JP2003313021A - Metal-containing porous body and method for manufacturing the same - Google Patents
Metal-containing porous body and method for manufacturing the sameInfo
- Publication number
- JP2003313021A JP2003313021A JP2002118404A JP2002118404A JP2003313021A JP 2003313021 A JP2003313021 A JP 2003313021A JP 2002118404 A JP2002118404 A JP 2002118404A JP 2002118404 A JP2002118404 A JP 2002118404A JP 2003313021 A JP2003313021 A JP 2003313021A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- chitosan
- porous body
- containing porous
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、金属を含有する多
孔体及びその製造方法に関するものである。TECHNICAL FIELD The present invention relates to a porous body containing a metal and a method for producing the same.
【0002】[0002]
【従来の技術】活性炭は、吸着剤や触媒担体として広く
利用されている。このような活性炭は、これに金属を担
持させることによって金属含有活性炭とすることができ
るが、この場合、その金属を活性炭中に均一かつ有効な
状態で担持させることはむずかしく、高品質の製品を得
ることには大きな困難が伴った。このため、この金属が
有する様々な性質、例えば磁性や触媒作用を有効に利用
することは出来なかった。2. Description of the Related Art Activated carbon is widely used as an adsorbent or a catalyst carrier. Such activated carbon can be made into a metal-containing activated carbon by supporting a metal on it, but in this case, it is difficult to support the metal in the activated carbon in a uniform and effective state, and a high quality product is obtained. There was great difficulty in getting it. For this reason, various properties of this metal, such as magnetism and catalytic action, could not be effectively utilized.
【0003】[0003]
【発明が解決しようとする課題】本発明は、高品質な金
属含有多孔体及びその製造方法を提供することをその課
題とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a high quality metal-containing porous body and a method for producing the same.
【0004】[0004]
【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、以下に示す金属含有
多孔体及びその製造方法が提供される。
(1)キトサンの金属錯体を炭化し、表面活性化してな
る金属含有多孔体。
(2)キトサンの金属錯体を製造する工程と、該キトサ
ン金属錯体を炭化する工程と、該炭化工程で得られた炭
化物を表面活性化する工程からなることを特徴とする金
属含有多孔体の製造方法。The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, the following metal-containing porous body and a method for producing the same are provided. (1) A metal-containing porous body obtained by carbonizing a metal complex of chitosan and activating the surface. (2) Production of metal-containing porous body, which comprises a step of producing a metal complex of chitosan, a step of carbonizing the chitosan metal complex, and a step of surface-activating the carbide obtained in the carbonizing step Method.
【0005】[0005]
【発明の実施の形態】本発明で用いるキトサンは、天然
高分子であるキチンを濃アルカリ条件下で脱アセチル化
することによって得られるものである。このキトサンに
おいて、その脱アセチル化度は、通常、10〜100
%、好ましくは50〜100%である。その数平均分子
量は、通常、50,000〜2,000,000、好ま
しくは100,000〜1,500,000である。BEST MODE FOR CARRYING OUT THE INVENTION Chitosan used in the present invention is obtained by deacetylating natural polymer chitin under concentrated alkaline conditions. In this chitosan, the deacetylation degree is usually 10 to 100.
%, Preferably 50 to 100%. The number average molecular weight is usually 50,000 to 2,000,000, preferably 100,000 to 1,500,000.
【0006】本発明に用いる金属としては、従来公知の
各種のもの、すなわち、卑金属や貴金属が用いられる。
このような金属には、例えば、Mg、Ag、Au、Z
n、Cu、Al、Si、Ge、Sn、Ti、Zr、S
b、Bi、V、Se、Mo、W、Mn、Re、Fe、C
o、Ni、Pd、Ru、Rh、Pd、Ir、Pt等が包
含される。これらの金属は単独又は2種以上組合せて用
いられる。本発明では、特に、Ni、Cu、Ag、F
e、Co、Mn等が好ましく用いられる。As the metal used in the present invention, various conventionally known metals, that is, base metals and noble metals are used.
Such metals include, for example, Mg, Ag, Au, Z
n, Cu, Al, Si, Ge, Sn, Ti, Zr, S
b, Bi, V, Se, Mo, W, Mn, Re, Fe, C
O, Ni, Pd, Ru, Rh, Pd, Ir, Pt and the like are included. These metals are used alone or in combination of two or more. In the present invention, in particular, Ni, Cu, Ag, F
e, Co, Mn and the like are preferably used.
【0007】本発明により金属含有多孔体を製造するに
は、先ず、金属を含む水溶液を作る。この水溶液は、金
属の可溶性塩を水中に加え、溶解することによって得る
ことが出来る。この可溶性塩としては硝酸塩や酢酸塩が
良いが、より好ましくは有機酸塩が良い。また、この溶
液中の金属濃度は、0.001〜5g/L、好ましくは
0.01〜0.5g/Lである。ここで用いる金属の可
溶性塩は単一でなくとも良い。目的によって複数の可溶
性塩を用いることが出来る。To produce the metal-containing porous material according to the present invention, first, an aqueous solution containing a metal is prepared. This aqueous solution can be obtained by adding a soluble salt of a metal to water and dissolving it. The soluble salt is preferably nitrate or acetate, more preferably organic acid salt. The metal concentration in this solution is 0.001 to 5 g / L, preferably 0.01 to 0.5 g / L. The soluble salt of the metal used here does not have to be a single salt. Multiple soluble salts can be used depending on the purpose.
【0008】次に、前記溶液にキトサンを混合あるいは
溶解させる。この場合、キトサンの溶液中濃度は、0.
1〜100g/L、好ましくは1〜50g/Lである。
この溶液には、キトサンの溶解度向上剤として、硝酸や
酢酸等の酸を加えて、そのpHを7以下、好ましくは0
〜6の範囲に調製することもできる。Next, chitosan is mixed or dissolved in the solution. In this case, the concentration of chitosan in the solution was 0.
It is 1 to 100 g / L, preferably 1 to 50 g / L.
To this solution, an acid such as nitric acid or acetic acid is added as a solubility improver for chitosan, and the pH thereof is 7 or less, preferably 0.
It can also be prepared in the range of ~ 6.
【0009】次いで、前記溶液にアンモニア水等のアル
カリ水溶液を加え、その溶液のpHを、6以上、好まし
くは8〜10に調節して、キトサン金属錯体を沈殿させ
る。この沈殿物を、分離し、乾燥することによって、キ
トサン金属錯体からなる乾燥固体を得る。キトサン金属
錯体からなる固体は、前記溶液および混合液から水等の
溶媒を除去することによっても得ることも出来る。この
場合の、溶媒の除去は、脱水、加熱乾燥および減圧乾燥
等の従来公知の方法により実施することが出来る。Next, an alkaline aqueous solution such as aqueous ammonia is added to the solution, and the pH of the solution is adjusted to 6 or higher, preferably 8 to 10 to precipitate the chitosan metal complex. The precipitate is separated and dried to obtain a dry solid composed of a chitosan metal complex. The solid composed of the chitosan metal complex can also be obtained by removing a solvent such as water from the solution and mixed solution. In this case, the removal of the solvent can be carried out by a conventionally known method such as dehydration, heat drying and vacuum drying.
【0010】前記固体は、キトサンの金属錯体からなる
ものである。その固体中に含まれる水等の液体濃度は、
10%以下、好ましくは1%以下である。但し、この固
体中には、5%程度の液体が含まれていても特に問題は
ない。また、前記キトサンの金属錯体からなる固体にお
いて、その金属の含有量は、通常、0.1〜20%、好
ましくは1〜10%である。The solid is composed of a metal complex of chitosan. The concentration of liquid such as water contained in the solid is
It is 10% or less, preferably 1% or less. However, there is no particular problem even if the solid contains about 5% of liquid. In addition, in the solid composed of the metal complex of chitosan, the content of the metal is usually 0.1 to 20%, preferably 1 to 10%.
【0011】本発明においては、前記のようにして得ら
れるキトサンの金属錯体を、炭化し、表面活性化させ
る。この場合、炭化工程は、前記固体を、酸素濃度が
0.01vol%以下、好ましくは実質的にゼロ%の不
活性ガス雰囲気中で、500〜1200℃、好ましくは
700〜900℃の温度で焼成することによって行うこ
とが出来る。不活性ガスとしては、窒素ガスが一般的に
用いられる。この炭化処理においては、固体は、20〜
70質量%、好ましくは30〜60質量%炭素収率で炭
化物に変換される。In the present invention, the metal complex of chitosan obtained as described above is carbonized and surface activated. In this case, in the carbonization step, the solid is fired at a temperature of 500 to 1200 ° C., preferably 700 to 900 ° C. in an inert gas atmosphere having an oxygen concentration of 0.01 vol% or less, preferably substantially zero%. Can be done by doing. Nitrogen gas is generally used as the inert gas. In this carbonization treatment, the solid is 20 to
It is converted to carbides with a carbon yield of 70% by weight, preferably 30-60% by weight.
【0012】前記固体の炭化終了後に、得られた炭化物
に水蒸気や二酸化炭素、酸素等の炭素に対して反応性を
有するガスを反応させることにより、表面が活性化され
た金属含有多孔体とすることが出来る。この場合の活性
化処理は、通常、800〜1100℃の温度で行われ
る。前記固体を炭化する場合、その固体は粉末状である
ことが出来るほか、成形体(顆粒、板体、繊維等)であ
ることができる。After the carbonization of the solid is completed, the obtained carbide is reacted with a gas having a reactivity with carbon such as steam, carbon dioxide, and oxygen to obtain a metal-containing porous body whose surface is activated. You can The activation treatment in this case is usually performed at a temperature of 800 to 1100 ° C. When the solid is carbonized, the solid may be in the form of powder, or may be a molded body (granule, plate, fiber, etc.).
【0013】前記のようにして得られる活性炭(多孔
体)は、金属が高分散し、これに基づく特異な性質を有
するものである。その活性炭中の金属の含有量は、0.
1〜20質量%、好ましくは1〜10質量%である。ま
た、そのBET比表面積は、少なくとも200m2/
g、好ましくは500m2/g以上である。本発明の活
性炭は、従来の活性炭と同様に、各種の用途、例えば、
吸着剤、脱臭剤、触媒等に用いることが出来る。The activated carbon (porous material) obtained as described above is one in which the metal is highly dispersed and has a unique property based on this. The content of metal in the activated carbon is 0.
It is 1 to 20% by mass, preferably 1 to 10% by mass. Further, its BET specific surface area is at least 200 m 2 /
g, preferably 500 m 2 / g or more. The activated carbon of the present invention has various uses like the conventional activated carbon, for example,
It can be used as an adsorbent, a deodorant, a catalyst and the like.
【0014】[0014]
【実施例】実施例1
(1)0.1N酢酸2000cc中に、0.25gの
(CH3COO)2Ni・4H2Oとキトサン(脱アセチル
化度100%)10gを溶解させた。次に、得られた溶
液にアンモニア水を加えてpH7〜8にして、キトサン
/ニッケル錯体を沈殿させ、この沈殿物を回収し、温度
70℃、水流ポンプの減圧下で24時間脱水乾燥し、固
体10gを得た。この固体は、キトサンのニッケル錯体
からなり、そのニッケル含有量は0.5%であり、ま
た、その水分含有量は0.5%以下であった。Example 1 (1) 0.25 g of (CH 3 COO) 2 Ni.4H 2 O and 10 g of chitosan (deacetylation degree 100%) were dissolved in 2000 cc of 0.1N acetic acid. Next, ammonia water is added to the resulting solution to adjust the pH to 7 to 8 to precipitate a chitosan / nickel complex, and the precipitate is recovered, dehydrated and dried at a temperature of 70 ° C. under a reduced pressure of a water pump for 24 hours, 10 g of solid was obtained. This solid consisted of a nickel complex of chitosan, its nickel content was 0.5%, and its water content was 0.5% or less.
【0015】(2)多孔体の製造
次に、前記固体を、窒素ガス中で900℃の温度で30
分焼成した後、850℃で43時間水蒸気と反応させ
た。このようにして得られた活性炭中のニッケル含有量
は2.5%であり、強磁性を示すことが確認された。ま
た、このBET比表面積は516m2/gであった。(2) Production of Porous Material Next, the above solid is heated in nitrogen gas at a temperature of 900 ° C. for 30 hours.
After calcining for minutes, it was reacted with steam at 850 ° C. for 43 hours. The nickel content in the activated carbon thus obtained was 2.5%, and it was confirmed that the activated carbon exhibits ferromagnetism. The BET specific surface area was 516 m 2 / g.
【0016】実施例2
実施例1において、(CH3COO)2Ni・4H2Oの代
わりに、FeCl2・H2Oを用いた以外は同様にして実
験を行った。得られた活性炭は、強磁性を示すことが確
認された。Example 2 An experiment was conducted in the same manner as in Example 1 except that FeCl 2 .H 2 O was used instead of (CH 3 COO) 2 Ni.4H 2 O. It was confirmed that the obtained activated carbon exhibits ferromagnetism.
【0017】実施例3
(1)純水1000ccにFe(CH3COO)2 0.
05gを溶かし、キトサンを10g混合し、2時間撹拌
し、脱水乾燥した。この固体を、実施例1の(2)と同
様に炭化賦活した。この時の比表面積は731m2/g
であった。Example 3 (1) Fe (CH 3 COO) 2 0.
Dissolve 05 g, mix 10 g of chitosan, stir for 2 hours, and dehydrate and dry. This solid was activated by carbonization in the same manner as in (2) of Example 1. The specific surface area at this time is 731 m 2 / g
Met.
【0018】[0018]
【発明の効果】本発明の金属含有多孔体において、その
金属含有量は、通常、0.05〜20質量%、好ましく
は0.1〜10質量%である。そのBET比表面積は、
通常400m2/g以上である。その形状は粉末状、顆
粒状、板状、繊維状等であることが出来る。本発明の活
性炭は、導入した金属によって、以下の例のような特異
な性質と効果を有する。まず、磁性金属を導入した場
合、磁性を有し、捕集などの磁場雰囲気下でのハンドリ
ングの向上が期待できる。また、高誘電体金属を導入し
た場合、交流電磁場内でのコロナ放電発生が期待でき
る。さらに、水素化能を有する金属を導入した場合、水
素化分解触媒として使用が期待できる。In the metal-containing porous body of the present invention, the metal content is usually 0.05 to 20% by mass, preferably 0.1 to 10% by mass. The BET specific surface area is
It is usually 400 m 2 / g or more. The shape can be powdery, granular, plate-like, fibrous or the like. The activated carbon of the present invention has unique properties and effects as shown in the following examples depending on the introduced metal. First, when a magnetic metal is introduced, it has magnetism and can be expected to improve handling in a magnetic field atmosphere such as collection. Further, when a high dielectric metal is introduced, it can be expected that corona discharge will occur in an alternating electromagnetic field. Furthermore, when a metal having a hydrogenating ability is introduced, it can be expected to be used as a hydrocracking catalyst.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊川 伸行 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 濱田 研介 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 Fターム(参考) 4G019 GA04 4G066 AA04B AB24A FA05 FA18 FA22 4G069 AA03 AA08 BA08A BA08B BA29C BC66B BC68B DA05 FA01 FA08 FB34 FC02 4G146 AA06 BA34 BC03 BD01 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Nobuyuki Kikukawa 1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture Inside the Tsukuba center (72) Kensuke Hamada 1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture Inside the Tsukuba center F-term (reference) 4G019 GA04 4G066 AA04B AB24A FA05 FA18 FA22 4G069 AA03 AA08 BA08A BA08B BA29C BC66B BC68B DA05 FA01 FA08 FB34 FC02 4G146 AA06 BA34 BC03 BD01
Claims (2)
化してなる金属含有多孔体。1. A metal-containing porous body obtained by carbonizing a metal complex of chitosan and activating the surface thereof.
該キトサン金属錯体を炭化する工程と、該炭化工程で得
られた炭化物を表面活性化する工程からなることを特徴
とする金属含有多孔体の製造方法。2. A step of producing a metal complex of chitosan,
A method for producing a metal-containing porous body, which comprises a step of carbonizing the chitosan metal complex and a step of surface-activating the carbide obtained in the carbonizing step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002118404A JP2003313021A (en) | 2002-04-19 | 2002-04-19 | Metal-containing porous body and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002118404A JP2003313021A (en) | 2002-04-19 | 2002-04-19 | Metal-containing porous body and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003313021A true JP2003313021A (en) | 2003-11-06 |
Family
ID=29535309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002118404A Pending JP2003313021A (en) | 2002-04-19 | 2002-04-19 | Metal-containing porous body and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003313021A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302590A (en) * | 2006-05-10 | 2007-11-22 | Ikuo Furukawa | Manufacturing method of noxious organism-controlling agent |
WO2013073977A1 (en) * | 2011-11-14 | 2013-05-23 | Uniwersytet Mikołaja Kopernika | Method for production of nanoporous activated carbons with high nitrogen contents |
EP3554689A1 (en) * | 2016-12-19 | 2019-10-23 | H. Hoffnabb-La Roche Ag | Nitrogen-containing biopolymer-based catalysts, their preparation and uses in hydrogenation processes, reductive dehalogenation and oxidation |
JP2020070209A (en) * | 2018-10-31 | 2020-05-07 | 国立大学法人山梨大学 | Method for producing carbon-metal composite |
-
2002
- 2002-04-19 JP JP2002118404A patent/JP2003313021A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302590A (en) * | 2006-05-10 | 2007-11-22 | Ikuo Furukawa | Manufacturing method of noxious organism-controlling agent |
JP4575900B2 (en) * | 2006-05-10 | 2010-11-04 | 郁夫 古川 | Method for producing pest control agent |
WO2013073977A1 (en) * | 2011-11-14 | 2013-05-23 | Uniwersytet Mikołaja Kopernika | Method for production of nanoporous activated carbons with high nitrogen contents |
EP3554689A1 (en) * | 2016-12-19 | 2019-10-23 | H. Hoffnabb-La Roche Ag | Nitrogen-containing biopolymer-based catalysts, their preparation and uses in hydrogenation processes, reductive dehalogenation and oxidation |
JP2020070209A (en) * | 2018-10-31 | 2020-05-07 | 国立大学法人山梨大学 | Method for producing carbon-metal composite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cui et al. | Pd-doped Ni nanoparticle-modified N-doped carbon nanocatalyst with high Pd atom utilization for the transfer hydrogenation of nitroarenes | |
Sadjadi et al. | Ternary hybrid system of halloysite nanotubes, polyacrylamides and cyclodextrin: an efficient support for immobilization of Pd nanoparticles for catalyzing coupling reaction | |
Maleki et al. | Design and development of a novel cellulose/γ-Fe 2 O 3/Ag nanocomposite: a potential green catalyst and antibacterial agent | |
Dong et al. | Fabrication of highly dispersed Pd nanoparticles supported on reduced graphene oxide for catalytic reduction of 4-nitrophenol | |
Koga et al. | Topological loading of Cu (I) catalysts onto crystalline cellulose nanofibrils for the Huisgen click reaction | |
KR101724979B1 (en) | Carbon bodies and ferromagnetic carbon bodies | |
Ehsani et al. | High-performance catalytic reduction of 4-nitrophenol to 4-aminophenol using M-BDC (M= Ag, Co, Cr, Mn, and Zr) metal-organic frameworks | |
Esmaeili et al. | Design and development of natural and biocompatible raffinose-Cu2O magnetic nanoparticles as a heterogeneous nanocatalyst for the selective oxidation of alcohols | |
WO2015103851A1 (en) | A process for vapor-phase methanol carbonylation to methyl formate, a catalyst used in the process and a method for preparing the catalyst | |
CN104248991A (en) | Spherical montmorillonite mesoporous composite carrier, supported catalyst, preparation methods of spherical montmorillonite mesoporous composite carrier and supported catalyst, use of supported catalyst and preparation method of ethyl acetate | |
Wu et al. | Collagen fiber with surface-grafted polyphenol as a novel support for Pd (0) nanoparticles: Synthesis, characterization and catalytic application | |
Xiao et al. | Towards mass production of Au nanoparticles supported on montmorillonite microspheres for catalytic reduction of 4-nitrophenol | |
Chaabane et al. | Functionalization of graphene oxide sheets with magnetite nanoparticles for the adsorption of copper ions and investigation of its potential catalytic activity toward the homocoupling of alkynes under green conditions | |
Dohendou et al. | Pd@ l-asparagine–EDTA–chitosan: a highly effective and reusable bio-based and biodegradable catalyst for the Heck cross-coupling reaction under mild conditions | |
Adewuyi et al. | Synthesis, spectroscopic, surface and catalytic reactivity of chitosan supported Co (II) and its zerovalentcobalt nanobiocomposite | |
JP6175552B2 (en) | Porous carbon material, method for producing the same, filter, sheet, and catalyst carrier | |
CN107694563A (en) | Palladium carbon catalyst and its preparation method and application | |
Narani et al. | Pd-Nanoparticles immobilized organo-functionalized SBA-15: An efficient heterogeneous catalyst for selective hydrogenation of CC double bonds of α, β-unsaturated carbonyl compounds | |
Shelkar et al. | Nano Pd–Fe 3 O 4@ Alg beads: as an efficient and magnetically separable catalyst for Suzuki, Heck and Buchwald–Hartwig coupling reactions | |
CN111151283B (en) | Nitrogen-cobalt co-doped porous carbon loaded sulfur-zinc-cobalt catalytic material and preparation method and application thereof | |
JP2003313021A (en) | Metal-containing porous body and method for manufacturing the same | |
CN107413314B (en) | Method for removing chromium in wastewater | |
CN108367267A (en) | Sorbing material particle | |
CN114904536A (en) | Porous biochar-based MnFe 2 O 4 Method for preparing composite | |
CN113976049A (en) | COF/CS aerogel and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061010 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070313 |