JP2003329544A - Effective nonlinear constant measuring method and apparatus for single-mode optical fiber - Google Patents
Effective nonlinear constant measuring method and apparatus for single-mode optical fiberInfo
- Publication number
- JP2003329544A JP2003329544A JP2002139702A JP2002139702A JP2003329544A JP 2003329544 A JP2003329544 A JP 2003329544A JP 2002139702 A JP2002139702 A JP 2002139702A JP 2002139702 A JP2002139702 A JP 2002139702A JP 2003329544 A JP2003329544 A JP 2003329544A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- refractive index
- mode optical
- measured
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は単一モード光ファイ
バの実効的な非線形屈折率、及び実効的な非線形定数を
測定するための方法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring an effective nonlinear refractive index and an effective nonlinear constant of a single mode optical fiber.
【0002】[0002]
【従来の技術】近年の光増幅装置を用いた光通信システ
ムでは、単一モード光ファイバ中を伝搬する光強度の増
大に伴い、単一モード光ファイバ中の光非線形性による
伝搬波形の劣化等が問題となる。単一モード光ファイバ
中における光非線形性は、単一モード光ファイバの屈折
率n(P)が光の強度Pに応じ、下記式(1)で表され
る関係により変化することに起因する。
n(P)=n0 +n2P (1)
ここで、式中のn0 は線形の屈折率、n2 は非線形屈折
率を表す。2. Description of the Related Art In recent years, in an optical communication system using an optical amplifying device, as the intensity of light propagating in a single-mode optical fiber increases, deterioration of a propagation waveform due to optical nonlinearity in the single-mode optical fiber, etc. Is a problem. The optical non-linearity in the single mode optical fiber is due to the fact that the refractive index n (P) of the single mode optical fiber changes according to the intensity P of the light according to the relationship represented by the following formula (1). n (P) = n 0 + n 2 P (1) where n 0 represents a linear refractive index and n 2 represents a non-linear refractive index.
【0003】また、各種光非線形性の影響は、単一モー
ド光ファイバの光非線形性を表す非線形定数に応じて変
化する。非線形定数は、単一モード光ファイバの非線形
屈折率n2 と光のエネルギー密度を表すパラメータであ
る実効断面積Aeff を用いて、n2/Aeff により与え
られる。従って、光増幅装置を用いた長距離・大容量光
通信では、使用する単一モード光ファイバの非線形屈折
率、並びに非線形定数を正確に知る必要がある。Further, the influence of various optical non-linearities changes depending on the non-linear constant representing the optical non-linearity of the single mode optical fiber. The non-linear constant is given by n 2 / A eff using the non-linear refractive index n 2 of the single mode optical fiber and the effective area A eff which is a parameter representing the energy density of light. Therefore, in long-distance, large-capacity optical communication using the optical amplifier, it is necessary to accurately know the nonlinear refractive index and the nonlinear constant of the single-mode optical fiber used.
【0004】単一モード光ファイバの非線形定数は、単
一モード光ファイバ中で生じる各種光非線形現象を、入
力光強度の変化に対して観測することにより測定するこ
とができ、これまでに、下記文献1乃至5に示すような
のような種々の提案がなされている。
文献1:自己位相変調効果を用いた方法(R.H.Stolen
and C.Lin,"Self-phase-modulation in silica optica
l fibers",Phy.Rev.,vol.17,No.4,pp.1448-1453,1978.
、
文献2:自己位相変調効果を用いた方法(A.Boskovic
et al.,"Direct continuous-wave measurement of n2
in various types of telecommunication fiberat 1.55
μm",Opt.Lett.,vol.21,No.24,pp.1966-1968,1996)
、
文献3:相互位相変調効果を用いた方法(A.Wada et
al.,"Measurement of nonlinear-index coefficients o
f optical fibers through the cross-phase modulatio
n using delayed-self-heterodyne technique",ECOC"9
3,MoB1.2,pp.45-48,1993.)、
文献4:4光波混合を用いた方法(L.Prigent and J.
P.Hamaide,"Measurementof fiber nonlinear Kerr coef
ficient by four-wave mixing",Photon.Technol.Lett.,
vol.5,No.9,pp.1092-1095,1993.)
文献5:変調不安定性を用いた方法(M.Artiglia et
al.,"Using modulationinstability to determine Kerr
coefficient in optical fibres",Electron.Lett.,vo
l.31,No.12,pp.1012-1013,1995.)The nonlinear constant of a single-mode optical fiber can be measured by observing various optical nonlinear phenomena occurring in the single-mode optical fiber with respect to a change in input light intensity. Various proposals have been made as shown in the documents 1 to 5. Reference 1: Method using self-phase modulation effect (RHStolen
and C. Lin, "Self-phase-modulation in silica optica
l fibers ", Phy. Rev., vol. 17, No. 4, pp. 1448-1453, 1978.
, Reference 2: Method using self-phase modulation effect (A. Boskovic
et al., "Direct continuous-wave measurement of n2
in various types of telecommunication fiberat 1.55
μm ", Opt.Lett., vol.21, No.24, pp.1966-1968, 1996)
, Reference 3: Method using cross phase modulation effect (A. Wada et.
al., "Measurement of nonlinear-index coefficients o
f optical fibers through the cross-phase modulatio
n using delayed-self-heterodyne technique ", ECOC" 9
3, MoB1.2, pp.45-48, 1993.), Reference 4: Method using four-wave mixing (L.Prigent and J.
P.Hamaide, "Measurement of fiber nonlinear Kerr coef
ficient by four-wave mixing ", Photon.Technol.Lett.,
vol.5, No.9, pp.1092-1095,1993.) Reference 5: Method using modulation instability (M. Artiglia et.
al., "Using modulation instability to determine Kerr
coefficient in optical fibers ", Electron.Lett., vo
l.31, No.12, pp.1012-1013, 1995. )
【0005】また、単一モード光ファイバの所望の波長
λにおける実効断面積Aeff は、単一モード光ファイバ
端面の電界分布を所望の波長λの測定光を用いて測定す
ることにより評価できることが下記文献6に提案されて
いる。
文献6:(G.P.Agrawal,"Nonlinear fiber optics",A
cademic Press.)The effective area A eff of the single-mode optical fiber at the desired wavelength λ can be evaluated by measuring the electric field distribution on the end face of the single-mode optical fiber using the measuring light of the desired wavelength λ. It is proposed in Reference 6 below. Reference 6: (GPAgrawal, "Nonlinear fiber optics", A
cademic Press.)
【0006】従って、実効断面積Aeff と非線形定数の
測定結果から、単一モード光ファイバの非線形屈折率差
を求めることができる。Therefore, the nonlinear refractive index difference of the single mode optical fiber can be obtained from the measurement results of the effective area A eff and the nonlinear constant.
【0007】[0007]
【発明が解決しようとする課題】しかし、測定光にパル
ス光を用いる測定法では、非線形定数の測定精度はパル
ス光のパルス形状に強く依存するという問題があった。However, the measuring method using pulsed light as the measuring light has a problem that the measurement accuracy of the nonlinear constant strongly depends on the pulse shape of the pulsed light.
【0008】また、パルスの形状を適切に調整した場合
や、測定光に連続光を用いた場合においても、非線形定
数の測定精度は被測定単一モード光ファイバのファイバ
長、波長分散、並びに実効断面積等に依存して変化する
という問題があった。Even when the pulse shape is properly adjusted, or when continuous light is used as the measuring light, the measurement accuracy of the nonlinear constant depends on the fiber length, wavelength dispersion, and effective of the single mode optical fiber to be measured. There is a problem that it changes depending on the cross-sectional area and the like.
【0009】本発明は、単一モード光ファイバの任意の
断面における屈折率分布と、所望の波長λでの電界分布
の測定結果を用い、光ファイバ中に用いられるガラス材
料により決定される非線形屈折率の添加物依存性を考慮
に入れた数値演算を行うことにより、測定条件に無依存
かつ高精度な単一モード光ファイバの実効的な非線形定
数測定方法、並びに装置を提供することを課題とする。The present invention uses the measurement result of the refractive index distribution in an arbitrary cross section of a single mode optical fiber and the electric field distribution at a desired wavelength λ to determine the nonlinear refraction determined by the glass material used in the optical fiber. It is an object of the present invention to provide an effective non-linear constant measuring method for a single mode optical fiber that is highly accurate and independent of measurement conditions by performing a numerical calculation in consideration of the additive dependence of the index. To do.
【0010】[0010]
【課題を解決するための手段】上記課題を解決する本発
明の第1の発明は、単一モード光ファイバの任意の断面
における屈折率分布、並びに所望の波長λでの電界分布
を測定し、屈折率分布と単一モード光ファイバ中のガラ
ス材料により決定される非線形屈折率の添加物依存性を
用いて、被測定単一モード光ファイバの非線形屈折率分
布を求め、所望の波長λでの電界分布との演算処理を行
うことにより、被測定単一モード光ファイバの所望の波
長λにおける実効的な非線形屈折率及び実効的な非線形
定数を高精度に評価することを特徴とする単一モード光
ファイバの実効的な非線形定数測定方法にある。The first invention of the present invention for solving the above problems is to measure the refractive index distribution in an arbitrary cross section of a single mode optical fiber and the electric field distribution at a desired wavelength λ, Using the additive dependence of the nonlinear refractive index determined by the refractive index distribution and the glass material in the single mode optical fiber, the nonlinear refractive index distribution of the measured single mode optical fiber is obtained, and at the desired wavelength λ A single mode characterized by highly accurately evaluating an effective nonlinear refractive index and an effective nonlinear constant at a desired wavelength λ of a single mode optical fiber to be measured by performing calculation processing with an electric field distribution. It is a method for measuring the effective nonlinear constant of an optical fiber.
【0011】本発明によれば、従来技術のパルス光を用
いた測定法における測定精度が光パルスの形状に強く依
存したり、被測定光ファイバの長さ、波長分散、実効断
面積に依存するといった課題を解決し、高精度な非線形
定数を求めることが可能になる。According to the present invention, the measurement accuracy in the conventional measuring method using pulsed light strongly depends on the shape of the optical pulse, and also depends on the length, wavelength dispersion and effective cross-sectional area of the optical fiber to be measured. It becomes possible to solve such a problem and obtain a highly accurate nonlinear constant.
【0012】第2の発明は、所望の測定波長における測
定光を単一モード光ファイバに入射する手段と、単一モ
ード光ファイバの任意の断面における屈折率分布を測定
する手段と、単一モード光ファイバの所望の測定波長に
おける電界分布を測定する手段と、屈折率分布の非線形
屈折率分布への変換、並びに電界分布との数値積分によ
り被測定単一モード光ファイバの実効的な非線形屈折
率、並びに実効的な非線形定数を計算する演算手段とを
備えたことを特徴とする単一モード光ファイバの実効的
な非線形定数測定装置にある。A second aspect of the present invention is a means for injecting a measurement light having a desired measurement wavelength into a single mode optical fiber, a means for measuring a refractive index distribution in an arbitrary section of the single mode optical fiber, and a single mode. A means for measuring the electric field distribution at a desired measurement wavelength of the optical fiber, the conversion of the refractive index distribution into a nonlinear refractive index distribution, and the numerical integration with the electric field distribution to obtain the effective nonlinear refractive index of the single mode optical fiber to be measured. And an arithmetic means for calculating the effective nonlinear constant, and an effective nonlinear constant measuring device for a single-mode optical fiber.
【0013】すなわち、本発明では、単一モード光ファ
イバの任意の断面における屈折率分布、並びに所望の波
長λでの電界分布を測定する機能を有し、屈折率分布と
単一モード光ファイバ中のガラス材料に固有の非線形屈
折率の添加物依存性を用いて非線形屈折率分布を求め、
更に、電界分布との数値演算処理により、被測定単一モ
ード光ファイバの実効的な非線形屈折率を算出するもの
である。That is, the present invention has a function of measuring the refractive index distribution in an arbitrary cross section of a single mode optical fiber and the electric field distribution at a desired wavelength λ. The nonlinear refractive index distribution is obtained by using the additive dependence of the nonlinear refractive index peculiar to the glass material of
Furthermore, the effective non-linear refractive index of the single mode optical fiber to be measured is calculated by numerical calculation processing with the electric field distribution.
【0014】また、電界分布の数値演算により求められ
る実効断面積Aeff を用いて被測定単一モード光ファイ
バの実効的な非線形定数を算出するものである。Further, the effective non-linear constant of the single mode optical fiber to be measured is calculated by using the effective area A eff obtained by the numerical calculation of the electric field distribution.
【0015】[0015]
【発明の実施の形態】本発明による実施の形態を以下に
説明するが、本発明はこれらの実施の形態に限定される
ものではない。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments according to the present invention will be described below, but the present invention is not limited to these embodiments.
【0016】本発明の実施の形態による単一モード光フ
ァイバの実効的な非線形定数の評価方法は以下の通りで
ある。The method of evaluating the effective nonlinear constant of the single mode optical fiber according to the embodiment of the present invention is as follows.
【0017】本実施形態の評価方法では、被測定単一モ
ード光ファイバの任意の断面における半径方法r、測定
波長λでの屈折率分布n0(r,λ) を、NFP法または
RNFP法等を用いて測定し、下記「数1」に示す式
(2)で表される関係を用いて、被測定単一モード光フ
ァイバ中におけるガラス材料の添加量分布M(r) を算出
する。ここで、上記NFP法またはRNFP法等を用い
て測定することは、下記文献7及び文献8に開示されて
いる。
文献7:D.Marcuse and H.M.Presby,"Automatic geomet
ric measurement of single-mode and multimode optic
al fibers",Appl.Opt.,vol.18,No.3,pp.402-409,1979.
文献8:K.I.White,"Practical application of the re
fracted nearfield technique for the measurement of
optical fiber refractive index profiles",Opt.Quan
tum Electron.,vol.11,p.185,1979.In the evaluation method of this embodiment, the radius method r and the refractive index distribution n 0 (r, λ) at the measurement wavelength λ in an arbitrary cross section of the single mode optical fiber to be measured are determined by the NFP method or the RNFP method. And the addition amount distribution M (r) of the glass material in the single-mode optical fiber to be measured is calculated using the relationship represented by the equation (2) shown in the following "Equation 1". Here, the measurement using the NFP method or the RNFP method is disclosed in the following Documents 7 and 8. Reference 7: D. Marcuse and HMPresby, "Automatic geomet
ric measurement of single-mode and multimode optic
al fibers ", Appl.Opt., vol.18, No.3, pp.402-409,1979. Reference 8: KIWhite," Practical application of the re
fracted nearfield technique for the measurement of
optical fiber refractive index profiles ", Opt.Quan
tum Electron., vol.11, p.185,1979.
【0018】[0018]
【数1】
ここで、式中のnos(λ)は測定波長λにおける純石英
の屈折率を表す。また、K(λ)は測定波長λにおける
特定の添加物に対する屈折率の添加量依存性を表し、純
石英に特定の添加物がM0 (単位:mol%)添加されたガ
ラスの波長λにおける屈折率n0(M0 ,λ)を知るこ
とにより、下記「数2」に示す次式(3)を用いて決定
できる。[Equation 1] Here, n os (λ) in the equation represents the refractive index of pure quartz at the measurement wavelength λ. Further, K (λ) represents the addition amount dependency of the refractive index with respect to the specific additive at the measurement wavelength λ, and at the wavelength λ of the glass in which the specific additive is added to pure quartz by M 0 (unit: mol%). By knowing the refractive index n 0 (M 0 , λ), the refractive index n 0 (M 0 , λ) can be determined using the following equation (3) shown in “Equation 2” below.
【0019】[0019]
【数2】
尚、純石英に特定の添加物がM0 添加されたガラスの任
意の波長λにおける屈折率n0(M0 ,λ)は、下記
「数3」に示す式(4)により求めることができ、式中
のAi ,Bi (i=1,2,3)はガラス材料に固有の
係数を表す。[Equation 2] The refractive index n 0 (M 0 , λ) of the glass in which a specific additive M 0 is added to pure quartz at an arbitrary wavelength λ can be calculated by the following formula (4). , A i and B i (i = 1, 2, 3) in the equation represent coefficients peculiar to the glass material.
【0020】純石英に特定の添加物がM0 添加されたガ
ラスの任意の波長λにおける屈折率n0(M0 ,λ)の
測定は、例えば「文献9」(J.W.Fleming,"Material di
spersion in lightguide glasses",Electron.Lett.,vo
l.14,No.11,pp.326-328,1978.)等の測定例から知るこ
とができる。The measurement of the refractive index n 0 (M 0 , λ) of a glass in which a specific additive M 0 is added to pure quartz at an arbitrary wavelength λ can be performed, for example, in “Reference 9” (JWFleming, “Material di”).
spersion in lightguide glasses ", Electron.Lett., vo
It can be known from measurement examples such as l.14, No.11, pp.326-328, 1978.).
【0021】[0021]
【数3】 [Equation 3]
【0022】次に、上記「数1」に示す式(2)のM
(r) を用い、3つの基準波長、0.48613 、0.58756 、及
び0.65627 μmにおける屈折率分布、それぞれnF (r)
、nD(r) 、及びnC (r) を、下記「数4」に示す次式
(5)の関係を用いて求める。Next, M in the equation (2) shown in the above "Equation 1"
(r), three reference wavelengths, refractive index distributions at 0.48613, 0.58756, and 0.65627 μm, respectively, n F (r)
, N D (r), and n C (r) are obtained using the relationship of the following equation (5) shown in the following “Equation 4”.
【0023】[0023]
【数4】 [Equation 4]
【0024】更に、下記「数5」に示す式(6)で表さ
れる経験式を用いて、被測定単一モード光ファイバの非
線形屈折率分布n2(r) [単位:×10-20 m2/W]を
算出する。Further, using the empirical formula expressed by the formula (6) shown in the following "Equation 5", the nonlinear refractive index distribution n 2 (r) of the single mode optical fiber to be measured [unit: × 10 -20] m 2 / W] is calculated.
【0025】この下記「数5」に示す式(6)で表され
る経験式を用いて、石英ガラスの線形屈折率n0 から非
線形屈折率n2を算出する文献として例えば「文献1
0」(N.L.Boling et al,"Emprical relationships for
predicting nonlinear refractive index changes in
optical solids",J.Quantum Electron.,QE-14,pp.601-6
08,1978.)を挙げることができる。As a reference for calculating the nonlinear refractive index n 2 from the linear refractive index n 0 of quartz glass by using the empirical formula expressed by the equation (6) shown in the following “Equation 5”, for example, “Reference 1” is given.
0 "(NLBoling et al," Emprical relationships for
predicting nonlinear refractive index changes in
optical solids ", J.Quantum Electron., QE-14, pp.601-6
08,1978.) Can be mentioned.
【0026】[0026]
【数5】
ここで、式中のvD (r) は下記「数6」に示す式(7)
で与えられるアッべ数を表す。[Equation 5] Here, v D (r) in the equation is the equation (7) shown in the following “Equation 6”.
Represents the Abbe number given by.
【0027】[0027]
【数6】 [Equation 6]
【0028】次に、被測定単一モード光ファイバの所望
の波長λにおけるニア・フィールド・パターンまたは、
ファー・フィールド・パターンを、NFP法、もしくは
FFP法等(文献11:Y.Murakami et al.,"Cut-off w
avelength measurements forsingle-mode optical fibe
rs",Appl.Opt.,vol.18,p.1101,1979.、文献12:A.R.T
ynes et al.,"Low v-number optical fiber:secondary
maxims in the far-field radiation pattern",J.Opt,S
oc.Am.,vol.69,No.11,pp.1587-1596,1979. )により測
定し、被測定ファイバの任意の断面における電界分布E
(r,λ)を算出する。Next, the near-field pattern at the desired wavelength λ of the single mode optical fiber to be measured or
The far field pattern is calculated by the NFP method, the FFP method, etc. (Reference 11: Y. Murakami et al., "Cut-off w").
avelength measurements for single-mode optical fiber
rs ", Appl.Opt., vol.18, p.1101,1979., Reference 12: ART
ynes et al., "Low v-number optical fiber: secondary
maxims in the far-field radiation pattern ", J.Opt, S
oc.Am., vol.69, No.11, pp.1587-1596,1979.), and the electric field distribution E at any cross section of the measured fiber.
Calculate (r, λ).
【0029】尚、FFP法によりファー・フィールド・
パターンを測定した場合、測定結果をハンケル変換する
ことにより、被測定単一モード光ファイバの電界分布E
(r,λ)を算出することができる。The far field by the FFP method
When the pattern is measured, the electric field distribution E of the single mode optical fiber to be measured is converted by Hankel conversion of the measurement result.
(R, λ) can be calculated.
【0030】次に、前記の非線形屈折率分布n2(r) 、
及び電界分布E(r,λ)の測定結果を、下記「数7」
に示す式(8)で表される関係式を用いて演算処理を行
うことにより、被測定ファイバの実効的な非線形屈折率
n2(eff)(λ) を算出する。Next, the above-mentioned nonlinear refractive index distribution n 2 (r),
And the measurement result of the electric field distribution E (r, λ) are shown in the following "Formula 7".
The effective nonlinear refractive index n 2 (eff) (λ) of the fiber to be measured is calculated by performing the arithmetic processing using the relational expression represented by the equation (8).
【0031】[0031]
【数7】 [Equation 7]
【0032】また、上記「数7」に示す式(8)で得ら
れたn2(eff)(λ) を実効断面積A eff(λ)で割るこ
とにより、被測定光ファイバの実効的な非線形定数n
2(eff)(λ) /Aeff(λ)を算出する。尚、A
eff(λ)は前述のE(r,λ)を用いて、下記「数
8」に示す次式(9)により算出される。Further, it is obtained by the equation (8) shown in the above "Equation 7".
N2 (eff)(Λ) is the effective area A effDivide by (λ)
And the effective nonlinear constant n of the optical fiber under test is
2 (eff)(Λ) / AeffCalculate (λ). Incidentally, A
eff(Λ) uses the above E (r, λ) and
8 ”and is calculated by the following equation (9).
【0033】[0033]
【数8】 [Equation 8]
【0034】このように本発明の測定方法では、線形の
屈折率分布と所望の測定波長における電界分布の測定結
果を用いて、被測定単一モード光ファイバの実効的な非
線形屈折率、並びに実効的な非線形定数の評価を行うこ
とができる。As described above, in the measuring method of the present invention, the effective nonlinear refractive index and the effective refractive index of the single mode optical fiber to be measured are used by using the measurement results of the linear refractive index distribution and the electric field distribution at the desired measurement wavelength. The non-linear constant can be evaluated.
【0035】また、線形の屈折率分布、並びに電界分布
は、所望の測定波長を有する連続波光源と短尺な光ファ
イバを用いて測定可能なため、測定用光源の特性や被測
定単一モード光ファイバの特性による測定精度の劣化を
回避することができる。Since the linear refractive index distribution and the electric field distribution can be measured using a continuous wave light source having a desired measurement wavelength and a short optical fiber, the characteristics of the measuring light source and the single mode light to be measured can be measured. It is possible to avoid deterioration of measurement accuracy due to the characteristics of the fiber.
【0036】[0036]
【実施例】以下、本発明の効果を確認する好適な実施例
について説明するが、本発明はこれらに限定されるもの
ではない。EXAMPLES Preferred examples for confirming the effects of the present invention will be described below, but the present invention is not limited thereto.
【0037】本発明の実施例では、RNFP法とFFP
法を用いて1.3μm帯零分散ファイバ(SMF)の屈折
率分布と所望の波長1.55μmにおける電界分布を測定
し、被測定SMFの実効的な非線形屈折率、並びに実効
的な非線形定数を評価した。In the embodiment of the present invention, the RNFP method and the FFP are used.
Method is used to measure the refractive index distribution of a 1.3 μm band zero dispersion fiber (SMF) and the electric field distribution at a desired wavelength of 1.55 μm, and evaluate the effective nonlinear refractive index and effective nonlinear constant of the measured SMF. did.
【0038】図1は本発明の実施形態による、単一モー
ド光ファイバの実効的な非線形定数測定方法の処理手順
を示すフロー図である。FIG. 1 is a flow chart showing a processing procedure of an effective nonlinear constant measuring method for a single mode optical fiber according to an embodiment of the present invention.
【0039】 ステップ1:先ず、図1に示すよう
に、本実施例における単一モード光ファイバの実効的な
非線形定数測定では、被測定単一モード光ファイバの任
意の断面における測定波長λでの屈折率分布n0(r,
λ) を、RNFP法もしくはNFP法を用いて測定する
(S101)。Step 1: First, as shown in FIG. 1, in the effective nonlinear constant measurement of the single mode optical fiber in the present embodiment, the measurement wavelength λ at an arbitrary cross section of the single mode optical fiber to be measured is measured. Refractive index distribution n 0 (r,
λ) is measured using the RNFP method or the NFP method (S101).
【0040】 ステップ2:次に、同被測定単一モー
ド光ファイバの任意の断面におけるフィールド・パター
ンを、所望の波長λを有する測定光源とFFP法もしく
はNFP法を用いて測定する(S102)。Step 2: Next, the field pattern in an arbitrary cross section of the single-mode optical fiber to be measured is measured using a measurement light source having a desired wavelength λ and the FFP method or the NFP method (S102).
【0041】 ステップ3: 次に、前記ステップ1
(S101)で得られた屈折率分布n 0(r,λ) と式
(2)〜式(4)の関係を用いて、被測定単一モード光
ファイバの添加量分布M(r) を算出する(S103)。
尚、本実施例の測定で用いたSMFは純石英にゲルマニ
ウムを添加したコア部と、純石英のクラッド部により構
成されるため、本実施例では式(4)の係数A i ,Bi
(i=1,2,3)に文献9を参照した下記「表1」の
値を用いて演算処理を行った。Step 3: Next, the above Step 1
Refractive index distribution n obtained in (S101) 0(r, λ) and formula
Using the relationships of (2) to (4), the measured single mode light
A fiber addition amount distribution M (r) is calculated (S103).
The SMF used in the measurement of this example was made of pure quartz and germanium.
It consists of a core part with um added and a pure quartz clad part.
Therefore, in this embodiment, the coefficient A of the equation (4) is i, Bi
(I = 1, 2, 3)
A calculation process was performed using the values.
【0042】また、このときの測定波長0.67μmにおけ
る純石英の屈折率n0s(0.67μm)は1.4563、屈折率の
ゲルマニウム添加量依存性K(0.67μm)は1.585 ×1
0-3(単位:1/mol%)となる。At this time, the refractive index n 0s (0.67 μm) of pure quartz at the measurement wavelength of 0.67 μm is 1.4563, and the germanium addition amount dependency K (0.67 μm) of the refractive index is 1.585 × 1.
It becomes 0 -3 (unit: 1 / mol%).
【0043】[0043]
【表1】 [Table 1]
【0044】 ステップ4:次に、前記ステップ3
(S103)で得られた添加量分布M(r) と関係式
(5)を用いて3つの基準波長における屈折率分布nF
(r) 、nD (r) 、及びnC (r) を算出し、式(6)並び
に式(7)の関係を用いて非線形屈折率分布n2(r)を算
出する(S104)。Step 4: Next, the above Step 3
Using the addition amount distribution M (r) obtained in (S103) and the relational expression (5), the refractive index distribution n F at three reference wavelengths is calculated.
(r), n D (r), and n C (r) are calculated, and the nonlinear refractive index distribution n 2 (r) is calculated using the relationships of the expressions (6) and (7) (S104).
【0045】 ステップ5:更に、前記ステップ2
(S102)で得られたファー・フィールド・パターン
をハンケル変換し、所望の波長λにおける被測定単一モ
ード光ファイバの電界分布E(r,λ)を算出する(S
105)。尚、上記ステップ2(S102)においてN
FP法によりニア・フィールド・パターンを測定した場
合には、ステップ5(S105)の演算処理は不要とな
る。Step 5: Further, the above Step 2
The far field pattern obtained in (S102) is subjected to Hankel conversion to calculate the electric field distribution E (r, λ) of the measured single mode optical fiber at the desired wavelength λ (S).
105). In step 2 (S102), N
When the near field pattern is measured by the FP method, the calculation process of step 5 (S105) is unnecessary.
【0046】 ステップ6:次に、前記ステップ4
(S104)の非線形屈折率分布n2(r)及び、ステップ
5(S105)の電界分布E(r,λ)を式(8)に代
入し、所望の波長λにおける被測定単一モード光ファイ
バの実効的な非線形屈折率n2(ef f)(λ)を評価する
(S106)。Step 6: Next, Step 4
Nonlinear refractive index distribution n in (S104)2(r) and step
5 (S105), the electric field distribution E (r, λ) is replaced by the equation (8).
The single-mode optical fiber to be measured at the desired wavelength λ.
Effective nonlinear refractive index n2 (ef f)Evaluate (λ)
(S106).
【0047】 ステップ7:更に、前記ステップ5
(S105)の電界分布E(r,λ)と式(9)の関係
を用いて、所望の波長λにおける被測定単一モード光フ
ァイバの実効断面積Aeff (λ)を算出する(S10
7)。Step 7: Further, the above Step 5
The effective cross-sectional area A eff (λ) of the measured single-mode optical fiber at the desired wavelength λ is calculated using the relationship between the electric field distribution E (r, λ) in (S105) and the equation (9) (S10).
7).
【0048】 ステップ8:前記ステップ6(S10
6)の実効的な非線形屈折率n2(eff)(λ)とステップ
7の実効断面積Aeff(λ)を用いて、所望の波長λに
おける被測定単一モード光ファイバの実効的な非線形定
数n2(eff)(λ)/Aeff(λ)を評価する(S10
8)。Step 8: Step 6 (S10)
Using the effective nonlinear refractive index n 2 (eff) (λ) of 6) and the effective cross-sectional area A eff (λ) of step 7, the effective nonlinearity of the measured single-mode optical fiber at the desired wavelength λ. The constant n 2 (eff) (λ) / A eff (λ) is evaluated (S10).
8).
【0049】図2は、本発明による実施形態の単一モー
ド光ファイバの非線形定数測定方法を実施する装置の概
略構成を示す模式図である。図2中、符号11は屈折率
分布測定装置、12はフィールド・パターン測定装置、
13は演算処理部を各々図示する。FIG. 2 is a schematic view showing the schematic arrangement of an apparatus for carrying out the method for measuring the nonlinear constant of a single-mode optical fiber according to the embodiment of the present invention. In FIG. 2, reference numeral 11 is a refractive index distribution measuring device, 12 is a field pattern measuring device,
Reference numerals 13 respectively denote arithmetic processing units.
【0050】図3は被測定SMFの測定波長λ(=0.67
μm)での屈折率分布n0(r,λ)の測定結果を示す図
である。ここで、図3において横軸は被測定SMFの任
意の測定断面における半径r、縦軸は線形の屈折率n0
を表している。FIG. 3 shows the measurement wavelength λ of the SMF to be measured (= 0.67).
is a graph showing measurement results of the refractive index distribution n 0 (r, λ) in [mu] m). Here, in FIG. 3, the horizontal axis represents the radius r in an arbitrary measurement cross section of the SMF to be measured, and the vertical axis represents the linear refractive index n 0.
Is represented.
【0051】図4は被測定SMFの波長λ(=1.55μ
m)におけるファー・フィールド・パターン測定結果を
示す図である。ここで、図4において横軸は被測定SM
Fの任意の測定断面におけるFFP受光素子の回転角
度、縦軸は規格化された受光強度を示している。FIG. 4 shows the wavelength λ (= 1.55 μ) of the SMF to be measured.
It is a figure which shows the far field pattern measurement result in m). Here, in FIG. 4, the horizontal axis represents the measured SM.
The rotation angle of the FFP light receiving element in an arbitrary measurement section of F, and the vertical axis represents the normalized light receiving intensity.
【0052】図5は、前記図3の結果を用い上述の処理
手順により計算された、被測定SMFのガラス材料の添
加量分布M(r) の演算処理結果を示す図である。ここ
で、図5において横軸は被測定SMFの任意の測定断面
における半径r、縦軸はゲルマニウムの添加量Mを表し
ている。FIG. 5 is a diagram showing the calculation processing result of the addition amount distribution M (r) of the glass material of the SMF to be measured, which is calculated by the processing procedure described above using the result of FIG. Here, in FIG. 5, the horizontal axis represents the radius r in an arbitrary measurement cross section of the SMF to be measured, and the vertical axis represents the addition amount M of germanium.
【0053】図6は、前記図4、並びに図5の結果を用
い上述の処理手順により計算された、被測定SMFの非
線形屈折率分布n2(r)、及び波長1.55μmにおける電界
強度分布E2(r,λ)の演算処理結果を示す図である。
ここで、図6において横軸は被測定SMFの任意の測定
断面における半径r、縦軸は非線形屈折率n2 並びに規
格化電界強度E2 を表している。FIG. 6 shows the nonlinear refractive index distribution n 2 (r) of the SMF to be measured and the electric field intensity distribution E at a wavelength of 1.55 μm, which are calculated by the above-described processing procedure using the results of FIGS. 4 and 5. It is a figure which shows the calculation processing result of 2 (r, (lambda)).
Here, in FIG. 6, the horizontal axis represents the radius r in an arbitrary measurement cross section of the SMF to be measured, and the vertical axis represents the nonlinear refractive index n 2 and the normalized electric field strength E 2 .
【0054】図6の結果を式(8)及び(9)の関係を
用いて演算処理することにより、被測定SMFの波長1.
55μmでの実効的な非線形屈折率n2(eff) (λ)及び非
線形定数n2(eff)(λ)/Aeff(λ)は、それぞれ以
下のように評価できる。By calculating the result of FIG. 6 using the relations of equations (8) and (9), the wavelength 1.
The effective nonlinear refractive index n 2 (eff) (λ) and the nonlinear constant n 2 (eff) (λ) / A eff (λ) at 55 μm can be evaluated as follows.
【0055】 実効非線形屈折率n2(eff)(λ) 2.66×10-20 m2 /W 実効非線形定数n2(eff) (λ)/Aeff(λ) 3.36×10-10 W-1 Effective Nonlinear Refractive Index n 2 (eff) (λ) 2.66 × 10 -20 m 2 / W Effective Nonlinear Constant n 2 (eff) (λ) / A eff (λ) 3.36 × 10 -10 W -1
【0056】[0056]
【発明の効果】以上説明したように、本発明によれば、
被測定単一モード光ファイバの任意の断面で測定した屈
折率分布及び、所望の測定波長におけるフィールド・パ
ターンを演算処理することにより、被測定単一モード光
ファイバの実効的な非線形屈折率、並びに実効的な非線
形定数を、被測定単一モード光ファイバの特性に無依存
に評価することができる。As described above, according to the present invention,
The effective non-linear refractive index of the measured single mode optical fiber is calculated by processing the refractive index distribution measured in an arbitrary cross section of the measured single mode optical fiber and the field pattern at the desired measurement wavelength. The effective nonlinear constant can be evaluated independent of the characteristics of the single mode optical fiber under test.
【0057】本発明によれば、従来技術のパルス光を用
いた測定法における測定精度が光パルスの形状に強く依
存したり、被測定光ファイバの長さ、波長分散、実効断
面積に依存するといった課題を解決し、高精度な非線形
定数を求めることが可能になる。According to the present invention, the measurement accuracy in the conventional measuring method using pulsed light strongly depends on the shape of the optical pulse, and also depends on the length, wavelength dispersion, and effective sectional area of the optical fiber to be measured. It becomes possible to solve such a problem and obtain a highly accurate nonlinear constant.
【0058】また、屈折率分布及びフィールド・パター
ンの測定は、所望の波長を有する連続波光源を用いて行
えるため、測定光源の特性により測定精度が変動すると
いった問題も生じない。Further, since the refractive index distribution and the field pattern can be measured using a continuous wave light source having a desired wavelength, there is no problem that the measurement accuracy varies depending on the characteristics of the measurement light source.
【図1】本発明の実施形態による単一モード光ファイバ
の実効的な非線形定数測定方法の処理手順を示すフロー
図である。FIG. 1 is a flowchart showing a processing procedure of an effective nonlinear constant measuring method for a single mode optical fiber according to an embodiment of the present invention.
【図2】本発明の実施形態による単一モード光ファイバ
の実効的な非線形定数測定方法を実施する測定装置の概
略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a measuring apparatus that implements an effective nonlinear constant measuring method for a single-mode optical fiber according to an embodiment of the present invention.
【図3】本発明の実施例における被測定SMFの測定波
長0.67μmにおける屈折率分布n0(r,λ)の測定結果
を示す図である。FIG. 3 is a diagram showing a measurement result of a refractive index distribution n 0 (r, λ) at a measurement wavelength of 0.67 μm of an SMF to be measured in an example of the present invention.
【図4】本発明の実施例における被測定SMFの所望の
波長1.55μmにおけるファー・フィールド・パターンの
測定結果を示す図である。FIG. 4 is a diagram showing a measurement result of a far field pattern at a desired wavelength of 1.55 μm of an SMF to be measured in an example of the present invention.
【図5】本発明の実施例における被測定SMFのガラス
材料の添加量分布M(r) の演算処理結果を表す図であ
る。FIG. 5 is a diagram showing a calculation processing result of a glass material addition amount distribution M (r) of a measured SMF in an example of the present invention.
【図6】本発明の実施例における被測定SMFの非線形
屈折率分布n2(r)並びに所望の波長1.55μmにおける電
界強度分布E2(r,λ)の演算処理結果を示す図であ
る。FIG. 6 is a diagram showing a calculation processing result of a nonlinear refractive index distribution n 2 (r) of an SMF to be measured and an electric field intensity distribution E 2 (r, λ) at a desired wavelength of 1.55 μm in an example of the present invention.
11 屈折率分布測定装置 12 フィールド・パターン測定装置 13 演算処理部 11 Refractive index distribution measuring device 12 field pattern measuring device 13 Arithmetic processing unit
Claims (2)
ける屈折率分布、並びに所望の波長λでの電界分布を測
定し、 屈折率分布と単一モード光ファイバ中のガラス材料によ
り決定される非線形屈折率の添加物依存性を用いて、被
測定単一モード光ファイバの非線形屈折率分布を求め、 所望の波長λでの電界分布との演算処理を行うことによ
り、 被測定単一モード光ファイバの所望の波長λにおける実
効的な非線形屈折率及び実効的な非線形定数を高精度に
評価することを特徴とする単一モード光ファイバの実効
的な非線形定数測定方法。1. A non-linearity determined by measuring a refractive index distribution in an arbitrary cross section of a single mode optical fiber and an electric field distribution at a desired wavelength λ and determining a refractive index distribution and a glass material in the single mode optical fiber. Using the additive dependence of the refractive index, the nonlinear refractive index distribution of the single-mode optical fiber to be measured is calculated, and the calculation is performed with the electric field distribution at the desired wavelength λ to obtain the single-mode optical fiber to be measured. A method for measuring an effective nonlinear constant of a single-mode optical fiber, which comprises highly accurately evaluating an effective nonlinear refractive index and an effective nonlinear constant at a desired wavelength λ.
ード光ファイバに入射する手段と、 単一モード光ファイバの任意の断面における屈折率分布
を測定する手段と、 単一モード光ファイバの所望の測定波長における電界分
布を測定する手段と、 屈折率分布の非線形屈折率分布への変換、並びに電界分
布との数値積分により被測定単一モード光ファイバの実
効的な非線形屈折率、並びに実効的な非線形定数を計算
する演算手段とを備えたことを特徴とする単一モード光
ファイバの実効的な非線形定数測定装置。2. Means for injecting measurement light at a desired measurement wavelength into a single-mode optical fiber, means for measuring a refractive index distribution in an arbitrary cross section of the single-mode optical fiber, and desired for the single-mode optical fiber. Means for measuring the electric field distribution at the measurement wavelength of, the effective non-linear refractive index of the single-mode optical fiber to be measured, and the effective Effective non-linear constant measuring device for a single-mode optical fiber, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002139702A JP3932030B2 (en) | 2002-05-15 | 2002-05-15 | Nonlinear constant measuring method and apparatus for single mode optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002139702A JP3932030B2 (en) | 2002-05-15 | 2002-05-15 | Nonlinear constant measuring method and apparatus for single mode optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003329544A true JP2003329544A (en) | 2003-11-19 |
JP3932030B2 JP3932030B2 (en) | 2007-06-20 |
Family
ID=29700767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002139702A Expired - Fee Related JP3932030B2 (en) | 2002-05-15 | 2002-05-15 | Nonlinear constant measuring method and apparatus for single mode optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3932030B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL424092A1 (en) * | 2017-12-27 | 2019-07-01 | King Khalid University | Method and the stand for measurement of laser-stimulated change of the tertiary non-linear optical change in glasses, preferably fluoro-tellurite glasses |
-
2002
- 2002-05-15 JP JP2002139702A patent/JP3932030B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL424092A1 (en) * | 2017-12-27 | 2019-07-01 | King Khalid University | Method and the stand for measurement of laser-stimulated change of the tertiary non-linear optical change in glasses, preferably fluoro-tellurite glasses |
Also Published As
Publication number | Publication date |
---|---|
JP3932030B2 (en) | 2007-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Okamoto et al. | Chromatic dispersion characteristics of fibers with optical Kerr-effect nonlinearity | |
Dong et al. | Simultaneous temperature and strain sensing based on M-shaped single mode fiber | |
Zou et al. | Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers | |
Ye et al. | Ultralow-loss silicon nitride waveguides for parametric amplification | |
Anderson et al. | Length dependence of the effective cutoff wavelength in single-mode fibers | |
Rogers et al. | Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings | |
Wada et al. | Geo2 concentration dependence of nonlinear refractive index coefficients of silica‐based optical fibers | |
Chakraborty et al. | A novel and accurate method for analysis of single-mode dispersion-shifted and dispersion-flattened fiber directional coupler | |
JP3932030B2 (en) | Nonlinear constant measuring method and apparatus for single mode optical fiber | |
JP3257197B2 (en) | Method and apparatus for evaluating single mode optical fiber characteristics | |
Zhao et al. | Investigation on single-mode-multimode-single-mode fiber structure | |
Grigorova et al. | Measurement of the dispersion of an antiresonant hollow core fiber | |
JP4109574B2 (en) | Loss characteristics evaluation method for optical fiber transmission line | |
Maity et al. | A simple method for study of effect of Kerr nonlinearity on effective core area, index of refraction and fractional modal power through the core of monomode graded index fibre | |
Funatsuki et al. | Data Assimilation Retrieval of Structure Model of Tapered Waveguides for Optical Coupling | |
JP4082592B2 (en) | Method and apparatus for evaluating characteristic distribution of single mode optical fiber | |
JP3388496B2 (en) | Characteristic evaluation method of single mode optical fiber | |
Majumdar et al. | A simple method for prediction of effective core area and index of refraction of single-mode graded index fiber in the low V region | |
He et al. | The intrinsic mode activation and evolution in fiber splicing based on 3D refractive index profile characterization | |
JP4083620B2 (en) | Method for evaluating Raman gain characteristic of optical fiber, method for estimating Raman gain characteristic spectrum, and apparatus for evaluating Raman gain characteristic | |
Ding et al. | Sapphire fiber Bragg grating coupled with graded-index fiber lens | |
JP3137585B2 (en) | How to measure microbending amount | |
Ohashi et al. | Mode field diameter measurement conditions for fibers by transmitted field pattern methods | |
Maity et al. | Prediction of Effective Core Area and Index of Refraction of Single-Mode Graded Index Fiber in Presence of Kerr Nonlinearity | |
Pedersen et al. | Measurement and modeling of low-wavelength losses in silica fibers and their impact at communication wavelengths |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040709 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070306 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20070307 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070307 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070307 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110323 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110323 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120323 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130323 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |