JP2003328772A - Electric generator - Google Patents
Electric generatorInfo
- Publication number
- JP2003328772A JP2003328772A JP2002141038A JP2002141038A JP2003328772A JP 2003328772 A JP2003328772 A JP 2003328772A JP 2002141038 A JP2002141038 A JP 2002141038A JP 2002141038 A JP2002141038 A JP 2002141038A JP 2003328772 A JP2003328772 A JP 2003328772A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- solid oxide
- oxide fuel
- heat exchanger
- compressed air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガスタービンエン
ジンと固体電解質型燃料電池とを一体に備えた発電装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generator that integrally includes a gas turbine engine and a solid oxide fuel cell.
【0002】[0002]
【従来の技術】特表2001−516935号公報に
は、ターボマシンと燃料電池とを組み合わせたハイブリ
ッド電力システムが記載されている。ターボマシンはコ
ンバスタで燃料を燃焼させて発生した高圧ガスでパワー
タービンを回転させることでジェネレータを駆動して発
電を行い、燃料電池はターボマシンのコンプレッサおよ
び復熱器を通過して加熱された空気と燃料とを反応させ
て発電を行う。2. Description of the Related Art Japanese Patent Publication No. 2001-516935 discloses a hybrid electric power system in which a turbomachine and a fuel cell are combined. The turbomachine drives the generator by rotating the power turbine with the high-pressure gas generated by burning the fuel in the combustor to generate electricity, and the fuel cell passes through the compressor and recuperator of the turbomachine to heat the heated air. And react with fuel to generate electricity.
【0003】米国特許第6213234号明細書には、
ガスタービンエンジンで駆動される燃料電池およびジェ
ネレータを備えた車両が記載されている。車両を駆動す
るのに必要な最大電力の約50%未満を燃料電池から供
給することで、燃料電池を無闇に大型化することなく燃
料消費量の節減を図り、また車両の必要電力が小さいと
きに、燃料電池は必要電力の全てあるいは大部分を効率
的に供給する。US Pat. No. 6,213,234 discloses that
A vehicle with a fuel cell and a generator driven by a gas turbine engine is described. By supplying less than about 50% of the maximum electric power required to drive the vehicle from the fuel cell, it is possible to reduce the fuel consumption without enlarging the fuel cell inevitably and when the electric power required by the vehicle is small. In addition, fuel cells efficiently supply all or most of the required power.
【0004】米国特許第6255010号明細書には、
ガスタービンエンジン、燃料電池およびジェネレータを
含む発電装置を共通の圧力容器内に収納して加圧状態で
運転するものが記載されている。US Pat. No. 6,255,010 describes
It describes that a power generation device including a gas turbine engine, a fuel cell and a generator is housed in a common pressure vessel and operated in a pressurized state.
【0005】[0005]
【発明が解決しようとする課題】ところで、ガスタービ
ンエンジンと燃料電池とを分離して配置するとシステム
全体の寸法が大型化する問題があるため、ガスタービン
エンジンのケーシングの内部に燃料電池を収納してコン
パクト化を図ることが考えられる。しかしながら、ガス
タービンエンジンに燃料電池を単純に組み合わせてもシ
ステムのコンパクト化には限界があり、しかも運転時に
数百度の高温になるガスタービンエンジンおよび燃料電
池の熱膨張を効果的に吸収することが難しいため、両者
の熱応力が増加して発電効率の低下や耐久性の低下の要
因となる可能性がある。If the gas turbine engine and the fuel cell are separately arranged, the size of the entire system becomes large. Therefore, the fuel cell is housed inside the casing of the gas turbine engine. It is possible to make it compact. However, even if a fuel cell is simply combined with a gas turbine engine, there is a limit to the compactness of the system, and moreover, it is possible to effectively absorb the thermal expansion of the gas turbine engine and the fuel cell, which become a high temperature of several hundred degrees during operation. Since it is difficult, there is a possibility that the thermal stress of the both increases and this may cause a decrease in power generation efficiency and a decrease in durability.
【0006】本発明は前述の事情に鑑みてなされたもの
で、ガスタービンエンジンと固体電解質型燃料電池とを
一体に備えた発電装置をコンパクト化するとともに、発
電効率および耐久性の向上を図ることを目的とする。The present invention has been made in view of the above-mentioned circumstances, and it is intended to make a power generator integrally provided with a gas turbine engine and a solid oxide fuel cell compact, and to improve power generation efficiency and durability. With the goal.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載された発明によれば、ガスタービン
エンジンと固体電解質型燃料電池とを一体に備えた発電
装置であって、ガスタービンエンジンはコンプレッサホ
イール、タービンホイール、熱交換器および燃焼器を含
み、コンプレッサホイールは圧縮空気を熱交換器を介し
て固体電解質型燃料電池および燃焼器に供給し、タービ
ンホイールは固体電解質型燃料電池および燃焼器からの
排ガスにより駆動されてコンプレッサホイールを駆動
し、熱交換器はタービンホイールからの排ガスとコンプ
レッサホイールからの圧縮空気との間で熱交換を行うも
のにおいて、コンプレッサホイール、タービンホイー
ル、熱交換器、燃焼器および固体電解質型燃料電池はコ
ンプレッサホイールおよびタービンホイールよりなる回
転部の軸線を共有する軸対称な形状であり、かつ前記回
転部に対して前記軸線方向の一方側に熱交換器および固
体電解質型燃料電池を順次配置したことを特徴とする発
電装置が提案される。In order to achieve the above object, according to the invention described in claim 1, there is provided a power generation device integrally including a gas turbine engine and a solid oxide fuel cell, The gas turbine engine includes a compressor wheel, a turbine wheel, a heat exchanger and a combustor, the compressor wheel supplies compressed air to the solid oxide fuel cell and the combustor through the heat exchanger, and the turbine wheel is a solid oxide fuel. The compressor wheel is driven by the exhaust gas from the battery and the combustor to drive the compressor wheel, and the heat exchanger performs heat exchange between the exhaust gas from the turbine wheel and the compressed air from the compressor wheel. The heat exchanger, combustor and solid oxide fuel cell should be And a turbine wheel having an axially symmetric shape that shares an axis of a rotating portion, and a heat exchanger and a solid oxide fuel cell are sequentially arranged on one side in the axial direction with respect to the rotating portion. A power generation device is proposed.
【0008】上記構成によれば、ガスタービンエンジン
の構成要素であるコンプレッサホイール、タービンホイ
ール、熱交換器および燃焼器と固体電解質型燃料電池と
を、コンプレッサホイールおよびタービンホイールより
なる回転部の軸線を共有する軸対称な形状にし、かつ回
転部に対して軸線方向の一方側に熱交換器および固体電
解質型燃料電池を順次配置したので、発電装置全体をコ
ンパクト化できるだけでなく、熱交換器や固体電解質型
燃料電池に入る圧縮空気や排ガスの流速を均一化し、更
に圧縮空気や排ガスの流れをスムーズにして圧力損失を
減少させることで発電効率を高めることができる。また
上記軸対称の配置により、発電装置の熱膨張により発生
する熱応力を最小限に抑えて発電効率の向上および耐久
性の向上を図ることができる。According to the above construction, the compressor wheel, the turbine wheel, the heat exchanger and the combustor, which are the constituent elements of the gas turbine engine, and the solid oxide fuel cell, and the axis line of the rotating portion composed of the compressor wheel and the turbine wheel are arranged. The shared axisymmetric shape and the sequential arrangement of the heat exchanger and the solid oxide fuel cell on one side in the axial direction with respect to the rotating part not only make the entire power generator compact but also make it possible to reduce the heat exchanger and solid state. Power generation efficiency can be improved by making the flow velocity of compressed air and exhaust gas into the electrolyte fuel cell uniform and smoothing the flow of compressed air and exhaust gas to reduce pressure loss. In addition, the above-mentioned axisymmetric arrangement can minimize the thermal stress generated by the thermal expansion of the power generator to improve the power generation efficiency and the durability.
【0009】また請求項2に記載された発明によれば、
請求項1の構成に加えて、熱交換器および固体電解質型
燃料電池は前記軸線を中心とする円環状であることを特
徴とする発電装置が提案される。According to the invention described in claim 2,
In addition to the configuration of claim 1, there is proposed a power generation device characterized in that the heat exchanger and the solid oxide fuel cell have an annular shape centered on the axis.
【0010】上記構成によれば、熱交換器および固体電
解質型燃料電池が回転部の軸線を中心とする円環状であ
るため、熱交換器および固体電解質型燃料電池の半径方
向内側の空間にガスタービンエンジンの構成要素を収納
してコンパクト化を図ることができ、しかもガスタービ
ンエンジンが発生する熱を半径方向外側の熱交換器およ
び固体電解質型燃料電池で回収することができる。According to the above structure, since the heat exchanger and the solid oxide fuel cell have an annular shape centered on the axis of the rotating portion, the gas is generated in the space radially inside the heat exchanger and the solid oxide fuel cell. The components of the turbine engine can be housed in a compact size, and the heat generated by the gas turbine engine can be recovered by the heat exchanger and the solid oxide fuel cell located radially outside.
【0011】また請求項3に記載された発明によれば、
請求項1の構成に加えて、コンプレッサホイールから熱
交換器に圧縮空気を導く圧縮空気通路を、タービンホイ
ールから熱交換器に排ガスを導く排ガス通路の半径方向
外側に配置したことを特徴とする発電装置が提案され
る。According to the invention described in claim 3,
In addition to the configuration of claim 1, a compressed air passage for guiding compressed air from the compressor wheel to the heat exchanger is arranged radially outside of an exhaust gas passage for guiding exhaust gas from the turbine wheel to the heat exchanger. A device is proposed.
【0012】上記構成によれば、圧縮空気通路を排ガス
通路の半径方向外側に配置したので、比較的高温の排ガ
スが通る排ガス通路から逃げる熱を比較的低温の圧縮空
気が通る圧縮空気通路で回収して発電効率を一層高める
ことができる。According to the above construction, since the compressed air passage is arranged radially outside the exhaust gas passage, the heat escaping from the exhaust gas passage through which the relatively high temperature exhaust gas passes is recovered by the compressed air passage through which the relatively low temperature compressed air passes. The power generation efficiency can be further improved.
【0013】また請求項4に記載された発明によれば、
請求項1の構成に加えて、固体電解質型燃料電池は前記
軸線を中心とする円環状であり、その半径方向内側の空
間に燃焼器を配置したことを特徴とする発電装置が提案
される。According to the invention described in claim 4,
In addition to the configuration of claim 1, a solid oxide fuel cell is an annular shape having the axis as a center, and a combustor is arranged in a space radially inward of the solid oxide fuel cell.
【0014】上記構成によれば、円環状の固体電解質型
燃料電池の半径方向内側の空間に燃焼器を配置したの
で、燃焼器が発生する熱を固体電解質型燃料電池で回収
し、特に始動初期の固体電解質型燃料電池を早期に活性
化して発電効率を向上させることができる。According to the above construction, since the combustor is arranged in the space radially inside of the annular solid oxide fuel cell, the heat generated by the combustor is recovered by the solid oxide fuel cell, especially at the initial stage of starting. The solid oxide fuel cell of 1) can be activated early to improve the power generation efficiency.
【0015】尚、実施例の第1圧縮空気通路12は本発
明の圧縮空気通路に対応する。The first compressed air passage 12 of the embodiment corresponds to the compressed air passage of the present invention.
【0016】[0016]
【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に示した本発明の実施例に基づいて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below based on the embodiments of the present invention shown in the accompanying drawings.
【0017】図1および図2は本発明の第1実施例を示
すもので、図1は発電装置の縦断面図、図2は図1の2
−2線断面図である。1 and 2 show a first embodiment of the present invention. FIG. 1 is a vertical sectional view of a power generator, and FIG.
FIG.
【0018】図1および図2には、ガスタービンエンジ
ンGTに固体電解質型燃料電池FCを一体化した発電装
置が示される。ガスタービンエンジンGTは概略カップ
状の前部ケーシング11を備えており、前部ケーシング
11の内面に沿うように形成された第1圧縮空気通路1
2の上流側に、図示せぬエアクリーナおよびサイレンサ
に連なる吸気通路13が接続される。吸気通路13の中
央を貫通して一対のベアリング14,15で支持された
回転軸16には、遠心式のコンプレッサホイール17と
遠心式のタービンホイール18とが隣接して同軸に固定
される。コンプレッサホイール17の外周に放射状に形
成された複数のコンプレッサブレード17a…は前記吸
気通路13に臨んでおり、これらコンプレッサブレード
17a…の直下流に位置する第1圧縮空気通路12に複
数のコンプレッサディフューザ19…が設けられる。回
転軸16の前端にはタービンホイール18により駆動さ
れるジェネレータGEが設けられる。FIG. 1 and FIG. 2 show a power generator in which a solid oxide fuel cell FC is integrated with a gas turbine engine GT. The gas turbine engine GT is provided with a substantially cup-shaped front casing 11, and a first compressed air passage 1 formed along the inner surface of the front casing 11.
On the upstream side of 2, an intake passage 13 connected to an air cleaner and a silencer (not shown) is connected. A centrifugal compressor wheel 17 and a centrifugal turbine wheel 18 are adjacent and fixed coaxially to a rotating shaft 16 which is supported by a pair of bearings 14 and 15 penetrating the center of the intake passage 13. A plurality of compressor blades 17a radially formed on the outer periphery of the compressor wheel 17 face the intake passage 13, and a plurality of compressor diffusers 19 are provided in the first compressed air passage 12 located immediately downstream of these compressor blades 17a. ... is provided. A generator GE driven by a turbine wheel 18 is provided at the front end of the rotary shaft 16.
【0019】前部ケーシング11の後端に円環状に形成
された伝熱型の熱交換器20が配置される。熱交換器2
0は多数枚の金属薄板を放射方向に配置することで圧縮
空気通路と排ガス通路とを円周方向に交互に形成したも
ので、後端外周寄りの位置に第1圧縮空気通路12の下
流端に連なる圧縮空気入口21を備えるとともに前端内
周寄りの位置に圧縮空気出口22を備え、前端外周寄り
の位置に排ガス入口23を備えるとともに後端内周寄り
の位置に大気に連なる排ガス出口24を備える。熱交換
器20は、実線矢印で示す比較的に低温の圧縮空気と、
破線矢印で示す比較的に高温の排ガスとを相互に逆方向
に流すことにより、その流路の全長に亘って圧縮空気お
よび排ガス間の温度差を大きく保って熱交換効率を向上
させている。An annular heat transfer type heat exchanger 20 is arranged at the rear end of the front casing 11. Heat exchanger 2
Reference numeral 0 indicates that the compressed air passages and the exhaust gas passages are alternately formed in the circumferential direction by arranging a large number of thin metal plates in the radial direction, and the downstream end of the first compressed air passage 12 is located near the rear end outer circumference. And a compressed air outlet 22 at a position near the front end inner circumference, an exhaust gas inlet 23 at a position near the front end outer circumference, and an exhaust gas outlet 24 connected to the atmosphere at a position near the rear end inner circumference. Prepare The heat exchanger 20 includes relatively low temperature compressed air indicated by a solid arrow,
By flowing the relatively high temperature exhaust gas indicated by the broken line arrow in mutually opposite directions, a large temperature difference between the compressed air and the exhaust gas is maintained over the entire length of the flow path to improve the heat exchange efficiency.
【0020】熱交換器20の内周面から後方に向けて段
付き円筒状の後部ケーシング25が接続されており、後
部ケーシング25の後半部に円環状に形成された固体電
解質型燃料電池FCが収納される。後部ケーシング25
の内周面に沿って形成された第2圧縮空気通路26は、
その上流端が熱交換器20の圧縮空気出口22に連な
り、その下流端が固体電解質型燃料電池FCの外周部に
連なっている。固体電解質型燃料電池FCの半径方向内
側に単缶型の燃焼器27が配置されており、その後端に
燃料噴射ノズル28が設けられる。第2圧縮空気通路2
6の中間部分に固体電解質型燃料電池FCをバイパスす
る開口を開閉する開閉弁29…が設けられる。A stepped cylindrical rear casing 25 is connected rearward from the inner peripheral surface of the heat exchanger 20, and a solid electrolyte type fuel cell FC formed in an annular shape in the latter half of the rear casing 25 is provided. It is stored. Rear casing 25
The second compressed air passage 26 formed along the inner peripheral surface of
The upstream end thereof is connected to the compressed air outlet 22 of the heat exchanger 20, and the downstream end thereof is connected to the outer peripheral portion of the solid oxide fuel cell FC. A single-can combustor 27 is arranged radially inside the solid oxide fuel cell FC, and a fuel injection nozzle 28 is provided at the rear end of the combustor 27. Second compressed air passage 2
On-off valves 29 ... Which open and close an opening bypassing the solid oxide fuel cell FC are provided in the middle portion of 6.
【0021】回転軸16の後端に設けられたタービンホ
イール18の外周に放射状に形成された複数のタービン
ブレード18a…から延びる排ガス通路30が熱交換器
20の排ガス入口23に接続されており、この排ガス通
路30の半径方向外側が前記第1圧縮空気通路12によ
って覆われる。タービンホイール18の後面を覆うよう
に遮熱板31が配置されており、遮熱板31の外周部に
タービンブレード18a…に臨むタービンノズル32…
が設けられる。An exhaust gas passage 30 extending from a plurality of turbine blades 18a radially formed on the outer periphery of a turbine wheel 18 provided at the rear end of the rotary shaft 16 is connected to an exhaust gas inlet 23 of a heat exchanger 20, The outer side of the exhaust gas passage 30 in the radial direction is covered with the first compressed air passage 12. A heat shield plate 31 is arranged so as to cover the rear surface of the turbine wheel 18, and a turbine nozzle 32 facing the turbine blades 18 a is arranged on the outer peripheral portion of the heat shield plate 31.
Is provided.
【0022】コンプレッサホイール17およびタービン
ホイール18で構成される回転部33を支持する回転軸
16の軸線Lに対して、ガスタービンエンジンGTの構
成要素(つまりコンプレッサホイール17、タービンホ
イール18、熱交換器20および燃焼器27)および固
体電解質型燃料電池FCは軸対称な形状を有している。
そして回転部33の軸線L方向後方に形成された空間3
4の半径方向外側に円環状の熱交換器20が配置され、
更に熱交換器20の軸線L方向後方に円環状の固体電解
質型燃料電池FCが配置され、固体電解質型燃料電池F
Cの半径方向内側に燃焼器27が配置される。The components of the gas turbine engine GT (that is, the compressor wheel 17, the turbine wheel 18, the heat exchanger) are arranged with respect to the axis L of the rotary shaft 16 which supports the rotating portion 33 composed of the compressor wheel 17 and the turbine wheel 18. 20 and the combustor 27) and the solid oxide fuel cell FC have an axisymmetric shape.
The space 3 formed behind the rotating portion 33 in the direction of the axis L.
An annular heat exchanger 20 is arranged on the outer side in the radial direction of 4,
Further, an annular solid electrolyte fuel cell FC is arranged behind the heat exchanger 20 in the direction of the axis L, and a solid electrolyte fuel cell F is provided.
The combustor 27 is arranged radially inward of C.
【0023】公知の固体電解質型燃料電池FCは、円環
状の薄板よりなる多数のセルを、それと同形のセパレー
タを挟んで軸線L方向に重ね合わせたもので、各々のセ
ルはセラミックス系の固体電解質の両側面にカソード
(空気極)およびアノード(燃料極)を積層してなる。
セパレータに形成した通路を通してカソードおよびアノ
ードにそれぞれ空気および燃料を供給し、それらが固体
電解質の界面で反応することで電気エネルギーが発生す
る。A known solid oxide fuel cell FC is composed of a large number of annular thin plates stacked in the axial direction L with a separator of the same shape sandwiched between them. Each cell is a ceramic solid electrolyte. A cathode (air electrode) and an anode (fuel electrode) are laminated on both side surfaces of.
Air and fuel are supplied to the cathode and the anode through passages formed in the separator, and they react at the interface of the solid electrolyte to generate electric energy.
【0024】次に、上記構成を備えた本発明の実施例の
作用について説明する。Next, the operation of the embodiment of the present invention having the above structure will be described.
【0025】発電装置の運転中に、吸気通路13から吸
い込まれてコンプレッサホイール17により圧縮された
空気は第1圧縮空気通路12を経て熱交換器20に送ら
れ、そこで高温の排ガス(約800°C)との間で熱交
換することにより排ガスの温度近くまで加熱される。熱
交換器20を通過した高温の圧縮空気は第2圧縮空気通
路26を経て固体電解質型燃料電池FCに達し、固体電
解質型燃料電池FCを半径方向外側から半径方向内側に
通過する。一方、固体電解質型燃料電池FCに供給され
た天然ガス等の燃料(白抜き矢印参照)は、高温の固体
電解質型燃料電池FCにおいてH2 およびCOに内部改
質され、熱交換器20から供給された空気と反応するこ
とで発電が行われる。During operation of the power generator, the air sucked from the intake passage 13 and compressed by the compressor wheel 17 is sent to the heat exchanger 20 via the first compressed air passage 12, where the high temperature exhaust gas (about 800 °) By exchanging heat with C), it is heated to near the temperature of the exhaust gas. The high-temperature compressed air that has passed through the heat exchanger 20 reaches the solid oxide fuel cell FC through the second compressed air passage 26 and passes through the solid oxide fuel cell FC from the radially outer side to the radially inner side. On the other hand, the fuel such as natural gas supplied to the solid oxide fuel cell FC (see the white arrow) is internally reformed into H 2 and CO in the high temperature solid oxide fuel cell FC and supplied from the heat exchanger 20. Electric power is generated by reacting with the generated air.
【0026】発電装置の始動時には固体電解質型燃料電
池FCが活性化していないため、燃焼器27を一時的に
作動させて固体電解質型燃料電池FCを活性化温度まで
昇温させる。即ち、コンプレッサホイール17からの圧
縮空気を熱交換器20から固体電解質型燃料電池FCを
経て燃焼器27に供給し、その圧縮空気に燃料噴射ノズ
ル28から噴射した燃料を混合して燃焼させると、高温
の排ガスが熱交換器20に供給されて熱交換が行われる
ようになり、固体電解質型燃料電池FCに供給される圧
縮空気の温度が上昇する。また燃焼器27で発生した排
ガスによりタービンホイール18が駆動されるため、コ
ンプレッサホイール17による空気の吸入および圧縮が
有効に行われて固体電解質型燃料電池FCに供給される
圧縮空気の温度が更に上昇する。Since the solid oxide fuel cell FC is not activated at the time of starting the power generator, the combustor 27 is temporarily operated to raise the temperature of the solid oxide fuel cell FC to the activation temperature. That is, when the compressed air from the compressor wheel 17 is supplied from the heat exchanger 20 to the combustor 27 via the solid oxide fuel cell FC, and the compressed air is mixed with the fuel injected from the fuel injection nozzle 28 and burned, The high-temperature exhaust gas is supplied to the heat exchanger 20 to perform heat exchange, and the temperature of the compressed air supplied to the solid oxide fuel cell FC rises. Further, since the turbine wheel 18 is driven by the exhaust gas generated in the combustor 27, intake and compression of air by the compressor wheel 17 are effectively performed, and the temperature of the compressed air supplied to the solid oxide fuel cell FC further rises. To do.
【0027】その結果、固体電解質型燃料電池FCに供
給される圧縮空気の温度が所定温度(例えば、500°
C〜600°C)に達すると、燃料噴射ノズル28から
の燃料の噴射を停止して燃焼器27を不作動にしても、
固体電解質型燃料電池FCの温度が活性化温度に達する
ことで発電装置の運転が継続される。また開閉弁29…
の開度を変化させて固体電解質型燃料電池FCを通過す
る圧縮空気量とバイパスする圧縮空気量との比率を制御
することで、固体電解質型燃料電池FCの温度を制御し
たり、固体電解質型燃料電池FCにおける圧力損失を低
減したりすることができる。As a result, the temperature of the compressed air supplied to the solid oxide fuel cell FC is a predetermined temperature (eg, 500 ° C.).
C-600 ° C), even if the fuel injection from the fuel injection nozzle 28 is stopped and the combustor 27 is deactivated,
When the temperature of the solid oxide fuel cell FC reaches the activation temperature, the operation of the power generator is continued. On-off valve 29 ...
By controlling the ratio of the amount of compressed air passing through the solid oxide fuel cell FC to the amount of compressed air bypassed by changing the opening degree of the solid electrolyte fuel cell FC, the temperature of the solid oxide fuel cell FC can be controlled, or the solid oxide fuel cell FC can be controlled. It is possible to reduce the pressure loss in the fuel cell FC.
【0028】尚、燃焼器27を軸線L方向に移動自在に
設け、始動時に燃焼器27を後部ケーシング25の内部
に突出させ、始動後に燃焼器27を後部ケーシング25
の外部に退避させれば、始動後の発電装置の運転中に固
体電解質型燃料電池FCからの排ガスが燃焼器27と干
渉せずにスムーズに流れるようになり、発電効率の更な
る向上を期待することができる。The combustor 27 is provided so as to be movable in the direction of the axis L, the combustor 27 is projected into the rear casing 25 at the time of start, and the combustor 27 is started after the start.
If it is evacuated to the outside, the exhaust gas from the solid oxide fuel cell FC will flow smoothly without interfering with the combustor 27 during the operation of the power generator after the start, and further improvement in power generation efficiency is expected. can do.
【0029】しかして、タービンホイール18の回転軸
16により駆動されるジェネレータGEで発電された電
力と、固体電解質型燃料電池FCで発電された電力とが
統合されて出力される。燃料の持つ化学エネルギーのう
ち、約50%が固体電解質型燃料電池FCで電気エネル
ギーに変換され、約15%がジェネレータGEで電気エ
ネルギーに変換されるため、発電装置の効率は65%に
達して極めて高いものとなる。Thus, the electric power generated by the generator GE driven by the rotary shaft 16 of the turbine wheel 18 and the electric power generated by the solid oxide fuel cell FC are integrated and output. About 50% of the chemical energy of the fuel is converted into electric energy by the solid oxide fuel cell FC, and about 15% is converted into electric energy by the generator GE, so the efficiency of the power generation device reaches 65%. It will be extremely expensive.
【0030】さて、コンプレッサホイール17およびタ
ービンホイール18よりなる回転部33の軸線Lに対し
て、コンプレッサホイール17、タービンホイール1
8、熱交換器20、燃焼器27および固体電解質型燃料
電池FCが軸対称に配置されているため、ガスタービン
エンジンGTおよび固体電解質型燃料電池FCの内部の
圧縮空気や排ガスの流れが軸対称になって円周方向に均
一化されるため、熱交換器20に流入する圧縮空気およ
び排ガスの流速を均一化し、かつ固体電解質型燃料電池
FCに流入する圧縮空気の流速を均一化することができ
るので、熱交換器20における熱交換効率の向上および
固体電解質型燃料電池FCにおける発電効率の向上に寄
与することができる。また発電装置の前記軸対称配置に
より、圧力損失が減少して発電効率の向上および燃料消
費量の低減が可能となる。更に、ガスタービンエンジン
GTおよび固体電解質型燃料電池FCの内部の温度分布
も軸対称になって各部材の熱歪みが最小限に抑えられ、
コンプレッサホイール17やタービンホイール18のス
ムーズな回転が確保されるとともに、熱応力によるセラ
ミック製部品の損傷等が防止されて耐久性が向上する。
更に、ケーシングや通路のような部品も軸対称化するこ
とができるので、それらを板金等の薄肉材料で製作する
ことが可能となって軽量化が達成されるばかりか、ヒー
トマスの減少によって冷間始動時の熱損失を減少させて
燃費消費量の更なる低減が可能となる。Now, with respect to the axis L of the rotating portion 33 composed of the compressor wheel 17 and the turbine wheel 18, the compressor wheel 17 and the turbine wheel 1
8. Since the heat exchanger 20, the combustor 27, and the solid oxide fuel cell FC are arranged axially symmetrically, the flow of compressed air and exhaust gas inside the gas turbine engine GT and the solid oxide fuel cell FC is axially symmetrical. Therefore, the flow velocity of compressed air and exhaust gas flowing into the heat exchanger 20 can be made uniform, and the flow velocity of compressed air flowing into the solid oxide fuel cell FC can be made uniform. Therefore, the heat exchange efficiency in the heat exchanger 20 and the power generation efficiency in the solid oxide fuel cell FC can be improved. In addition, the axisymmetric arrangement of the power generation device reduces pressure loss, which makes it possible to improve power generation efficiency and reduce fuel consumption. Furthermore, the temperature distribution inside the gas turbine engine GT and the solid oxide fuel cell FC is also axially symmetrical, and thermal strain of each member is minimized.
Smooth rotation of the compressor wheel 17 and the turbine wheel 18 is ensured, and damage to the ceramic parts due to thermal stress is prevented, thus improving durability.
Furthermore, since parts such as casings and passages can be made axially symmetrical, it is possible to manufacture them with a thin material such as sheet metal, which not only achieves weight reduction, but also reduces cold mass due to reduction of heat mass. It is possible to further reduce fuel consumption by reducing heat loss at startup.
【0031】また円環状に形成した熱交換器20および
固体電解質型燃料電池FCを発電装置の最外層部に配置
したので、その半径方向内側の空間34にガスタービン
エンジンGTの燃焼器27等の構成要素を収納してコン
パクト化を図ることができ、かつガスタービンエンジン
GTが発生する熱を外側の熱交換器20および固体電解
質型燃料電池FCで回収することができる。特に、固体
電解質型燃料電池FCの半径方向内側の空間34に燃焼
器27を配置したので、発電装置の軸線L方向線向寸法
をコンパクト化することができるだけでなく、固体電解
質型燃料電池FCで熱を回収することができる。特に、
発電装置を始動すべく燃焼器27を作動させたときに、
半径方向外側に位置する固体電解質型燃料電池FCを効
果的に加熱して早期の活性化を可能にするとともに、燃
料消費量の低減に寄与することができる。Further, since the heat exchanger 20 and the solid oxide fuel cell FC which are formed in an annular shape are arranged in the outermost layer portion of the power generation device, the space 34 on the inner side in the radial direction of the combustor 27 of the gas turbine engine GT or the like is formed. The components can be housed to be compact, and the heat generated by the gas turbine engine GT can be recovered by the outer heat exchanger 20 and the solid oxide fuel cell FC. In particular, since the combustor 27 is arranged in the space 34 on the inner side in the radial direction of the solid oxide fuel cell FC, not only can the size of the power generating device in the direction of the axis line L be made compact, but also in the solid oxide fuel cell FC. The heat can be recovered. In particular,
When the combustor 27 is operated to start the power generator,
It is possible to effectively heat the solid oxide fuel cell FC located on the outer side in the radial direction to enable early activation and to contribute to the reduction of fuel consumption.
【0032】また軸線Lに沿って前方から後方にコンプ
レッサホイール17およびタービンホイール18よりな
る回転部33と、熱交換器20と、固体電解質型燃料電
池FCとが順次配置されているため、発電装置の半径方
向寸法をコンパクト化することができるだけでなく、圧
縮空気や排ガスの流速を均一化し、流れをスムーズにし
て圧力損失を減少させ、発電効率を高めることができ
る。Further, since the rotating portion 33 composed of the compressor wheel 17 and the turbine wheel 18, the heat exchanger 20, and the solid oxide fuel cell FC are sequentially arranged from the front to the rear along the axis L, the power generator is arranged. It is possible not only to make the radial dimension of the system compact, but also to make the flow velocity of compressed air and exhaust gas uniform, smooth the flow, reduce pressure loss, and improve power generation efficiency.
【0033】またコンプレッサホイール17から熱交換
器20に比較的に低温の圧縮空気を導く第1圧縮空気通
路12を、タービンホイール18から熱交換器20に比
較的に高温の排ガスを導く排ガス通路30の半径方向外
側を覆うように配置したので、高温の排ガス通路30か
ら逃げる熱を低温の第1圧縮空気通路12で回収するこ
とで、前部ケーシング11からの熱逃げを防止して発電
効率を一層高めることができる。更に、第2圧縮空気通
路26が固体電解質型燃料電池FCの半径方向外側を覆
うように配置されているので、固体電解質型燃料電池F
Cが発生する熱を第2圧縮空気通路26で回収して、後
部ケーシング25から外部に逃げないようにして発電効
率を一層高めることができる。Further, the first compressed air passage 12 for introducing a relatively low temperature compressed air from the compressor wheel 17 to the heat exchanger 20, and the exhaust gas passage 30 for introducing a relatively high temperature exhaust gas from the turbine wheel 18 to the heat exchanger 20. Since it is arranged so as to cover the outer side in the radial direction of, the heat escaping from the high temperature exhaust gas passage 30 is recovered by the low temperature first compressed air passage 12 to prevent heat escaping from the front casing 11 and improve power generation efficiency. It can be further enhanced. Further, since the second compressed air passage 26 is arranged so as to cover the outside of the solid oxide fuel cell FC in the radial direction, the solid oxide fuel cell F is formed.
The heat generated by C can be recovered in the second compressed air passage 26 so as not to escape from the rear casing 25 to the outside, so that the power generation efficiency can be further enhanced.
【0034】次に、図3および図4に基づいて本発明の
第2実施例を説明する。第2実施例は固体電解質型燃料
電池FCの形状が第1実施例と異なっており、その他の
構成は第1実施例と同一である。Next, a second embodiment of the present invention will be described with reference to FIGS. The second embodiment is different from the first embodiment in the shape of the solid oxide fuel cell FC, and other configurations are the same as those in the first embodiment.
【0035】第2実施例は、円環状に形成された複数個
(例えば、8個)の固体電解質型燃料電池FC…を、回
転部33の軸線Lの周囲を囲むように円周方向に等間隔
で配置したものである。各々の固体電解質型燃料電池F
Cはその軸線L1を回転部33の軸線Lと平行にした状
態で、後部ケーシング25と円筒状の隔壁41とによっ
て区画された円環状の空間42に収納される。In the second embodiment, a plurality (for example, eight) of solid electrolyte fuel cells FC formed in an annular shape are circumferentially distributed so as to surround the axis L of the rotating portion 33. It is arranged at intervals. Each solid oxide fuel cell F
C is housed in an annular space 42 defined by the rear casing 25 and the cylindrical partition wall 41, with its axis L1 parallel to the axis L of the rotating portion 33.
【0036】この第2実施例によっても、8個の固体電
解質型燃料電池FC…が回転部33の軸線Lに対して軸
対称に配置されるため、前述した第1実施例と同様の作
用効果を達成することができる。それに加えて、各々の
固体電解質型燃料電池FCの直径が第1実施例のものに
比べて小さくなるため、そのセルおよびセパレータが小
型になって製造が容易になる。Also in this second embodiment, since eight solid oxide fuel cells FC ... Are arranged in axial symmetry with respect to the axis L of the rotating portion 33, the same effect as that of the first embodiment described above. Can be achieved. In addition, since the diameter of each solid oxide fuel cell FC is smaller than that of the first embodiment, the cells and the separator are small and manufacturing is easy.
【0037】次に、図5および図6に基づいて本発明の
第3実施例を説明する。第3実施例も固体電解質型燃料
電池FCの形状が第1実施例と異なっており、その他の
構成は第1実施例と同一である。Next, a third embodiment of the present invention will be described with reference to FIGS. Also in the third embodiment, the shape of the solid oxide fuel cell FC is different from that of the first embodiment, and other configurations are the same as those of the first embodiment.
【0038】第3実施例は、円環状に形成された複数個
(例えば、12個)の固体電解質型燃料電池FC…を、
回転部33の軸線Lの周囲を囲むように軸線L方向に2
列に、かつ円周方向に等間隔で配置したものである。各
列の6個の固体電解質型燃料電池FC…はその軸線L2
…を回転部33の軸線Lに対して放射方向にした状態
で、後部ケーシング25と円筒状の隔壁41とによって
区画された円環状の空間42に収納される。In the third embodiment, a plurality of (for example, 12) solid electrolyte fuel cells FC ...
2 in the direction of the axis L so as to surround the axis L of the rotating unit 33.
It is arranged in rows and at equal intervals in the circumferential direction. The six solid oxide fuel cells FC in each row have their axis L2.
.. in a radial direction with respect to the axis L of the rotating portion 33, the housing is housed in an annular space 42 defined by the rear casing 25 and the cylindrical partition wall 41.
【0039】この第3実施例によっても、12個の固体
電解質型燃料電池FC…が回転部33の軸線Lに対して
軸対称に配置されるため、前述した第1実施例と同様の
作用効果を達成することができる。それに加えて、各々
の固体電解質型燃料電池FCの直径が第1実施例のもの
に比べて小さくなるため、そのセルおよびセパレータが
小型になって製造が容易になるだけなく、軸線L方向の
固体電解質型燃料電池FC…の列数を任意に増加させる
ことで、同じ発電容量を確保しながら発電装置の外径を
コンパクト化することができる。Also in this third embodiment, twelve solid oxide fuel cells FC ... Are arranged in axial symmetry with respect to the axis L of the rotating portion 33, so that the same effect as the first embodiment described above can be obtained. Can be achieved. In addition to that, since the diameter of each solid oxide fuel cell FC is smaller than that of the first embodiment, the cells and the separator are small in size and the manufacturing is easy, and the solid in the axis L direction is also solid. By arbitrarily increasing the number of rows of the electrolyte fuel cells FC, the outer diameter of the power generation device can be made compact while ensuring the same power generation capacity.
【0040】以上、本発明の実施例を詳述したが、本発
明はその要旨を逸脱しない範囲で種々の設計変更を行う
ことが可能である。Although the embodiments of the present invention have been described in detail above, the present invention can be modified in various ways without departing from the scope of the invention.
【0041】[0041]
【発明の効果】以上のように請求項1に記載された発明
によれば、ガスタービンエンジンの構成要素であるコン
プレッサホイール、タービンホイール、熱交換器および
燃焼器と固体電解質型燃料電池とを、コンプレッサホイ
ールおよびタービンホイールよりなる回転部の軸線を共
有する軸対称な形状にし、かつ回転部に対して軸線方向
の一方側に熱交換器および固体電解質型燃料電池を順次
配置したので、発電装置全体をコンパクト化できるだけ
でなく、熱交換器や固体電解質型燃料電池に入る圧縮空
気や排ガスの流速を均一化し、更に圧縮空気や排ガスの
流れをスムーズにして圧力損失を減少させることで発電
効率を高めることができる。また上記軸対称の配置によ
り、発電装置の熱膨張により発生する熱応力を最小限に
抑えて発電効率の向上および耐久性の向上を図ることが
できる。As described above, according to the invention described in claim 1, a compressor wheel, a turbine wheel, a heat exchanger and a combustor, which are components of a gas turbine engine, and a solid oxide fuel cell are provided. The compressor wheel and turbine wheel have an axially symmetric shape that shares the axis of the rotating part, and the heat exchanger and the solid oxide fuel cell are sequentially arranged on one side in the axial direction with respect to the rotating part. Not only can it be made compact, but the flow velocity of compressed air and exhaust gas entering the heat exchanger and solid oxide fuel cell can be made uniform, and the flow of compressed air and exhaust gas can be made smoother to reduce pressure loss and improve power generation efficiency. be able to. In addition, the above-mentioned axisymmetric arrangement can minimize the thermal stress generated by the thermal expansion of the power generator to improve the power generation efficiency and the durability.
【0042】また請求項2に記載された発明によれば、
熱交換器および固体電解質型燃料電池が回転部の軸線を
中心とする円環状であるため、熱交換器および固体電解
質型燃料電池の半径方向内側の空間にガスタービンエン
ジンの構成要素を収納してコンパクト化を図ることがで
き、しかもガスタービンエンジンが発生する熱を半径方
向外側の熱交換器および固体電解質型燃料電池で回収す
ることができる。According to the invention described in claim 2,
Since the heat exchanger and the solid oxide fuel cell have an annular shape centered on the axis of the rotating part, the components of the gas turbine engine are housed in the space radially inside the heat exchanger and the solid oxide fuel cell. The size of the gas turbine engine can be reduced, and the heat generated by the gas turbine engine can be recovered by the heat exchanger and the solid oxide fuel cell radially outside.
【0043】また請求項3に記載された発明によれば、
圧縮空気通路を排ガス通路の半径方向外側に配置したの
で、比較的高温の排ガスが通る排ガス通路から逃げる熱
を比較的低温の圧縮空気が通る圧縮空気通路で回収して
発電効率を一層高めることができる。According to the invention described in claim 3,
Since the compressed air passage is arranged on the outer side of the exhaust gas passage in the radial direction, the heat escaping from the exhaust gas passage through which the relatively high temperature exhaust gas passes is recovered by the compressed air passage through which the relatively low temperature compressed air passes, and the power generation efficiency can be further improved. it can.
【0044】また請求項4に記載された発明によれば、
円環状の固体電解質型燃料電池の半径方向内側の空間に
燃焼器を配置したので、燃焼器が発生する熱を固体電解
質型燃料電池で回収し、特に始動初期の固体電解質型燃
料電池を早期に活性化して発電効率を向上させることが
できる。According to the invention described in claim 4,
Since the combustor is placed in the space inside the annular solid oxide fuel cell in the radial direction, the heat generated by the combustor is recovered by the solid oxide fuel cell, and especially the solid oxide fuel cell in the early stage of start-up It can be activated to improve power generation efficiency.
【図1】発電装置の縦断面図FIG. 1 is a vertical sectional view of a power generator.
【図2】図1の2−2線断面図FIG. 2 is a sectional view taken along line 2-2 of FIG.
【図3】第2実施例に係る発電装置の縦断面図FIG. 3 is a vertical sectional view of a power generator according to a second embodiment.
【図4】図3の4−4線断面図FIG. 4 is a sectional view taken along line 4-4 of FIG.
【図5】第3実施例に係る発電装置の縦断面図FIG. 5 is a vertical cross-sectional view of a power generator according to a third embodiment.
【図6】図5の6−6線断面図6 is a sectional view taken along line 6-6 of FIG.
12 第1圧縮空気通路(圧縮空気通路) 17 コンプレッサホイール 18 タービンホイール 20 熱交換器 27 燃焼器 30 排ガス通路 33 回転部 34 空間 FC 固体電解質型燃料電池 GT ガスタービンエンジン L 軸線 12 First compressed air passage (compressed air passage) 17 compressor wheel 18 turbine wheels 20 heat exchanger 27 Combustor 30 exhaust gas passage 33 rotating part 34 space FC solid oxide fuel cell GT gas turbine engine L axis
Claims (4)
解質型燃料電池(FC)とを一体に備えた発電装置であ
って、 ガスタービンエンジン(GT)はコンプレッサホイール
(17)、タービンホイール(18)、熱交換器(2
0)および燃焼器(27)を含み、コンプレッサホイー
ル(17)は圧縮空気を熱交換器(20)を介して固体
電解質型燃料電池(FC)および燃焼器(27)に供給
し、タービンホイール(18)は固体電解質型燃料電池
(FC)および燃焼器(27)からの排ガスにより駆動
されてコンプレッサホイール(17)を駆動し、熱交換
器(20)はタービンホイール(18)からの排ガスと
コンプレッサホイール(17)からの圧縮空気との間で
熱交換を行うものにおいて、 コンプレッサホイール(17)、タービンホイール(1
8)、熱交換器(20)、燃焼器(27)および固体電
解質型燃料電池(FC)はコンプレッサホイール(1
7)およびタービンホイール(18)よりなる回転部
(33)の軸線(L)を共有する軸対称な形状であり、
かつ前記回転部(33)に対して前記軸線(L)方向の
一方側に熱交換器(20)および固体電解質型燃料電池
(FC)を順次配置したことを特徴とする発電装置。1. A power generation device integrally comprising a gas turbine engine (GT) and a solid oxide fuel cell (FC), the gas turbine engine (GT) comprising a compressor wheel (17) and a turbine wheel (18). , Heat exchanger (2
0) and a combustor (27), the compressor wheel (17) supplies compressed air to the solid oxide fuel cell (FC) and the combustor (27) via the heat exchanger (20), and the turbine wheel (17). 18) is driven by the exhaust gas from the solid oxide fuel cell (FC) and the combustor (27) to drive the compressor wheel (17), and the heat exchanger (20) is the exhaust gas from the turbine wheel (18) and the compressor. A compressor wheel (17), a turbine wheel (1) in which heat is exchanged with the compressed air from the wheel (17),
8), the heat exchanger (20), the combustor (27) and the solid oxide fuel cell (FC) are the compressor wheel (1
7) and the turbine wheel (18) have an axially symmetric shape sharing the axis (L) of the rotating part (33),
Moreover, the heat exchanger (20) and the solid oxide fuel cell (FC) are sequentially arranged on one side of the rotating portion (33) in the direction of the axis (L), the power generator.
料電池(FC)は前記軸線(L)を中心とする円環状で
あることを特徴とする、請求項1に記載の発電装置。2. The power generator according to claim 1, wherein the heat exchanger (20) and the solid oxide fuel cell (FC) have an annular shape centered on the axis (L).
換器(20)に圧縮空気を導く圧縮空気通路(12)
を、タービンホイール(18)から熱交換器(20)に
排ガスを導く排ガス通路(30)の半径方向外側に配置
したことを特徴とする、請求項1に記載の発電装置。3. A compressed air passage (12) for guiding compressed air from a compressor wheel (17) to a heat exchanger (20).
The power generator according to claim 1, characterized in that is arranged on the outside in the radial direction of the exhaust gas passage (30) for guiding the exhaust gas from the turbine wheel (18) to the heat exchanger (20).
線(L)を中心とする円環状であり、その半径方向内側
の空間(34)に燃焼器(27)を配置したことを特徴
とする、請求項1に記載の発電装置。4. The solid oxide fuel cell (FC) has an annular shape centered on the axis (L), and a combustor (27) is arranged in a space (34) radially inside thereof. The power generator according to claim 1.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002141038A JP3901578B2 (en) | 2002-05-16 | 2002-05-16 | Power generator |
PCT/JP2003/005991 WO2003097394A2 (en) | 2002-05-16 | 2003-05-14 | Gas turbine power generating system with fuel cell |
DE60336223T DE60336223D1 (en) | 2002-05-16 | 2003-05-14 | DRAIN TURBINE GENERATOR PLANT WITH FUEL CELL |
AU2003230244A AU2003230244B2 (en) | 2002-05-16 | 2003-05-14 | Gas turbine power generating system with fuel cell |
CNB038110059A CN100349319C (en) | 2002-05-16 | 2003-05-14 | Power generating system |
CA002484988A CA2484988A1 (en) | 2002-05-16 | 2003-05-14 | Gas turbine power generating system with fuel cell |
EP03723372A EP1504488B1 (en) | 2002-05-16 | 2003-05-14 | Gas turbine power generating system with fuel cell |
KR1020047018041A KR100558575B1 (en) | 2002-05-16 | 2003-05-14 | Power generating system |
AT03723372T ATE500630T1 (en) | 2002-05-16 | 2003-05-14 | EXHAUST GAS TURBINE GENERATOR SYSTEM WITH FUEL CELL |
US10/438,918 US7166380B2 (en) | 2002-05-16 | 2003-05-16 | Power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002141038A JP3901578B2 (en) | 2002-05-16 | 2002-05-16 | Power generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003328772A true JP2003328772A (en) | 2003-11-19 |
JP3901578B2 JP3901578B2 (en) | 2007-04-04 |
Family
ID=29701737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002141038A Expired - Fee Related JP3901578B2 (en) | 2002-05-16 | 2002-05-16 | Power generator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3901578B2 (en) |
CN (1) | CN100349319C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040057947A (en) * | 2002-12-23 | 2004-07-02 | 제너럴 일렉트릭 캄파니 | Cooled turbine integrated fuel cell hybrid power plant |
JP2006046337A (en) * | 2004-07-30 | 2006-02-16 | Samsung Techwin Co Ltd | Turbogenerator and fuel cell system having the same |
US8432048B1 (en) * | 2011-03-08 | 2013-04-30 | Florida Turbine Technologies, Inc. | Hybrid engine with a gas turbine engine |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011106654A1 (en) | 2011-04-21 | 2012-10-25 | Airbus Operations Gmbh | A method of manufacturing a solid oxide fuel cell element by a layered structure and a solid oxide fuel cell element |
WO2012143489A1 (en) | 2011-04-21 | 2012-10-26 | Eads Deutschland Gmbh | Drive unit, method for providing power, and use of a drive unit |
CN106487159A (en) * | 2015-12-25 | 2017-03-08 | 伍复军 | High-temperature fuel cell and the combined generating system of rotating thermal machine |
FR3059363B1 (en) * | 2016-11-25 | 2019-04-05 | Turbotech | TURBOMACHINE, IN PARTICULAR TURBOGENERATOR AND EXCHANGER FOR SUCH A TURBOMACHINE |
US11362567B2 (en) * | 2020-01-16 | 2022-06-14 | The Boeing Company | Electrical power generation from turbine engines |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5413879A (en) * | 1994-02-08 | 1995-05-09 | Westinghouse Electric Corporation | Integrated gas turbine solid oxide fuel cell system |
CN1162386A (en) * | 1996-01-16 | 1997-10-22 | 住友化学工业株式会社 | Sprinkling tube |
GB9813757D0 (en) * | 1998-06-25 | 1998-08-26 | Gec Marconi Aerospace Limited | Integral fuel cell |
-
2002
- 2002-05-16 JP JP2002141038A patent/JP3901578B2/en not_active Expired - Fee Related
-
2003
- 2003-05-14 CN CNB038110059A patent/CN100349319C/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040057947A (en) * | 2002-12-23 | 2004-07-02 | 제너럴 일렉트릭 캄파니 | Cooled turbine integrated fuel cell hybrid power plant |
JP2006046337A (en) * | 2004-07-30 | 2006-02-16 | Samsung Techwin Co Ltd | Turbogenerator and fuel cell system having the same |
US7723857B2 (en) | 2004-07-30 | 2010-05-25 | Samsung Techwin Co., Ltd. | Turbo generator and fuel cell system having the same |
US8432048B1 (en) * | 2011-03-08 | 2013-04-30 | Florida Turbine Technologies, Inc. | Hybrid engine with a gas turbine engine |
Also Published As
Publication number | Publication date |
---|---|
CN1729589A (en) | 2006-02-01 |
CN100349319C (en) | 2007-11-14 |
JP3901578B2 (en) | 2007-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100558575B1 (en) | Power generating system | |
KR101025773B1 (en) | Turbo generator apparatus and fuel cell system with the same | |
US7610762B2 (en) | High efficiency thermal engine | |
ES2287507T3 (en) | A SOLID OXIDE FUEL CELL SYSTEM. | |
US8616835B2 (en) | Gas turbine | |
US6430917B1 (en) | Single rotor turbine engine | |
EP1426576B1 (en) | Tank/manifold for internally mounted radial flow intercooler for a combustion air charger | |
US20190277199A1 (en) | Turbo engine, in particular turbo generator and exchanger for such turbo engine | |
JP3901578B2 (en) | Power generator | |
JP4129144B2 (en) | Power generation device and method for starting power generation device | |
EP0811752B1 (en) | Centrifugal gas turbine | |
US8448447B2 (en) | Gas turbine engine with fuel booster | |
KR20180126280A (en) | Electric super-charger and supercharger system using the thereof | |
JP3901579B2 (en) | Power generator | |
US11448074B2 (en) | Turbine airfoil and turbine including same | |
US10787965B1 (en) | Advanced gas turbine engine | |
JP3200101B2 (en) | Twin spool gas turbine engine | |
JP4987427B2 (en) | Atmospheric pressure combustion turbine system with cooling structure for working gas inlet | |
JP2021014824A (en) | Gas turbine system and movable body including the same | |
TH59918A (en) | Power generation system | |
KR101091893B1 (en) | Turbo generator apparatus and fuel cell system with the same | |
CN118462392A (en) | Gas turbine power generation system | |
JPH05256406A (en) | Catalyst combustor | |
KR100890824B1 (en) | Gas turbine system for occurrence a little nox | |
JPH0476230A (en) | Gas turbine engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061226 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |