JP2003536356A - How to calculate the rotational position of the drive shaft of a DC motor - Google Patents
How to calculate the rotational position of the drive shaft of a DC motorInfo
- Publication number
- JP2003536356A JP2003536356A JP2002502896A JP2002502896A JP2003536356A JP 2003536356 A JP2003536356 A JP 2003536356A JP 2002502896 A JP2002502896 A JP 2002502896A JP 2002502896 A JP2002502896 A JP 2002502896A JP 2003536356 A JP2003536356 A JP 2003536356A
- Authority
- JP
- Japan
- Prior art keywords
- current ripple
- motor
- detected
- current
- time span
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000011156 evaluation Methods 0.000 claims abstract description 7
- 238000010248 power generation Methods 0.000 claims abstract 2
- 238000001514 detection method Methods 0.000 claims description 5
- 230000033001 locomotion Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/0094—Arrangements for regulating or controlling the speed or torque of electric DC motors wherein the position is detected using the ripple of the current caused by the commutator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/06—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current
- H02P7/18—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power
- H02P7/24—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
- H02P7/28—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
- H02P7/285—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
- H02P7/29—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
- H02P7/2913—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/60—Power-operated mechanisms for wings using electrical actuators
- E05F15/603—Power-operated mechanisms for wings using electrical actuators using rotary electromotors
- E05F15/665—Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
- E05F15/689—Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings specially adapted for vehicle windows
- E05F15/695—Control circuits therefor
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2900/00—Application of doors, windows, wings or fittings thereof
- E05Y2900/50—Application of doors, windows, wings or fittings thereof for vehicles
- E05Y2900/53—Type of wing
- E05Y2900/55—Windows
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Direct Current Motors (AREA)
- Control Of Electric Motors In General (AREA)
- Motor And Converter Starters (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
(57)【要約】 電機子電流信号中に含まれる電流リプルを評価することによって直流電動機の駆動軸の回転位置を算定する方法において、・直流電動機の通電時と最初の電流リプルの検出時との間で経過する時間スパン(tStart ) を算定すること、・最後の電流リプルの検出時と直流電動機の電機子の停止時との間で経過する時間スパン(tStop) を算定すること、この場合、この直流電動機は、この直流電動機の遮断と同時に発電動作に切り替えられて、さらなる電流リプルが検出される、・各時間スパン(tStart , t Stop) に対応する電流リプル成分を算出すること、及び、・これらの電流リプル成分を電流リプルのカウントの評価に算入することを特徴とする方法。 (57) [Summary] A method for calculating the rotational position of the drive shaft of a DC motor by evaluating the current ripple included in the armature current signal, comprising the steps of: when the DC motor is energized and when the first current ripple is detected; Calculating the time span (t Start ) that elapses between the time when the last current ripple is detected and the armature of the DC motor is stopped (t Stop ); In this case, the DC motor is switched to the power generation operation at the same time as the cutoff of the DC motor, and further current ripple is detected.The current ripple component corresponding to each time span (t Start , t Stop ) is calculated. And a method characterized by including these current ripple components in the evaluation of the current ripple count.
Description
【0001】
本発明は、電機子電流信号中に含まれる電流リプルを評価することによって直
流電動機の駆動軸の回転位置を算定する方法に関する。The present invention relates to a method for calculating the rotational position of a drive shaft of a DC motor by evaluating the current ripple contained in the armature current signal.
【0002】
直流電動機の電機子信号は、いわゆる直流成分とこの直流成分に重畳している
交流成分を含む。この交流成分は、直流電動機の稼働時に直流電動機の磁石(の
場),電機子巻線及び整流子による共同作用の結果として直流電動機の稼働時に
発生する。このことは、誘導電圧の短期間の変化の形で現れる。電機子電流信号
の正弦波部分が、その変化から生じる。この電機子電流信号中に含まれる電流ピ
ーク−以下電流リプルという−が、電機子の回転時に整流子片の数に相当する頻
度で発生する。例えば電機子が 10 個の整流子片を有するならば、それに応じて
10 個の電流リプルを電機子電流信号中で識別することができる。したがって、
これらの電流リプルのカウントは、直流電動機の電機子の実際の回転位置に関す
る情報を伝えると同時に、所定の運動区間内でこの直流電動機によって駆動され
る要素に関する情報も伝えることができる。この目的のために、アナログ式の電
機子電流信号がデジタル化されて、それに応じたカウントが実行され得る。この
ような方法は、例えばウィンドウハンドル及びスライディングルーフ又はウィン
ドウハンドル若しくはスライディングルーフ用に設けられているようなサーボ駆
動機構を制御する例えば自動車産業の分野で使用される。例えば(自動車の)ウ
ィンドウの位置の検出における重要な事柄は、(手などの)挟み込みの保護がこ
のウィンドウの閉まる際に解除されてしまうことがある点である。すなわち、電
動機が(その挟み込み時の)負荷の上昇のせいで停止することなしに、ウィンド
ウが、そのウィンドウの上側のフレーム内とそこに設けられたシール内とに沿っ
て完全に係入され得るようにするために、このような解除は必要である。電流リ
プルを不正確にカウントしてウィンドウの位置を算定した場合は、その挟み込み
の保護が早すぎて又は遅すぎて解除されてしまうことがある。The armature signal of a DC motor includes a so-called DC component and an AC component superimposed on this DC component. This AC component is generated during operation of the DC motor as a result of the combined action of the magnet (field), armature winding and commutator of the DC motor during operation of the DC motor. This manifests itself in the form of short-term changes in the induced voltage. The sinusoidal portion of the armature current signal results from the change. A current peak included in the armature current signal-hereinafter referred to as a current ripple-is generated at a frequency corresponding to the number of commutator pieces when the armature rotates. For example, if the armature has 10 commutator strips, then
Ten current ripples can be identified in the armature current signal. Therefore,
These current ripple counts can convey information about the actual rotational position of the armature of the DC motor, as well as information about the elements driven by this DC motor within a given movement interval. For this purpose, the analog armature current signal can be digitized and a corresponding count can be performed. Such a method is used, for example, in the field of the automobile industry for controlling window handles and sliding roofs or servo-drives such as those provided for window handles or sliding roofs. An important thing, for example, in detecting the position of a window (in an automobile) is that the protection of the pinch (in the hand, etc.) may be released when the window is closed. That is, the window can be fully engaged along the upper frame of the window and the seal provided therein without the electric motor stopping (during its pinching) due to the increased load. In order to do so, such a release is necessary. If the current ripple is incorrectly counted to determine the window position, the pinch protection may be released too early or too late.
【0003】
位置の精密測定中の不正確さは、直流電動機の通電時の電動機の始動時と直流
電動機の遮断時の電動機の停止時とによって生じる。最初の電流リプルが、直流
電送機の始動においてこの直流電動機の電機子の所定の回転運動の経過後になっ
て初めて検出可能であることが、これらの不正確さの原因である。このことは、
電動機の停止時にも当てはまる。この場合、従来の方法では、直流電動機の遮断
後の電流リプルの検出が不可能である。そのため、電動機の停止段階中の電機子
の運動が、位置の測定中に検出され得ない。Inaccuracy during precise position measurement is caused by starting the motor when the DC motor is energized and stopping the motor when the DC motor is cut off. The reason for these inaccuracies is that the first current ripple can only be detected at the start of the DC transmission after a certain rotary movement of the armature of this DC motor has elapsed. This is
The same applies when the motor is stopped. In this case, the conventional method cannot detect the current ripple after the DC motor is cut off. Therefore, the movement of the armature during the motor stop phase cannot be detected during position measurement.
【0004】
本発明の課題は、説明したこの従来の技術から出発して、位置測定がより高い
精度で可能であるように構成して、冒頭で述べた種類の方法を改良することにあ
る。The object of the present invention is to start from this described prior art and to improve the method of the type mentioned at the outset by configuring it so that position measurement is possible with greater accuracy.
【0005】
この課題は、本発明により、冒頭で述べた種類の方法によって解決される。こ
の方法は、
・直流電動機の通電時と最初の電流リプルの検出時との間で経過する時間スパン
を算定すること、
・最後の電流リプルの検出時と直流電動機の電機子の停止時との間で経過する時
間スパンを算定すること、この場合、この直流電動機は、この直流電動機の遮
断と同時に発電動作に切り替えられて、さらなる電流リプルが検出される、
・各時間スパンに対応する電流リプル成分を算出すること、及び、
・これらの電流リプル成分を電流リプルのカウントの評価に算入することを特徴
とする。This problem is solved according to the invention by a method of the kind mentioned at the outset. This method: -Calculate the time span that elapses between when the DC motor is energized and when the first current ripple is detected.-When the last current ripple is detected and when the DC motor armature is stopped. Calculating the time span that elapses between the DC motors, in which case this DC motor is switched to generator operation at the same time as the DC motor is interrupted and further current ripple is detected, corresponding to each time span Calculating current ripple components, and-calculating these current ripple components into the evaluation of the current ripple count.
【0006】
この方法の請求項の対象では、電流リプルが電動機の始動時にまだ検出不可能
である運動成分も、計数器のカウント結果に算入される。このこと(この運動成
分)は、例えば最初の電流リプルが生成されるように回転させなければならない
電機子の回転角度値である。この回転角度値は、(この最初の電流リプルと)相
前後して続く2番目の電流リプルとの回転角度差よりも基本的に小さい。したが
って、直流電動機のこの最初の始動段階中では、電機子が、最初の電流リプルを
検出するまでに1つの電流リプルに算入される周期よりも小さい回転角度値だけ
回転される。この最初の電流リプルを検出するまでの電動機のこの最初の始動段
階中の電流リプル成分が、どの程度の大きさかを評価するため、直流電動機の通
電時、すなわち投入時と最初の電流リプルの検出時との間で経過する時間スパン
が、まず最初に算定される。次のステップでは、この時間スパンに相当する電流
リプル成分が、実際に検出された電流リプルの特性値を利用して評価される。直
流電動機の停止時、つまり直流電動機の遮断時にも、同様に実行される。この場
合、直流電動機が、その遮断時の最初のステップ中に発電動作に切り替えられる
。直流電動機がその発電動作に切り替わると、電流リプルの検出が、停止する電
機子によって引続き可能である。最後の電流リプルの検出時と電機子の停止時と
の間で経過する時間スパンが、電動機の始動時と同様に直流電動機の遮断時にも
算定される。引続き、これらの時間スパンに相当する電流リプル成分が評価され
る。According to the subject matter of this method, motion components whose current ripple is still undetectable at motor start-up are also included in the counting result of the counter. This (this motion component) is, for example, the angle of rotation value of the armature that must be rotated so that the first current ripple is produced. This rotation angle value is basically smaller than the rotation angle difference between the second current ripple (following this first current ripple) and the succeeding second current ripple. Therefore, during this initial start-up phase of the DC motor, the armature is rotated by a rotational angle value that is less than the period included in one current ripple until the first current ripple is detected. In order to evaluate how much the current ripple component during this first starting phase of the motor until this first current ripple is detected, the DC motor is energized, i.e. at start-up and when the first current ripple is detected. The time span that elapses between hours is first calculated. In the next step, the current ripple component corresponding to this time span is evaluated using the characteristic value of the actually detected current ripple. The same operation is performed when the DC motor is stopped, that is, when the DC motor is cut off. In this case, the DC motor is switched to a power generating operation during the first step when it is shut down. When the DC motor is switched to its power generating operation, the detection of current ripple can continue with the armature being stopped. The time span that elapses between when the last current ripple is detected and when the armature is stopped is calculated when the DC motor is shut off as when the motor is started. The current ripple component corresponding to these time spans is subsequently evaluated.
【0007】
電動機の始動段階と電動機の停止段階でのそれぞれの電流リプル成分の評価は
、所望の位置測定を十分特定して実現可能にするのに十分である。さらに、この
ような評価には、最も簡略化された周辺条件によって作動され得るという利点が
ある。その結果、負担、特に評価ユニット、例えばマイクロプロセッサにかかる
要求が僅かで済む。The evaluation of the respective current ripple components during the motor start-up phase and the motor stop-phase is sufficient to make the desired position measurement sufficiently specific and feasible. Moreover, such an evaluation has the advantage that it can be operated with the most simplified ambient conditions. As a result, the burden is reduced, in particular the demands placed on the evaluation unit, eg the microprocessor.
【0008】
これらの両電流リプル成分は、それぞれの時間スパン−電動機の始動段階又は
電動機の停止段階−に割当てられて検出された所定の基準電流リプルの周期と周
期との間を比較することによって目的に合わせて算出される。電動機の重要な特
性データが、定数としてこの比較に算入される。この場合、例えば、ここで問題
にしているこれらの時間スパン内では、負荷が一定である。所定の数の電流リプ
ルが最初に検出された電流リプルの後に検出される電流リプルが、この最初の電
流リプルを検出するまでの電動機の始動段階の間に電流リプル成分を算出するた
めの基準電流リプルとして有効に利用される。このことは、電動機の始動段階中
の検出誤差がこの最初の電流リプルの検出後にも電流成分の算定に算入されない
ようにするために実行される。電動機が遮断されるか又は切り替わる直前に検出
された電流リプルが、電動機の停止に関する時間スパン内の電流リプル成分を算
定する基準電流リプルとして有効に利用される。Both of these current ripple components are assigned by their respective time spans--motor start phase or motor stop phase--and are compared by comparing the period with a predetermined reference current ripple detected. It is calculated according to the purpose. The important characteristic data of the motor are included in this comparison as constants. In this case, for example, the load is constant within these time spans of interest here. The reference current for calculating the current ripple component during the starting phase of the motor until the detection of this first current ripple is the current ripple detected after the predetermined number of current ripples are detected first. It is effectively used as a ripple. This is done so that detection errors during the starting phase of the motor are not taken into account in the calculation of the current component even after the detection of this first current ripple. The current ripple detected immediately before the motor is cut off or switched is effectively used as a reference current ripple for calculating the current ripple component within the time span related to the motor stop.
【0009】
図1は、アナログ式に濾波された電機子電流信号とその下にあるこの電機子電
流信号から導き出されたデジタル式の電流リプル信号とをグラフで示す。さらに
、電流リプル成分が、電動機の始動tStart の間の位相に対して測定されなけれ
ばならない点に特徴がある。所望の電流リプル成分を測定できるようにするため
、基準電流リプルとして使用される周期tPer も識別可能である。FIG. 1 graphically illustrates the analog filtered armature current signal and the digital current ripple signal derived from this underlying armature current signal. It is further characterized in that the current ripple component has to be measured with respect to the phase during the motor start t Start . The period t Per used as reference current ripple is also identifiable in order to be able to measure the desired current ripple component.
【0010】
この最初の時間スパン内の電流リプル成分がどの程度の大きさかの算出は、例
えば以下の方法で算出され得る:
電流リプル成分=tStart ・k/tPer
この場合、kは、電動機特性データ定数を示し、tPer は、基準電流リプルの
周期を示す。The calculation of the magnitude of the current ripple component in this first time span can be calculated, for example, by the following method: Current ripple component = t Start · k / t Per In this case, k is the electric motor. A characteristic data constant is shown, and t Per is a cycle of reference current ripple.
【0011】
図2は、電動機が停止したときのアナログ式に濾波された電機子電流信号とそ
こから算定された電流リプルとを対応するグラフで示す。直流電動機が、時点t1
にその直流電動機の発電動作に切り替えられる。その結果、電流リプルが、停
止段階に電機子電流信号中で検出可能である。電機子の或る程度の回転運動が、
−この図中にtStopで示された−最後の段階で確かにまだ存在するものの、電流
リプルはもはや検出できない。この最後の回転運動が、どれだけの数の電流リプ
ル成分に相当するのかを評価するため、電動機の通電時の最後に検出された回転
運動が、基準電流リプルとして利用される。そして、周期tPer が、そこから算
定される。電流リプル成分が、電動機の始動段階tStart 中に算定されるときと
同様に、電流リプル成分が、電動機の停止に関するこの時間スパンtStop中に同
様に算定される。この場合、この算定でも、電動機の重要な一定の特性データ、
例えば負荷を基礎にする。この評価は、以下に再び示された式にしたがって実行
され得る:
電流リプル成分=tStop・k/tPer
この場合、同様に、kは、電動機の重要な特性データを含んだ定数である。FIG. 2 shows in a corresponding graph the analog filtered armature current signal when the motor is stopped and the current ripple calculated therefrom. The DC motor is switched to the power generating operation of the DC motor at time t 1 . As a result, current ripple can be detected in the armature current signal during the stop phase. Some rotational movement of the armature
-Indicated by tStop in this figure-although still present at the last stage, the current ripple can no longer be detected. In order to evaluate how many current ripple components this last rotary movement corresponds to, the last detected rotary movement when the motor is energized is used as a reference current ripple. The period t Per is then calculated from it. The current ripple component is likewise calculated during this time span t Stop for stopping the motor, as is the case when the current ripple component is calculated during the start-up phase t Start of the motor. In this case, even in this calculation, important certain characteristic data of the motor,
For example on a load basis. This evaluation can be carried out according to the equation shown again below: Current ripple component = t Stop · k / t Per In this case, k is likewise a constant containing important characteristic data of the motor.
【0012】
不正確さが本発明の方法によって低減されていることが、この発明の説明から
分かる。電流リプルが生成されて検出され得ることなしに、直流電動機の電機子
の回転運動が、この電動機の始動時に又はこの電動機の停止時に或る特定の割合
だけ起こることによって、これらの不正確さは発生する。これらのリプル成分は
、例えば固有の計数器内でカウントされ得る。この場合、この計数器が全てのカ
ウント結果を有するならば、この計数器は、1つの計数パルスを本来の電流リプ
ル計数器に転送する。It can be seen from the description of the invention that inaccuracies are reduced by the method of the invention. These inaccuracies are caused by the fact that the rotary motion of the armature of the DC motor takes place only at a certain rate when the motor is started or when the motor is stopped, without current ripples being generated and detectable. Occur. These ripple components can be counted, for example, in a unique counter. In this case, if the counter has all the counting results, it transfers one counting pulse to the original current ripple counter.
【図1】
アナログ式に濾波された電機子電流信号とその下にあるこの電機子電流信号か
ら導き出されたデジタル式の電流リプル信号とをグラフで示す。FIG. 1 graphically illustrates an analog filtered armature current signal and an underlying digital current ripple signal derived from the armature current signal.
【図2】
電動機が停止したときのアナログ式に濾波された電機子電流信号とそこから算
定された電流リプルとを対応するグラフで示す。FIG. 2 shows in a corresponding graph the analog filtered armature current signal when the motor is stopped and the current ripple calculated therefrom.
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),AE,AG,A L,AM,AT,AU,AZ,BA,BB,BG,BR ,BY,CA,CH,CN,CR,CU,CZ,DE, DK,DM,DZ,EE,ES,FI,GB,GD,G E,GH,GM,HR,HU,ID,IL,IN,IS ,JP,KE,KG,KP,KR,KZ,LC,LK, LR,LS,LT,LU,LV,MA,MD,MG,M K,MN,MW,MX,NO,NZ,PL,PT,RO ,RU,SD,SE,SG,SI,SK,SL,TJ, TM,TR,TT,TZ,UA,UG,US,UZ,V N,YU,ZA,ZW (72)発明者 オッテ・シュテファン ドイツ連邦共和国、ヴィッテン、ヴィデイ ストラーセ、9 Fターム(参考) 5H571 AA03 BB07 CC04 FF06 GG01 JJ02 JJ13 JJ16 LL22 MM04─────────────────────────────────────────────────── ─── Continued front page (81) Designated countries EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, I T, LU, MC, NL, PT, SE), AE, AG, A L, AM, AT, AU, AZ, BA, BB, BG, BR , BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, G E, GH, GM, HR, HU, ID, IL, IN, IS , JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, M K, MN, MW, MX, NO, NZ, PL, PT, RO , RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, V N, YU, ZA, ZW (72) Inventor Otte Stefan Germany, Witten, Vidi Strasse, 9 F term (reference) 5H571 AA03 BB07 CC04 FF06 GG01 JJ02 JJ13 JJ16 LL22 MM04
Claims (4)
って直流電動機の駆動軸の回転位置を算定する方法において、 ・直流電動機の通電時と最初の電流リプルの検出時との間で経過する時間スパン (tStart ) を算定すること、 ・最後の電流リプルの検出時と直流電動機の電機子の停止時との間で経過する時 間スパン(tStop) を算定すること、この場合、この直流電動機は、この直流電 動機の遮断と同時に発電動作に切り替えられて、さらなる電流リプルが検出さ れる、 ・各時間スパン(tStart , t Stop) に対応する電流リプル成分を算出すること、 及び、 ・これらの電流リプル成分を電流リプルのカウントの評価に算入することを特徴
とする方法。1. A method for calculating a rotational position of a drive shaft of a DC motor by evaluating a current ripple included in an armature current signal, comprising: Calculating the time span (t Start ) that elapses between the two: -calculating the time span (t Stop ) that elapses between the time when the last current ripple is detected and the armature of the DC motor is stopped. In this case, this DC motor is switched to the power generation operation at the same time as this DC motor is cut off, and further current ripple is detected. ・ Calculate the current ripple component corresponding to each time span (t Start , t Stop ). And a method characterized by including these current ripple components in the evaluation of the current ripple count.
するため、それぞれの時間スパン(tPer ) に割当てられて検出された所定の基準
電流リプルの周期と周期との間が比較され、この場合、電動機の重要な特性デー
タが、定数(k)としてこの比較で算入されることを特徴とする請求項1に記載
の方法。2. In order to calculate a current component corresponding to each time span (t Start , t Stop ), a predetermined reference current ripple cycle and cycle detected by being assigned to each time span (t Per ), The method according to claim 1, characterized in that between the two, the important characteristic data of the electric motor are included in this comparison as a constant (k).
成分を算定するため、最初の電流リプルの検出後に検出された電流リプルが、基
準電流リプルとして利用されることを特徴とする請求項2に記載の方法。3. The current ripple detected after the detection of the first current ripple is used as a reference current ripple to calculate the current ripple component within a time span (t Start ) relating to the start of the electric motor. The method according to claim 2, wherein
分を算定するため、この電動機が遮断されるか又は切り替わる直前に検出された
電流リプルが、基準電流リプルとして利用されることを特徴とする請求項2又は
3に記載の方法。4. The current ripple detected immediately before the motor is switched off or switched is used as a reference current ripple in order to calculate the current ripple component within a time span (t Stop ) relating to the stop of the motor. The method according to claim 2 or 3, characterized in that:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10028035.8 | 2000-06-06 | ||
DE10028035A DE10028035A1 (en) | 2000-06-06 | 2000-06-06 | Rotation position determining method for DC motor shaft, involves determining relevant current ripple component for each time first and last current ripples are detected, which are included in current ripple evaluation |
PCT/EP2001/006217 WO2001095472A1 (en) | 2000-06-06 | 2001-06-01 | Method for determining the rotational position of the drive shaft of a direct current motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003536356A true JP2003536356A (en) | 2003-12-02 |
Family
ID=7644899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002502896A Pending JP2003536356A (en) | 2000-06-06 | 2001-06-01 | How to calculate the rotational position of the drive shaft of a DC motor |
Country Status (7)
Country | Link |
---|---|
US (1) | US6859030B2 (en) |
EP (1) | EP1208637B1 (en) |
JP (1) | JP2003536356A (en) |
AU (1) | AU6232901A (en) |
BR (1) | BR0106740B1 (en) |
DE (1) | DE10028035A1 (en) |
WO (1) | WO2001095472A1 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202004010211U1 (en) * | 2004-06-30 | 2005-08-18 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg | Control device for controlling an adjusting device of a motor vehicle |
US7084592B2 (en) * | 2004-10-12 | 2006-08-01 | Rodrian James A | Method and apparatus for controlling a DC motor by counting current pulses |
DE102004061917A1 (en) | 2004-12-22 | 2006-07-13 | Lucas Automotive Gmbh | Sensorless travel measurement, in particular on an electric motor-driven parking brake |
US7453224B2 (en) * | 2004-12-30 | 2008-11-18 | Inpower Llc | Sensing mechanical transitions from current of motor driving hydraulic pump or other mechanism |
DE102005046052B4 (en) * | 2005-09-27 | 2020-10-15 | Robert Bosch Gmbh | Rotation angle determination of an electric motor |
US7180257B1 (en) | 2005-10-04 | 2007-02-20 | Delphi Technologies, Inc. | Method of brake pulse rejection in commutation pulse detection circuits |
US7352145B2 (en) * | 2005-10-04 | 2008-04-01 | Delphi Technologies, Inc. | Voltage-sensitive oscillator frequency for rotor position detection scheme |
US7474068B2 (en) * | 2005-10-04 | 2009-01-06 | Delphi Technologies, Inc. | Position detection and external driver multiplexing system for DC motors |
US7589487B2 (en) * | 2005-10-04 | 2009-09-15 | Delphi Technologies, Inc. | Method of selectable simultaneous/sequential motor drive in a multiple drive circuit including failure detection |
US7548036B2 (en) * | 2006-10-10 | 2009-06-16 | Square D Company | DC motor mechanical shock protection system |
US7521884B2 (en) * | 2006-10-30 | 2009-04-21 | Square D Company | Apparatus and method for controlling a transfer switch mechanism |
US7511474B2 (en) * | 2006-10-30 | 2009-03-31 | Square D Company | DC motor phase detection method for determining a distance traveled by a load |
US7642676B2 (en) * | 2006-10-30 | 2010-01-05 | Square D Company | Contact verification method for a transfer switch mechanism |
US7397212B2 (en) | 2006-10-30 | 2008-07-08 | Square D Company | DC motor phase estimation with phase-locked loop |
DE102007057922A1 (en) * | 2007-12-01 | 2009-06-04 | Hella Kgaa Hueck & Co. | Establishing the direct current motor drive shaft position, e.g. on starting a window winder/sliding roof motor, the motor current is monitored to give the ripple of current peaks for assessment |
DE102007057923A1 (en) * | 2007-12-01 | 2009-06-04 | Hella Kgaa Hueck & Co. | Direct-current motor method for determining the position of rotation in a drive shaft on a direct-current motor in a run-out/braking stage uses peak loads arising through transferring brushes from one stator lamella to another |
ATE465391T1 (en) | 2008-02-26 | 2010-05-15 | Delphi Tech Inc | METHOD AND DEVICE FOR DETERMINING THE ROTATIONAL POSITION OF A ROTATING ELEMENT |
IT1392598B1 (en) | 2008-12-30 | 2012-03-09 | St Microelectronics Srl | DETECTION OF THE ANGULAR POSITION OF THE ROTOR OF A BRUSH-FREE ENGINE WITHOUT SENSORS |
US9234979B2 (en) | 2009-12-08 | 2016-01-12 | Magna Closures Inc. | Wide activation angle pinch sensor section |
US8493081B2 (en) | 2009-12-08 | 2013-07-23 | Magna Closures Inc. | Wide activation angle pinch sensor section and sensor hook-on attachment principle |
DE102010017835B4 (en) * | 2010-04-22 | 2012-06-14 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Method for processing an engine size of a DC motor of a motor vehicle actuator and adjusting device therefor |
CN102536037B (en) * | 2010-12-09 | 2015-09-30 | 天津市松正电动汽车技术股份有限公司 | A kind of power vehicle window controller and anti-clip control method |
WO2012086555A1 (en) * | 2010-12-24 | 2012-06-28 | 株式会社リブ技術研究所 | Trapping determination device for opening/closing section, vehicle with same, and trapping determination method for opening/closing section |
DE102016220151B4 (en) * | 2016-10-14 | 2019-02-21 | Conti Temic Microelectronic Gmbh | Method and system for determining the position of a vehicle outer part |
US12028005B2 (en) | 2022-08-23 | 2024-07-02 | HELLA GmbH & Co. KGaA | System and method for ripple count detection |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139093A (en) * | 1980-03-31 | 1981-10-30 | Matsushita Electric Ind Co Ltd | Control device for motor |
JPH04178559A (en) * | 1990-11-14 | 1992-06-25 | Otsupama Kogyo Kk | Tachometer for diesel engine |
JPH11160337A (en) * | 1997-07-09 | 1999-06-18 | Temic Telefunken Microelectron Gmbh | Method for detecting rotating speed of mechanically rectified dc motor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2628906B1 (en) * | 1988-03-15 | 1990-08-24 | Jaeger | DEVICE FOR SHAPING AND EXPLOITING ARMATURE CURRENT Ripples GENERATED BY A DIRECT CURRENT MOTOR, PARTICULARLY FOR POSITIONING CONTROL |
US5432421A (en) * | 1991-10-26 | 1995-07-11 | Brose Fahrzeugteile Gmbh & Co. Kg | Process for detecting the position, direction of movement and dynamic characteristic values of remote-controlled displacement of an adjustable object |
DE4135873C2 (en) * | 1991-10-26 | 2003-01-30 | Brose Fahrzeugteile | Method and device for detecting the position and direction of rotation and / or for detecting dynamic parameters of power-operated adjustments of an adjustment object |
US5223775A (en) * | 1991-10-28 | 1993-06-29 | Eml Research, Inc. | Apparatus and related method to compensate for torque ripple in a permanent magnet electric motor |
DE4217265C2 (en) * | 1992-05-25 | 1998-04-09 | El Mos Elektronik In Mos Techn | Method for determining relevant relative extreme values of a signal subject to interference |
DE4243934A1 (en) * | 1992-12-23 | 1994-06-30 | Bayerische Motoren Werke Ag | Method for determining the position of a part of motor vehicles driven by an electric motor in two directions |
DE19733581C1 (en) * | 1997-08-02 | 1998-10-29 | Telefunken Microelectron | Identifying position-movement direction of movable part preset at electric motor |
DE19855996C1 (en) * | 1998-10-27 | 1999-12-16 | Daimler Chrysler Ag | Identifying movement, directional movement and location of a component moved by an electric motor, for use in locking components of motor vehicles |
-
2000
- 2000-06-06 DE DE10028035A patent/DE10028035A1/en not_active Withdrawn
-
2001
- 2001-06-01 WO PCT/EP2001/006217 patent/WO2001095472A1/en active Application Filing
- 2001-06-01 JP JP2002502896A patent/JP2003536356A/en active Pending
- 2001-06-01 AU AU62329/01A patent/AU6232901A/en not_active Abandoned
- 2001-06-01 BR BRPI0106740-0A patent/BR0106740B1/en not_active IP Right Cessation
- 2001-06-01 EP EP01936416.5A patent/EP1208637B1/en not_active Expired - Lifetime
-
2002
- 2002-12-06 US US10/313,618 patent/US6859030B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139093A (en) * | 1980-03-31 | 1981-10-30 | Matsushita Electric Ind Co Ltd | Control device for motor |
JPH04178559A (en) * | 1990-11-14 | 1992-06-25 | Otsupama Kogyo Kk | Tachometer for diesel engine |
JPH11160337A (en) * | 1997-07-09 | 1999-06-18 | Temic Telefunken Microelectron Gmbh | Method for detecting rotating speed of mechanically rectified dc motor |
Also Published As
Publication number | Publication date |
---|---|
US20030111996A1 (en) | 2003-06-19 |
AU6232901A (en) | 2001-12-17 |
BR0106740A (en) | 2002-04-02 |
WO2001095472A1 (en) | 2001-12-13 |
BR0106740B1 (en) | 2014-12-30 |
EP1208637A1 (en) | 2002-05-29 |
DE10028035A1 (en) | 2001-12-13 |
US6859030B2 (en) | 2005-02-22 |
EP1208637B1 (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003536356A (en) | How to calculate the rotational position of the drive shaft of a DC motor | |
KR940002924B1 (en) | Motor energizing circuit | |
US8513909B2 (en) | Processing a motor variable of a DC motor and actuating device for a motor vehicle | |
CN102356539B (en) | Correction of counting errors upon evaluation of current ripples in DC motor | |
US7668690B2 (en) | System and method for determining position or speed of a commutated DC motor with error correction | |
KR102631215B1 (en) | How to determine the rotor position of a brushless permanent magnet motor | |
EP2579448B1 (en) | Determining rotor position in sensorless switched reluctance motors | |
JP2003536355A (en) | How to calculate the rotational position of the drive shaft of a DC motor | |
EP1109309A3 (en) | Rotor position monitoring of a reluctance drive | |
EP3449562A2 (en) | Method and apparatus determining the rotor position of a permanent-magnet motor | |
JP4797323B2 (en) | Sensorless control device for synchronous motor | |
EP0746090A3 (en) | Method for rotor position detection for a revolving cylinder motor or a linear motor | |
EP3449563A2 (en) | Method and apparatus of controlling a brushless permanent-magnet motor | |
JP4437151B2 (en) | Starting method of sensorless DC motor capable of electronic commutation | |
JP4472083B2 (en) | Rotor position detection in a switched reluctance machine | |
US6657407B2 (en) | Method for determining the rotational position of the drive shaft of a direct current motor | |
JP2003536357A (en) | How to supply digital current ripple signal | |
JP4284435B2 (en) | Servo motor magnetic pole detection method | |
EP1575158B1 (en) | Rotor position detection of a brushless DC motor | |
EP2328266B1 (en) | Method for operating a two-phase or multiple phase electric motor in a washing machine, frequency converter and mechatronic system | |
JP3541861B2 (en) | DC brushless motor | |
JP4127000B2 (en) | Motor control device | |
EP1216498B1 (en) | Method for controlling and protecting electric motors and system for controlling for an electric motor | |
WO2018202277A1 (en) | Method of operation for an electric motor, and soft starter | |
JPH1023783A (en) | Dc brushless motor drive method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080501 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110104 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110802 |