanate glasses | |
JP4512936B2 (en) | Organic inorganic hybrid glassy material | |
CN110156322A (en) | A kind of infrared-transmitting fluorozirconate glass containing gallium oxide and its preparation method | |
JP4516776B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050202 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080401 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080403 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140411 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |