[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003324084A - Polishing method - Google Patents

Polishing method

Info

Publication number
JP2003324084A
JP2003324084A JP2003115184A JP2003115184A JP2003324084A JP 2003324084 A JP2003324084 A JP 2003324084A JP 2003115184 A JP2003115184 A JP 2003115184A JP 2003115184 A JP2003115184 A JP 2003115184A JP 2003324084 A JP2003324084 A JP 2003324084A
Authority
JP
Japan
Prior art keywords
polishing
cmp
polishing liquid
wiring
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003115184A
Other languages
Japanese (ja)
Inventor
Seiichi Kondo
誠一 近藤
Yoshio Honma
喜夫 本間
Noriyuki Sakuma
憲之 佐久間
Kenichi Takeda
健一 武田
Kenji Hinode
憲治 日野出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003115184A priority Critical patent/JP2003324084A/en
Publication of JP2003324084A publication Critical patent/JP2003324084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing technology capable of suppressing the occurrence of scratching, peeling, dishing, and erosion and suppressing the costs of expendables such as abrasive and polishing cloth without requiring a complicated cleaning process or an abrasive supplying/processing device. <P>SOLUTION: A metallic film 21 formed on the surface of an insulating film 23 having grooves is polished by a polishing solution containing substances capable of dissolving oxidizing substances and oxides into water and not containing grinding grains. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は金属膜の研磨に関
し、特に半導体装置の配線工程における研磨方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to polishing a metal film, and more particularly to a polishing method in a wiring process of a semiconductor device.

【0002】[0002]

【従来の技術】近年、半導体集積回路(以下LSIと記
す)の高集積化、高性能化に伴って新たな微細加工技術
が開発されている。化学機械研磨(以下CMPと記す)
法もその一つであり、LSI製造工程、特に多層配線形
成工程における層間絶縁膜の平坦化、金属プラグ形成、
埋め込み配線形成において頻繁に利用される技術であ
る。この技術は、例えば米国特許No.4944836
に開示されている。
2. Description of the Related Art In recent years, a new fine processing technique has been developed in accordance with higher integration and higher performance of semiconductor integrated circuits (hereinafter referred to as LSI). Chemical mechanical polishing (hereinafter referred to as CMP)
The method is one of them, and flattening of the interlayer insulating film, metal plug formation,
This is a technique often used in the formation of embedded wiring. This technique is disclosed, for example, in US Pat. 49444836
Is disclosed in.

【0003】また、最近はLSIの高速性能化を達成す
るために、配線材料を従来のアルミニウム合金から低抵
抗の銅合金を利用しようとすることが試みられている。
しかし、銅合金はアルミニウム合金配線の形成で頻繁に
用いられたドライエッチング法による微細加工が困難で
ある。そこで、加工して溝の形成された絶縁膜上に銅合
金薄膜を堆積し、溝内に埋め込まれた部分以外の銅合金
薄膜をCMPにより除去して埋め込み配線を形成する、
いわゆるダマシン法が主に採用されている。この技術
は、例えば特開平2−278822号公報に開示されて
いる。
Recently, in order to achieve high-speed LSI performance, it has been attempted to use a low-resistance copper alloy as a wiring material instead of a conventional aluminum alloy.
However, it is difficult to perform fine processing on a copper alloy by a dry etching method which is frequently used for forming an aluminum alloy wiring. Therefore, a copper alloy thin film is deposited on the insulating film in which the groove is formed by processing, and the copper alloy thin film other than the portion embedded in the groove is removed by CMP to form a buried wiring.
The so-called damascene method is mainly adopted. This technique is disclosed in, for example, Japanese Patent Laid-Open No. 2-278822.

【0004】配線に用いられる銅合金等の金属のCMP
に用いられる研磨剤は、固体砥粒と酸化性物質を主成分
とするものが一般的である。酸化性物質の酸化作用で金
属表面を酸化しながら、固体砥粒によってその酸化物を
機械的に除去するのが基本的なCMPのメカニズムであ
る。これに関しては、株式会社サイエンスフォーラム発
行、柏木正弘編集「CMPのサイエンス」1997年8
月20日発行の第299頁に開示されている。
CMP of metal such as copper alloy used for wiring
The polishing agent used for is generally one containing solid abrasive grains and an oxidizing substance as main components. The basic mechanism of CMP is to mechanically remove the oxide by the solid abrasive while oxidizing the metal surface by the oxidizing action of the oxidizing substance. Regarding this, published by Science Forum Co., Ltd., edited by Masahiro Kashiwagi, "Science of CMP", August 1997
It is disclosed on page 299 issued on the 20th of each month.

【0005】固体砥粒としては、数10〜数100nm
の粒子径を持つアルミナ砥粒やシリカ砥粒が知られてい
るが、一般に市販されている金属研磨用の固体砥粒のほ
とんどは前者である。
As the solid abrasive grains, several tens to several hundreds nm
Alumina abrasive grains and silica abrasive grains having a particle size of are known, but most of the solid abrasive grains for metal polishing which are generally commercially available are the former.

【0006】酸化性物質としては、過酸化水素(H
22)、硝酸第二鉄(Fe(NO33)、過ヨウ素酸カ
リウム(KIO3)が一般に広く用いられており、これ
らは例えば、上記の「CMPのサイエンス」の第299
頁から第300頁に開示されている。
As the oxidizing substance, hydrogen peroxide (H
2 O 2 ), ferric nitrate (Fe (NO 3 ) 3 ), and potassium periodate (KIO 3 ) are generally widely used, and they are, for example, the above-mentioned 299 of “Science of CMP”.
Pp. 300-300.

【0007】[0007]

【本発明が解決しようとする課題】しかしながら、従来
の金属膜研磨用の固体砥粒を主成分として含む研磨剤を
用いてCMPにより配線及びプラグを形成する場合、以
下の(1)〜(8)に挙げる問題が発生している。
However, when wiring and plugs are formed by CMP using a conventional polishing agent containing solid abrasive grains for polishing a metal film as a main component, the following (1) to (8) are used. The problems listed in () are occurring.

【0008】(1)絶縁膜に形成された溝の内部に埋め
込まれる金属配線の表面中央部分が周辺部分よりも過剰
に研磨されて凹む現象(以後ディシングと記す)や配線
部周囲の絶縁膜表面が研磨される現象(以後エロージョ
ンと記す)が発生する(図5(a)(b))。
(1) Phenomenon in which the central portion of the surface of the metal wiring embedded in the groove formed in the insulating film is dented due to excessive polishing compared to the peripheral portion (hereinafter referred to as dishing) and the surface of the insulating film around the wiring portion Occurs (hereinafter referred to as erosion) (FIGS. 5A and 5B).

【0009】本来、金属膜研磨用の研磨剤の金属/絶縁
膜の選択比は10以上とかなり高いものであるが、この
値は平坦な金属膜のみが形成されたウエハと平坦な絶縁
膜のみが形成されたウエハを用いてそれぞれ別々にCM
Pを行い、両者の研磨速度の比をとって得られたもので
ある。
Originally, the metal / insulating film selection ratio of a polishing agent for polishing a metal film is as high as 10 or more, but this value is only for a wafer on which only a flat metal film is formed and a flat insulating film. CMs using wafers on which
It is obtained by performing P and taking the ratio of the polishing rates of both.

【0010】しかし、配線パターンとなる溝が形成され
た絶縁膜上に金属膜が堆積されたウエハのCMPでは、局
所的に過剰に研磨される箇所が発生することが知られて
いる。これは、CMP前のウエハ表面には配線パターン
となる溝を反映した凹凸が金属膜の表面に生じており、
CMPを行う場合にパターン密度に応じて局所的に高い
圧力がかかり、その部分の研磨速度が速くなるためであ
る。
However, it is known that in CMP of a wafer in which a metal film is deposited on an insulating film in which a groove to be a wiring pattern is formed, locally excessively polished portions occur. This is because the wafer surface before CMP has irregularities reflecting the grooves that will be the wiring pattern on the surface of the metal film.
This is because when CMP is performed, locally high pressure is applied according to the pattern density, and the polishing rate at that portion is increased.

【0011】したがって、ディシングやエロージョンは
金属部分の面積が広いパッド(0.1mm角程度の面
積)や密集配線パターンで顕著な問題となる。これら
は、ジャーナルオブ・エレクトロケミカル・ソサエテイ
第141巻第10号、1994年10月、第2842頁
〜第2848頁(J.Electrochem.So
c.Vol.141,No.10,October 1
994,p.2842〜p.2848)に記載されてい
る。
Therefore, dicing or erosion becomes a serious problem in a pad (area of about 0.1 mm square) having a large area of a metal portion or a dense wiring pattern. These are Journal of Electrochemical Society Vol. 141, No. 10, October 1994, pages 2842 to 2848 (J. Electrochem. So.
c. Vol. 141, No. 10, October 1
994, p. 2842-p. 2848).

【0012】(2)研磨用の固体砥粒によりスクラッチ
(研磨傷)が発生する。特に、金属研磨の砥粒の主材料
であるアルミナは絶縁膜の主材料である酸化シリコンよ
りも硬度が高い。そのため、配線用金属膜の表面だけで
なくCMPによって露出した絶縁膜の表面にもスクラッ
チが発生する。絶縁膜表面のスクラッチには研磨剤が残
留して重金属イオン汚染による半導体素子の動作不良が
生じたり、上層配線の加工形状に影響を与え短絡不良を
発生させたりする。また、金属膜表面のスクラッチは導
通不良やエレクトロマイグレーション耐性の劣化の原因
となる。
(2) Scratches (polishing scratches) are generated by the solid abrasive grains for polishing. In particular, alumina, which is the main material of the abrasive grains for metal polishing, has higher hardness than silicon oxide, which is the main material of the insulating film. Therefore, scratches occur not only on the surface of the wiring metal film but also on the surface of the insulating film exposed by CMP. Abrasive remains on the scratches on the surface of the insulating film to cause malfunction of the semiconductor device due to heavy metal ion contamination, or to affect the processed shape of the upper layer wiring to cause short circuit defects. In addition, scratches on the surface of the metal film cause poor conduction and deterioration of electromigration resistance.

【0013】スクラッチを防ぐために研磨荷重や定盤回
転数を低くしてCMPを行う方法が取られている。しか
し、銅のような軟質金属ではこの方法でもスクラッチを
防ぐことは難しい。
In order to prevent scratches, a method of performing CMP by reducing the polishing load and the number of rotations of the platen has been adopted. However, it is difficult to prevent scratches even with this method using a soft metal such as copper.

【0014】軟質研磨布を用いることによりスクラッチ
を低減できるが、ディシングやエロージョンが大きくな
りCMP後の平坦性は劣化する。そこで硬質研磨布で途
中までCMPを行った後、軟質研磨布で仕上げ研磨を行
う2段階CMPも提案されている。しかしながら、この
場合スループットが低下するという新たな問題が生じ
る。
Although scratches can be reduced by using a soft polishing cloth, dicing and erosion increase and flatness after CMP deteriorates. Therefore, there is also proposed a two-step CMP in which CMP is performed halfway with a hard polishing cloth and then final polishing is performed with a soft polishing cloth. However, in this case, a new problem arises that the throughput is reduced.

【0015】(3)CMPを行うと研磨砥粒と金属膜表
面の間に高い摩擦力が生じるため、金属膜と下地絶縁層
との間や、下地絶縁層内の塗布ガラス(以下SOGとい
う)と化学気相蒸着(以下CVDという)酸化膜の間で
はがれが発生する。はがれ防止策として研磨荷重や定盤
回転数を低くする方法もあるが、完全に防止しようとす
ると研磨速度が下がり研磨時間が長くなるため実用的で
はない。また、軟質研磨布を用いると解決する場合もあ
るが、ディシングやエロージョンが大きくなり、CMP
後の平坦性が劣化する。
(3) When CMP is performed, a high frictional force is generated between the polishing abrasive grains and the surface of the metal film. Therefore, the coated glass (hereinafter referred to as SOG) between the metal film and the base insulating layer. Peeling occurs between the oxide film and the chemical vapor deposition (hereinafter referred to as CVD) oxide film. As a measure for preventing peeling, there is a method of lowering the polishing load and the number of rotations of the platen. In some cases, using a soft polishing cloth can solve the problem, but dicing and erosion increase, and CMP
Later flatness deteriorates.

【0016】(4)CMP直後のウエハ表面には研磨砥
粒が多数残留するために、次工程を行う前に洗浄を行
い、規定値以下(例えば0.2マイクロメートル以上の
異物数がウエハ当たり100個以下)まで異物数を取り
除かなければならない。このためには化学的な洗浄だけ
でなく機械的な洗浄を併用する洗浄機を必要とした。
(4) Since many polishing abrasive grains remain on the wafer surface immediately after CMP, cleaning is performed before the next step, and the cleaning is performed before the next step. The number of foreign substances must be removed to 100 or less). For this purpose, a washing machine that uses not only chemical washing but also mechanical washing was required.

【0017】その洗浄技術は図11に示すように非常に
複雑であり、主に薬液を併用したブラシ洗浄とメガソニ
ック洗浄が行われている。ブラシ材料は金属膜表面を傷
つけない特殊な材料でなくてはならず、薬液としては例
えば水酸化アンモニウムやフッ酸水溶液等が用いられ
る。
The cleaning technique is very complicated as shown in FIG. 11, and brush cleaning and megasonic cleaning mainly using a chemical solution are performed. The brush material must be a special material that does not damage the surface of the metal film, and as the chemical liquid, for example, ammonium hydroxide or hydrofluoric acid aqueous solution is used.

【0018】メガソニック洗浄は800kHz以上の高
周波振動を洗浄液に加えて砥粒を基体から遊離させる洗
浄方法であり、従来の超音波振動(40kHz)による
洗浄方法よりも強力な洗浄手段である。この洗浄におい
ては砥粒が基体から遊離するに足るだけのエネルギーも
しくは力を加える必要がある。一方、金属膜や絶縁膜に
損傷を与えない範囲に出力を設定しなければならない。
以上のようなCMP後洗浄プロセスの例としては、例え
ば「月刊セミコンダクターワールド(Semicond
uctor World)」1995年5月号の172
頁に開示されている。
The megasonic cleaning is a cleaning method in which a high frequency vibration of 800 kHz or more is added to the cleaning liquid to release the abrasive grains from the substrate, and is a stronger cleaning means than the conventional ultrasonic vibration (40 kHz) cleaning method. In this cleaning, it is necessary to apply enough energy or force to release the abrasive grains from the substrate. On the other hand, the output must be set in a range that does not damage the metal film or the insulating film.
As an example of the post-CMP cleaning process as described above, for example, “Monthly Semiconductor World (Semicond)
uctor World) ", May 1995, 172
It is disclosed on the page.

【0019】(5)CMPに用いる消耗品のコストが高
い。これは研磨剤で用いる砥粒の製造コストが高く、粒
子サイズを揃えるためにも極めて注意を要するからであ
る。特にアルミナ砥粒はシリカ砥粒に比べて数倍高価で
ある。
(5) The cost of consumables used for CMP is high. This is because the production cost of the abrasive grains used in the polishing agent is high, and it is necessary to be extremely careful to make the grain sizes uniform. In particular, alumina abrasive grains are several times more expensive than silica abrasive grains.

【0020】また、研磨布は一般的に発泡ポリウレタン
が用いられている。CMPを行うと、この研磨布に研磨
砥粒が付着して、いわゆる”目詰まり”現象を起こして
研磨速度が低下する。
As the polishing cloth, generally, foamed polyurethane is used. When CMP is carried out, abrasive grains adhere to this polishing cloth, causing a so-called "clogging" phenomenon, and the polishing rate decreases.

【0021】これを防止するために適宜ダイヤモンド粒
子を固着させた砥石(以下コンディショナと記す)で研
磨布表面を削る必要があった。そのため研磨布の寿命は
短くなり、研磨砥粒に次ぐ高コストの消耗品となってい
た。CMPプロセスのコストに関しては、例えばリアラ
イズ社最新技術講座1996年5月「CMP装置と関連
材料の最新動向とその問題点」に記載されている。
In order to prevent this, it was necessary to grind the surface of the polishing cloth with a grindstone (hereinafter referred to as a conditioner) to which diamond particles were appropriately fixed. Therefore, the life of the polishing cloth was shortened, and it was a high-cost consumable item next to the polishing abrasive grains. Regarding the cost of the CMP process, for example, it is described in "Latest Technology Course of Realize Co., Ltd., May 1996," Latest Trends of CMP Equipment and Related Materials and Their Problems ".

【0022】(6)CMP関連装置及び設備の問題とし
て、上記のCMP装置や後洗浄装置以外にも研磨剤供給
装置、研磨剤を含む廃液の処理装置が必要となり、CM
P設備全体にかかるコストが非常に高いものになってい
た。研磨剤供給装置では砥粒の沈殿を防止するための攪
拌装置も必要とし、配管内にも沈殿しないように常に研
磨剤を循環するような機構も必要とした。その廃液処理
コストも高く、再利用技術も必要とされている。
(6) As a problem of the CMP-related apparatus and equipment, in addition to the CMP apparatus and the post-cleaning apparatus described above, a polishing agent supply apparatus and a processing apparatus for waste liquid containing polishing agent are required.
The cost of the entire P facility was very high. The abrasive agent supply device also required a stirring device for preventing the precipitation of abrasive grains, and a mechanism for constantly circulating the abrasive agent so as not to precipitate in the pipes. The waste liquid treatment cost is also high, and recycling technology is also required.

【0023】(7)CMP工程全体のスループットが低
いことも問題である。CMP装置内では上記の研磨布の
コンディショニング、金属膜等を研磨する1次CMPと
露出した絶縁膜表面のダメージ層等を除去する2次CM
P(バフ研磨)を行うことが一般的である。上記の後洗
浄装置はブラシ洗浄があるため、通常ウエハを枚葉で洗
浄する。したがってCMP工程全体のスループットは半
導体装置製造工程中で最も低い状況となっている。CM
P工程全体のプロセス例としては、例えば「月刊セミコ
ンダクターワールド(Semiconductor W
orld)」1995年5月号の172頁に詳しく記載
されている。
(7) The low throughput of the entire CMP process is also a problem. In the CMP apparatus, the conditioning of the polishing cloth, the primary CMP for polishing the metal film and the secondary CM for removing the exposed damaged layer on the insulating film surface
It is common to perform P (buffing). Since the above-mentioned post-cleaning device has brush cleaning, wafers are usually cleaned single-wafer. Therefore, the throughput of the entire CMP process is the lowest in the semiconductor device manufacturing process. CM
As an example of the process of the entire P process, for example, “Monthly Semiconductor World (Semiconductor W
Ord) ”, May 1995, p. 172.

【0024】(8)CMP装置は発塵の原因となる研磨
砥粒を多量に使用しているにもかかわらず、クリーンル
ーム内に設置しなければならないという問題がある。C
MP装置に排気ダクト等の発塵を抑制する機構を設け、
クリーンルーム内に特別の部屋を設置するなどしてクリ
ーン度を維持する必要があり、そのためのコストもかか
る。
(8) The CMP apparatus has a problem that it must be installed in a clean room even though it uses a large amount of abrasive grains that cause dust generation. C
The MP device is equipped with a mechanism that suppresses dust generation in the exhaust duct,
It is necessary to maintain the cleanliness by installing a special room in the clean room, which incurs costs.

【0025】上記の問題点は全て高濃度の研磨砥粒を含
む研磨剤によってCMPを行うことが原因となってい
る。しかし、従来のCMPの方法は酸化性物質によって
金属表面を酸化し、この酸化層を研磨砥粒によって機械
的に除去することによって新たに露出した金属表面を再
度酸化して、酸化層の形成/機械的除去を繰り返して研
磨速度を上げていた。すなわち、研磨砥粒は酸化層を速
やかに除去すべく機械的除去効果を生じさせるために必
要であり、研磨砥粒を加えないと実用的な研磨速度に達
しなかった。
All of the above problems are caused by performing CMP with an abrasive containing a high concentration of abrasive grains. However, the conventional CMP method oxidizes the metal surface with an oxidizing substance, and mechanically removes this oxide layer with abrasive grains to oxidize the newly exposed metal surface again to form an oxide layer. The mechanical removal was repeated to increase the polishing rate. That is, the abrasive grains are necessary for producing a mechanical removal effect for promptly removing the oxide layer, and a practical polishing rate could not be reached without adding the abrasive grains.

【0026】特開平7−233485公報には、研磨砥
粒を添加しない研磨液(0.1重量%のアミノ酢酸と1
3重量%の過酸化水素)でCMPを実施した比較例が記
載されている。この場合の研磨速度は10nm/min
で、アルミナ研磨砥粒を添加した研磨液の約1/10、
シリカ研磨砥粒を添加した研磨液の約2/7の研磨速度
であることが記載されている。
Japanese Patent Laid-Open No. 7-233485 discloses a polishing liquid containing no abrasive grains (0.1% by weight of aminoacetic acid and 1% by weight).
A comparative example is described in which CMP is carried out with 3% by weight hydrogen peroxide). The polishing rate in this case is 10 nm / min
And about 1/10 of the polishing liquid containing alumina polishing abrasive grains,
It is described that the polishing rate is about 2/7 that of a polishing liquid containing silica polishing abrasive grains.

【0027】図2は前記公報に基づいて追試を行った結
果である。これは前記公報の結果を再現するために、
0.1重量%のアミノ酢酸と過酸化水素を含有した研磨
液(砥粒は含まない)で、研磨速度とエッチング速度の
過酸化水素水濃度依存性を測定したものである。なお、
図2では30%過酸化水素水の濃度で図示しており、前
記公報に記載の図面と対応させるには0.3倍して換算
すればよい。研磨布としてはロデール社の硬質布IC1
000を用いた。定盤(定盤直径:340mm)とホル
ダの回転数はともに60rpm、研磨荷重は220g/
cm2とした(本発明のCMP条件と同一にした)。図
2の結果から、砥粒を含まない場合にはせいぜい20n
m/minで実用的な研磨速度が得られないことが分か
る。過酸化水素濃度が低いとエッチング速度が速く研磨
の安定性が悪くなる。一方、過酸化水素濃度を高めれば
安定性は増すが研磨速度が著しく低くなり処理能力の点
では不利である。
FIG. 2 shows the result of the additional test based on the above publication. This is to reproduce the result of the above publication,
The dependency of the polishing rate and the etching rate on the hydrogen peroxide concentration was measured with a polishing liquid containing 0.1% by weight of aminoacetic acid and hydrogen peroxide (not containing abrasive grains). In addition,
In FIG. 2, the concentration of 30% hydrogen peroxide solution is shown, and in order to correspond to the drawing described in the above publication, it may be converted by multiplying by 0.3. Hard cloth IC1 from Rodel Co. as polishing cloth
000 was used. The number of rotations of the surface plate (surface plate diameter: 340 mm) and the holder are both 60 rpm, and the polishing load is 220 g /
cm 2 (the same as the CMP conditions of the present invention). From the results of FIG. 2, it is at most 20 n when the abrasive grains are not included.
It can be seen that a practical polishing rate cannot be obtained at m / min. When the hydrogen peroxide concentration is low, the etching rate is high and the polishing stability becomes poor. On the other hand, if the hydrogen peroxide concentration is increased, the stability is increased, but the polishing rate is remarkably reduced, which is disadvantageous in terms of processing ability.

【0028】さらに詳細に調べると、静水液エッチング
速度(攪拌しない研磨液に静止した試料を浸した際のエ
ッチング速度)が過酸化水素水の高濃度側でも完全に0
にはならないことも分かった。また研磨液を攪拌して同
様にエッチング速度(攪拌液エッチング速度:CMP中
のエッチング速度に近い)を測定すると、エッチング速
度が増加して研磨速度の1/2倍を超えることが分か
る。
A more detailed examination shows that the etching rate of the still water solution (the etching rate when the stationary sample is dipped in the polishing solution without stirring) is completely zero even on the high concentration side of the hydrogen peroxide solution.
I also found that it was not. Also, when the polishing liquid is stirred and the etching rate is similarly measured (stirring liquid etching rate: close to the etching rate during CMP), it is found that the etching rate increases and exceeds 1/2 times the polishing rate.

【0029】したがって、砥粒を含有させることによっ
て研磨速度を上げ、研磨速度と攪拌エッチング速度の比
(以下、速度比と記す)を高めないと研磨液として使用
できないことが分かった。速度比が低いと研磨面に接し
ていない凹部でのエッチングが進行し平坦性が損なわれ
る。実際にこれら過酸化水素水の濃度を変えた研磨液を
用いてCMPを行った結果、40分から1時間30分の
研磨時間を要した。
Therefore, it has been found that the polishing liquid cannot be used as a polishing liquid unless the polishing rate is increased by containing the abrasive grains and the ratio between the polishing rate and the stirring etching rate (hereinafter, referred to as a rate ratio) is increased. If the speed ratio is low, the etching progresses in the recesses not in contact with the polishing surface and the flatness is impaired. As a result of actually performing CMP using these polishing liquids having different concentrations of hydrogen peroxide solution, polishing time of 40 minutes to 1 hour 30 minutes was required.

【0030】形成された銅配線の断面図を図22に示
す。シリコン酸化膜の加工溝に残されるはずの銅はほと
んどがエッチングされて溶出し、蛇行配線(配線幅0.
3マイクロメートルから3マイクロメートル、長さ40
mm)を用いて導通試験を行った結果、歩留まりは0%
であった。したがって、これをLSI配線として用いる
ことはできなかった。これは研磨速度が遅いために、長
い研磨時間の間にエッチングが進行したことが原因であ
る。
A sectional view of the formed copper wiring is shown in FIG. Most of the copper that should be left in the processed groove of the silicon oxide film is etched and eluted, and the meandering wiring (wiring width 0.
3 to 3 micrometers, length 40
mm), the yield test was 0%
Met. Therefore, it could not be used as an LSI wiring. This is because the polishing rate was slow and the etching proceeded during a long polishing time.

【0031】アミノ酢酸の濃度を上げれば研磨速度は上
がるが、同時に攪拌エッチング速度も上がり、上記の結
果と同様になる。エッチングを抑制するには、水酸化カ
リウムを添加して研磨液をpH10.5のアルカリ性に
すればよいことが前記公報に記載されている。しかし、
水酸化カリウムはシリコン酸化膜をエッチングするため
に選択比が低下し、エロージョンが発生するという問題
が生じる。さらに残留したカリウムイオンが絶縁膜中を
拡散して、半導体素子の特性劣化を引き起こすという問
題が生じる。
When the concentration of aminoacetic acid is increased, the polishing rate is increased, but at the same time, the stirring etching rate is also increased, which is the same as the above result. It is described in the above publication that potassium hydroxide may be added to make the polishing liquid alkaline to have a pH of 10.5 in order to suppress etching. But,
Since potassium hydroxide etches the silicon oxide film, the selection ratio is lowered and erosion occurs. Further, the remaining potassium ions diffuse in the insulating film, causing a problem that the characteristics of the semiconductor element are deteriorated.

【0032】以上のような問題は、アミノ酢酸自体が酸
化銅を水溶性化する特性が低いことに起因している。こ
れは図9に示したpH−酸化還元電位図(M.プールベ
イ、「アトラスオブ・エレクトロケミカル・イクイリブ
リア・イン・アクエアス・ソリューション」(M.Po
urbaix,「Atlas of Electroch
emical Equilibria in Aqueo
us Solutions」)1975年NACE発行
の第387頁に開示されている。)からわかるように、
銅が銅イオンとして水溶性化する範囲(腐食域)がpH
7以下であるのに対して、アミノ酢酸は中性でその効果
が弱いからである。
The above-mentioned problems result from the fact that aminoacetic acid itself has a low property of making copper oxide water-soluble. This is based on the pH-oxidation-reduction potential diagram (M. Poolbay, “Atlas of Electrochemical Equilibria in Aquarius Solution” (M. Po
urbaix, "Atlas of Electroch
electrical Equilibria in Aqueo
us Solutions "), page 387, published by NACE, 1975. ), You can see
PH is the range where copper becomes water-soluble as copper ions (corrosion zone)
This is because aminoacetic acid is neutral and its effect is weak, while it is 7 or less.

【0033】図26に銅の腐食域と不働態域における腐
食速度(エッチング速度)の違いを示した。実線は図9
において酸化還元電位が等しい場合の腐食速度を示した
ものである。代表例として、腐食域ではクエン酸と過酸
化水素水を混合した研磨液、不働態域ではアミノ酢酸と
過酸化水素水を混合した研磨液の腐食速度をプロットし
た。両研磨液は等モル比で作製して比較した。このよう
に腐食域では不働態域と比較して非常に速い速度で銅が
水溶性化されてイオン化される。
FIG. 26 shows the difference in corrosion rate (etching rate) between the corrosion area and the passive area of copper. The solid line is Fig. 9
Shows the corrosion rate when the redox potentials are the same. As a representative example, the corrosion rate of a polishing liquid in which citric acid and hydrogen peroxide solution were mixed in the corrosion region and a polishing liquid in which aminoacetic acid and hydrogen peroxide solution were mixed in the passive state region were plotted. Both polishing liquids were prepared at an equimolar ratio and compared. As described above, in the corrosion area, copper is water-solubilized and ionized at a much higher rate than in the passive area.

【0034】この点に関しては、1996年CMP−M
ICコンファレンス予稿集,第123頁にも記載されて
いる。実際にアミノ酢酸は酸化銅をエッチングする効果
がないことが前記論文に記載されているが、酸化銅を水
溶性化する効果がないと、CMPを行った後に露出した
絶縁膜上に酸化銅が残り、配線間の電気的短絡の原因と
なる。なお、砥粒を含む研磨剤であれば機械的作用によ
り酸化銅は容易に除去される。
Regarding this point, 1996 CMP-M
It is also described in IC Conference Proceedings, page 123. Actually, the above-mentioned paper describes that aminoacetic acid does not have an effect of etching copper oxide, but if it does not have an effect of making copper oxide water-soluble, copper oxide is not formed on the insulating film exposed after CMP. The remainder remains an electrical short circuit between wirings. If the polishing agent contains abrasive grains, the copper oxide can be easily removed by a mechanical action.

【0035】また従来からある金属のエッチング液は上
記の腐食域にあるが、これをそのままLSI多層配線形
成用のCMP研磨液として用いることができるとは限ら
ない。CMP研磨液では逆にエッチング速度が遅い方が
適しているからである。例えば、砥粒加工学会誌、19
97年、第41巻、第1号、第231頁から第233頁
に硝酸水溶液を用いた銅表面の研磨実験に関して記載さ
れている。砥粒がないと研磨速度が低くなるものの、ス
クラッチの発生がないために研磨液として適していると
述べられているが、この研磨液のエッチング速度は調べ
られておらず、配線構造の形成もなされていない。実際
にこの研磨液の追試を行った結果、1%硝酸水溶液の銅
の静水液エッチング速度は50nm/minであり、上
記学会誌に記載の研磨速度約80nm/minに対して
十分に大きな比が取れなかった。さらに埋め込み配線を
形成するためにCMPを行うと、配線部分として残すべ
き部分の銅もエッチングされてほとんど消失してしまっ
た。このようにエッチング速度が制御されていない研磨
液では研磨を行うことはできるが、埋め込み配線を形成
することはできない。
Although a conventional metal etching solution is in the above-mentioned corrosive region, it cannot always be used as it is as a CMP polishing solution for forming an LSI multilayer wiring. This is because, on the contrary, a CMP polishing liquid having a lower etching rate is more suitable. For example, Journal of Abrasive Processing, 19
1997, Vol. 41, No. 1, p. 231 to p. 233, it describes about the polishing experiment of the copper surface using nitric acid aqueous solution. Although the polishing rate is low without abrasive grains, it is said that it is suitable as a polishing liquid because scratches do not occur, but the etching rate of this polishing liquid has not been investigated, and the formation of wiring structures has not been performed. Not done. As a result of actually performing a supplementary test of this polishing liquid, the etching rate of still water of copper in a 1% nitric acid aqueous solution is 50 nm / min, which is a sufficiently large ratio to the polishing rate of about 80 nm / min described in the above journal. I couldn't get it. Further, when CMP was performed to form a buried wiring, copper in a portion which should be left as a wiring portion was also etched and almost disappeared. As described above, polishing can be performed with a polishing liquid whose etching rate is not controlled, but embedded wiring cannot be formed.

【0036】本発明は係る点に鑑みてなされたものであ
り、(1)埋め込み配線形成時のディシングやエロージ
ョンの発生の抑制、(2)スクラッチや(3)はがれ等
の損傷の低減、(4)CMP後洗浄の簡素化、(5)研
磨液と研磨布のコスト低減、(6)研磨剤供給/処理設
備の簡素化、(7)高スループット化、(8)低発塵化
の少なくとも1つを実現することのできる研磨方法や半
導体装置の製造方法を提供することを目的とする。
The present invention has been made in view of the above points, and (1) suppresses the occurrence of dicing and erosion during the formation of embedded wiring, (2) reduces damage such as scratches and (3) peeling, and (4) ) At least one of simplification of cleaning after CMP, (5) cost reduction of polishing liquid and polishing cloth, (6) simplification of polishing agent supply / treatment equipment, (7) high throughput, (8) low dust generation It is an object of the present invention to provide a polishing method and a semiconductor device manufacturing method capable of realizing the above-mentioned two.

【0037】[0037]

【課題を解決するための手段】上記目的は金属膜の研磨
方法において、研磨砥粒を含まない又含むとしても1重
量%未満の低濃度の研磨砥粒を含み、pH及び酸化還元
電位が金属膜の腐食域である研磨液を用いて、金属膜表
面を機械的に摩擦することにより達成される。必要に応
じて腐食を抑制する物質(防食性物質)を研磨液に添加
しても良い。
The above object is to provide a method for polishing a metal film in which a low concentration of polishing abrasive grains of less than 1% by weight is contained, even if it contains no polishing abrasive grains or contains polishing abrasive grains. This is accomplished by mechanically rubbing the surface of the metal film with a polishing liquid that is the corroded area of the film. If necessary, a substance that suppresses corrosion (anticorrosive substance) may be added to the polishing liquid.

【0038】上記目的は、酸化性物質(金属の電子を奪
い原子価を高める作用のある物質)と、酸化物を水溶性
化する物質とを含む研磨液1を用いて、金属膜表面を機
械的に摩擦することにより達成される。なお、この場
合、Cu、W、Ti、TiN、Al等の金属膜に適用で
きる。
The above-mentioned object is to machine the surface of a metal film by using a polishing liquid 1 containing an oxidizing substance (a substance having a function of robbing electrons of a metal to increase its valence) and a substance which makes an oxide water-soluble. It is achieved by friction. In this case, it can be applied to a metal film of Cu, W, Ti, TiN, Al or the like.

【0039】上記目的は前記金属を水溶性化する物質を
含む研磨液2を用いて、金属膜表面を機械的に摩擦する
ことにより達成される。なお、この場合は主にイオン化
傾向が水素よりも低い金属であるAl等の金属膜に適用
できる。前記金属を水溶性化する物質としては塩酸や有
機酸等の酸もしくは水酸化アンモニウム等のアルカリが
挙げられる。また、イオン化傾向が水素よりも高い銅
も、前記金属を水溶性化する物質として水酸化アンモニ
ウムを用いることにより上記目的は達成される。
The above object is achieved by mechanically rubbing the surface of the metal film with the polishing liquid 2 containing a substance that makes the metal water-soluble. In this case, it can be applied to a metal film such as Al, which is a metal whose ionization tendency is lower than hydrogen. Examples of the substance that makes the metal water-soluble include acids such as hydrochloric acid and organic acids, and alkalis such as ammonium hydroxide. Further, copper, which has a higher ionization tendency than hydrogen, can also achieve the above object by using ammonium hydroxide as a substance that makes the metal water-soluble.

【0040】上記研磨液のpH及び酸化還元電位が金属
の腐食域であることにより前記金属を水溶性化すること
が可能になり、研磨基板表面に露出した絶縁膜表面での
金属の残留を低減することができる。各金属の腐食域は
前記プールベイのpH−酸化還元電位図に記載されてい
る。例えば銅の場合、図9に示したようにpH<7、酸
化還元電位>0.2であればCu2+イオンとして溶解す
る。もしくは、pH>12.5のアルカリ域であればC
uO22-イオンとして溶解する。従って、銅を研磨する
場合にはいずれかの腐食域にすることが望ましい。
Since the pH and redox potential of the polishing liquid are in the metal corrosion region, the metal can be made water-soluble, and the metal residue on the surface of the insulating film exposed on the surface of the polishing substrate can be reduced. can do. The corroded area of each metal is described in the pH-oxidation-reduction potential diagram of the pool bay. For example, in the case of copper, if pH <7 and oxidation-reduction potential> 0.2 as shown in FIG. 9, it dissolves as Cu 2+ ions. Or C in the alkaline range where pH> 12.5
It dissolves as uO 22 − ions. Therefore, when polishing copper, it is desirable to set it to any corrosion area.

【0041】但し、前記プールベイ図はH2O系であ
り、他の反応物が研磨液に含まれている場合はpH−酸
化還元電位図内の腐食域の占める範囲は変化する。本発
明で示す腐食域は、そのような添加物も含めて研磨液が
金属を腐食するpH及び酸化還元電位の範囲にある物質
を含むかどうかで定義する。研磨液に腐食性物質と防食
性物質の両者を含む場合は、前者が本発明で示す腐食域
に入る。
However, the Pool Bay diagram is of the H 2 O system, and when other reactants are contained in the polishing liquid, the range occupied by the corrosion region in the pH-redox potential diagram changes. The corrosion region shown in the present invention is defined by whether the polishing liquid, including such additives, contains a substance in the range of pH and redox potential that corrode metals. When the polishing liquid contains both a corrosive substance and an anticorrosive substance, the former falls into the corrosive region shown in the present invention.

【0042】上記の物質が含まれた研磨液1でCMPを
行うと、まず金属表面が酸化性物質によって酸化され、
表面に薄い酸化層が形成される。次に酸化物を水溶性化
する物質が供給されると前記酸化層が水溶液となって溶
出して前記酸化層の厚さが減る。酸化層が薄くなった部
分は再度酸化性物質に晒されて酸化層の厚さが増し、こ
の反応を繰り返してCMPが進行する。その際、図4
(a)に示したような金属表面の凸部50は常に研磨布
の機械的摩擦を受けるため、表面の反応生成物は除去さ
れ易く、かつ局所的に加熱されるために反応が促進さ
れ、上記の酸化/水溶性化の繰り返し反応は凹部49よ
りも速く進行する。すわなち、凸部50の研磨速度は速
くなり平坦化される。
When CMP is performed with the polishing liquid 1 containing the above substances, the metal surface is first oxidized by the oxidizing substance,
A thin oxide layer is formed on the surface. Then, when a substance that makes the oxide water-soluble is supplied, the oxide layer becomes an aqueous solution and is eluted, and the thickness of the oxide layer is reduced. The portion where the oxide layer becomes thin is again exposed to the oxidizing substance to increase the thickness of the oxide layer, and CMP progresses by repeating this reaction. At that time,
Since the convex portion 50 on the metal surface as shown in (a) is always subjected to mechanical friction of the polishing cloth, the reaction product on the surface is easily removed, and the reaction is promoted due to local heating, The above-mentioned repeated oxidation / water-solubilization reaction proceeds faster than in the recess 49. That is, the polishing rate of the convex portion 50 is increased and the surface is flattened.

【0043】防食性物質は金属表面に付着して凹部の反
応を抑制し、最終的に平坦性を向上する効果がある。防
食性物質を添加しても研磨液がプールベイ図の腐食域に
あれば、研磨布の摩擦によって防食性物質が除去された
金属表面の凸部で前記の反応が進行し、最終的に平坦化
される。すなわち、研磨液が腐食性と防食性の両者を兼
ね備え、研磨布の機械的摩擦によって両者の効果をCM
P中に制御する点が重要である。防食性物質の研磨液へ
の添加濃度は、金属表面の凸部に付着した防食性物質が
研磨布の機械的摩擦によって除去される程度で良い。添
加濃度の目安として、研磨速度を50nm/min以上
に保ち、かつ攪拌エッチング速度が数nm/min以下
であることが望ましい(速度比が50程度)。それ以上
の濃度で添加するとCMP速度が低下することがある。
但し、無添加で研磨速度が十分に高く、かつエッチング
速度が数nm/min以下と小さい場合には、防食性物
質を添加しなくても平坦性よく研磨することができる。
The anticorrosive substance has the effect of adhering to the metal surface and suppressing the reaction of the recesses, and finally improving the flatness. Even if the anticorrosive substance is added, if the polishing liquid is in the corroded area of the pool bay diagram, the above reaction proceeds on the convex part of the metal surface where the anticorrosive substance has been removed due to the friction of the polishing cloth, and finally the surface is flattened. To be done. That is, the polishing liquid has both the corrosive property and the anticorrosive property, and the mechanical friction of the polishing cloth exerts both effects on the CM.
The point of control during P is important. The concentration of the anticorrosive substance added to the polishing liquid may be such that the anticorrosive substance attached to the convex portions of the metal surface is removed by mechanical friction of the polishing cloth. As a measure of the added concentration, it is desirable that the polishing rate be maintained at 50 nm / min or more and the stirring etching rate be several nm / min or less (rate ratio is about 50). If added at a higher concentration, the CMP rate may decrease.
However, if the polishing rate is sufficiently high without addition and the etching rate is as low as several nm / min or less, polishing can be performed with good flatness without adding an anticorrosive substance.

【0044】従来のCMPの方法が酸化性物質によって
金属表面を酸化し、この酸化層を研磨砥粒によって機械
的に除去することによって研磨速度を上げていたのに対
して、本発明では研磨砥粒濃度を低減する代わりに、酸
化物を水溶性化する物質を添加することによって、実質
的に研磨布の機械的摩擦のみで実用的な研磨速度を得
る。
While the conventional CMP method oxidizes the metal surface with an oxidizing substance and mechanically removes this oxide layer with abrasive grains, the polishing rate is increased. By adding a substance that makes the oxide water-soluble instead of reducing the grain concentration, a practical polishing rate can be obtained substantially only by the mechanical friction of the polishing cloth.

【0045】上記の(1)から(8)の目的は、以下の
研磨砥粒濃度範囲で達成される。
The above objects (1) to (8) are achieved in the following range of abrasive grain concentration.

【0046】上記の(1)ディシングとエロージョンを
抑制する目的は、上記の研磨砥粒の濃度を0.05重量
%以下にすることにより達成される。
The above-mentioned object (1) of suppressing dicing and erosion is achieved by setting the concentration of the above-mentioned abrasive grains to 0.05% by weight or less.

【0047】上記の(2)絶縁膜表面に発生するスクラ
ッチを低減する目的は、上記の研磨砥粒の濃度を1重量
%未満にすることにより達成される。
The above-mentioned (2) the purpose of reducing the scratches generated on the surface of the insulating film is achieved by setting the concentration of the above-mentioned abrasive grains to less than 1% by weight.

【0048】上記の(2)金属膜表面に発生するスクラ
ッチを低減する目的は、上記の研磨砥粒の濃度を0.1
重量%以下にすることにより達成される。
The purpose of (2) reducing the scratches generated on the surface of the metal film is to reduce the concentration of the abrasive grains to 0.1.
It is achieved by adjusting the content to be not more than weight%.

【0049】上記の(3)はがれを低減する目的は、上
記の研磨砥粒の濃度を0.5重量%以下にすることによ
って達成される。
The above-mentioned purpose (3) of reducing peeling is achieved by setting the concentration of the above-mentioned abrasive grains to 0.5% by weight or less.

【0050】上記の(4)洗浄性を向上する目的は、上
記の研磨砥粒の濃度を0.01重量%以下にすることに
よって達成される。
The above object (4) of improving the cleaning property is achieved by setting the concentration of the above-mentioned abrasive grains to 0.01% by weight or less.

【0051】上記の(5)研磨液と研磨布のコストを低
減する目的は、上記の研磨砥粒の濃度を0.001重量
%以下にすることによって達成される。
The purpose (5) of reducing the cost of the polishing liquid and the polishing cloth is achieved by setting the concentration of the polishing abrasive grains to 0.001% by weight or less.

【0052】上記の(6)研磨剤供給/処理設備の問題
を解決する目的は、上記の研磨砥粒の濃度を0.000
1重量%以下にすることによって達成される。
The purpose of solving the above-mentioned problem (6) of the abrasive supply / treatment facility is to adjust the concentration of the above-mentioned abrasive grains to 0.000.
It is achieved by making it 1% by weight or less.

【0053】上記の(7)スループットを向上する目的
は、上記の研磨砥粒の濃度を0.01重量%以下にする
ことによって達成される。
The above object (7) of improving the throughput is achieved by setting the concentration of the abrasive grains to 0.01% by weight or less.

【0054】上記の(8)発塵を抑制する目的は、上記
の研磨砥粒を添加しないことによって達成される。
The purpose (8) of suppressing dust generation is achieved by not adding the above-mentioned abrasive grains.

【0055】上記の酸化性物質としては過酸化水素が金
属成分を含まず、かつ強酸ではないため最も望ましい。
硝酸第二鉄及び過ヨウ素酸カリウムは金属成分を含むが
酸化力が強いために研磨速度を高くする効果がある。
As the above-mentioned oxidizing substance, hydrogen peroxide is most preferable because it does not contain a metal component and is not a strong acid.
Although ferric nitrate and potassium periodate contain metal components, they have strong oxidizing power and therefore have an effect of increasing the polishing rate.

【0056】上記の酸化物を水溶性化する物質としては
酸があり、金属イオン(例えばCu2+表的なものであ
る。
As a substance for making the above oxides water-soluble, there is an acid, which is a metal ion (for example, Cu 2+ surface type).

【0057】また、有機酸もしくはその塩は毒性が低く
研磨液として扱い易い。例えば、クエン酸、フタル酸、
酢酸、乳酸、酒石酸に代表される有機酸及びそれらの塩
が挙げられる。塩は溶解度を高める効果があり、金属成
分を含まないもの、例えばアンモニウム塩、もしくは半
導体素子に悪影響を及ぼさない元素(例えばアルミニウ
ム等)を含むものが望ましい。
The organic acid or its salt has low toxicity and is easy to handle as a polishing liquid. For example, citric acid, phthalic acid,
Organic acids represented by acetic acid, lactic acid, tartaric acid and salts thereof can be mentioned. It is desirable that the salt has the effect of increasing the solubility and does not contain a metal component, for example, an ammonium salt or a salt that does not adversely affect the semiconductor element (for example, aluminum).

【0058】上記の酸のうち、クエン酸は食品添加物と
しても一般に使用されており、毒性が低く、廃液として
の害も低く、臭いもなく、水への溶解度も高いために本
発明の研磨液に使用する酸として望ましい。
Of the above-mentioned acids, citric acid is generally used as a food additive, has low toxicity, has little harm as a waste liquid, has no odor, and has a high solubility in water, so that the polishing of the present invention is possible. Desirable as the acid used in the liquid.

【0059】フタル酸は水への溶解度が低いために塩に
することが望ましい。但し、塩にしてpHが変化しても研
磨液を金属の腐食域に保つようにする必要がある。例え
ばフタル酸を銅の研磨液として用いる場合、フタル酸分
子内の2個のカルボキシル基のうち、一つのみを置換し
たフタル酸水素塩であれば水への溶解度が増加し、かつ
pHを酸性(腐食域)に保つことができるため研磨液と
して適している。2個のカルボキシル基を置換したフタ
ル酸塩では研磨液はほぼ中性になり、CMP速度が低下
する。他の有機酸に関しても同様である。
Since phthalic acid has low solubility in water, it is desirable to make it into a salt. However, it is necessary to keep the polishing liquid in the metal corrosive region even if the pH is changed to salt. For example, when phthalic acid is used as a polishing liquid for copper, hydrogen phthalate in which only one of the two carboxyl groups in the phthalic acid molecule is substituted will increase the solubility in water and increase the acidity of the pH. It is suitable as a polishing liquid because it can be kept in the (corrosion region). With phthalates substituted with two carboxyl groups, the polishing liquid becomes almost neutral and the CMP rate decreases. The same applies to other organic acids.

【0060】上記の酸化性物質と酸化物を水溶性化する
物質は、両者の作用を合わせ持つ薬剤であれば1種類で
も構わない。例えば銅を溶解する硝酸はその例である。
添加薬液が少なくなることにより研磨液作製に要する時
間とコストを下げることが可能になる。酸化力を高める
ために過酸化水素のような他の酸化性物質を混合するこ
ともできる。
The above-mentioned oxidizing substance and the substance which makes the oxide water-soluble may be one kind as long as it is a drug having both actions. An example is nitric acid, which dissolves copper.
By reducing the amount of the added chemical liquid, it becomes possible to reduce the time and cost required for preparing the polishing liquid. It is also possible to mix other oxidizing substances such as hydrogen peroxide to increase the oxidizing power.

【0061】また、上記の酸化物を水溶性化する物質と
して水酸化アンモニウム、硝酸アンモニウム、塩化アン
モニウムのいずれかを含むものでもよい。研磨液にアン
モニウムイオンが含まれている場合には、上に示したよ
うに腐食域が変化し、pH>4.5であってもCu(N
32+イオンとして銅を溶解させる作用がある。な
お、Cu−NH3−H2O系に関するpH−酸化還元電位
図は、例えばジャーナルオブ・エレクトロケミカル・ソ
サエテイー、142巻、7号、1995年7月、第23
81頁(J.Electrochem.Soc.Vo
l.142,No.7,July、1995、p.23
81)に記載されている。
The water-soluble substance of the above oxide may contain any one of ammonium hydroxide, ammonium nitrate and ammonium chloride. When the polishing liquid contains ammonium ions, the corrosion region changes as shown above, and Cu (N
It has a function of dissolving copper as H 3 ) 2+ ions. Incidentally, Cu-NH 3 -H pH- redox potential diagram for the 2 O system, for example, Journal of Electrochemical Chemical Sosaetei, 142 vol, No. 7, July 1995, 23
81 pages (J. Electrochem. Soc. Vo
l. 142, No. 7, July, 1995, p. 23
81).

【0062】酸化やエッチングを抑制する物質として
は、防食性物質及び界面活性剤が挙げられる。研磨液中
に混合することでエッチングが抑制され、かつ十分な研
磨速度が得られる物質であれば良い。特に銅合金の防食
性物質としてはベンゾトリアゾール(以下BTAと記
す)が最も効果が大きい。他に実用上使えるものとして
は、トリルトリアゾール(以下TTAと記す)、BTA
カルボン酸(以下BTA−COOHと記す)等のBTA
の誘導体、シスチン、ハロ酢酸、グルコース、ドデシル
メルカプタン等も防食効果がある。
Examples of substances that suppress oxidation and etching include anticorrosive substances and surfactants. Any substance can be used as long as it is a substance capable of suppressing etching by mixing in a polishing liquid and obtaining a sufficient polishing rate. In particular, benzotriazole (hereinafter referred to as BTA) is most effective as an anticorrosive substance for copper alloys. Other practically usable products include tolyltriazole (hereinafter referred to as TTA) and BTA.
BTA such as carboxylic acid (hereinafter referred to as BTA-COOH)
, Cystine, haloacetic acid, glucose, dodecyl mercaptan and the like also have an anticorrosive effect.

【0063】上記の機械的摩擦を加える手段は1重量%
以上の研磨砥粒を研磨液に供給しない研磨布を用いるこ
とができる。研磨布の最適硬度はCMPを行う対象物に
よって異なるが、例えば0.1mm角の銅電極パターン
をダマシン法によって形成し、そのディシングの許容量
が100nm以下である場合は、CMPを行う荷重で研
磨布を0.1mm角の開口部に押し付けた際に、その開
口部から研磨布が圧縮されて押し出される量が100n
m以下であることが好ましい。硬質の研磨布はこの条件
をこの条件を満たすものであり、これを用いることによ
ってディシングを抑制することができる。なお、ダマシ
ン法とは開口を有する絶縁膜上に金属膜を形成後、研磨
し、開口部内部に金属膜を残す技術である。
Means for applying the above mechanical friction is 1% by weight
It is possible to use a polishing cloth that does not supply the above polishing abrasive grains to the polishing liquid. Although the optimum hardness of the polishing cloth varies depending on the object to be CMP'd, for example, if a 0.1 mm square copper electrode pattern is formed by the damascene method and the allowable dicing amount is 100 nm or less, polishing is performed with a load to perform CMP. When the cloth is pressed against the opening of 0.1 mm square, the polishing cloth is compressed and pushed out from the opening of 100 n.
It is preferably m or less. A hard polishing cloth satisfies this condition, and by using this, dicing can be suppressed. Note that the damascene method is a technique in which a metal film is formed over an insulating film having an opening and then polished to leave the metal film inside the opening.

【0064】但し、最大1マイクロメートル程度のプラ
グを形成する場合は軟質研磨布を用いることもできる。
研磨布の硬度は、スクラッチや剥がれが発生しない程度
であれば高いほど望ましいが、配線やプラグのパターン
以外の基体表面の凹凸、例えばウエハのそり等には追随
できる程度に軟らかい硬度の研磨布である必要がある。
However, a soft polishing cloth may be used when forming a plug having a maximum size of about 1 μm.
The hardness of the polishing cloth is preferably as high as possible so that scratches and peeling do not occur, but a polishing cloth with a hardness that is soft enough to follow irregularities on the substrate surface other than the wiring and plug patterns, such as wafer warpage. Need to be

【0065】研磨布から供給される研磨砥粒は、研磨液
の砥粒濃度と同様、上記の(1)から(8)の目的に応
じて上限が異なる。例えば、上記の(1)ディシングと
エロージョンを抑制する目的は、砥粒濃度を0.05重
量%以下にすることによって達成される。
The upper limit of the polishing abrasive grains supplied from the polishing cloth differs depending on the purposes (1) to (8) above, similarly to the abrasive grain concentration of the polishing liquid. For example, the purpose (1) of suppressing dicing and erosion is achieved by setting the abrasive grain concentration to 0.05% by weight or less.

【0066】ここで研磨速度が10nm/min以下の
研磨液は、例えば800nmの金属膜1枚のCMPを行
う場合に80分を要するので配線構造を作製するのに実
用的ではなく、上記のスループットの問題とコストの問
題を解決していないため本発明では研磨液として定義し
ない。
Here, a polishing liquid having a polishing rate of 10 nm / min or less is not practical for producing a wiring structure because it takes 80 minutes to perform CMP of a metal film having a thickness of 800 nm, for example, and the above-mentioned throughput is required. Since it does not solve the above problem and the cost problem, it is not defined as a polishing liquid in the present invention.

【0067】また、研磨速度とエッチング速度の比が5
倍以上、できれば10倍以上が好ましい。これ以下であ
れば、たとえ研磨速度が高くても、CMP中に発生する
エッチング作用によって配線構造を寸法精度良く作製で
きなくなる。エッチング速度は数nm/min以下であ
ることが望ましい。
The ratio of polishing rate to etching rate is 5
It is preferably twice or more, and more preferably 10 times or more. If it is less than this, even if the polishing rate is high, the wiring structure cannot be produced with high dimensional accuracy due to the etching action generated during CMP. The etching rate is preferably several nm / min or less.

【0068】本発明はスクラッチやディシング、エロー
ジョン等の発生しやすい銅合金やアルミニウム合金のC
MPにおいて最も効果があるが、他のメタルCMP、例
えばタングステン及びタングステン合金、チタン及びチ
タン合金等(特に窒化チタン)においても絶縁膜上に発
生するスクラッチの低減には有効である。
In the present invention, C of a copper alloy or an aluminum alloy, which easily causes scratches, dicing, erosion, etc.
Although most effective in MP, other metal CMP, such as tungsten and tungsten alloys, titanium and titanium alloys (particularly titanium nitride), are also effective in reducing scratches generated on the insulating film.

【0069】[0069]

【発明の実施の形態】以下、本発明を図面を用いて具体
的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to the drawings.

【0070】(実施例1)本実施例では銅のCMPを行
うことによって銅配線を形成する方法について説明す
る。図1は本発明の実施例において使用するCMP装置
を示す概略図である。研磨布17が貼り付けられた定盤
11の上をバッキングパッド18によってウエハ14を
支持したホルダ12が回転してCMPを行う構造になっ
ている。CMP中にウエハがはずれないようにリテーナ
リング13が設けられている。CMP中における研磨荷
重は220g/cm2、定盤とホルダの回転数はともに
60rpmとした。なお、研磨荷重や回転数はこれに限
られるものではない。一般に、荷重や定盤回転数を増や
すことにより研磨速度が速くなるが、図25に示したよ
うにスクラッチが入りやすくなる。但し、本発明では研
磨砥粒濃度が低いので、又は含まないので荷重に対する
研磨傷の発生は少ない。研磨布はロデール社製の硬質布
IC1000を用いた。
(Embodiment 1) In this embodiment, a method of forming a copper wiring by performing CMP of copper will be described. FIG. 1 is a schematic diagram showing a CMP apparatus used in an embodiment of the present invention. The structure is such that the holder 12 supporting the wafer 14 is rotated by the backing pad 18 on the surface plate 11 to which the polishing cloth 17 is attached to perform the CMP. A retainer ring 13 is provided so that the wafer does not come off during CMP. The polishing load during CMP was 220 g / cm 2 , and the rotation numbers of the surface plate and the holder were both 60 rpm. The polishing load and the number of rotations are not limited to this. Generally, the polishing rate is increased by increasing the load and the number of rotations of the platen, but scratches are likely to occur as shown in FIG. However, in the present invention, since the abrasive grain concentration is low or not included, the occurrence of polishing scratches against a load is small. Hard cloth IC1000 manufactured by Rodel was used as the polishing cloth.

【0071】本発明の研磨液は定盤上に設けられた第1
の供給口15から研磨布上に約30cc/minの速度
で滴下してCMPを行う。CMPが終了した段階で第1
の供給口15を閉じて研磨液の供給を停止し、第2の供
給口16から純水を約3000cc/minの速度で供
給してリンスを15〜30秒間行う。その後ウエハを乾
燥しないような状態でメガソニック洗浄を行い、研磨液
を除去した後、ウエハを乾燥させる。
The polishing liquid of the present invention is the first one provided on the surface plate.
CMP is performed by dropping it from the supply port 15 onto the polishing cloth at a rate of about 30 cc / min. No. 1 when CMP is completed
Is closed to stop the supply of the polishing liquid, and pure water is supplied from the second supply port 16 at a rate of about 3000 cc / min to rinse for 15 to 30 seconds. Thereafter, megasonic cleaning is performed in a state where the wafer is not dried, the polishing liquid is removed, and then the wafer is dried.

【0072】まず、配線パターンが形成されていないウ
エハを用いて本発明の研磨液の研磨特性を調べた。試料
はシリコンウエハ上に厚さ200nmのシリコン酸化膜
を形成した後、接着層として厚さ50nmのTiN膜と
厚さ800nmのCu膜をスパッタリング法によって真
空中で連続成膜したものである。ウエハ直径は4インチ
である。
First, the polishing characteristics of the polishing liquid of the present invention were examined using a wafer on which no wiring pattern was formed. The sample is a silicon oxide film having a thickness of 200 nm formed on a silicon wafer, and then a TiN film having a thickness of 50 nm and a Cu film having a thickness of 800 nm are continuously formed as an adhesive layer in a vacuum by a sputtering method. The wafer diameter is 4 inches.

【0073】本実施例で用いた研磨液は酸化性物質及び
酸化物を水溶性化する物質である有機酸を混合したもの
である。酸化性物質としては過酸化水素水(30%H2
2水溶液)、有機酸としてはクエン酸を用いた。クエ
ン酸は水への溶解度が高いという利点がある。混合比を
最適化するため、濃度を変えて研磨速度とエッチング速
度を調べた。なお、研磨液の温度は室温である。エッチ
ング速度とは研磨液中に試料を浸した際に銅表面がエッ
チングされる速度であり、CMP中に過剰にエッチング
が進行すると配線構造が形成されないため、できるだけ
低い方が望ましい。エッチング速度は、図2と同様に静
水液エッチング速度と攪拌液エッチング速度を調べた。
研磨速度とエッチング速度は電気抵抗値変化から換算し
て求めた。
The polishing liquid used in this example is a mixture of an oxidizing substance and an organic acid which is a substance for making an oxide water-soluble. Hydrogen peroxide solution (30% H 2
O 2 aqueous solution) and citric acid was used as the organic acid. Citric acid has the advantage of being highly soluble in water. In order to optimize the mixing ratio, the polishing rate and the etching rate were investigated by changing the concentration. The temperature of the polishing liquid is room temperature. The etching rate is the rate at which the copper surface is etched when the sample is immersed in the polishing liquid, and if the etching progresses excessively during CMP, the wiring structure will not be formed, and thus the etching rate is preferably as low as possible. As for the etching rate, the hydrostatic solution etching rate and the stirring solution etching rate were examined as in FIG.
The polishing rate and the etching rate were calculated from the change in electric resistance.

【0074】図3に研磨液の過酸化水素水濃度依存性を
調べた結果を示す。クエン酸濃度は0.03重量%で一
定とした。研磨速度と静水液エッチング速度の比も合わ
せて示してある。研磨速度は過酸化水素水の濃度が10
体積%のときに最大値84nm/minを示している
が、エッチング速度は5体積%以下で5nm/min以
下の低い値になっているため、研磨速度とエッチング速
度の比をとると、5体積%で最も高い比30を示した。
過酸化水素水のみ、もしくはクエン酸のみでは10nm
/min以下の研磨速度となり、埋め込み配線を形成す
る目的には十分な研磨速度ではない。すなわちクエン酸
と過酸化水素水の両方が含有されていることが必要であ
る。そこで5体積%の過酸化水素水と0.03重量%の
クエン酸を純水に混合した研磨液を用いて、銅の埋め込
み配線パターンを作製した。図9に示したように本研磨
液は銅の腐食域にある。
FIG. 3 shows the results of examining the hydrogen peroxide concentration dependence of the polishing liquid. The citric acid concentration was constant at 0.03% by weight. The ratio between the polishing rate and the hydrostatic solution etching rate is also shown. The polishing rate is 10% hydrogen peroxide concentration.
The maximum value of 84 nm / min is shown at the volume%, but since the etching rate is a low value of 5 nm / min or less at 5 volume% or less, the ratio of the polishing rate to the etching rate is 5 volume%. The highest ratio of 30 was 30.
10 nm with hydrogen peroxide alone or citric acid alone
The polishing rate is not higher than / min, which is not a sufficient polishing rate for the purpose of forming embedded wiring. That is, it is necessary that both citric acid and hydrogen peroxide solution are contained. Therefore, a copper-embedded wiring pattern was prepared by using a polishing liquid prepared by mixing pure water with 5% by volume of hydrogen peroxide and 0.03% by weight of citric acid. As shown in FIG. 9, the polishing liquid is in the copper corrosion area.

【0075】埋め込み配線を形成する試料の研磨前の断
面構造の例を図4(a)に示す。不純物ドープ層や絶縁
膜が形成されたシリコン基板25上に厚さ500nmの
BPSG膜(ホウ素とリンが添加されたシリコン酸化
膜)24と厚さ500nmのシリコン酸化膜23を成膜
し、リソグラフィ工程及びドライエッチ工程によって深
さ500nmの配線用の溝パターンをシリコン酸化膜2
3内に形成した。その上に接着層として厚さ50nmの
TiN層22を成膜した後に厚さ800nmの銅薄膜2
1をスパッタリング法により真空中で連続成膜した。さ
らに段差被覆性を良くするためにスパッタ装置内で摂氏
450度で30分間の真空熱処理を行った。シリコン基
板25にはソース、ドレイン等の不純物ドープ層が形成
されているが、ここでは省略して記載していない。
FIG. 4A shows an example of the cross-sectional structure of the sample for forming the buried wiring before polishing. A BPSG film (silicon oxide film to which boron and phosphorus are added) 24 having a thickness of 500 nm and a silicon oxide film 23 having a thickness of 500 nm are formed on a silicon substrate 25 on which an impurity doped layer and an insulating film are formed, and a lithography process is performed. And a groove pattern for wiring having a depth of 500 nm is formed on the silicon oxide film 2 by a dry etching process.
Formed within 3. After forming a TiN layer 22 having a thickness of 50 nm as an adhesive layer thereon, a copper thin film 2 having a thickness of 800 nm is formed.
1 was continuously deposited in vacuum by a sputtering method. Further, in order to improve the step coverage, vacuum heat treatment was carried out at 450 ° C. for 30 minutes in the sputtering apparatus. Impurity-doped layers such as sources and drains are formed on the silicon substrate 25, but they are not shown here.

【0076】この試料を、5体積%の過酸化水素水と
0.03重量%のクエン酸を純水に混合した研磨液を用
いてCMPを行った結果、図4(b)のように、ディシ
ングやエロージョンが約50nm以下となる形状に加工
することができた。形成された銅配線の電気抵抗率を測
定した結果、TiN層の部分も含めて1.9マイクロオ
ームセンチメートルの値を得た。また、蛇行配線(配線
幅0.3マイクロメートルから3マイクロメートル、長
さ40mm)や櫛形配線(配線間隔0.3マイクロメー
トルから3マイクロメートル、長さ40mm)を用いて
導通/絶縁試験を行った結果、ほぼ100%の歩留まり
が得られた。
This sample was subjected to CMP using a polishing liquid in which pure water was mixed with 5% by volume of hydrogen peroxide and 0.03% by weight of citric acid. As a result, as shown in FIG. It was possible to process into a shape with dicing or erosion of about 50 nm or less. As a result of measuring the electrical resistivity of the formed copper wiring, a value of 1.9 micro ohm centimeter including the TiN layer was obtained. Conduction / insulation test is performed using meandering wiring (wiring width 0.3 μm to 3 μm, length 40 mm) and comb-shaped wiring (wiring interval 0.3 μm to 3 μm, length 40 mm). As a result, a yield of almost 100% was obtained.

【0077】次に銅のプラグを本発明の研磨液によって
形成した例を示す。成膜方法とCMP条件は上記の埋め
込み配線の形成方法と同様である。図17(a)〜図1
7(c)に形成した直径0.5マイクロメートルの銅プ
ラグの構造を示す。図17(a)はCMP前の断面構
造、図17(b)はCMP後の断面断面、図17(c)
は上面から見た構造である。プラグの場合は絶縁膜の開
口部が1マイクロメートル以下であるため、軟質研磨布
(例えばロデール社製のSuba800やXHGM11
58)でも図17(b)のようにディシングやエロージ
ョンなく形成することができた。硬質研磨布(IC10
00)を使えることは言うまでもない。
Next, an example in which a copper plug is formed by the polishing liquid of the present invention will be shown. The film forming method and the CMP conditions are the same as the above-mentioned embedded wiring forming method. 17 (a) to 1
The structure of the copper plug with a diameter of 0.5 micrometers formed in FIG. 17A is a sectional structure before CMP, FIG. 17B is a sectional structure after CMP, and FIG.
Is the structure seen from above. In the case of a plug, since the opening of the insulating film is 1 μm or less, a soft polishing cloth (for example, Suba800 or XHGM11 manufactured by Rodel Co.) is used.
58), it could be formed without dicing or erosion as shown in FIG. Hard polishing cloth (IC10
It goes without saying that you can use 00).

【0078】CMPの終点検出に関しては問題なく行う
ことができた。終点検出方法として、CMP装置の研磨
定盤もしくはウエハホルダの回転トルクの変化に基づい
て行った場合、図23に示す信号が得られた。約350
秒経過した時点でCuの研磨が終了し、TiNを研磨す
る段階になるとトルク信号強度が強くなり、その後の約
400秒経過した時点で強度が落ちることから判定でき
た。
The CMP end point could be detected without any problem. When the end point detection method was performed based on the change of the rotation torque of the polishing platen of the CMP apparatus or the wafer holder, the signal shown in FIG. 23 was obtained. About 350
It can be determined from the fact that the polishing of Cu is completed after a lapse of seconds, and the torque signal strength becomes strong at the stage of polishing TiN, and the strength decreases at a time of about 400 seconds thereafter.

【0079】また、研磨処理後の研磨液の光学的スペク
トル変化に基づいて終点検出することもできた。研磨処
理前の研磨液は透明であるが、銅を研磨することによっ
て銅イオンが研磨液に溶け込み、研磨液は青くなる。そ
こで図24に示したように研磨処理が終わって流れ出た
研磨液の光信号強度を波長725nmで測定した結果、
研磨が終了した段階で強度が下がり終点検出できること
がわかった。従来の研磨砥粒が添加された研磨液では研
磨液が白濁しているため、光スペクトルの変化で測定す
ることが困難であった。また、研磨布の一部に穴を開
け、ウエハ表面からの光反射スペクトル変化に基づいて
終点検出することも可能であった。この場合も研磨液に
砥粒が含まれているとウエハ表面に付着した白濁の研磨
液によって信号にノイズが入り、測定が困難であった。
Further, the end point could be detected based on the change in the optical spectrum of the polishing liquid after the polishing treatment. The polishing liquid before the polishing treatment is transparent, but by polishing copper, copper ions are dissolved in the polishing liquid and the polishing liquid becomes blue. Therefore, as shown in FIG. 24, as a result of measuring the optical signal intensity of the polishing liquid flowing out after the polishing treatment at a wavelength of 725 nm,
It was found that when the polishing was completed, the strength decreased and the end point could be detected. In the conventional polishing liquid to which abrasive grains are added, the polishing liquid becomes cloudy, which makes it difficult to measure the change in the optical spectrum. It was also possible to make a hole in a part of the polishing cloth and detect the end point based on the change in the light reflection spectrum from the wafer surface. Also in this case, if the polishing liquid contains abrasive grains, the signal becomes noisy due to the cloudy polishing liquid adhering to the wafer surface, which makes measurement difficult.

【0080】本実施例では、酸化剤として過酸化水素を
用いたが、過酸化水素の代わりに硝酸第二鉄や過ヨウ素
酸カリウムを用いても配線構造を形成できる。但し、鉄
やカリウムの汚染対策が必要になる。
In this embodiment, hydrogen peroxide was used as the oxidizing agent, but a wiring structure can be formed by using ferric nitrate or potassium periodate instead of hydrogen peroxide. However, measures against iron and potassium contamination are necessary.

【0081】また、水酸化アンモニウム、硝酸アンモニ
ウム、塩化アンモニウムのいずれかを含む研磨液でCM
Pを行っても同様に埋め込み配線構造を形成することが
できた。
Further, a polishing liquid containing any one of ammonium hydroxide, ammonium nitrate and ammonium chloride is used for CM.
Even if P was performed, a buried wiring structure could be similarly formed.

【0082】(実施例2)本実施例では、実施例1で用
いた研磨液に防食性物質を添加してさらに研磨特性を向
上する方法について説明する。防食性物質の添加によっ
て図3に示したエッチング速度が低下し、研磨速度とエ
ッチング速度の比がさらに高くなる。このことによっ
て、CMP中に銅表面が過剰にエッチングされるのを防
止でき、かつCMP後に銅研磨面が酸化されるのを防ぐ
ことが可能になる。
(Example 2) In this example, a method of adding an anticorrosive substance to the polishing liquid used in Example 1 to further improve polishing characteristics will be described. The addition of the anticorrosive substance lowers the etching rate shown in FIG. 3 and further increases the ratio of the polishing rate to the etching rate. This makes it possible to prevent the copper surface from being excessively etched during CMP, and to prevent the copper polishing surface from being oxidized after CMP.

【0083】防食剤はBTAを用いた。5体積%の過酸
化水素水と0.03重量%のクエン酸を純水に混合した
研磨液に、BTAを0.1%添加した。BTAを添加し
ても、本研磨液のpHと酸化還元電位はほとんど変化せ
ず、図9に示した銅の腐食域にある。実施例1と同様に
銅のエッチング速度を調べた結果、BTA添加前と比較
して約6分の1に低減することができた。そこでこの研
磨液を用いて、実施例1と同様の条件でCMPを行った
結果、銅研磨面の腐食を抑制し図4に示した埋め込み配
線を形成することができた。形成された銅配線の電気抵
抗率を測定した結果、TiN層の部分も含めて1.9マ
イクロオームセンチメートルの値を得た。また、蛇行配
線(配線幅0.3マイクロメートルから3マイクロメー
トル、長さ40mm)や櫛形配線(配線間隔0.3マイ
クロメートルから3マイクロメートル、長さ40mm)
を用いて導通/絶縁試験を行った結果、ほぼ100%の
歩留まりが得られた。
BTA was used as the anticorrosive agent. 0.1% of BTA was added to a polishing liquid in which pure water was mixed with 5% by volume of hydrogen peroxide and 0.03% by weight of citric acid. Even if BTA is added, the pH and oxidation-reduction potential of the polishing liquid hardly change, and the polishing liquid is in the copper corrosion region shown in FIG. As a result of investigating the etching rate of copper in the same manner as in Example 1, it was possible to reduce the etching rate to about 1/6 of that before the addition of BTA. Therefore, as a result of performing CMP using this polishing liquid under the same conditions as in Example 1, it was possible to suppress the corrosion of the copper polishing surface and form the embedded wiring shown in FIG. As a result of measuring the electrical resistivity of the formed copper wiring, a value of 1.9 micro ohm centimeter including the TiN layer was obtained. In addition, meandering wiring (wiring width 0.3 μm to 3 μm, length 40 mm) and comb-shaped wiring (wiring interval 0.3 μm to 3 μm, length 40 mm)
As a result of conducting a continuity / insulation test using, a yield of almost 100% was obtained.

【0084】また、オーバーCMPを長時間(例えば2
倍の時間)行った場合、BTAを添加しない研磨液では
図16(a)のように銅配線部が約100nmの深さだ
けエッチングされて周辺の絶縁膜部分よりも凹む減少が
観察されたが、BTAを添加した研磨液を用いることに
より図16(b)のように数10nm以下に抑制するこ
とができた。なお、オーバーCMPはウエハ全体で研磨
残りがないようにするために行うものである。
In addition, over CMP is performed for a long time (for example, 2
16 times, it was observed that with the polishing liquid containing no BTA, the copper wiring portion was etched to a depth of about 100 nm and recessed from the surrounding insulating film portion as shown in FIG. 16 (a). , BTA was added, it was possible to suppress to several tens nm or less as shown in FIG. The over CMP is performed so that no polishing residue remains on the entire wafer.

【0085】上記研磨液を濃厚にしたものでも同様に配
線構造を作製できた。例えば30体積%の過酸化水素水
と0.15重量%のクエン酸と0.3%のBTAを純水
に混合したものが良好であった。研磨液が濃厚な場合、
ウエハ内の研磨均一性が向上する効果があった。研磨液
が希薄な場合の均一性が10%以上であったのに対し
て、濃厚液の均一性は8%以下になった。但し、希薄液
は研磨液を安価に作製できる効果がある。
A wiring structure could be prepared in the same manner even when the polishing liquid was concentrated. For example, a mixture of 30% by volume hydrogen peroxide solution, 0.15% by weight citric acid and 0.3% BTA in pure water was good. If the polishing liquid is thick,
There was an effect of improving the polishing uniformity in the wafer. The uniformity when the polishing liquid was diluted was 10% or more, whereas the uniformity of the concentrated liquid was 8% or less. However, the dilute solution has the effect that the polishing solution can be produced at a low cost.

【0086】また、金属を水溶性化する物質として水酸
化アンモニウムを用いる場合もBTAを添加した研磨液
とすることにより上記の効果が得られ、埋め込み銅配線
を形成することができる。
Also, when ammonium hydroxide is used as the substance for making the metal water-soluble, the above effect can be obtained by using the polishing liquid containing BTA, and the embedded copper wiring can be formed.

【0087】(実施例3)本実施例では砥粒濃度低減に
よるディシングとエロージョンの抑制効果を調べた。実
施例2の研磨液(5体積%の過酸化水素水と0.03重
量%のクエン酸と0.1%のBTAを純水に混合したも
の)と、比較例としてこの研磨液にアルミナ砥粒(粒子
径:約200nm)を2.5%加えたものを用意した。
これらの研磨液を用いて実施例2と同様に埋め込み配線
を形成し、図5に定義したディシング量とエロージョン
量の配線幅依存性を、幅0.4マイクロメートルから9
0マイクロメートルで、長さ400マイクロメートルの
配線の断面写真を走査電子顕微鏡(SEM)で撮影して
測定した。図6(a)(b)に計測結果を図7及び図8
にSEM観察に基づき描いた断面の形状を示す。
Example 3 In this example, the effect of suppressing the dicing and erosion by reducing the abrasive grain concentration was examined. The polishing liquid of Example 2 (5% by volume of hydrogen peroxide solution, 0.03% by weight of citric acid, and 0.1% of BTA mixed in pure water), and this polishing liquid as a comparative example were used for alumina polishing. The thing which added 2.5% of particles (particle diameter: about 200 nm) was prepared.
Embedded wirings were formed using these polishing solutions in the same manner as in Example 2, and the wiring width dependence of the dishing amount and the erosion amount defined in FIG.
A cross-sectional photograph of a wiring having a length of 0 μm and a length of 400 μm was taken by a scanning electron microscope (SEM) and measured. The measurement results are shown in FIGS. 6A and 6B.
The cross-sectional shape drawn based on the SEM observation is shown in FIG.

【0088】図6(a)(b)からディシング量、エロ
ージョン量ともに配線幅が太くなるにつれて大きくなる
傾向にあるが、アルミナ砥粒をなくすことによってディ
シング量は約半分に低減され、幅4マイクロメートル以
下の配線のエロージョン量はほとんどSEMでは観察で
きない程度(10nm以下)にまで低減された。図8
(a)(b)の比較から90マイクロメートルの配線幅
では顕著な差が観察される。
From FIGS. 6 (a) and 6 (b), both the dishing amount and the erosion amount tend to increase as the wiring width becomes thicker. However, by eliminating the alumina abrasive grains, the dishing amount was reduced to about half, and the width was 4 μm. The amount of erosion of the wiring of less than or equal to a meter was reduced to a level (10 nm or less) that could hardly be observed by SEM. Figure 8
From the comparison between (a) and (b), a remarkable difference is observed in the wiring width of 90 μm.

【0089】次にディシング量とエロージョン量のアル
ミナ砥粒濃度依存性を調べた。両値の計測は図5に示し
た定義に従って行った。アルミナ砥粒濃度は0.000
1重量%、0.001重量%、0.01重量%、0.0
5重量%、0.1重量%、0.5重量%、1重量%の7
種類の研磨液を用意した。その結果、アルミナ砥粒濃度
が0.05重量%以下になると両値ともアルミナ砥粒が
入っていない研磨液と同程度の値になり、誤差の範囲
(20nm以下)で図6(b)の結果と一致した。これ
により、アルミナ砥粒濃度が0.05重量%以下の研磨
液を用いてCMPを行うことにより、ディシングとエロ
ージョンを抑制した埋め込み配線構造を形成できること
が分かった。
Next, the dependency of the amount of dicing and the amount of erosion on the alumina abrasive grain concentration was investigated. Both values were measured according to the definitions shown in FIG. Alumina abrasive grain concentration is 0.000
1% by weight, 0.001% by weight, 0.01% by weight, 0.0
5% by weight, 0.1% by weight, 0.5% by weight, 1% by weight of 7
Different kinds of polishing liquid were prepared. As a result, when the alumina abrasive grain concentration was 0.05% by weight or less, both values were about the same as those of the polishing liquid containing no alumina abrasive grains, and within the error range (20 nm or less) of FIG. In agreement with the results. From this, it was found that by performing CMP using a polishing liquid having an alumina abrasive grain concentration of 0.05 wt% or less, a buried wiring structure with suppressed dicing and erosion can be formed.

【0090】(実施例4)本実施例では砥粒濃度の低減
によるスクラッチ抑制効果を調べた。実施例2の研磨液
(5体積%の過酸化水素水と0.03重量%のクエン酸
と0.1%のBTAを純水に混合したもの)と、これに
アルミナ砥粒(粒子径:約200nm)を0.0001
重量%、0.001重量%、0.01重量%、0.05
重量%、0.1重量%、0.5重量%、1重量%、2.
5重量%、5重量%添加した研磨液を用意した。これら
の研磨液を用いて配線パターンの無い銅薄膜表面とシリ
コン酸化膜表面のCMPを行った。
Example 4 In this example, the effect of suppressing scratches by reducing the abrasive grain concentration was examined. The polishing liquid of Example 2 (5% by volume of hydrogen peroxide solution, 0.03% by weight of citric acid, and 0.1% of BTA mixed with pure water) and alumina abrasive grains (particle size: Approx. 200 nm) 0.0001
% By weight, 0.001% by weight, 0.01% by weight, 0.05
%, 0.1%, 0.5%, 1%, 2.
A polishing liquid containing 5% by weight and 5% by weight was prepared. Using these polishing liquids, CMP was performed on the surface of the copper thin film having no wiring pattern and the surface of the silicon oxide film.

【0091】その結果、1重量%以上のアルミナ砥粒濃
度の研磨液でCMPを行ったシリコン酸化膜表面には、
図25に示したようにウエハ当たり100〜1000個
の点状スクラッチが光学顕微鏡で観察されたが、0.5
重量%以下のアルミナ砥粒濃度の研磨液でCMPを行っ
たウエハでは数個程度まで抑制された。スクラッチの大
きさは1マイクロメートル以下であるため、この程度の
スクラッチ数であれば配線構造を形成する目的では問題
とならないレベルである。
As a result, on the surface of the silicon oxide film which was CMP-processed with a polishing liquid having an alumina abrasive grain concentration of 1% by weight or more,
As shown in FIG. 25, 100 to 1000 point scratches per wafer were observed with an optical microscope.
The number of wafers subjected to CMP with a polishing liquid having an alumina abrasive grain concentration of not more than wt% was suppressed to about several wafers. Since the size of scratches is 1 μm or less, a scratch number of this level is not a problem for the purpose of forming a wiring structure.

【0092】次に銅表面に形成されるスクラッチを調べ
た。0.5重量%以上のアルミナ砥粒濃度の研磨液でC
MPを行った銅表面には目視で判別可能な線状のスクラ
ッチが発生した。アルミナ砥粒濃度が増えるにしたがっ
てウエハ当たりのスクラッチ発生個数は増加する傾向で
あった。0.1重量%のアルミナ砥粒濃度の研磨液でC
MPを行ったウエハで発生するスクラッチ数は数個であ
るが、この試料をSEMによるウエハ断面の観察とAF
M(原子間力顕微鏡)で表面の凹凸観察を行った結果、
スクラッチの深さは100nm程度であることがわかっ
た。埋め込み銅配線の深さが500nmであるため、1
00nmのスクラッチは問題となる。
Next, scratches formed on the copper surface were examined. C with a polishing liquid having an alumina abrasive grain concentration of 0.5% by weight or more
Linear scratches that could be visually identified were generated on the copper surface subjected to MP. The number of scratches generated per wafer tended to increase as the alumina abrasive grain concentration increased. C with a polishing liquid having an alumina abrasive grain concentration of 0.1% by weight
The number of scratches generated on the wafer subjected to MP is several, but this sample was observed by SEM on the wafer cross section and AF was performed.
As a result of observing the unevenness of the surface with M (atomic force microscope),
It was found that the scratch depth was about 100 nm. 1 because the depth of the embedded copper wiring is 500 nm
00 nm scratches are a problem.

【0093】0.1重量%以下のアルミナ砥粒濃度の研
磨液でCMPを行った銅表面では目視で判別可能なスク
ラッチは消滅した。これらの試料をSEMとAFMで観
察を行った結果、スクラッチの深さは10nm程度であ
ることがわかった。この程度であれば配線の電気抵抗に
ほとんど影響を与えることはない。
The visually discernible scratches disappeared on the copper surface subjected to CMP with a polishing liquid having an alumina abrasive grain concentration of 0.1% by weight or less. As a result of observing these samples by SEM and AFM, it was found that the scratch depth was about 10 nm. At this level, the electric resistance of the wiring is hardly affected.

【0094】さらに、スクラッチの発生を低減できるの
で研磨荷重と定盤回転数を増加することができ、研磨速
度を上げることが可能になるという効果もあった。
Further, since it is possible to reduce the occurrence of scratches, it is possible to increase the polishing load and the number of rotations of the platen, and it is possible to increase the polishing rate.

【0095】実際に砥粒濃度0.1重量%以下の研磨液
を用いて実施例1と同様にして埋め込み配線を形成し、
蛇行配線(配線幅0.3マイクロメートルから3マイク
ロメートル、長さ40mm)や櫛形配線(配線間隔0.
3マイクロメートルから3マイクロメートル、長さ40
mm)を用いて導通/絶縁試験を行った結果、ほぼ10
0%の歩留まりが得られた。
An embedded wiring was actually formed in the same manner as in Example 1 using a polishing liquid having an abrasive grain concentration of 0.1% by weight or less.
Serpentine wiring (wiring width 0.3 μm to 3 μm, length 40 mm) and comb-shaped wiring (wiring spacing of 0.
3 to 3 micrometers, length 40
The result of conducting / insulation test was about 10 mm.
A yield of 0% was obtained.

【0096】(実施例5)本実施例では砥粒濃度の低減
による剥がれ抑制効果を調べた。実施例2の研磨液(5
体積%の過酸化水素水と0.03重量%のクエン酸と
0.1%のBTAを純水に混合したもの)と、これにア
ルミナ砥粒を0.0001重量%、0.001重量%、
0.01重量%、0.05重量%、0.1重量%、0.
5重量%、1重量%、5重量%、10重量%添加した研
磨液を用意した。試料は、厚さ800nmの銅薄膜を厚
さ5nm(実施例1の1/10の厚さ)のTiN層をは
さんでシリコン酸化膜上にスパッタリングで成膜したも
のを用いた。この試料を上記の研磨液を用いてCMPを
行った。
(Embodiment 5) In this embodiment, the effect of suppressing peeling by reducing the abrasive grain concentration was examined. The polishing liquid of Example 2 (5
A mixture of pure water containing 0.1% by volume of hydrogen peroxide, 0.03% by weight of citric acid and 0.1% of BTA), and 0.0001% by weight and 0.001% by weight of alumina abrasive grains. ,
0.01% by weight, 0.05% by weight, 0.1% by weight, 0.
A polishing liquid containing 5% by weight, 1% by weight, 5% by weight and 10% by weight was prepared. The sample used was a copper thin film with a thickness of 800 nm formed by sputtering on a silicon oxide film with a TiN layer having a thickness of 5 nm (1/10 of the thickness in Example 1) interposed therebetween. This sample was subjected to CMP using the above polishing liquid.

【0097】その結果、1重量%以上のアルミナ砥粒濃
度の研磨液でCMPを行ったウエハ周辺部から剥がれが
銅層とTiN層との間で発生した。アルミナ砥粒と銅表
面に発生する摩擦力が原因と考えられる。0.5重量%
以下のアルミナ砥粒濃度の研磨液でCMPを行ったウエ
ハでは摩擦力が低下し、剥がれは全く発生しなかった。
さらに、剥がれの発生が減少すると研磨荷重と定盤回転
数を増加することができ、研磨速度を上げることが可能
になるという効果もあった。
As a result, peeling occurred between the copper layer and the TiN layer from the peripheral portion of the wafer subjected to CMP with a polishing liquid having an alumina abrasive grain concentration of 1% by weight or more. The cause is considered to be the frictional force generated between the alumina abrasive grains and the copper surface. 0.5% by weight
The wafer subjected to CMP with a polishing liquid having the following alumina abrasive grain concentration had a reduced frictional force and did not peel at all.
Further, when the occurrence of peeling is reduced, the polishing load and the number of rotations of the platen can be increased, and the polishing rate can be increased.

【0098】そこで、砥粒濃度0.5重量%以下の研磨
液を用いて実施例2と同様にして埋め込み配線を形成し
た。試料は、図4のTiN層22を5nmにした試料を
用いた。その結果、銅薄膜の剥がれなく埋め込み配線を
形成することができた。
Therefore, a buried wiring was formed in the same manner as in Example 2 using a polishing liquid having an abrasive grain concentration of 0.5% by weight or less. As the sample, a sample in which the TiN layer 22 of FIG. 4 has a thickness of 5 nm was used. As a result, the embedded wiring could be formed without peeling of the copper thin film.

【0099】(実施例6)本実施例では砥粒濃度の低減
による洗浄性の向上の効果を調べた。実施例2の研磨液
(5体積%の過酸化水素水と0.03重量%のクエン酸
と0.1%のBTAを純水に混合したもの)と、これに
アルミナ砥粒を0.0001重量%、0.001重量
%、0.01重量%、0.05重量%、0.1重量%、
0.5重量%、1重量%、5重量%、10重量%添加し
た研磨液を用意した。これらの研磨液でシリコン酸化膜
上に形成された銅薄膜とTiN薄膜をCMPによって除
去し、表面に現れたシリコン酸化膜表面を純水により洗
浄を行った後、残存するアルミナ砥粒(欠陥数)を面盤
欠陥装置を用いて調べた。大きさが0.2マイクロメー
トル以上の欠陥についてウエハ当たりの数を測定した。
ウエハの大きさは4インチである。
Example 6 In this example, the effect of improving the cleaning property by reducing the abrasive grain concentration was investigated. The polishing liquid of Example 2 (5% by volume of hydrogen peroxide solution, 0.03% by weight of citric acid, and 0.1% of BTA mixed with pure water) and 0.0001 of alumina abrasive grains were added thereto. % By weight, 0.001% by weight, 0.01% by weight, 0.05% by weight, 0.1% by weight,
A polishing liquid containing 0.5% by weight, 1% by weight, 5% by weight and 10% by weight was prepared. The copper thin film and the TiN thin film formed on the silicon oxide film are removed by CMP with these polishing liquids, and the surface of the silicon oxide film exposed on the surface is washed with pure water. ) Was investigated using a face plate defector. The number of defects per wafer having a size of 0.2 μm or more was measured.
The size of the wafer is 4 inches.

【0100】その結果、図10に示したようにアルミナ
砥粒濃度の低減に従い欠陥数は減少し、濃度0.01重
量%以下であればメガソニック洗浄のみで欠陥数を10
0個以下に低減できることがわかった。従来は、1重量
%以上の濃度のアルミナ砥粒研磨液を用いていたため
に、ポリビニルアルコール(PVA)のブラシ洗浄とメ
ガソニック洗浄を併用して、欠陥数を100個以下に低
減していた。したがって、砥粒濃度が0.01重量%以
下の研磨液を用いて研磨を行うことにより洗浄工程数を
減らす効果がある。もしくは従来と同様の洗浄工程を行
うことによって、より異物数を減らす効果がある。
As a result, as shown in FIG. 10, the number of defects decreases as the alumina abrasive grain concentration decreases. If the concentration is 0.01% by weight or less, the number of defects is 10 only by megasonic cleaning.
It was found that the number could be reduced to 0 or less. Conventionally, since the alumina abrasive grain polishing liquid having a concentration of 1% by weight or more has been used, the number of defects is reduced to 100 or less by using brush cleaning of polyvinyl alcohol (PVA) and megasonic cleaning together. Therefore, polishing with a polishing liquid having an abrasive grain concentration of 0.01 wt% or less has the effect of reducing the number of cleaning steps. Alternatively, the same washing process as the conventional one is effective in reducing the number of foreign matters.

【0101】(実施例7)本実施例では、砥粒濃度の低
減によりCMP処理工程数を低減できることを示す。図
11に従来の研磨液を用いた場合のCMPの処理工程を
示す。従来のCMP装置では、例えばアルミナ砥粒濃度
が1重量%以上と高く、砥粒の研磨布への目詰まりを防
ぐために、CMPを行う前に数10秒から数分間の研磨
布のコンディショニングを行っていた。
(Embodiment 7) This embodiment shows that the number of CMP treatment steps can be reduced by reducing the abrasive grain concentration. FIG. 11 shows a CMP processing step when a conventional polishing liquid is used. In a conventional CMP apparatus, for example, the alumina abrasive grain concentration is as high as 1% by weight or more, and the polishing cloth is conditioned for several tens of seconds to several minutes before the CMP in order to prevent the abrasive cloth from being clogged. Was there.

【0102】また、研磨により露出したシリコン酸化膜
等の絶縁膜表面のダメージ層を除去する目的で、埋め込
み配線層を形成するためのメタルCMPの後に、絶縁膜
のCMPを数10秒から2分程度行っていた。その後、
ウエハを乾燥することなく洗浄工程に移り、砥粒除去の
目的でアンモニア液による第1ブラシ洗浄を行う。さら
にシリコン酸化膜等の絶縁膜表面のダメージ層の金属汚
染を除去するために希フッ酸(HF)による第2ブラシ
洗浄を行っていた。最終的にメガソニック洗浄により目
的のレベルまで砥粒を除去した後、ウエハを乾燥してい
た。
For the purpose of removing the damaged layer on the surface of the insulating film such as the silicon oxide film exposed by polishing, the CMP of the insulating film is performed for several tens of seconds to 2 minutes after the metal CMP for forming the buried wiring layer. I was about to go. afterwards,
Without drying the wafer, the process moves to the cleaning step, and the first brush cleaning is performed with an ammonia solution for the purpose of removing the abrasive grains. Further, a second brush cleaning with dilute hydrofluoric acid (HF) is performed in order to remove metal contamination of the damaged layer on the surface of the insulating film such as a silicon oxide film. Finally, the wafer was dried after removing the abrasive grains to a target level by megasonic cleaning.

【0103】図12に本発明に係る0.01重量%未満
の低濃度研磨砥粒含有研磨液を用いた場合のCMP工程
全体を示す。CMP装置では砥粒の目詰まりがほとんど
発生しなくなるため、新品の研磨布を用いる場合以外は
ほとんどコンディショニングが不要になった。砥粒濃度
が1/10倍になれば、研磨布の寿命が10倍になっ
た。また、シリコン酸化膜表面のスクラッチ等によるダ
メージ層が無くなるため、絶縁膜のCMPも不要となっ
た。洗浄工程ではメガソニック洗浄のみで従来のレベル
(欠陥数)まで洗浄可能であった。
FIG. 12 shows the entire CMP process in the case of using the polishing liquid containing a low concentration polishing abrasive grain of less than 0.01% by weight according to the present invention. In the CMP apparatus, almost no clogging of the abrasive grains occurs, so conditioning is almost unnecessary except when a new polishing cloth is used. When the abrasive grain concentration was increased by 1/10, the life of the polishing cloth was increased by 10 times. Further, since the damage layer due to scratches on the surface of the silicon oxide film is eliminated, the CMP of the insulating film is also unnecessary. In the cleaning process, it was possible to clean to the conventional level (number of defects) only by megasonic cleaning.

【0104】全反射蛍光X線により重金属汚染を評価し
た結果、この点に関してもメガソニック洗浄のみで従来
のレベルまで洗浄可能であった。最終的に従来のCMP
工程と比較して、2分の1程度に工程時間が短縮され
た。図12の工程は砥粒濃度が0.01重量%以下であ
れば実用上使用可能であるが、0.005重量%以下が
望ましい。
As a result of evaluation of heavy metal contamination by total reflection X-ray fluorescence, it was possible to clean up to the conventional level also in this point only by megasonic cleaning. Finally conventional CMP
Compared with the process, the process time was shortened by about half. The process of FIG. 12 can be practically used if the abrasive grain concentration is 0.01% by weight or less, but 0.005% by weight or less is desirable.

【0105】(実施例8)本実施例では砥粒濃度の低減
による研磨布と研磨剤のコスト削減の効果を調べた。
(Embodiment 8) In this embodiment, the effect of reducing the cost of the polishing cloth and the polishing agent by reducing the abrasive grain concentration was investigated.

【0106】銅CMP用のアルミナ研磨剤はCMP時間
をオーバー研磨時間も含めて5分とし、100cc/分
の速度でCMP装置内に研磨剤を供給すると1回のCM
Pで1リットル使用される。又、研磨布は約400枚の
CMPで1枚を消耗する。さらに、CMP装置の他に後
洗浄装置が必要である。
The alumina polishing agent for copper CMP has a CMP time of 5 minutes including the over-polishing time, and when the polishing agent is supplied into the CMP apparatus at a rate of 100 cc / min, one CM is obtained.
1 liter of P is used. Moreover, one polishing cloth is consumed by about 400 CMP. Furthermore, a post-cleaning device is required in addition to the CMP device.

【0107】従来のアルミナ砥粒濃度が1重量%以上の
研磨液を用いたCMPを行う場合のCMP関連コストの
内訳を図13に示す。他の半導体関連装置と異なり、消
耗品である研磨布と研磨剤のコストが全体の約70%を
占めることがわかる。
FIG. 13 shows a breakdown of CMP-related costs when performing CMP using a conventional polishing liquid having an alumina abrasive grain concentration of 1% by weight or more. It can be seen that unlike other semiconductor-related devices, the cost of consumable polishing cloth and polishing agent accounts for about 70% of the total cost.

【0108】これに対して、本発明の研磨液ではアルミ
ナ砥粒濃度を0.001%以下に低減することによりC
MP関連コストを大きく削減することが可能になる。研
磨液に添加する薬液のコストは必要になるが、従来のア
ルミナ研磨剤のコストの1/100程度である。研磨布
のコストも、従来行っていたコンディショニングの頻度
が少なくなるので削減可能である。
On the other hand, in the polishing liquid of the present invention, by reducing the concentration of alumina abrasive grains to 0.001% or less, C
MP-related costs can be significantly reduced. Although the cost of the chemical liquid added to the polishing liquid is necessary, it is about 1/100 of the cost of the conventional alumina polishing agent. The cost of the polishing cloth can also be reduced because the frequency of conditioning that has been conventionally performed is reduced.

【0109】CMP装置に関しても、アルミナ砥粒濃度
が0.0001%以下であれば研磨剤供給装置、研磨剤
撹拌機構、研磨剤処理装置等の設備が不要になり、アル
ミナ砥粒濃度が0になればクリーンルーム内の発塵防止
対策も不要になり、従来品と比較してコスト削減とな
る。洗浄装置に関しても、従来のブラシ洗浄が不要とな
るため半分程度のコストになる。以上の結果から、本発
明の研磨液を用いることによってCMP関連全体で約7
0%のコストを削減することができる。
With respect to the CMP apparatus, if the alumina abrasive grain concentration is 0.0001% or less, the equipments such as the polishing agent supply device, the polishing agent stirring mechanism, and the polishing agent processing device are not necessary, and the alumina polishing grain concentration becomes zero. If this is the case, it will not be necessary to take measures to prevent dust generation in the clean room, resulting in cost reduction compared to conventional products. As for the cleaning device, the conventional brush cleaning is not necessary, and the cost is about half. From the above results, by using the polishing liquid of the present invention, about 7
It is possible to reduce the cost by 0%.

【0110】(実施例9)本実施例では、硝酸とBTA
を使った研磨液で埋め込み銅配線を形成する方法を説明
する。硝酸は銅に対して酸化作用があり、かつ硝酸自身
の酸の性質で銅を水溶性化することが可能であるため、
1薬液で本発明の2種の作用を兼ねることが可能であ
る。BTAは実施例2と同様にエッチングを抑制する効
果があり、研磨速度とエッチング速度の比を高めること
が可能になる。このことによって、CMP中に銅表面が
過剰にエッチングされるのを防止でき、かつCMP後に
銅研磨面が過度に酸化されるのを防ぐことが可能にな
る。研磨液の濃度は硝酸:0.2体積%、BTA:0.
01重量%を純水に混合した水溶液である。図9に示し
たように本研磨液は銅の腐食域にある。
Example 9 In this example, nitric acid and BTA were used.
A method of forming a buried copper wiring with a polishing liquid using is explained. Nitric acid has an oxidizing effect on copper, and because it is possible to make copper water-soluble by the nature of the acid of nitric acid itself,
It is possible for one chemical solution to have the two functions of the present invention. BTA has the effect of suppressing etching as in Example 2, and can increase the ratio of the polishing rate to the etching rate. This makes it possible to prevent the copper surface from being excessively etched during CMP and prevent the copper polished surface from being excessively oxidized after CMP. The concentration of the polishing liquid was nitric acid: 0.2% by volume, BTA: 0.
This is an aqueous solution prepared by mixing 01% by weight with pure water. As shown in FIG. 9, the polishing liquid is in the copper corrosion area.

【0111】実施例1と同様に銅のエッチング速度を調
べた結果、BTAの添加によって約6分の1に低減する
ことができた。そこでこの研磨液を用いて、実施例1と
同様の条件でCMPを行った結果、銅研磨面の腐食を抑
制して埋め込み配線を形成することができた。形成され
た銅配線の電気抵抗率を測定した結果、TiN層の部分
も含めて1.9マイクロオームセンチメートルの値を得
た。また、蛇行配線(配線幅0.3マイクロメートルか
ら3マイクロメートル、長さ40mm)や櫛形配線(配
線間隔0.3マイクロメートルから3マイクロメート
ル、長さ40mm)を用いて導通/絶縁試験を行った結
果、ほぼ100%の歩留まりが得られた。
As a result of examining the etching rate of copper in the same manner as in Example 1, it was possible to reduce the etching rate to about 1/6 by adding BTA. Then, using this polishing liquid, CMP was performed under the same conditions as in Example 1, and as a result, it was possible to suppress the corrosion of the copper polishing surface and form the embedded wiring. As a result of measuring the electrical resistivity of the formed copper wiring, a value of 1.9 micro ohm centimeter including the TiN layer was obtained. Conduction / insulation test is performed using meandering wiring (wiring width 0.3 μm to 3 μm, length 40 mm) and comb-shaped wiring (wiring interval 0.3 μm to 3 μm, length 40 mm). As a result, a yield of almost 100% was obtained.

【0112】また、BTAを添加しない研磨液では銅配
線部がエッチングされて周辺の絶縁膜部分よりも凹む現
象が観察されたが(特に硝酸濃度が1%以上と高い場合
には銅が消失した)、BTAを添加した研磨液を用いる
ことにより図16(b)のように数10nm以下に抑制
することができた。
Further, with the polishing liquid containing no BTA, a phenomenon was observed in which the copper wiring portion was etched and recessed from the surrounding insulating film portion (especially when the nitric acid concentration was as high as 1% or more, copper disappeared). ) And BTA were used, it was possible to suppress the thickness to several tens of nm or less as shown in FIG.

【0113】この研磨液にアルミナ砥粒を添加すると、
0.1重量%を越える濃度で銅研磨面に、1重量%を越
える濃度でシリコン酸化膜にスクラッチが発生した。ま
た、0.5重量%を越える濃度の研磨液で下地TiN層
が5nmの銅薄膜のCMPを行うと剥がれが発生した。
これらの濃度以下にアルミナ砥粒を低減することによっ
てスクラッチと剥がれを防止できた。さらに濃度0.0
1重量%以下であればメガソニック洗浄のみで欠陥数を
100個以下に低減でき、薬液によるブラシ洗浄は不要
となることがわかった。
When alumina abrasive grains are added to this polishing liquid,
Scratches occurred on the copper-polished surface at a concentration of more than 0.1% by weight and on the silicon oxide film at a concentration of more than 1% by weight. Further, peeling occurred when CMP was performed on a copper thin film having an underlying TiN layer of 5 nm with a polishing liquid having a concentration exceeding 0.5% by weight.
It was possible to prevent scratches and peeling by reducing the alumina abrasive grains to these concentrations or less. Further concentration 0.0
It has been found that if the amount is 1% by weight or less, the number of defects can be reduced to 100 or less only by megasonic cleaning, and brush cleaning with a chemical solution is unnecessary.

【0114】次に形成した埋め込み配線のディシング量
とエロージョン量の評価を行った。図6に示した結果と
同様に、アルミナ砥粒濃度が0.05重量%以下になる
と両値ともアルミナ砥粒が入っていない研磨液と同程度
の値になり、誤差の範囲(20nm以下)で図6(b)
と一致した。したがって、この研磨液を用いてCMPを
行うことによって、図4及び図17に示したようなディ
シングとエロージョンを抑制した埋め込み配線構造及び
プラグ構造を形成できた。
Next, the dicing amount and the erosion amount of the embedded wiring formed were evaluated. Similar to the results shown in FIG. 6, when the alumina abrasive grain concentration was 0.05% by weight or less, both values were about the same as those of the polishing liquid containing no alumina abrasive grains, and the error range (20 nm or less) In Fig. 6 (b)
Matched with. Therefore, by performing CMP using this polishing liquid, a buried wiring structure and a plug structure with suppressed dicing and erosion as shown in FIGS. 4 and 17 could be formed.

【0115】(実施例10)本実施例では実施例9の研
磨液(硝酸:0.5体積%、BTA:0.01重量%)
で積層配線構造を作製し、その効果を示す実験を行っ
た。比較実験として従来のアルミナ砥粒を1重量%含む
研磨液を用いたCMPも行った。
(Example 10) In this example, the polishing liquid of Example 9 (nitric acid: 0.5% by volume, BTA: 0.01% by weight).
Then, a laminated wiring structure was produced, and an experiment showing its effect was conducted. As a comparative experiment, CMP using a polishing liquid containing 1% by weight of conventional alumina abrasive grains was also performed.

【0116】図14に従来の研磨液によってCMPを行
った結果得られた2層配線構造を示す。シリコン基板部
25にはソース、ドレイン等の拡散層が形成された半導
体素子が作製されているが、ここでは省略して記載して
いない(図15から図20も同様)。1層目の配線21
間の絶縁膜部23に生じたディシング36やエロージョ
ン37、スクラッチ38による表面の凹みが原因とな
り、その上に成膜した絶縁膜35表面にもそれぞれ金属
膜の研磨残り32、33、34が生じ、その研磨残りが
2層目の銅配線31間での電気的短絡の問題として発生
した。なお、39はTiN層、52はスルーホール層の
絶縁膜層である。
FIG. 14 shows a two-layer wiring structure obtained as a result of performing CMP with a conventional polishing liquid. A semiconductor element in which diffusion layers such as a source and a drain are formed in the silicon substrate portion 25 is manufactured, but it is omitted here (not shown in FIGS. 15 to 20). First-layer wiring 21
Due to the dicing 36, erosion 37, and scratches on the surface of the insulating film portion 23 caused by the dents on the surface, the surface of the insulating film 35 formed thereon has unpolished portions 32, 33, and 34 of the metal film, respectively. The polishing residue occurred as a problem of electrical short circuit between the copper wirings 31 of the second layer. In addition, 39 is a TiN layer and 52 is an insulating film layer of a through hole layer.

【0117】一方、図15に示したように砥粒を含まな
い研磨液でCMPを行った試料ではそのような問題は発
生しなかった。なお、銅配線の上にはTiN層が無いた
め、銅がシリコン酸化膜中を拡散して半導体素子を汚染
する可能がある。それを防止するために銅配線上にシリ
コン窒化膜を50nm形成してあるが、図14、15中
には省略して記載していない(図18、19、20も同
様に省略してある)。
On the other hand, as shown in FIG. 15, such a problem did not occur in the sample subjected to CMP with the polishing liquid containing no abrasive grains. Since there is no TiN layer on the copper wiring, copper may diffuse in the silicon oxide film and contaminate the semiconductor element. To prevent this, a silicon nitride film having a thickness of 50 nm is formed on the copper wiring, but it is not shown in FIGS. 14 and 15 (also omitted in FIGS. 18, 19, and 20). .

【0118】図18には1層目の配線21と2層目の配
線31を銅プラグ40によって接続された部分を示し
た。プラグも含めて各層で上記の研磨液でCMPを行っ
て作製したものである。図14に示したようなディシン
グやエロージョン、スクラッチによる電気的短絡の不良
問題は全く発生しなかった。また、研磨液は実施例1及
び実施例2で記載したものでも同様に多層配線を形成す
ることができた。
FIG. 18 shows a portion in which the first-layer wiring 21 and the second-layer wiring 31 are connected by the copper plug 40. Each layer including the plug was prepared by performing CMP with the above-mentioned polishing liquid. The problem of electrical short circuit due to dicing, erosion and scratch as shown in FIG. 14 did not occur at all. Further, the polishing liquids described in Examples 1 and 2 were also able to form the multilayer wiring in the same manner.

【0119】図20のように、プラグ部分を被覆性の高
いCVD法によるタングステン膜で形成することもでき
る。但し、タングステンはプラグ中央部にシーム43
(キーホール等と呼ぶこともある。)が形成され易く、
そこから研磨液が内部にしみ込み下地銅配線21を一瞬
のうちに腐食させる問題が発生することがある。図20
(a)にその様子を示した。44が腐食した銅配線部で
ある。その際は、タングステンの研磨液に銅の防食剤、
例えばBTAを添加することにより、タングステン内部
にしみ込んだ研磨液が洗浄工程で除去されるまでに銅配
線の腐食を防止することができた。図20(b)にその
結果を示した。また研磨液に砥粒が含まれていないため
に、シーム内に砥粒が残留することがない。
As shown in FIG. 20, the plug portion can be formed of a tungsten film having a high covering property by the CVD method. However, tungsten has a seam 43 at the center of the plug.
(Sometimes called a keyhole etc.) is easily formed,
From there, the polishing liquid may soak into the interior and cause a problem of corroding the underlying copper wiring 21 in an instant. Figure 20
The state is shown in (a). Reference numeral 44 is a corroded copper wiring portion. In that case, a copper anti-corrosion agent in the tungsten polishing liquid,
For example, by adding BTA, it was possible to prevent the corrosion of the copper wiring before the polishing liquid soaked in the tungsten was removed in the cleaning step. The result is shown in FIG. Further, since the polishing liquid does not contain abrasive grains, the abrasive grains do not remain in the seam.

【0120】図19にはデュアルダマシン法によって2
層配線を形成した試料を示した。これは1層目の配線に
対するプラグと第2層目の配線とを一度の研磨で作製す
る技術である。ここでは1層目の配線層を上記研磨液で
研磨後、プラグと2層目の配線層も上記の研磨液でCM
Pを行って作製したものである。41がデュアルダマシ
ンによって形成されたプラグ部分である。図14に示し
たようなディシングやエロージョン、スクラッチによる
電気的短絡の不良問題は全く発生しなかった。また、研
磨液は実施例1及び実施例2で記載したものでも同様に
多層配線を形成することができた。
FIG. 19 shows a case of using the dual damascene method.
The sample in which the layer wiring is formed is shown. This is a technique in which the plug for the first layer wiring and the second layer wiring are manufactured by one-time polishing. Here, after polishing the first wiring layer with the above polishing liquid, the plug and the second wiring layer are also CM with the above polishing liquid.
It was produced by performing P. 41 is a plug part formed by dual damascene. The problem of electrical short circuit due to dicing, erosion and scratch as shown in FIG. 14 did not occur at all. Further, the polishing liquids described in Examples 1 and 2 were also able to form the multilayer wiring in the same manner.

【0121】図21には本発明の研磨液を用いてシリコ
ン基板の不純物ドープ層45上にタングステンプラグ4
2を形成して銅配線21と接続した様子を示した。この
上層に上記に示したように多層配線を形成することによ
って各半導体素子を接続してLSIを作製して動作する
ことを確認した。
In FIG. 21, the tungsten plug 4 is formed on the impurity-doped layer 45 of the silicon substrate using the polishing liquid of the present invention.
2 is formed and connected to the copper wiring 21. It was confirmed that by forming the multilayer wiring on the upper layer as described above, the semiconductor elements were connected to each other to fabricate the LSI and operate.

【0122】[0122]

【発明の効果】本発明の研磨砥粒を含まない研磨液でC
MPを行う方法は、従来の研磨砥粒を含む研磨剤でCM
Pを行う方法と比較して、スクラッチや剥がれ、ディシ
ング、エロージョンを抑制する効果があり、かつ高度の
洗浄プロセスや研磨剤供給/処理装置を必要とせず、研
磨剤や研磨布等の消耗品のコストを抑さえ、かつ実用的
な研磨速度でCMPを行うことが可能である。
EFFECT OF THE INVENTION With the polishing liquid containing no abrasive grains of the present invention, C
The method of performing MP is a polishing agent containing conventional abrasive grains
Compared with the method of performing P, it has an effect of suppressing scratches, peeling, dicing, and erosion, and does not require a high-level cleaning process or an abrasive supply / treatment device, so that consumables such as abrasives and polishing cloths can be used. It is possible to suppress the cost and perform CMP at a practical polishing rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施したCMP装置を示す図である。FIG. 1 is a diagram showing a CMP apparatus embodying the present invention.

【図2】従来の方法でCMPを行った場合の銅の研磨速
度とエッチング速度の過酸化水素水濃度依存性を示す図
である。
FIG. 2 is a diagram showing hydrogen peroxide concentration dependence of a polishing rate and an etching rate of copper when CMP is performed by a conventional method.

【図3】本発明の方法でCMPを行った場合の銅の研磨
速度とエッチング速度の過酸化水素水濃度依存性を示す
図である。
FIG. 3 is a diagram showing hydrogen peroxide concentration dependence of a polishing rate and an etching rate of copper when CMP is performed by the method of the present invention.

【図4】(a)はCMP前の試料の配線部の断面構造を
示す図、(b)はCMP後の試料の配線部の断面構造を
示す図、(c)はCMP後の試料の平面図である。な
お、点線は(b)の断面位置である。
4A is a diagram showing a sectional structure of a wiring portion of a sample before CMP, FIG. 4B is a diagram showing a sectional structure of a wiring portion of the sample after CMP, and FIG. 4C is a plan view of the sample after CMP. It is a figure. The dotted line is the cross-sectional position of (b).

【図5】(a)はディシングを示す図、(b)はエロー
ジョンを示す図である。
5A is a diagram showing dishing, and FIG. 5B is a diagram showing erosion.

【図6】本発明の効果を示す図であり、(a)は従来の
方法でCMPを行った試料のエロージョン量とディシン
グ量、(b)は本発明の方法でCMPを行った試料のエ
ロージョン量とディシング量である。
6A and 6B are diagrams showing effects of the present invention, in which FIG. 6A is an erosion amount and dishing amount of a sample subjected to CMP by a conventional method, and FIG. 6B is an erosion amount of a sample subjected to CMP in the method of the present invention. Amount and dishing amount.

【図7】(a)は従来の方法でCMPを行った試料の断
面図、(b)は本発明の方法でCMPを行った試料の断
面図である。
7A is a sectional view of a sample subjected to CMP by a conventional method, and FIG. 7B is a sectional view of a sample subjected to CMP by the method of the present invention.

【図8】(a)は従来の方法でCMPを行った試料の断
面図、(b)は本発明の方法でCMPを行った試料の断
面図である。
8A is a sectional view of a sample subjected to CMP by a conventional method, and FIG. 8B is a sectional view of a sample subjected to CMP by the method of the present invention.

【図9】銅のpH−酸化還元電位図である。FIG. 9 is a pH-oxidation-reduction potential diagram of copper.

【図10】ウエハ上欠陥数の研磨液中のアルミナ砥粒濃
度依存性を示す図である。
FIG. 10 is a diagram showing the dependence of the number of defects on a wafer in the concentration of alumina abrasive grains in a polishing liquid.

【図11】従来のCMPプロセスを示す説明図である。FIG. 11 is an explanatory diagram showing a conventional CMP process.

【図12】本発明のCMPプロセスを示す説明図であ
る。
FIG. 12 is an explanatory diagram showing a CMP process of the present invention.

【図13】本発明によりCMP関連コストの低減効果を
示す図である。
FIG. 13 is a diagram showing the effect of reducing CMP-related costs according to the present invention.

【図14】(a)は従来研磨液により多層配線を形成し
た試料の断面構造を示す図、(b)は試料の平面図であ
る。なお、点線は(a)の断面位置である。
14A is a diagram showing a cross-sectional structure of a sample in which a multilayer wiring is formed by a conventional polishing liquid, and FIG. 14B is a plan view of the sample. The dotted line is the cross-sectional position of (a).

【図15】(a)は本発明の研磨液により多層配線を形
成した試料の断面構造を示す図、(b)は試料の平面図
である。点線は(a)の断面位置である。
15A is a diagram showing a cross-sectional structure of a sample in which multilayer wiring is formed by the polishing liquid of the present invention, and FIG. 15B is a plan view of the sample. The dotted line is the cross-sectional position of (a).

【図16】(a)はオーバーCMPにより配線部がエッ
チングされた試料の断面構造を示す図、(b)は防食性
物質によりエッチングを抑制した図である。
16A is a diagram showing a cross-sectional structure of a sample in which a wiring portion is etched by over CMP, and FIG. 16B is a diagram in which etching is suppressed by an anticorrosive substance.

【図17】(a)はCMP前の試料のプラグ部の断面構
造を示す図、(b)はCMP後の試料のプラグ部の断面
構造を示す図、(c)はCMP後の試料の平面図であ
る。点線は(b)の断面位置である。
17A is a diagram showing a sectional structure of a plug portion of a sample before CMP, FIG. 17B is a diagram showing a sectional structure of a plug portion of the sample after CMP, and FIG. 17C is a plan view of the sample after CMP. It is a figure. The dotted line is the cross-sectional position of (b).

【図18】(a)は本発明の研磨液により多層配線を形
成した試料の断面構造を示す図、(b)は試料平面図で
ある。点線は(a)の断面位置である。
18A is a diagram showing a cross-sectional structure of a sample in which a multilayer wiring is formed by the polishing liquid of the present invention, and FIG. 18B is a plan view of the sample. The dotted line is the cross-sectional position of (a).

【図19】(a)は本発明の研磨液によりデュアルダマ
シン法によって多層配線を形成した試料の断面構造を示
す図、(b)は試料の平面図である。点線は(a)の断
面位置である。
19A is a diagram showing a cross-sectional structure of a sample in which a multilayer wiring is formed by the polishing liquid of the present invention by a dual damascene method, and FIG. 19B is a plan view of the sample. The dotted line is the cross-sectional position of (a).

【図20】(a)は本発明の研磨液によってタングステ
ンプラグを形成する際に下地銅配線がタングステンの研
磨液の沁み込みによって腐食した様子を示す図、(b)
はタングステンの研磨液にBTAを添加することによっ
て腐食を防止した様子を示す図である。
FIG. 20 (a) is a diagram showing a state in which the underlying copper wiring is corroded by the polishing liquid of tungsten when the tungsten plug is formed by the polishing liquid of the present invention;
FIG. 3 is a diagram showing a state in which corrosion is prevented by adding BTA to a polishing liquid for tungsten.

【図21】本発明の研磨液によって基板の拡散層上にプ
ラグと配線を形成した様子を示す試料の断面図である。
FIG. 21 is a cross-sectional view of a sample showing a state where a plug and a wiring are formed on a diffusion layer of a substrate with the polishing liquid of the present invention.

【図22】(a)はアミノ酢酸系の研磨液を用いてCM
Pを行った試料の配線部の断面図、(b)は試料の平面
図である。点線は(a)の断面位置である。
FIG. 22 (a) is a CM using an aminoacetic acid-based polishing liquid.
FIG. 3B is a cross-sectional view of the wiring portion of the sample subjected to P, and FIG. The dotted line is the cross-sectional position of (a).

【図23】本発明の研磨液を用いてCMP装置のトルク
信号強度から終点検出した結果を示す図である。
FIG. 23 is a diagram showing the results of end point detection from the torque signal intensity of the CMP apparatus using the polishing liquid of the present invention.

【図24】本発明の研磨液を用いて光信号強度から終点
検出した結果を示す図である。
FIG. 24 is a diagram showing results of end point detection from optical signal intensity using the polishing liquid of the present invention.

【図25】砥粒を含む研磨液を用いてCMPを行った際
にシリコン酸化膜上に発生したスクラッチの個数の研磨
荷重依存性を示す図である。
FIG. 25 is a diagram showing polishing load dependence of the number of scratches generated on a silicon oxide film when CMP is performed using a polishing liquid containing abrasive grains.

【図26】銅の腐食域と不働態域における腐食速度の違
いを示す図である。
FIG. 26 is a diagram showing a difference in corrosion rate between a corrosion area and a passive area of copper.

【符号の説明】[Explanation of symbols]

11…研磨定盤、12…ウエハホルダ、13…リテーナ
ー、14…ウエハ、15…研磨液供給口、16…純水供
給口、17…研磨布、18…バッキングパッド、21…
Cu、22…TiN、23:1層目の配線層部分のSi
2膜、24…BPSG膜、25…不純物ドープ層や絶
縁膜が形成されたSi基板、31…2層目のCu配線、
32…1層目のCu配線のディシングによって2層目の
絶縁膜の凹みに形成された金属膜の研磨残り、33…1
層目のCu配線近傍のエロージョンによって2層目の絶
縁膜の凹みに形成された金属膜の研磨残り、34…1層
目の絶縁膜表面のスクラッチによって2層目の絶縁膜の
凹みに形成された金属膜の研磨残り、35…2層目のS
iO2膜、36…1層目のCu配線のディシング、37
…1層目のCu配線近傍のエロージョン、38…1層目
の絶縁膜表面のスクラッチ、39…2層目のTiN、4
0…プラグ、41…デュアルダマシンによって形成され
たプラグ、42…タングステン、43…シーム、44…
1層目の銅配線の腐食部分、45…不純物ドープ層、4
8…銅が溶出して絶縁膜が露出した部分、49…金属膜
表面の凹部、50…金属膜表面の凸部、52…1層目の
配線層と2層目の配線層の間のスルーホール層の絶縁
膜。
11 ... Polishing surface plate, 12 ... Wafer holder, 13 ... Retainer, 14 ... Wafer, 15 ... Polishing liquid supply port, 16 ... Pure water supply port, 17 ... Polishing cloth, 18 ... Backing pad, 21 ...
Cu, 22 ... TiN, 23: Si in the wiring layer portion of the first layer
O 2 film, 24 ... BPSG film, 25 ... Si substrate on which impurity-doped layer or insulating film is formed, 31 ... Cu wiring of second layer,
32 ... The polishing residue of the metal film formed in the recess of the insulating film of the second layer due to the dicing of the Cu wiring of the first layer, 33 ... 1
The metal film formed in the recess of the second insulating film due to erosion in the vicinity of the Cu wiring of the second layer is left unpolished, and is formed in the recess of the second insulating film by scratching the surface of the first insulating film 34 ... Polished metal film remains, 35 ... S of the second layer
io 2 film, 36 ... Dicing of Cu wiring of the first layer, 37
... Erosion near the Cu wiring of the first layer, 38 ... Scratch on the surface of the insulating film of the first layer, 39 ... TiN of the second layer, 4
0 ... Plug, 41 ... Plug formed by dual damascene, 42 ... Tungsten, 43 ... Seam, 44 ...
Corrosion part of the first layer copper wiring, 45 ... Impurity doped layer, 4
8 ... A portion where copper is eluted and the insulating film is exposed, 49 ... A concave portion on the surface of the metal film, 50 ... A convex portion on the surface of the metal film, 52 ... Through between the first wiring layer and the second wiring layer Insulation film for hole layer.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/306 H01L 21/88 K 21/3205 M 21/768 21/90 A 21/306 M (72)発明者 佐久間 憲之 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 武田 健一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 日野出 憲治 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 3C058 AA07 CA01 CB02 DA02 DA12 5F033 HH11 HH12 HH33 JJ01 JJ11 JJ19 JJ33 KK01 KK11 KK33 MM01 MM02 MM12 MM13 MM21 NN06 NN07 PP06 PP15 QQ09 QQ11 QQ37 QQ48 QQ49 QQ50 QQ73 QQ85 QQ91 QQ98 RR04 RR06 RR15 TT02 WW04 XX00 XX01 XX02 XX03 XX13 XX14 XX18 XX20 XX21 XX28 XX31 XX34 5F043 AA27 BB18 DD16 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 21/306 H01L 21/88 K 21/3205 M 21/768 21/90 A 21/306 M (72) Inventor Sakuma Noriyuki Tokyo, Kokubunji City, 1-280, Higashi Koikeku, Central Research Laboratory, Hitachi, Ltd. (72) Inventor Kenichi Takeda 1-280, Higashi Koikeku, Kokubunji City, Tokyo, Hitachi Ltd. Central Research Laboratory (72) Inventor Kenji Hinode Tokyo Metropolitan Government 1-280, Higashi-Kengokubo, Kokubunji F-Term (Central), Central Research Laboratory, Hitachi, Ltd. (Reference) 3C058 AA07 CA01 CB02 DA02 DA12 5F033 HH11 HH12 HH33 JJ01 JJ11 JJ19 JJ33 KK01 KK11 KK33 Q49 QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ QQ50 QQ73 QQ85 QQ91 QQ98 RR04 RR06 RR15 TT02 WW04 XX00 XX01 XX02 XX03 XX13 XX14 XX18 XX20 XX21 XX28 XX31 XX34 5F043 AA27 BB18 DD16

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上の絶縁膜に配線用の溝を形成
する工程と、 前記溝内および絶縁膜上に第1金属膜と前記第1金属膜
上に第2金属膜を形成する工程と、 前記第2金属膜の凸部を研磨して平坦化し、前記溝内に
第2金属膜を残す工程と、 前記第1金属膜を研磨して前記絶縁膜上の第1金属膜を
除去し前記溝内に残す工程とからなる半導体装置の製造
方法において、 前記前記第2金属膜の凸部を研磨して平坦化する工程に
おいては、研磨液として硝酸とベンゾトリアゾールと酸
化剤を含む研磨液により研磨を行うことを特徴とする半
導体装置の製造方法。
1. A step of forming a wiring groove in an insulating film on a semiconductor substrate, and a step of forming a first metal film in the groove and on the insulating film and a second metal film on the first metal film. And a step of polishing and flattening the convex portion of the second metal film to leave the second metal film in the groove, and polishing the first metal film to remove the first metal film on the insulating film. Then, in the method of manufacturing a semiconductor device, which comprises a step of leaving the groove in the groove, in the step of polishing and planarizing the convex portion of the second metal film, a polishing liquid containing nitric acid, benzotriazole, and an oxidizer is used. A method of manufacturing a semiconductor device, which comprises polishing with a liquid.
【請求項2】前記第2属膜は、銅もしくは銅を主成分と
する合金もしくは銅化合物を含むことを特徴とする請求
項1に記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the second group film contains copper, an alloy containing copper as a main component, or a copper compound.
【請求項3】前記第1金属膜はチタンナイトライドを含
む物質であることを特徴とする請求項1に記載の半導体
装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the first metal film is a substance containing titanium nitride.
【請求項4】前記酸化剤は過酸化水素、硝酸第二鉄、過
ヨウ素酸カリウムを含む物質であることを特徴とする請
求項1に記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the oxidizing agent is a substance containing hydrogen peroxide, ferric nitrate, and potassium periodate.
【請求項5】前記研磨液が、界面活性剤を含むことを特
徴とする請求項1に記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein the polishing liquid contains a surfactant.
【請求項6】上記研磨液は1重量%未満の濃度の研磨砥
粒を含むことを特徴とする請求項1乃至16の何れかに
記載の研磨方法。
6. The polishing method according to claim 1, wherein the polishing liquid contains polishing abrasive grains having a concentration of less than 1% by weight.
【請求項7】上記研磨液は0.1重量%以下の濃度の研
磨砥粒を含むことを特徴とする請求項1乃至16の何れ
かに記載の研磨方法。
7. The polishing method according to claim 1, wherein the polishing liquid contains polishing abrasive grains at a concentration of 0.1% by weight or less.
【請求項8】上記研磨液は0.01重量%以下の濃度の
研磨砥粒を含むことを特徴とする請求項1乃至16の何
れかに記載の研磨方法。
8. The polishing method according to claim 1, wherein the polishing liquid contains polishing abrasive grains in a concentration of 0.01% by weight or less.
【請求項9】上記研磨液は、研磨砥粒を含まないことを
特徴とする請求項1乃至16の何れかに記載の研磨方
法。
9. The polishing method according to claim 1, wherein the polishing liquid does not contain polishing abrasive grains.
JP2003115184A 2003-04-21 2003-04-21 Polishing method Pending JP2003324084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115184A JP2003324084A (en) 2003-04-21 2003-04-21 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115184A JP2003324084A (en) 2003-04-21 2003-04-21 Polishing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001077422A Division JP3668694B2 (en) 2001-03-19 2001-03-19 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2003324084A true JP2003324084A (en) 2003-11-14

Family

ID=29546103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115184A Pending JP2003324084A (en) 2003-04-21 2003-04-21 Polishing method

Country Status (1)

Country Link
JP (1) JP2003324084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885986A (en) * 2016-04-04 2018-11-23 环球晶圆日本股份有限公司 The protective film forming method of semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885986A (en) * 2016-04-04 2018-11-23 环球晶圆日本股份有限公司 The protective film forming method of semiconductor substrate

Similar Documents

Publication Publication Date Title
JP3371775B2 (en) Polishing method
KR100514536B1 (en) A method of polishing
Kondo et al. Abrasive‐Free Polishing for Copper Damascene Interconnection
US6750128B2 (en) Methods of polishing, interconnect-fabrication, and producing semiconductor devices
Steigerwald et al. Chemical processes in the chemical mechanical polishing of copper
EP1163311B1 (en) Working liquids and methods for modifying structured wafers suited for semiconductor fabrication
TW487985B (en) Polishing method, wire forming method, method for manufacturing semiconductor device and semiconductor integrated circuit device
JP3970439B2 (en) Manufacturing method of semiconductor device
JP2004006628A (en) Method for manufacturing semiconductor device
JP2000315666A (en) Manufacture of semiconductor integrated circuit device
TW200409808A (en) Polishing compound composition, method for producing same and polishing method
JP2004072099A (en) Polishing method
JP3668694B2 (en) Manufacturing method of semiconductor device
JP4618267B2 (en) Manufacturing method of semiconductor device
JP2003324084A (en) Polishing method
US20040229468A1 (en) Polishing method
JP2000299320A (en) Method of forming wiring
JP2006066851A (en) Chemical machine polishing composition
Terzieva et al. New slurry formulation for Copper-CMP process in a damascene integration scheme
JP2005129822A (en) Polishing solution and polishing method
JP2002299291A (en) Composition for polishing metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227