[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003335521A - Titanium oxide, photocatalyst body and photocatalyst body coating agent using the titanium oxide - Google Patents

Titanium oxide, photocatalyst body and photocatalyst body coating agent using the titanium oxide

Info

Publication number
JP2003335521A
JP2003335521A JP2003098933A JP2003098933A JP2003335521A JP 2003335521 A JP2003335521 A JP 2003335521A JP 2003098933 A JP2003098933 A JP 2003098933A JP 2003098933 A JP2003098933 A JP 2003098933A JP 2003335521 A JP2003335521 A JP 2003335521A
Authority
JP
Japan
Prior art keywords
titanium oxide
photocatalyst
titanium
photocatalyst body
coating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003098933A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sakatani
能彰 酒谷
Hironobu Koike
宏信 小池
Yoshiaki Takeuchi
美明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003098933A priority Critical patent/JP2003335521A/en
Publication of JP2003335521A publication Critical patent/JP2003335521A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide titanium oxide exhibiting high photocatalytic action by visible light irradiation, a photocatalyst body and a photocatalyst body coating agent using the titanium oxide. <P>SOLUTION: This titanium oxide has an index X expressed by formula (1): X=A/B of 0.97 or less, wherein A is a mean value of half value width measured at a first and a second measurement, and B is that measured at a third and a fourth measurement in the total four times of measurement of half value width of a peak of titanium existing between 458 to 460 eV of bonding energy of titanium oxide by an X-ray photoelectron spectroscopy. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は酸化チタン、それを
用いてなる光触媒体及び光触媒体コーティング剤に関す
る。詳細には、可視光線を照射することにより高い光触
媒作用を発現して、大気中のNOxの分解、居住空間や
作業空間での悪臭物質やカビなどの分解除去、あるいは
水中の有機溶剤や農薬、界面活性剤などの環境汚染物質
の分解除去を行うことができる光触媒体、その触媒成分
としての酸化チタン、及びコーティング剤としての光触
媒体コーティング剤に関する。
TECHNICAL FIELD The present invention relates to titanium oxide, a photocatalyst using the same, and a photocatalyst coating agent. In detail, by irradiating with visible light, a high photocatalytic action is expressed, decomposition of NOx in the atmosphere, decomposition and removal of malodorous substances and molds in living spaces and working spaces, or organic solvents and pesticides in water, The present invention relates to a photocatalyst capable of decomposing and removing environmental pollutants such as a surfactant, titanium oxide as a catalyst component thereof, and a photocatalyst coating agent as a coating agent.

【0002】[0002]

【従来の技術】半導体に紫外線を照射すると強い還元作
用を持つ電子と強い酸化作用を持つ正孔が生成し、半導
体に接触した分子種を酸化還元作用により分解する。こ
のような作用を光触媒作用と呼び、この光触媒作用を利
用することによって、大気中のNOxの分解、居住空間
や作業空間での悪臭物質やカビなどの分解除去、あるい
は水中の有機溶剤や農薬、界面活性剤などの環境汚染物
質の分解除去を行うことができる。光触媒作用を有する
物質として酸化チタンが注目され、酸化チタンからなる
光触媒体が市販されている。市販品としては、例えば、
P−25(商品名:デグッサ製)が挙げられる。
2. Description of the Related Art When a semiconductor is irradiated with ultraviolet rays, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and a molecular species in contact with the semiconductor is decomposed by the redox action. Such an action is called a photocatalytic action, and by utilizing this photocatalytic action, decomposition of NOx in the atmosphere, decomposition and removal of malodorous substances and molds in living spaces and working spaces, or organic solvents and pesticides in water, It is possible to decompose and remove environmental pollutants such as surfactants. Titanium oxide has attracted attention as a substance having a photocatalytic action, and photocatalysts made of titanium oxide are commercially available. Examples of commercially available products include
P-25 (trade name: manufactured by Degussa) may be mentioned.

【0003】しかしながら、前記の酸化チタンからなる
光触媒体は、可視光線を照射する場合には十分な光触媒
作用を有するものではなかった。
However, the above-mentioned photocatalyst made of titanium oxide does not have a sufficient photocatalytic action when irradiated with visible light.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、可視
光線を照射することにより高い光触媒作用を有する光触
媒体、その触媒成分としての酸化チタン、及びコーティ
ング剤としての光触媒体コーティング剤を提供すること
にある。
The object of the present invention is to provide a photocatalyst having a high photocatalytic activity by irradiation with visible light, titanium oxide as its catalyst component, and a photocatalyst coating agent as a coating agent. Especially.

【0005】[0005]

【課題を解決するための手段】本発明者等は上記課題を
解決すべく鋭意検討を行った結果、可視光線を照射する
ことにより高い光触媒作用を有する光触媒体に適する触
媒成分としての酸化チタンを見出し、本発明を完成する
に至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that titanium oxide as a catalyst component suitable for a photocatalyst body having a high photocatalytic action by irradiation with visible light is used. Heading out, the present invention has been completed.

【0006】すなわち本発明は、X線光電子分光法で酸
化チタンの結合エネルギー458eV〜460eVの間
にあるチタンのピークの半価幅を4回測定した時の1回
目と2回目のチタンのピークの半価幅の平均値をAと
し、3回目と4回目のチタンのピークの半価幅の平均値
をBとし、前記半価幅A、Bから以下の式(I)で示さ
れる指数Xが0.97以下である酸化チタンである。 X=B/A (I)
That is, according to the present invention, the full width at half maximum of the titanium peak between 458 eV and 460 eV of the binding energy of titanium oxide is measured by X-ray photoelectron spectroscopy, and the first and second titanium peaks are measured. The average value of the full width at half maximum is A, the average value of the full width at half maximum of the third and fourth titanium peaks is B, and the index X represented by the following formula (I) is calculated from the full width at half maximum A and B. Titanium oxide having 0.97 or less. X = B / A (I)

【0007】また本発明は、触媒成分として前記の酸化
チタンを含むことを特徴とする光触媒体である。
Further, the present invention is a photocatalyst body containing the above-mentioned titanium oxide as a catalyst component.

【0008】さらに本発明は、前記の酸化チタンと溶媒
と含むことを特徴とする光触媒体コーティング剤であ
る。
Furthermore, the present invention is a photocatalyst coating agent comprising the above titanium oxide and a solvent.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の酸化チタン(TiO2)は、X線光電子分光法
で酸化チタンの結合エネルギー458eV〜460eV
の間にあるチタンのピークの半価幅を4回測定した時の
1回目と2回目のチタンのピークの半価幅の平均値をA
とし、3回目と4回目のチタンのピークの半価幅の平均
値をBとし、前記半価幅A、Bから式(I)で示される
指数Xが0.97以下、好ましくは0.93以下であ
る。尚、本発明において、チタンのピークの半価幅の測
定は、理学電機工業社製XPS−7000(X線源:M
gKα 8kV 30mA(ナロースキャン)、pas
s E=10eV、step E=0.04eV)を用
いて、測定1回につき60秒要するチタン(Ti)のピ
ークの測定を2回行い、次いで測定1回につき56秒要
する酸素(O)のピークの測定を2回行い、次いで測定
1回につき80秒要する炭素(C)のピークの測定を2
回行い、次いで測定1回につき60秒要するチタン(T
i)のピークの測定を2回行い、かつピークの測定時及
び測定と測定との間は大気中に暴露させることなく、計
8回の測定開始から終了迄の時間を10分以内となるよ
うに行う。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The titanium oxide (TiO 2 ) of the present invention has a binding energy of titanium oxide of 458 eV to 460 eV measured by X-ray photoelectron spectroscopy.
The average value of the half-value widths of the first and second titanium peaks when the half-value width of the titanium peak between the
The average value of the half-value widths of the third and fourth titanium peaks is B, and the index X represented by the formula (I) from the half-value widths A and B is 0.97 or less, preferably 0.93. It is the following. In the present invention, the full width at half maximum of titanium peak is measured by XPS-7000 manufactured by Rigaku Denki Kogyo Co., Ltd. (X-ray source: M
gKα 8kV 30mA (narrow scan), pas
s E = 10 eV, step E = 0.04 eV), the peak of titanium (Ti) required for 60 seconds per measurement is measured twice, and then the peak of oxygen (O) required for 56 seconds per measurement is measured. Measurement is performed twice, and then the carbon (C) peak that requires 80 seconds for each measurement is measured twice.
Titanium (T
The peak of i) is measured twice, and the time from the start to the end of the total of eight measurements should be within 10 minutes without exposing to the atmosphere during and between the peak measurements. To do.

【0010】前記酸化チタンの指数Xが0.97より大
きい場合は、酸化チタンは可視光線の照射に対し十分な
光触媒作用を有しない。
When the index X of the titanium oxide is larger than 0.97, the titanium oxide does not have a sufficient photocatalytic action for irradiation with visible light.

【0011】また、前記酸化チタンは、可視光線の照射
に対しより高い光触媒作用を発現し得ることから、紫外
可視分光光度計で紫外可視拡散反射スペクトルを硫酸バ
リウムを標準白板とし積分球を用いて測定したときの、
波長220nm〜800nmでのスペクトルの吸光度の
積分値をCとし、波長400nm〜800nmでのスペ
クトルの吸光度の積分値をDとしたときに、以下の式
(II)で示される指数Yが0.14以上が好ましく、
0.16以上がより好ましい。 Y=D/C (II) 尚、前記吸光度の積分値とは、縦軸に吸光度、横軸に波
長とした紫外可視拡散反射スペクトルにおいて、指定さ
れた波長の範囲内で横軸と拡散反射スペクトルとで囲ま
れた領域の面積を指す。
Further, since the titanium oxide can exhibit a higher photocatalytic action against irradiation of visible light, the ultraviolet visible spectrophotometer is used to measure the ultraviolet visible diffuse reflectance spectrum using barium sulfate as a standard white plate and an integrating sphere. When you measured
When the integral value of the absorbance of the spectrum at the wavelength of 220 nm to 800 nm is C and the integral value of the absorbance of the spectrum at the wavelength of 400 nm to 800 nm is D, the index Y represented by the following formula (II) is 0.14. The above is preferable,
0.16 or more is more preferable. Y = D / C (II) The integrated value of the absorbance is the ultraviolet-visible diffuse reflectance spectrum in which the vertical axis is the absorbance and the horizontal axis is the wavelength, and the horizontal axis and the diffuse reflectance spectrum are within a specified wavelength range. Refers to the area enclosed by and.

【0012】前記酸化チタンの指数Yが0.14未満の
場合、酸化チタンは可視光線の照射に対し十分な光触媒
作用を有しない。
When the index Y of the titanium oxide is less than 0.14, the titanium oxide does not have a sufficient photocatalytic action for irradiation with visible light.

【0013】さらに、本発明の酸化チタンは、可視光線
の照射に対してより高い光触媒活性が得られることか
ら、酸化チタンの結晶構造がアナターゼ型であることが
好ましい。
Further, since the titanium oxide of the present invention can obtain a higher photocatalytic activity upon irradiation with visible light, it is preferable that the crystal structure of titanium oxide is anatase type.

【0014】本発明の酸化チタンの形状は、使用方法に
より異なり一義的ではないが、例えば、粒子状、繊維状
等が挙げられる。また、酸化チタンには、可視光線の照
射による光触媒活性を損なわせない範囲で無機化合物を
混合してもよいし、または混合した後、熱処理等して混
合物を複合化してもよい。前記無機化合物としては、例
えばシリカ(SiO2)、アルミナ(Al23)、ジル
コニア(ZrO2)、マグネシア(MgO)、酸化亜鉛
(ZnO)等が挙げられる。
The shape of the titanium oxide of the present invention differs depending on the method of use and is not unique, but examples thereof include particulate and fibrous shapes. Further, the titanium oxide may be mixed with an inorganic compound within a range that does not impair the photocatalytic activity due to irradiation with visible light, or may be mixed and then heat treated to form a mixture. Examples of the inorganic compound include silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), magnesia (MgO) and zinc oxide (ZnO).

【0015】本発明の酸化チタンの製造方法としては、
例えば、少なくとも1種の物質をそれ自身あるいは他の
物質相互の間において原子の組み換えを行って反応さ
せ、元の物質と異なる物質を生成せしめる手法、いわゆ
る化学反応を用いる手法が挙げられる。具体的には加水
分解法、均一沈殿法、加熱分解法、共沈法、固相反応
法、イオン交換法、錯体重合法、水熱合成法、焼成合成
法、液相析出法、含浸法等の通常のセラミックス材料の
合成手法が挙げられ、就中、可視光線の照射に対し優れ
た光触媒作用を有する酸化チタンが得られることから、
加水分解法の適用が推奨される。
The method for producing titanium oxide of the present invention includes:
For example, a method using a so-called chemical reaction, in which at least one type of substance is allowed to recombine between itself and another substance to cause a reaction, and a substance different from the original substance is generated, is used. Specifically, hydrolysis method, uniform precipitation method, thermal decomposition method, coprecipitation method, solid phase reaction method, ion exchange method, complex polymerization method, hydrothermal synthesis method, calcination synthesis method, liquid phase deposition method, impregnation method, etc. The usual methods for synthesizing ceramic materials include, among others, titanium oxide having an excellent photocatalytic action against irradiation with visible light can be obtained.
Application of hydrolysis method is recommended.

【0016】より具体的には、チタン化合物を水とを混
合して加水分解させる方法、チタン化合物と水蒸気とを
混合して加水分解させる方法等で行えばよい。更に、加
水分解をアルカリ性雰囲気で行うことにより、可視光線
の照射に対し優れた光触媒作用を有する酸化チタンを得
ることができる。加水分解をアルカリ性雰囲気で行うに
際しては、例えば、アンモニアの他に、尿素、ホルムア
ミド等のアミド化合物、アセトアミジン等のアミジン化
合物、トリエタノールアミン、ヘキサメチレンテトラミ
ン等のアミン化合物等分解した際にアンモニア等のアル
カリ性成分を生成する物質等の存在下で加水分解させる
方法があげられ、就中、アンモニアまたは尿素の存在下
で加水分解させる方法の適用が推奨される。チタン化合
物としては、三塩化チタン、四塩化チタン、硫酸チタ
ン、硫酸チタニル、チタンアルコキシド等が用いられ
る。
More specifically, a method of mixing a titanium compound with water to hydrolyze it, a method of mixing a titanium compound with water vapor to hydrolyze, and the like may be used. Furthermore, by performing the hydrolysis in an alkaline atmosphere, titanium oxide having an excellent photocatalytic action against irradiation with visible light can be obtained. When the hydrolysis is performed in an alkaline atmosphere, for example, in addition to ammonia, amide compounds such as urea and formamide, amidine compounds such as acetamidine, amine compounds such as triethanolamine and hexamethylenetetramine, etc. The method of hydrolyzing in the presence of a substance or the like that produces an alkaline component can be mentioned, and among others, the method of hydrolyzing in the presence of ammonia or urea is recommended. As the titanium compound, titanium trichloride, titanium tetrachloride, titanium sulfate, titanyl sulfate, titanium alkoxide and the like are used.

【0017】本発明の光触媒体は、触媒成分として前述
した酸化チタンを含むことを特徴とする。前記光触媒
は、本発明の酸化チタンの有する高い光触媒活性を十分
に発現させ、大気中のNOxの分解、居住空間や作業空
間での悪臭物質やカビなどの分解除去、あるいは水中の
有機溶剤や農薬、界面活性剤などの環境汚染物質の分解
除去を可能とする。
The photocatalyst of the present invention is characterized by containing the above-mentioned titanium oxide as a catalyst component. The photocatalyst sufficiently expresses the high photocatalytic activity of the titanium oxide of the present invention, decomposes NOx in the atmosphere, decomposes and removes malodorous substances and molds in living spaces and working spaces, or uses organic solvents and pesticides in water. It enables the decomposition and removal of environmental pollutants such as surfactants.

【0018】前記光触媒体としては、例えば、粒子状酸
化チタンに成形助剤を添加した後、押出成形して得られ
たシート状光触媒体、繊維状酸化チタンと有機繊維とを
交絡させて得られたシート状光触媒体、金属製または樹
脂製の支持体に酸化チタンを塗布又は被覆して得られた
光触媒体等が挙げられる。また、光触媒体には、その機
械的強度、成形性を向上させることを目的に、本発明の
酸化チタンに加えて無機化合物、高分子樹脂、成形助
剤、結合剤、帯電防止剤、吸着剤等を添加しもよい。前
記無機化合物としては、例えばシリカ(SiO2)、ア
ルミナ(Al23)、ジルコニア(ZrO2)、マグネ
シア(MgO)、酸化亜鉛(ZnO)及び紫外線の照射
に対し光触媒活性を有する酸化チタン等が挙げられる。
The photocatalyst body is obtained, for example, by adding a molding aid to particulate titanium oxide and then extruding the sheet-like photocatalyst body, or by entanglement of fibrous titanium oxide and organic fibers. Examples thereof include a sheet-shaped photocatalyst body, a photocatalyst body obtained by coating or coating titanium oxide on a metal or resin support. In addition, in order to improve the mechanical strength and moldability of the photocatalyst, in addition to the titanium oxide of the present invention, an inorganic compound, a polymer resin, a molding aid, a binder, an antistatic agent, an adsorbent Etc. may be added. Examples of the inorganic compound include silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), magnesia (MgO), zinc oxide (ZnO), and titanium oxide having photocatalytic activity with respect to ultraviolet irradiation. Is mentioned.

【0019】前記光触媒体の使用に際しては、例えば、
可視光線を透過するガラス容器に光触媒体と被処理液又
は被処理気体とを入れ、光源を用いて光触媒体に波長が
430nm以上である可視光線を照射すればよい。尚、
通常の光触媒反応で用いられている紫外光線を照射する
ことも勿論可能である。照射時間は、光源の強度、被処
理液中の処理対象物質の初期濃度・目的濃度等により適
宜選択すればよい。
When the photocatalyst is used, for example,
The photocatalyst and the liquid to be treated or the gas to be treated may be placed in a glass container that transmits visible light, and the photocatalyst may be irradiated with visible light having a wavelength of 430 nm or more using a light source. still,
Of course, it is also possible to irradiate the ultraviolet rays used in the usual photocatalytic reaction. The irradiation time may be appropriately selected depending on the intensity of the light source, the initial concentration of the substance to be treated in the liquid to be treated, the target concentration and the like.

【0020】光源としては、波長が430nm以上であ
る可視光線、又は通常の光触媒反応で用いられている紫
外光線を照射するものであれば制限されるものではな
く、例えば太陽光線、蛍光灯、ハロゲンランプ、ブラッ
クライト、キセノンランプ、水銀灯等が適用できる。勿
論、人体に有害な紫外線等の波長400nm未満の光を
遮断した状態で用いてもよい。
The light source is not limited as long as it irradiates visible light having a wavelength of 430 nm or more, or ultraviolet light used in ordinary photocatalytic reactions. For example, sun rays, fluorescent lamps, halogens. A lamp, a black light, a xenon lamp, a mercury lamp, etc. can be applied. Of course, it may be used in a state where light having a wavelength of less than 400 nm, such as ultraviolet rays, which is harmful to the human body, is blocked.

【0021】本発明の光触媒体コーティング剤は、前述
した酸化チタンと溶媒とを含むことを特徴とする。前記
光触媒体コーティング剤は、建築材料、自動車材料等に
酸化チタンを塗布すること、又は建築材料、自動車材料
等を酸化チタンで被覆することを容易にし、かつ建築材
料、自動車材料等に高い光触媒活性を付与することを可
能とする。溶媒としては、塗布後又は被覆後に蒸発して
酸化チタンに残存しない溶媒が好ましく、例えば、水、
塩酸、アルコール類、ケトン類等が挙げられる。
The photocatalyst coating agent of the present invention is characterized by containing the above-mentioned titanium oxide and a solvent. The photocatalyst coating agent facilitates application of titanium oxide to building materials, automobile materials, etc., or coating of building materials, automobile materials, etc. with titanium oxide, and high photocatalytic activity for building materials, automobile materials, etc. It is possible to give. The solvent is preferably a solvent which does not remain in titanium oxide after being coated or evaporated after coating, for example, water,
Examples thereof include hydrochloric acid, alcohols, ketones and the like.

【0022】光触媒体コーティング剤の製造方法として
は、例えば、酸化チタンを水に分散させてスラリー化す
る方法、酸化チタンを酸等で解膠させる方法等が挙げら
れる。前記分散に際しては、必要に応じて分散剤を添加
してもよい。
Examples of the method for producing the photocatalyst coating agent include a method in which titanium oxide is dispersed in water to form a slurry, and a method in which titanium oxide is peptized with an acid or the like. At the time of the dispersion, a dispersant may be added if necessary.

【0023】本発明の酸化チタンは、波長が430nm
以上である可視光線の照射により高い光触媒作用を有す
る。また、本発明の光触媒体は、酸化チタンの有する高
い光触媒活性により、大気中のNOxの分解、居住空間
や作業空間での悪臭物質やカビなどの分解除去、あるい
は水中の有機溶剤や農薬、界面活性剤などの環境汚染物
質の分解除去を行うことを可能とする。さらに、本発明
の光触媒体コーティング剤は、建築材料、自動車材料等
に酸化チタンを塗布すること、又は建築材料、自動車材
料等を酸化チタンで被覆することを容易にし、建築材
料、自動車材料等に高い光触媒作用を付与することを可
能とする。
The titanium oxide of the present invention has a wavelength of 430 nm.
It has a high photocatalytic action by the above irradiation of visible light. Further, the photocatalyst of the present invention, due to the high photocatalytic activity of titanium oxide, decomposes NOx in the atmosphere, decomposes and removes malodorous substances and molds in living spaces and working spaces, or uses organic solvents, pesticides, and interfaces in water. It makes it possible to decompose and remove environmental pollutants such as activators. Furthermore, the photocatalyst coating agent of the present invention facilitates the application of titanium oxide to building materials, automobile materials, etc., or the coating of building materials, automobile materials, etc. with titanium oxide, and thus to the building materials, automobile materials, etc. It is possible to give a high photocatalytic action.

【0024】また、本発明の光触媒体(酸化チタンだけ
からなる光触媒体を含む。)、光触媒体コーティング剤
を塗布等した建築材料等は、その光触媒作用により様々
な化学物質を分解除去あるいは酸化除去し得るものであ
る。化学物質としては、例えば、環境汚染物質又は細菌
・放射菌・菌類・藻類・黴類等の微生物等が挙げられ
る。
Further, the photocatalyst of the present invention (including a photocatalyst consisting only of titanium oxide), a building material coated with a photocatalyst coating, etc., decomposes or oxidizes and removes various chemical substances by its photocatalytic action. It is possible. Examples of the chemical substance include environmental pollutants or microorganisms such as bacteria, radioactive bacteria, fungi, algae, molds and the like.

【0025】環境汚染物質としては、例えば、環境ホル
モンを呼ばれる内分泌撹乱化学物質、有機ハロゲン化合
物、有機リン化合物、それら以外の有機化合物、窒素化
合物、硫黄化合物、シアン化合物、クロム化合物などの
無機化合物があげられる。内分泌撹乱物質としては、ノ
ニルフェノール、オクチルフェノール等のアルキルフェ
ノール類、ビスフェノールA等のビフェニル類、フタル
酸ブチルベンジル、フタル酸ジブチル等のフタル酸類、
農薬であるDDT(ジクロルジフェニルトリクロルエタ
ン)、メトキシクロル、エンドサルファン等の他に有機
塩素化合物であるダイオキシンやPCB(ポリ塩化ビフ
ェニル)等が挙げられる。有機ハロゲン化合物で内分泌
撹乱化学物質以外のものとしては、フロン、トリハロメ
タン、トリクロロエチレン、テトラクロロエチレン等が
挙げられる。内分泌撹乱化学物質、有機ハロゲン化合
物、有機リン化合物以外の有機物質としては、界面活性
剤や油類などの炭化水素類、アルデヒド類、メルカプタ
ン類、アルコール類、アミン類、アミノ類、蛋白質類等
が挙げられる。窒素化合物としては、アンモニア、窒素
酸化物等が挙げられる。
Examples of the environmental pollutants include endocrine disrupting chemicals called environmental hormones, organic halogen compounds, organic phosphorus compounds, other organic compounds, nitrogen compounds, sulfur compounds, cyan compounds, chromium compounds and other inorganic compounds. can give. As endocrine disrupting substances, alkylphenols such as nonylphenol and octylphenol, biphenyls such as bisphenol A, phthalic acids such as butylbenzyl phthalate and dibutyl phthalate,
In addition to pesticides such as DDT (dichlorodiphenyltrichloroethane), methoxychlor and endosulfan, organic chlorine compounds such as dioxin and PCB (polychlorinated biphenyl) are listed. Examples of organic halogen compounds other than endocrine disrupting chemicals include freon, trihalomethane, trichloroethylene, tetrachloroethylene and the like. Organic substances other than endocrine disrupting chemicals, organic halogen compounds, and organic phosphorus compounds include hydrocarbons such as surfactants and oils, aldehydes, mercaptans, alcohols, amines, aminos, proteins, etc. Can be mentioned. Examples of nitrogen compounds include ammonia and nitrogen oxides.

【0026】[0026]

【実施例】実施例では、アセトアルデヒドの光分解作用
について述べるが、本発明は本実施例に限定されるもの
ではない。尚、酸化チタン、光触媒体の特性評価は以下
の方法で行った。
EXAMPLES The photolytic action of acetaldehyde will be described in Examples, but the present invention is not limited to these Examples. The characteristics of titanium oxide and photocatalyst were evaluated by the following methods.

【0027】X線光電子分光法(XPS):理学電機工
業社製XPS−7000を用いて、以下の手順で測定し
た。 1.測定1回につき60秒要するチタン(Ti)のピー
クの測定を2回行う。(積算1度目) 2.測定1回につき56秒要する酸素(O)のピークの
測定を2回行う。 3.測定1回につき80秒要する炭素(C)のピークの
測定を2回行う。 4.測定1回につき60秒要するチタン(Ti)のピー
クの測定を2回行う。(積算2度目) これらの操作は1〜4の順序で行い、全ての操作を終え
るのに要する時間は10分以内であった。また測定条件
は以下の通りで行った。 X線源:MgKα 8kV 30mA(ナロースキャ
ン) pass E=10eV step E=0.04eV
X-ray photoelectron spectroscopy (XPS): measured by the following procedure using XPS-7000 manufactured by Rigaku Denki Kogyo. 1. The peak of titanium (Ti), which requires 60 seconds per measurement, is measured twice. (1st integration) 2. The oxygen (O) peak, which requires 56 seconds per measurement, is measured twice. 3. The carbon (C) peak, which requires 80 seconds per measurement, is measured twice. 4. The peak of titanium (Ti), which requires 60 seconds per measurement, is measured twice. (Second integration) These operations were performed in the order of 1 to 4, and the time required to complete all the operations was within 10 minutes. The measurement conditions were as follows. X-ray source: MgKα 8 kV 30 mA (narrow scan) pass E = 10 eV step E = 0.04 eV

【0028】紫外可視拡散反射スペクトル:硫酸バリウ
ムを標準白板とする積分球を用いた紫外可視拡散反射ス
ペクトルの測定には、島津製作所製紫外可視分光光度系
UV−2500PCを用いて行った。
Ultraviolet-visible diffuse reflectance spectrum: The visible-visible diffuse reflectance spectrum was measured using an ultraviolet-visible spectrophotometric system UV-2500PC manufactured by Shimadzu Corporation using an integrating sphere having barium sulfate as a standard white plate.

【0029】結晶構造:理学電機工業社製X線回折装置
RAD−IIAで行った。
Crystal structure: An X-ray diffractometer RAD-IIA manufactured by Rigaku Denki Kogyo KK was used.

【0030】実施例1 20%三塩化チタン溶液(和光純薬製:特級)100g
を300mLフラスコ中で窒素雰囲気下で攪拌し、氷水
で冷却しながら25%アンモニア水(和光純薬製:特
級)141gを約30分で滴下し加水分解を行った。得
られた試料を濾過洗浄し乾燥した。次いで、空気中40
0℃で1時間焼成して、黄色に着色した粒子状酸化チタ
ンを得た。得られた酸化チタンは結晶構造がアナターゼ
型であった。酸化チタンのXPS測定の結果を表1に、
紫外可視拡散反射スペクトル測定の結果を表2に示す。
Example 1 100 g of 20% titanium trichloride solution (manufactured by Wako Pure Chemical Industries: special grade)
Was stirred in a 300 mL flask under a nitrogen atmosphere, and while cooling with ice water, 141 g of 25% ammonia water (manufactured by Wako Pure Chemical Industries: special grade) was added dropwise over about 30 minutes for hydrolysis. The obtained sample was filtered, washed and dried. Then 40 in air
The particles were calcined at 0 ° C. for 1 hour to obtain yellow colored particulate titanium oxide. The obtained titanium oxide had a crystal structure of anatase type. Table 1 shows the results of XPS measurement of titanium oxide.
Table 2 shows the results of the UV-visible diffuse reflectance spectrum measurement.

【0031】次いで、密閉式のパイレックス(登録商
標)製ガラス反応容器(直径8cm×高さ10cm、容
量約0.5リットル)内に、直径約5cmのガラス製シ
ャーレを設置し、そのシャーレ上に、黄色に着色した粒
子状酸化チタンだけからなる光触媒体を置いた。反応容
器内を酸素と窒素の体積比が1:4の混合ガスで満た
し、アセトアルデヒドを約38μmol封入し、波長が
430nm以上である可視光線の照射を行った。光触媒
体のアセトアルデヒドの光分解作用を、照射により生成
したアセトアルデヒドの酸化分解生成物である二酸化炭
素の濃度をガスクロマトグラフィー(島津製作所製 、
カラム:Porapak Q、キャリアーガス:ヘリウ
ム)を用いて測定することによって評価した。尚、光源
には図1の分光特性を有する紫外線カットフィルター
(東芝硝子製色ガラスフィルター:商品名Y−45)を
装着した500Wクセノンランプ(ウシオ電機製:ラン
プハウスUI―502Q,ランプUXL−500D,点
灯装置XB−50101AA−A)を用いた。二酸化炭
素の生成速度は触媒1gあたり23.4μmol/hr
であった。
Next, a glass petri dish having a diameter of about 5 cm was placed in a closed glass reaction vessel made of Pyrex (registered trademark) (diameter: 8 cm × height: 10 cm, capacity: about 0.5 liter) and placed on the petri dish. Then, a photocatalyst body consisting of only yellow-colored particulate titanium oxide was placed. The inside of the reaction vessel was filled with a mixed gas of oxygen and nitrogen in a volume ratio of 1: 4, acetaldehyde of about 38 μmol was enclosed, and irradiation with visible light having a wavelength of 430 nm or more was performed. The photocatalytic effect of acetaldehyde on the photocatalyst was measured by gas chromatography (Shimadzu Corporation, using the concentration of carbon dioxide, which is an oxidative decomposition product of acetaldehyde produced by irradiation.
It was evaluated by measuring using a column: Porapak Q, a carrier gas: helium). In addition, a 500 W Xenon lamp (manufactured by Ushio Inc .: Lamp House UI-502Q, Lamp UXL-500D) equipped with an ultraviolet light cut filter (Toshiba glass color glass filter: product name Y-45) having the spectral characteristics shown in FIG. 1 is used as a light source. , Lighting device XB-50101AA-A) was used. The generation rate of carbon dioxide is 23.4 μmol / hr per 1 g of catalyst.
Met.

【0032】実施例2 四塩化チタン(和光純薬製:特級)25gを300mL
フラスコ中で空気雰囲気下で攪拌し、氷水で冷却しなが
ら25%アンモニア水(和光純薬製:特級)36gを約
5分で滴下し加水分解を行った。得られた試料を濾過洗
浄し乾燥した。次いで、空気中400℃で1時間焼成し
て、白色の粒子状酸化チタンを得た。得られた酸化チタ
ンは結晶構造がアナターゼ型であった。酸化チタンのX
PS測定の結果を表1に、紫外可視拡散反射スペクトル
測定の結果を表2に示す。
Example 2 300 mL of 25 g of titanium tetrachloride (manufactured by Wako Pure Chemical Industries, Ltd.)
While stirring in an air atmosphere in a flask and cooling with ice water, 36 g of 25% ammonia water (manufactured by Wako Pure Chemical Industries: special grade) was added dropwise over about 5 minutes for hydrolysis. The obtained sample was filtered, washed and dried. Then, it was baked in air at 400 ° C. for 1 hour to obtain white particulate titanium oxide. The obtained titanium oxide had a crystal structure of anatase type. Titanium oxide X
The results of PS measurement are shown in Table 1, and the results of ultraviolet-visible diffuse reflection spectrum measurement are shown in Table 2.

【0033】次いで、実施例1において黄色に着色した
粒子状酸化チタンだけからなる光触媒体に変えて白色の
粒子状酸化チタンだけからなる光触媒体を用いた以外
は、実施例1と同様にして行った。この時の二酸化炭素
の生成速度は触媒1gあたり0.75μmol/hrで
あった。
Next, the same procedure as in Example 1 was carried out except that a photocatalyst body consisting only of particulate titanium oxide colored in yellow was replaced with a photocatalyst body consisting solely of white particulate titanium oxide. It was The production rate of carbon dioxide at this time was 0.75 μmol / hr per 1 g of the catalyst.

【0034】比較例1 実施例1において黄色に着色した粒子状酸化チタンだけ
からなる光触媒体に変えて市販のP−25(商品名、デ
グッサ製、結晶型:アナターゼ型とルチル型)だけから
なる光触媒体を用いた以外は、実施例1と同様にして行
った。この時の二酸化炭素の生成速度は触媒1gあたり
0.3μmol/hrであった。P−25のXPS測定
の結果を表1に、紫外可視拡散反射スペクトル測定の結
果を表2に示す。
Comparative Example 1 In place of the photocatalyst consisting of only the particulate titanium oxide colored yellow in Example 1, the commercially available P-25 (trade name, manufactured by Degussa, crystal type: anatase type and rutile type) was used. Example 1 was repeated except that the photocatalyst was used. The production rate of carbon dioxide at this time was 0.3 μmol / hr per 1 g of the catalyst. The results of XPS measurement of P-25 are shown in Table 1, and the results of UV-visible diffuse reflectance spectrum measurement are shown in Table 2.

【0035】本発明の光触媒体は、市販の酸化チタンか
らなる光触媒体に比べて波長が430nm以上である可
視光線の照射によるアセトアルデヒドの酸化分解につい
て、その酸化分解作用(光触媒作用)が高かった。
The photocatalyst of the present invention has a higher oxidative decomposition action (photocatalytic action) with respect to the oxidative decomposition of acetaldehyde by irradiation with visible light having a wavelength of 430 nm or more, as compared with the commercially available photocatalyst made of titanium oxide.

【0036】[0036]

【発明の効果】以上説明した様に、本発明は、波長が4
30nm以上である可視光線の照射で高い光触媒作用を
有する酸化チタンを提供する。また、本発明は、触媒成
分として、波長が430nm以上である可視光線の照射
により高い光触媒作用を有する酸化チタンを含む光触媒
体を提供し、大気中のNOxの分解、居住空間や作業空
間での悪臭物質やカビなどの分解除去、あるいは水中の
有機溶剤や農薬、界面活性剤などの環境汚染物質の分解
除去を行うことを可能とする。さらに、本発明は、酸化
チタンと溶媒とを含む光触媒体コーティング剤を提供
し、建築材料、自動車材料等に酸化チタンを塗布するこ
と、又は建築材料、自動車材料等を酸化チタンで被覆す
ることを容易にし、建築材料、自動車材料等に高い光触
媒作用を付与することを可能とする。
As described above, according to the present invention, the wavelength is 4
Provided is titanium oxide having a high photocatalytic action when irradiated with visible light having a wavelength of 30 nm or more. In addition, the present invention provides a photocatalyst containing titanium oxide, which has a high photocatalytic action upon irradiation with visible light having a wavelength of 430 nm or more, as a catalyst component, and decomposes NOx in the atmosphere, in living spaces and working spaces. It is possible to decompose and remove malodorous substances and molds, or to decompose and remove environmental pollutants such as organic solvents, pesticides and surfactants in water. Furthermore, the present invention provides a photocatalyst coating agent containing titanium oxide and a solvent, coating titanium oxide on a building material, automobile material, etc., or coating a building material, automobile material, etc. with titanium oxide. It is possible to easily and impart a high photocatalytic action to building materials, automobile materials and the like.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例に用いた光源に装着した紫外線カット
フィルターの分光特性を示す波長−透過率線図。
FIG. 1 is a wavelength-transmittance diagram showing spectral characteristics of an ultraviolet cut filter attached to a light source used in an example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 美明 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 Fターム(参考) 4G047 CA02 CB05 CC03 CD03 CD07 4G069 BA04A BA04B BA48A BB08C EA08 EC22Y EC27 FB08 4J038 HA211 KA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Miaki Takeuchi             Sumitomo Chemical 5-1, Soukai-cho, Niihama-shi, Ehime             Industry Co., Ltd. F-term (reference) 4G047 CA02 CB05 CC03 CD03 CD07                 4G069 BA04A BA04B BA48A BB08C                       EA08 EC22Y EC27 FB08                 4J038 HA211 KA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 X線光電子分光法で酸化チタンの結合エ
ネルギー458eV〜460eVの間にあるチタンのピ
ークの半価幅を4回測定した時の1回目と2回目のチタ
ンのピークの半価幅の平均値をAとし、3回目と4回目
のチタンのピークの半価幅の平均値をBとし、前記半価
幅A、Bから以下の式(I)で示される指数Xが0.9
7以下である酸化チタン。 X=B/A (I)
1. The half-value widths of the first and second titanium peaks when the half-value width of the titanium peak between 458 eV and 460 eV of the binding energy of titanium oxide is measured four times by X-ray photoelectron spectroscopy. And the average value of the half-value widths of the third and fourth titanium peaks is B, and the index X shown by the following formula (I) is 0.9.
Titanium oxide of 7 or less. X = B / A (I)
【請求項2】 触媒成分として請求項1記載の酸化チタ
ンを含むことを特徴とする光触媒体。
2. A photocatalyst body containing the titanium oxide according to claim 1 as a catalyst component.
【請求項3】 請求項1記載の酸化チタンと溶媒とを含
むことを特徴とする光触媒体コーティング剤。
3. A photocatalyst coating agent comprising the titanium oxide according to claim 1 and a solvent.
JP2003098933A 1999-06-30 2003-04-02 Titanium oxide, photocatalyst body and photocatalyst body coating agent using the titanium oxide Withdrawn JP2003335521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098933A JP2003335521A (en) 1999-06-30 2003-04-02 Titanium oxide, photocatalyst body and photocatalyst body coating agent using the titanium oxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18573999 1999-06-30
JP11-185739 1999-06-30
JP2003098933A JP2003335521A (en) 1999-06-30 2003-04-02 Titanium oxide, photocatalyst body and photocatalyst body coating agent using the titanium oxide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28681699A Division JP3959213B2 (en) 1999-06-30 1999-10-07 Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent

Publications (1)

Publication Number Publication Date
JP2003335521A true JP2003335521A (en) 2003-11-25

Family

ID=29713556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098933A Withdrawn JP2003335521A (en) 1999-06-30 2003-04-02 Titanium oxide, photocatalyst body and photocatalyst body coating agent using the titanium oxide

Country Status (1)

Country Link
JP (1) JP2003335521A (en)

Similar Documents

Publication Publication Date Title
JP3959213B2 (en) Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
KR100385301B1 (en) Novel titania photocatalyst and its manufacturing method
AU782223B2 (en) Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
EP1174392B1 (en) Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
EP1162172A1 (en) Silica gel carrying titanium oxide photocatalyst in high concentration and method for preparation thereof
JP4053911B2 (en) Photocatalyst and method for producing photocatalyst
KR20010107542A (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
JPH11343426A (en) Photocatalytic coating
KR20030055123A (en) Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
JP2001190953A (en) Titanium oxide, photocatalyst body formed by using it, and photocatalyst body coating agent
JP4103324B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
US20110011419A1 (en) Photocatalytic auto-cleaning process of stains
JP2000225349A (en) Filter
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
JP3885248B2 (en) Photocatalyst composition
JP2003335521A (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the titanium oxide
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JP2002029749A (en) Titanium dioxide, photocatalytic body using the same and photocatalytic body coating agent
JP4019679B2 (en) Method for producing photocatalyst body
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP2001316116A (en) Titanium oxide and photocatalyst using it and coating agent for photocatalyst
JPH08105178A (en) Tile having light catalytic function
EP1831131B1 (en) Photocatalytic auto-cleaning process of stains

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071019