[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003321205A - Method for operating heat exchanging type steam reformer - Google Patents

Method for operating heat exchanging type steam reformer

Info

Publication number
JP2003321205A
JP2003321205A JP2002125384A JP2002125384A JP2003321205A JP 2003321205 A JP2003321205 A JP 2003321205A JP 2002125384 A JP2002125384 A JP 2002125384A JP 2002125384 A JP2002125384 A JP 2002125384A JP 2003321205 A JP2003321205 A JP 2003321205A
Authority
JP
Japan
Prior art keywords
temperature
reforming
combustion chamber
target
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002125384A
Other languages
Japanese (ja)
Inventor
Toshiro Shimada
寿郎 島田
Haruhiko Nakamura
晴彦 中村
Yukihiro Kamakura
幸弘 鎌倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Tokyo Gas Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Chemicals Co Ltd, Mitsubishi Kakoki Kaisha Ltd filed Critical Tokyo Gas Chemicals Co Ltd
Priority to JP2002125384A priority Critical patent/JP2003321205A/en
Publication of JP2003321205A publication Critical patent/JP2003321205A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a heat exchanging type steam reformer which can eliminate or reduce as quickly as possibly reforming temperature turbulence even if an operation after load change or a start up work is in an excessive state. <P>SOLUTION: The method for operating the heat exchanging type steam reformer having a combustion chamber with a burner is characterized by correcting a combustion chamber temperature by a temperature difference between a target reforming temperature and an actually measured reforming temperature and controlling its correction value to be in the upper and lower definite restricted widths of the temperature difference to a target reforming temperature when the reforming temperature is controlled by the combustion chamber temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換型水蒸気改
質装置の運転方法に関し、より具体的にはバーナーによ
る燃焼室を備える熱交換型水蒸気改質装置の運転方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a heat exchange type steam reformer, and more particularly to an operation method for a heat exchange type steam reformer having a combustion chamber by a burner.

【0002】[0002]

【従来の技術】水素の工業的製造法の一つである炭化水
素の水蒸気改質法は、メタン、エタン、プロパン、ブタ
ン、都市ガス、LPガス、天然ガス、その他の炭化水素
(2種以上の炭化水素の混合物を含む)を水蒸気により
改質して水素リッチな改質ガスを生成させる方法であ
る。水蒸気改質法では水蒸気改質装置中での触媒反応に
よりそれら炭化水素が水素リッチな改質ガスへ変えられ
る。
2. Description of the Related Art The steam reforming method for hydrocarbons, which is one of the industrial hydrogen production methods, is used for methane, ethane, propane, butane, city gas, LP gas, natural gas, and other hydrocarbons (two or more kinds). (Including a mixture of hydrocarbons of 1) is reformed with steam to produce a hydrogen-rich reformed gas. In the steam reforming method, those hydrocarbons are converted into hydrogen-rich reformed gas by a catalytic reaction in the steam reforming apparatus.

【0003】図1は水蒸気改質装置を原理的に示す図で
ある。概略、バーナーを配置した燃焼部と改質触媒を配
置した改質部とにより構成される。改質部では炭化水素
が水蒸気と反応して水素リッチな改質ガスが生成され
る。この改質反応は、吸熱反応であるため熱の供給が必
要であり、750℃乃至800℃程度以上の温度が必要
である。このため燃焼部における燃料ガスの空気(燃焼
用空気)による燃焼により発生した燃焼熱(ΔH)が改
質部に供給される。
FIG. 1 is a view showing the principle of a steam reforming apparatus. In general, it is composed of a combustion section in which a burner is arranged and a reforming section in which a reforming catalyst is arranged. In the reforming section, the hydrocarbon reacts with steam to produce a hydrogen-rich reformed gas. Since this reforming reaction is an endothermic reaction, it is necessary to supply heat, and a temperature of about 750 ° C. to 800 ° C. or higher is necessary. Therefore, the combustion heat (ΔH) generated by the combustion of the fuel gas in the combustion section by the air (combustion air) is supplied to the reforming section.

【0004】図2は、水蒸気改質装置を用い、炭化水素
(以下、適宜、原料ガスあるいは炭化水素ガスともい
う)の供給からCO変成器に至るまでの改質システムを
説明する図である。改質触媒は、原料ガス中の硫黄化合
物により被毒し性能劣化を来たすので、それらの硫黄化
合物を除去するために脱硫器へ導入される。脱硫後の原
料ガスに水が添加、混合され、水蒸気改質装置の改質部
へ導入される。
FIG. 2 is a diagram for explaining a reforming system using a steam reforming apparatus from the supply of hydrocarbons (hereinafter, also referred to as raw material gas or hydrocarbon gas as appropriate) to the CO shift converter. Since the reforming catalyst is poisoned by the sulfur compounds in the raw material gas and deteriorates in performance, it is introduced into the desulfurizer to remove the sulfur compounds. Water is added to and mixed with the desulfurized raw material gas and introduced into the reforming section of the steam reforming apparatus.

【0005】原料ガスがメタンである場合の改質反応は
総括的には「CH4+2H2O→CO 2+4H2」で示され
る。生成する改質ガス中には未反応のメタン、未反応の
水蒸気、生成炭酸ガスのほか、一酸化炭素(CO)が副
生して8〜15%(容量%)程度含まれている。このた
め改質ガスは、副生COを二酸化炭素(CO2)と水素
へ変えて除去するためにCO変成器にかけられる。CO
変成器中でのシフト反応「CO+H2O→CO2+H2
で必要な水蒸気としては改質部において未反応の残留水
蒸気が利用される。
When the source gas is methane, the reforming reaction is
Generally, "CHFour+ 2H2O → CO 2+ 4H2Indicated by
It Unreacted methane and unreacted methane in the reformed gas produced
In addition to steam and generated carbon dioxide, carbon monoxide (CO)
Around 8 to 15% (volume%) is included. others
For the reformed gas, the by-product CO is converted into carbon dioxide (CO2) And hydrogen
To a CO transformer to remove it. CO
Shift reaction in a transformer "CO + H2O → CO2+ H2"
Unreacted residual water in the reforming section
Steam is used.

【0006】[0006]

【発明が解決しようとする課題】以上のような水蒸気改
質システムは、通常連続して運転されるが、改質装置に
ついては、所要改質ガスの製造量や外気温度等の季節要
因に起因する運転負荷に対応して一定品質の改質ガスが
生成するよう運転することが必要である。このため、従
来の技術では、予め負荷毎の燃焼室の温度(燃焼室温
度)と改質部での改質温度の相関関係を実機で調べ、改
質反応に最適な改質温度となるよう、燃焼室温度を制御
している。
The steam reforming system as described above is normally operated continuously, but the reformer is caused by seasonal factors such as the required reformed gas production amount and the outside air temperature. It is necessary to operate so that a reformed gas of a constant quality is generated according to the operating load. Therefore, in the conventional technique, the correlation between the temperature of the combustion chamber for each load (combustion chamber temperature) and the reforming temperature in the reforming section is checked in advance with an actual machine to ensure that the reforming temperature is optimal for the reforming reaction. , The combustion chamber temperature is controlled.

【0007】加えて、改質温度は改質装置の運転上重要
なファクターであり、当該改質温度が高い場合は、改質
装置の構成材料に致命的な機械的ダメージを与え、逆
に、改質温度が低い場合は、CO変成器に続くPSA装
置等のガス精製部の能力に大きな影響を与える。このた
め、従来、改質装置での改質温度については、改質シス
テムとしての安全上、緊急停止要因として取り込まれて
いる。
In addition, the reforming temperature is an important factor in the operation of the reformer, and when the reforming temperature is high, it causes fatal mechanical damage to the constituent material of the reformer, and conversely, When the reforming temperature is low, it has a great influence on the capacity of the gas purifying section such as the PSA unit following the CO shift converter. For this reason, conventionally, the reforming temperature in the reformer has been taken into consideration as an emergency stop factor for the safety of the reforming system.

【0008】ところで、熱交換型水蒸気改質装置におい
ては、改質温度を通常のPID制御で直接制御すること
は、本装置の特性上、大きな時間遅れが存在する。この
ため、負荷変動などの運転状況が変化する場合やスター
トアップ操作後のように運転状況が安定していない場合
を考慮すると、PID制御で直接制御することはなかな
か困難である。
By the way, in the heat exchange type steam reforming apparatus, there is a large time delay in directly controlling the reforming temperature by the normal PID control due to the characteristics of this apparatus. Therefore, in consideration of a case where the driving situation changes such as a load change or a case where the driving situation is not stable such as after the start-up operation, it is quite difficult to directly control the PID control.

【0009】すなわち、改質温度は、燃焼室温度、原料
ガス入口温度、原料ガス量及び燃焼排ガス量の関数であ
り、そのうち燃焼室温度と強い相関関係を有している。
このため、前述のとおり、従来技術では、燃焼室温度の
みにより、改質温度を制御している。しかしこのよう
に、改質温度を燃焼室温度のみにより制御すると、負荷
変動や起動操作(すなわちスタートアップ操作)後のよ
うな運転状況が過度的な状況下では改質温度に乱れが生
じることが分かった。改質温度に乱れが生じると所期品
質の改質ガスは得られない。
That is, the reforming temperature is a function of the combustion chamber temperature, the raw material gas inlet temperature, the raw material gas amount and the combustion exhaust gas amount, and has a strong correlation with the combustion chamber temperature.
Therefore, as described above, in the conventional technique, the reforming temperature is controlled only by the combustion chamber temperature. However, in this way, if the reforming temperature is controlled only by the combustion chamber temperature, it will be understood that the reforming temperature will be disturbed under an excessive operating condition such as after load fluctuation or start operation (that is, start-up operation). It was If the reforming temperature is disturbed, the desired quality reformed gas cannot be obtained.

【0010】そこで、本発明は、熱交換型水蒸気改質装
置についての従来の運転方法で生じる以上の問題を解決
するためになされたものであり、バーナーによる燃焼室
を備える熱交換型水蒸気改質装置において、燃焼室温度
を目標改質温度と操作中に測定された改質部での実改質
温度との温度差により補正することにより、負荷変動や
スタートアップ操作後のような運転状況が過度的な状況
下でも改質温度の乱れを無くすか、可及的に少なくして
なる熱交換型水蒸気改質装置の運転方法を提供すること
を目的とする。
Therefore, the present invention has been made in order to solve the above problems that occur in the conventional operation method of the heat exchange type steam reforming apparatus, and the heat exchange type steam reforming having a combustion chamber by a burner is provided. In the equipment, by correcting the combustion chamber temperature by the temperature difference between the target reforming temperature and the actual reforming temperature measured in the reforming section during operation, load fluctuations and operating conditions such as after start-up operation are excessive. It is an object of the present invention to provide a method for operating a heat exchange type steam reforming device which eliminates or minimizes the disturbance of the reforming temperature even under the conventional conditions.

【0011】[0011]

【課題を解決するための手段】本発明は、バーナーによ
る燃焼室を備える熱交換型水蒸気改質装置の運転方法で
あって、改質部での改質温度を燃焼室温度により制御す
るに際して、燃焼室温度を目標改質温度と改質部で測定
された実改質温度との温度差により補正し、且つ、その
補正量を、目標改質温度に対する温度差に対して上下一
定の制限幅で制御することを特徴とする熱交換型水蒸気
改質装置の運転方法を提供する。
The present invention is a method for operating a heat exchange type steam reforming apparatus having a combustion chamber by a burner, wherein the reforming temperature in the reforming section is controlled by the combustion chamber temperature. The combustion chamber temperature is corrected by the temperature difference between the target reforming temperature and the actual reforming temperature measured at the reforming section, and the correction amount is a fixed upper and lower limit with respect to the temperature difference with respect to the target reforming temperature. There is provided a method for operating a heat exchange type steam reformer characterized by being controlled by

【0012】[0012]

【発明の実施の形態】本発明の運転方法は、バーナーに
よる燃焼室を備える熱交換型水蒸気改質装置を対象とす
る。そして、改質部での改質温度を燃焼室温度により制
御するに際して、燃焼室温度を目標改質温度と改質部で
測定された実改質温度との温度差により補正し、且つ、
その補正量を、目標改質温度に対する温度差に対して一
定の制限幅で制御することを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The operating method of the present invention is intended for a heat exchange type steam reforming apparatus having a combustion chamber by a burner. Then, when controlling the reforming temperature in the reforming section by the combustion chamber temperature, the combustion chamber temperature is corrected by the temperature difference between the target reforming temperature and the actual reforming temperature measured in the reforming section, and
The correction amount is controlled with a constant limit width with respect to the temperature difference with respect to the target reforming temperature.

【0013】すなわち、改質温度を燃焼室温度で制御す
る点では従来と同じであるが、本発明においては、燃焼
室温度を、運転時に改質部で測定された実改質温度の目
標改質温度に対する温度差により補正し、且つ、その補
正量を、目標改質温度に対する温度差に対して一定の制
限幅で制御する。これにより、過大な偏差に対して一度
補正をした後、実改質温度との偏差をみてから再度補正
するというように安全な補正が可能となる。
That is, although the reforming temperature is controlled by the combustion chamber temperature as in the conventional case, in the present invention, the combustion chamber temperature is changed to a target reforming temperature of the actual reforming temperature measured in the reforming section during operation. The temperature difference is corrected by the temperature difference with respect to the quality temperature, and the correction amount is controlled with a constant limit width with respect to the temperature difference with respect to the target reforming temperature. As a result, it is possible to perform a safe correction such that the excessive deviation is corrected once, and then the deviation from the actual reforming temperature is checked and then the deviation is corrected again.

【0014】本熱交換型水蒸気改質装置においては、改
質温度750〜850℃程度の範囲で運転される。そこ
で、目標改質温度を810〜830℃程度の範囲内の或
る温度、例えば814℃に設定しておく。そして、運転
時に改質部において実改質温度を測定し、この測定値と
目標改質温度との温度差を基に燃焼室の温度を補正す
る。燃焼室温度の補正は、例えばバーナーへの燃料ガス
供給量を制御することで行われる。その際、その補正量
を、目標改質温度に対する温度差に関して一定の制限幅
で制御する。
In this heat exchange type steam reformer, the reforming temperature is operated in the range of about 750 to 850 ° C. Therefore, the target reforming temperature is set to a certain temperature within the range of about 810 to 830 ° C, for example, 814 ° C. Then, the actual reforming temperature is measured in the reforming section during operation, and the temperature of the combustion chamber is corrected based on the temperature difference between this measured value and the target reforming temperature. The combustion chamber temperature is corrected, for example, by controlling the amount of fuel gas supplied to the burner. At that time, the correction amount is controlled with a constant limit width with respect to the temperature difference with respect to the target reforming temperature.

【0015】目標改質温度、すなわちその制御目的値の
近傍では、実改質温度と燃焼室温度との相関関係は一次
線形性が高く、両者の関係は図3に示すようになる。本
発明は、この事実を利用して温度差を制御に直接適用す
る。燃焼室温度を目標改質温度と改質部で測定された実
改質温度との温度差により補正するが、その補正は5〜
10分の間隔で周期的に行うのが好ましい。これによ
り、補正後、一旦実改質温度の変動をみてから再補正す
る、というような緩やかな調整が可能となる。
In the vicinity of the target reforming temperature, that is, the control target value thereof, the correlation between the actual reforming temperature and the combustion chamber temperature has a high first-order linearity, and the relationship between them is as shown in FIG. The present invention takes advantage of this fact and applies the temperature difference directly to the control. The combustion chamber temperature is corrected by the temperature difference between the target reforming temperature and the actual reforming temperature measured in the reforming section, but the correction is 5 to
It is preferable to carry out periodically at intervals of 10 minutes. As a result, it is possible to perform a gradual adjustment such that after the correction, the change in the actual reforming temperature is first seen and then the correction is performed again.

【0016】さらに、上記燃焼室温度を目標改質温度と
改質部で測定された実改質温度との温度差により補正す
る、その補正量を、目標改質温度に対する温度差に対し
て一定の制限幅で制御するのに加え、目標改質温度に対
して+側(すなわち温度上昇制御)と−側(すなわち温
度下降制御)とで別個の制限値で制御することが望まし
い。このように別個に制御することで、より正確に制御
することができる。
Further, the combustion chamber temperature is corrected by the temperature difference between the target reforming temperature and the actual reforming temperature measured in the reforming section, and the correction amount is constant with respect to the temperature difference with respect to the target reforming temperature. In addition to the control with the limit width of, it is desirable to control with different limit values on the + side (that is, temperature increase control) and the − side (that is, temperature decrease control) with respect to the target reforming temperature. By controlling separately as described above, more accurate control can be performed.

【0017】また、上記燃焼室温度を目標改質温度と改
質部で測定された実改質温度との温度差により補正す
る、その補正量を、目標改質温度に対する温度差に対し
て一定の制限幅で制御し、且つ、目標改質温度に対して
+側と−側とで別個の制限値で制御し、その際、+側の
調整幅を厳しく(すなわちその幅を小さく)するのが望
ましい。これにより、すなわち改質温度の上限をより厳
しくすることにより、通常の管理値に対し、高温による
装置の機械的ダメージの問題を解決することができる。
Further, the combustion chamber temperature is corrected by the temperature difference between the target reforming temperature and the actual reforming temperature measured in the reforming section, and the correction amount is constant with respect to the temperature difference with respect to the target reforming temperature. Of the target reforming temperature with respect to the target reforming temperature, and the + side and the − side are controlled with separate limit values. Is desirable. By this means, that is, by making the upper limit of the reforming temperature more strict, it is possible to solve the problem of mechanical damage to the device due to high temperature with respect to a normal control value.

【0018】図4は、本発明で対象とするバーナーによ
る燃焼室を備える熱交換型水蒸気改質装置の構成例を示
す図である。なお、図4では本改質装置を縦に配置した
態様を示しているが、横置した態様でも用いられる。図
4のとおり、下部に配置されたバーナーによる燃焼室と
これに連なる改質部とにより構成される。燃焼室では都
市ガス等の燃料を空気(燃焼用空気)で燃焼させる。改
質部は内管とこれを囲む外管からなる二重管で構成され
ている。
FIG. 4 is a diagram showing a structural example of a heat exchange type steam reforming apparatus having a combustion chamber by a burner, which is a target of the present invention. Although FIG. 4 shows a mode in which the present reformer is arranged vertically, it can also be used in a mode in which it is installed horizontally. As shown in FIG. 4, it is composed of a combustion chamber by a burner arranged in the lower part and a reforming section connected to the combustion chamber. In the combustion chamber, fuel such as city gas is burned with air (combustion air). The reforming section is composed of a double tube consisting of an inner tube and an outer tube surrounding the inner tube.

【0019】原料ガス、例えば水を添加した脱硫済み都
市ガスは、上部から外管内(外管と内管の間)に供給さ
れて下降しながら改質される。改質ガスは、その下端部
で折り返して内管内を上昇しながら内管壁を介して熱交
換し、反応熱の一部を改質部に回収する。図4(b)は
その下端部の状態を示す図である。その間、燃焼室で生
成させた燃焼ガスを外管の外周に流通させることで二重
管が間接的に加熱される。
A raw material gas, for example, desulfurized city gas to which water is added is supplied from the upper part into the outer pipe (between the outer pipe and the inner pipe) and reformed while descending. The reformed gas returns at its lower end and rises in the inner tube to exchange heat via the inner tube wall, and a part of reaction heat is recovered in the reforming section. FIG.4 (b) is a figure which shows the state of the lower end part. Meanwhile, the double pipe is indirectly heated by circulating the combustion gas generated in the combustion chamber to the outer circumference of the outer pipe.

【0020】燃焼室及び改質部にはそれぞれ温度センサ
ーが配置される。図4中、それら温度センサーの配置態
様を示している。本熱交換型水蒸気改質装置の運転に際
して、これら温度センサーで測定される燃焼室温度及び
改質部の温度(=実改質温度)を基に制御する。その制
御は、改質温度を燃焼室温度により制御することを基本
とするが、本発明においては、その際、燃焼室温度を目
標改質温度と改質部で測定された実改質温度との温度差
により補正するものである。
Temperature sensors are arranged in the combustion chamber and the reforming section, respectively. FIG. 4 shows the arrangement of these temperature sensors. When the heat exchange steam reformer is operated, control is performed based on the combustion chamber temperature and the reformer temperature (= actual reforming temperature) measured by these temperature sensors. The control is basically based on controlling the reforming temperature by the combustion chamber temperature, but in the present invention, at that time, the combustion chamber temperature is set to the target reforming temperature and the actual reforming temperature measured in the reforming unit. The difference is corrected by the temperature difference.

【0021】図5は、本熱交換型改質装置を組み込んだ
改質システムの構成例を示す図である。都市ガス等の原
料ガスの流れに従い、順次、脱硫器、水予熱器、加熱
器、改質器(バーナーによる燃焼室を備える熱交換型水
蒸気改質装置)、CO変成器が組み込まれている。水
は、水予熱器で予熱された後、原料ガスに添加され、さ
らに加熱器で加熱された後、改質器に導入される。改質
器での生成改質ガス(水素リッチガス)は、バーナーへ
導入する空気を予熱した後、CO変成器へ供給され、ガ
ス冷却器を経て取り出される。
FIG. 5 is a diagram showing a structural example of a reforming system incorporating the present heat exchange type reforming apparatus. A desulfurizer, a water preheater, a heater, a reformer (a heat exchange type steam reforming device having a combustion chamber by a burner), and a CO shift converter are sequentially installed in accordance with the flow of raw material gas such as city gas. The water is preheated by the water preheater, added to the raw material gas, further heated by the heater, and then introduced into the reformer. The reformed gas (hydrogen-rich gas) produced in the reformer is supplied to the CO shift converter after preheating the air introduced into the burner, and is taken out through the gas cooler.

【0022】[0022]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。
The present invention will be described in more detail based on the following examples, but it goes without saying that the present invention is not limited to these examples.

【0023】本実施例(本発明の例)では、図4に示す
熱交換型水蒸気改質装置を用い、これを図5のように組
み込んだ改質システムを構成した。図4のとおり、燃焼
室及び改質部にはそれぞれ温度センサーを配置してい
る。改質触媒としてNi/Al 23(アルミナにニッケ
ルを担持した触媒)を用い、原料ガスとして都市ガス
(13A)を用いた。
In this embodiment (an example of the present invention), the structure shown in FIG.
A heat exchange type steam reformer was used and assembled as shown in Fig. 5.
A modified reforming system was constructed. As shown in Figure 4, burning
Temperature sensors are installed in the chamber and reforming section, respectively.
It Ni / Al as reforming catalyst 2O3(Nickel on alumina
Gas as a raw material gas
(13A) was used.

【0024】定常運転で500Nm3/hの水素ガスを
製造する本改質システムを起動し、以降、温度センサー
により燃焼室及び改質部の温度を計測しながら、長期に
わたり連続的に運転した。ここで、目標改質温度を81
4℃に設定し、目標改質温度と測定された実改質温度と
の温度差により燃焼室温度を補正した。その補正量を、
目標改質温度に対する温度差に対して+側の制限幅を2
5℃、−側の制限幅を50℃の一定制限幅で制御した。
図5中、定常運転時における、各箇所における流量、温
度を併記している。
The present reforming system, which produces 500 Nm 3 / h of hydrogen gas in a steady operation, was started, and thereafter, the temperature of the combustion chamber and the reforming section were measured by a temperature sensor, and the reforming system was continuously operated for a long time. Here, the target reforming temperature is 81
The temperature was set at 4 ° C., and the combustion chamber temperature was corrected by the temperature difference between the target reforming temperature and the measured actual reforming temperature. The correction amount
The limit width on the + side of the temperature difference from the target reforming temperature is 2
The limit width on the − side of 5 ° C. was controlled at a constant limit width of 50 ° C.
In FIG. 5, the flow rate and temperature at each location during steady operation are also shown.

【0025】一方、比較例(従来技術)として、上記と
同様の改質システムを用い、各製造量(負荷毎)の燃焼
室温度と目標改質温度の関係を実機によりデータを採
り、この相関のみをプログラム化し、燃焼室温度を決定
して実施した。実施例及び比較例における、起動時以降
の改質温度の振れは、表1のとおりであった。表1のと
おり本発明による効果は明らかである。
On the other hand, as a comparative example (prior art), the same reforming system as described above was used, and the relationship between the combustion chamber temperature and the target reforming temperature for each production amount (for each load) was taken by an actual machine and the correlation was obtained. Only the program was performed and the combustion chamber temperature was determined and implemented. Table 1 shows the fluctuations of the reforming temperature after the start-up in Examples and Comparative Examples. As shown in Table 1, the effect of the present invention is clear.

【0026】[0026]

【表 1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の熱交換型水蒸気改質装置の運転
方法によれば、負荷変動やスタートアップ操作後のよう
な運転状況が過度的な状況下でも改質温度の乱れを無く
すか、可及的に少なくすることができる。また、スター
トアップ直後の運転員による改質温度監視期間を短くで
き、これにより省人化が図れるだけでなく、燃焼室温度
が自動的に最適化されるため、負荷変動の多い改質装置
の安定運転がはかれるなど各種有用な効果が得られる。
本発明の運転方法は、運転状況が常に変動し、定常運転
が無人化されている改質装置の運転に特に有効且つ有用
である。
According to the operation method of the heat exchange type steam reforming apparatus of the present invention, it is possible to eliminate the disturbance of the reforming temperature even under an excessive operating condition such as load fluctuation or after start-up operation. It can be minimized. In addition, the operator can shorten the reforming temperature monitoring period immediately after start-up, which not only saves manpower, but also optimizes the combustion chamber temperature automatically, thus stabilizing the reformer with many load fluctuations. Various useful effects such as driving can be obtained.
The operating method of the present invention is particularly effective and useful for operating a reformer in which the operating conditions are constantly changing and the steady operation is unmanned.

【図面の簡単な説明】[Brief description of drawings]

【図1】水蒸気改質器を原理的に示す図FIG. 1 is a diagram showing a steam reformer in principle.

【図2】水蒸気改質装置を用い、原料ガスの供給からC
O変成器に至るまでの改質システムを説明する図
FIG. 2 is a flow chart showing a process of supplying a raw material gas to C by using a steam reformer.
Diagram illustrating the reforming system up to the O-transformer

【図3】目標改質温度の近傍における実改質温度と燃焼
室温度との相関関係を示す図
FIG. 3 is a diagram showing a correlation between an actual reforming temperature and a combustion chamber temperature near a target reforming temperature.

【図4】本発明で対象とする熱交換型水蒸気改質装置の
構成例を示す図
FIG. 4 is a diagram showing a configuration example of a heat exchange type steam reforming apparatus which is a target of the present invention.

【図5】本熱交換型改質装置を組み込んだ改質システム
の構成例を示す図
FIG. 5 is a diagram showing a configuration example of a reforming system incorporating the heat exchange reforming device.

フロントページの続き (72)発明者 中村 晴彦 神奈川県川崎市川崎区大川町2ー1 三菱 化工機株式会社内 (72)発明者 鎌倉 幸弘 神奈川県川崎市川崎区大川町2ー1 三菱 化工機株式会社内 Fターム(参考) 4G140 EA03 EA06 EB14 EB43 5H027 AA02 BA01 Continued front page    (72) Inventor Haruhiko Nakamura             2-1 Okawa-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Mitsubishi             Kakoki Co., Ltd. (72) Inventor Yukihiro Kamakura             2-1 Okawa-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Mitsubishi             Kakoki Co., Ltd. F-term (reference) 4G140 EA03 EA06 EB14 EB43                 5H027 AA02 BA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】バーナーによる燃焼室を備える熱交換型水
蒸気改質装置の運転方法であって、改質部での改質温度
を燃焼室温度により制御するに際して、燃焼室温度を目
標改質温度と改質部で測定された実改質温度との温度差
により補正し、且つ、その補正量を、目標改質温度に対
する温度差に対して上下一定の制限幅で制御することを
特徴とする熱交換型水蒸気改質装置の運転方法。
1. A method of operating a heat exchange type steam reforming apparatus having a combustion chamber by a burner, wherein the combustion chamber temperature is controlled to a target reforming temperature when the reforming temperature in the reforming section is controlled by the combustion chamber temperature. Is corrected by the temperature difference between the actual reforming temperature measured by the reforming section and the actual reforming temperature, and the correction amount is controlled within a fixed upper and lower limit with respect to the temperature difference with respect to the target reforming temperature. Operation method of heat exchange type steam reformer.
【請求項2】上記燃焼室温度を目標改質温度と改質部で
測定された実改質温度との温度差により補正する補正量
を、目標改質温度に対する温度差に対して一定の制限幅
で制御し、且つ、目標改質温度に対して+側と−側とで
別個の制限値で制御することを特徴とする請求項1に記
載の熱交換型水蒸気改質装置の運転方法。
2. The correction amount for correcting the combustion chamber temperature by the temperature difference between the target reforming temperature and the actual reforming temperature measured in the reforming section is fixedly limited with respect to the temperature difference with respect to the target reforming temperature. The method for operating a heat exchange type steam reforming apparatus according to claim 1, wherein the method is controlled by the width and is controlled by separate limit values on the + side and the-side with respect to the target reforming temperature.
【請求項3】上記燃焼室温度を目標改質温度と改質部で
測定された実改質温度との温度差により補正する補正量
を、目標改質温度に対する温度差に対して一定の制限幅
で制御し、且つ、目標改質温度に対して+側と−側とで
別個の制限値で制御し、その際、+側の調整幅を、−側
の調整幅に比べて、厳しくすることを特徴とする請求項
1〜2のいずれか1項に記載の熱交換型水蒸気改質装置
の運転方法。
3. A correction amount for correcting the combustion chamber temperature by a temperature difference between a target reforming temperature and an actual reforming temperature measured in a reforming section, which is a constant limit with respect to a temperature difference with respect to the target reforming temperature. The width is controlled, and the + and-sides are controlled with different limit values with respect to the target reforming temperature. At that time, the + side adjustment width is made stricter than the − side adjustment width. The method for operating the heat exchange type steam reforming apparatus according to claim 1, wherein
【請求項4】上記燃焼室温度を目標改質温度と改質部で
測定された実改質温度との温度差により補正する補正
を、5〜10分の間隔で周期的に行うことを特徴とする
請求項1〜3のいずれか1項に記載の熱交換型水蒸気改
質装置の運転方法。
4. The correction for correcting the combustion chamber temperature by the temperature difference between the target reforming temperature and the actual reforming temperature measured in the reforming section is periodically performed at intervals of 5 to 10 minutes. The method for operating the heat exchange type steam reformer according to any one of claims 1 to 3.
JP2002125384A 2002-04-26 2002-04-26 Method for operating heat exchanging type steam reformer Withdrawn JP2003321205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125384A JP2003321205A (en) 2002-04-26 2002-04-26 Method for operating heat exchanging type steam reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125384A JP2003321205A (en) 2002-04-26 2002-04-26 Method for operating heat exchanging type steam reformer

Publications (1)

Publication Number Publication Date
JP2003321205A true JP2003321205A (en) 2003-11-11

Family

ID=29540121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125384A Withdrawn JP2003321205A (en) 2002-04-26 2002-04-26 Method for operating heat exchanging type steam reformer

Country Status (1)

Country Link
JP (1) JP2003321205A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525398A (en) * 2004-02-17 2007-09-06 モーディーン・マニュファクチャリング・カンパニー Integrated fuel processor for distributed hydrogen production
JP2010510159A (en) * 2006-11-16 2010-04-02 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド Reactor air supply system and burner configuration
JP2010523928A (en) * 2007-03-30 2010-07-15 イエフペ New steam reforming furnace using porous burner
JP2011178619A (en) * 2010-03-02 2011-09-15 Toshiba Fuel Cell Power Systems Corp Hydrogen generator and method of starting-up the same, and fuel cell system and method of starting-up the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525398A (en) * 2004-02-17 2007-09-06 モーディーン・マニュファクチャリング・カンパニー Integrated fuel processor for distributed hydrogen production
JP2010510159A (en) * 2006-11-16 2010-04-02 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド Reactor air supply system and burner configuration
JP2010523928A (en) * 2007-03-30 2010-07-15 イエフペ New steam reforming furnace using porous burner
JP2011178619A (en) * 2010-03-02 2011-09-15 Toshiba Fuel Cell Power Systems Corp Hydrogen generator and method of starting-up the same, and fuel cell system and method of starting-up the same

Similar Documents

Publication Publication Date Title
JP2000185904A (en) Self-heating type reformation of supplied hydrocarbon material containing higher hydrocarbon
WO2020246197A1 (en) Hydrogen generator, fuel cell system using same, and operation method thereof
WO2011122579A1 (en) Device for producing hydrogen, and fuel-cell system
KR100847972B1 (en) Gas reforming system
JP2001226102A (en) Fuel reforming method, fuel reforming device and fuel cell system
JP2001010806A (en) Control of off-gas pressure from off-gas tank in three- column type psa unit
JPH01186570A (en) Reformation of fuel for fuel cell
JP2003321205A (en) Method for operating heat exchanging type steam reformer
JP4264791B2 (en) Fuel reformer, operating method thereof, and fuel cell power generator using the same
KR101472767B1 (en) Carbon monoxide gas generation apparatus and method
US7867411B2 (en) Method for producing synthesis gas and apparatus for producing synthesis gas
TWI503410B (en) Methods and apparatus for production of synthesis gas
JP3886789B2 (en) Reforming apparatus and operation method thereof
JP5896363B2 (en) Fuel cell system and operation method thereof
JP4975958B2 (en) Burner for a reformer in a fuel cell system
JPH0927337A (en) Fuel cell power generating system
JP2007022826A (en) Hydrogen generation unit and fuel cell system
JP2007191338A (en) Method for driving hydrogen production system, hydrogen production system, and fuel cell power generation unit
JP3708428B2 (en) Hydrogen generator
JP2020193129A (en) Hydrogen generator and its operation method
JP4172740B2 (en) Hydrogen generator and operation method thereof
EP1785393A2 (en) Method for producing hydrogen from a mixture of methane and carbon dioxide
JP5285952B2 (en) Carbon monoxide gas generator and method
JP2019157673A (en) Fuel gas supply device
JP2000160239A (en) Atmospheric gas generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705