JP2003311294A - Tubular body for purification of sewage and method for purifying sewage by using the same - Google Patents
Tubular body for purification of sewage and method for purifying sewage by using the sameInfo
- Publication number
- JP2003311294A JP2003311294A JP2002123726A JP2002123726A JP2003311294A JP 2003311294 A JP2003311294 A JP 2003311294A JP 2002123726 A JP2002123726 A JP 2002123726A JP 2002123726 A JP2002123726 A JP 2002123726A JP 2003311294 A JP2003311294 A JP 2003311294A
- Authority
- JP
- Japan
- Prior art keywords
- tubular body
- sewage
- water
- purification
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Farming Of Fish And Shellfish (AREA)
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、富栄養化した水域
や、畜産排水等にみられるような汚染された水質を浄化
し、有用な資源を回収する汚水浄化用管状体及びそれを
用いた汚水浄化方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a sewage purification tubular body for purifying contaminated water quality such as found in eutrophic water areas and livestock wastewater, and recovering useful resources, and the same. Regarding sewage purification method.
【0002】[0002]
【従来の技術】近年、ダム湖や貯水池、内湾、漁港等の
ような強い閉鎖性を示す水域では、富栄養化による水質
悪化が大きな問題となっている。また、水道水源となる
水域においてもアオコや淡水赤潮の発生が多数報告され
ていることもあり、市民レベルでの水質への関心は以前
とは比較にならないほど高まっている。富栄養化の原因
として、山間部において水域へ流入する落葉の分解や、
酪農・畜産からの屎尿排泄等、都市部においては生活排
水の流入等による、窒素・リンの水域への過剰な流入が
考えられる。これらの水域への流入により、植物プラン
クトンの異常増殖を促し、それらの死骸(デトリタス)
は沈降し、堆積物の有機物含有量を著しく増加させる。
この結果、表層の水温上昇、塩水の進入などに伴い密度
成層が形成されると、容易に底層部の貧酸素化、無酸素
化が起こるようになる。酸素を含む表層水では、生物化
学的反応により、一般的には溶存物質濃度は低い。これ
に対し、底層水中には溶存物質が高濃度に蓄積してお
り、底層水質を改善することが非常に重要な課題となっ
ている。2. Description of the Related Art In recent years, deterioration of water quality due to eutrophication has become a serious problem in dam areas such as dam lakes, reservoirs, inner bays, and fishing ports. In addition, there are many reports of water-blooms and freshwater red tides in the water area that serves as the source of tap water, and the interest in water quality at the civic level has risen to a level unprecedented. As the cause of eutrophication, the decomposition of the leaves that flow into the water in the mountains,
Excessive influx of nitrogen and phosphorus into the water area due to inflow of domestic wastewater in urban areas such as excretion of human waste from dairy farming and livestock is considered. The inflow to these waters promotes the overgrowth of phytoplankton and their dead bodies (Detritus).
Settles and significantly increases the organic content of the sediment.
As a result, when a density stratification is formed due to a rise in water temperature of the surface layer, invasion of salt water, etc., the bottom layer portion is easily deoxidized and deoxidized. In surface water containing oxygen, the concentration of dissolved substances is generally low due to biochemical reactions. On the other hand, dissolved substances are accumulated in the bottom water at a high concentration, and improving the quality of the bottom water is a very important issue.
【0003】従来より、汚水処理方法として深層曝気法
や活性汚泥法が一般的に用いられている。深層曝気法に
は、曝気により直接底層水への酸素溶解を狙う方法と、
曝気により成層を破壊し鉛直混合の促進を狙う方法があ
る。しかしながら、前者の深層曝気法においては、底層
水への酸素供給速度は底層に送り込まれた空気から水へ
の酸素の溶解度に制限されており、十分な酸素供給を実
現できていないのが実状である。後者の深層曝気法にお
いては、曝気の影響する水平範囲は限られるため、水域
全体を混合することはほとんど不可能であるという問題
がある。また、両者の深層曝気法ともに、水に比べて圧
倒的に密度の小さい空気を底層に送り込む方法を採用し
ているため、膨大な人工エネルギーを投入しなければな
らず多大なコストが必要であるだけでなく、多量のエネ
ルギー投入による環境負荷の問題がある。活性汚泥法等
の汚水処理では、処理過程において大量の汚泥等の副産
物を生じ、脱水・乾燥等の処理が必要となり、その結
果、高コストと高エネルギーを投入しなければならない
という問題がある。Conventionally, a deep layer aeration method and an activated sludge method have been generally used as a sewage treatment method. The deep aeration method includes a method for directly dissolving oxygen in the bottom water by aeration,
There is a method of destroying stratification by aeration to promote vertical mixing. However, in the former deep aeration method, the oxygen supply rate to the bottom layer water is limited to the solubility of oxygen from the air sent to the bottom layer to water, and in reality it is not possible to realize sufficient oxygen supply. is there. In the latter deep aeration method, there is a problem that it is almost impossible to mix the whole water area because the horizontal range affected by aeration is limited. In addition, both deep aeration methods employ a method in which air having a density that is overwhelmingly smaller than that of water is sent to the bottom layer, so enormous artificial energy must be input and enormous cost is required. In addition, there is a problem of environmental load due to a large amount of energy input. In wastewater treatment such as the activated sludge method, a large amount of by-products such as sludge is generated in the treatment process, and treatment such as dehydration / drying is required, resulting in the problem that high cost and high energy must be input.
【0004】一方、富栄養化水域において密度成層が形
成された場合、稀に躍層付近に光合成細菌が集積するこ
とがある。これは、光合成細菌が酸素発生型の光合成を
行う植物プランクトン等との競合に弱く、光の十分に届
く水表面付近ではその個体数を増やせないこと、躍層付
近では底層水中に含まれる高濃度の栄養塩を利用するこ
とが可能であること等の理由によるものである。上記の
光合成細菌を用いた汚水浄化方法としては、セラミック
担体やゲル状物質に光合成細菌を定着させ個体群の保持
を図る方法等がある。例えば、特開平9−85282号
公報には、「寒天ゲルで光合成細菌を固定する、河川、
湖沼などの水質改善装置」が開示されている。特開平9
−234482号公報には、「成層した湖沼等の水を鉛
直方向に撹拌する、浮上型水質浄化装置及び水質浄化方
法」が開示されている。特開平9−75985号公報に
は、「多孔質の担体に光合成細菌を付着した、水質浄化
装置」が開示されている。特開平11−289913号
公報には、「ファイバーに光合成生物を付着した、養殖
用飼育用水の浄化フィルタ及び浄化装置」が開示されて
いる。On the other hand, when a density stratification is formed in a eutrophic water area, photosynthetic bacteria may rarely accumulate near the pycnocline. This is because photosynthetic bacteria are vulnerable to competition with phytoplankton, which performs oxygen-generating photosynthesis, and that the number of individuals cannot increase near the surface of the water where light can reach sufficiently. This is because it is possible to use the nutrient salt of. As a method for purifying sewage using the above-mentioned photosynthetic bacteria, there is a method in which the photosynthetic bacteria are fixed to a ceramic carrier or a gel-like substance to maintain the population. For example, Japanese Patent Application Laid-Open No. 9-85282 discloses that "agar gel fixes photosynthetic bacteria, a river,
A water quality improving device for lakes and marshes is disclosed. JP-A-9
Japanese Patent No. 234482 discloses "a floating water purification apparatus and a water purification method in which water in a stratified lake or the like is vertically stirred." Japanese Unexamined Patent Publication No. 9-75985 discloses "a water purification device in which photosynthetic bacteria are attached to a porous carrier". Japanese Patent Application Laid-Open No. 11-289913 discloses "a purification filter and a purification device for aquaculture breeding water in which a photosynthetic organism is attached to a fiber".
【0005】しかしながら、従来の光合成細菌を用いた
汚水浄化方法では、以下の課題を有していた。特開平9
−85282号公報における水質改善装置は、寒天ゲル
に光合成細菌を固定するものであるため、1週間から2
週間程度の連続稼動でゲルが崩壊し、浄化能が低下する
という問題がある。特開平9−234482号公報にお
ける浮上型水質浄化装置は、部分的に光合成細菌を使用
するが、窒素、リンを回収することがないので、水域に
含まれる窒素、リンの総量は減少しない。このため、装
置稼動中においては一時的に水質改善は見られるが、稼
動を止めてしばらくすると元に戻るという問題がある。
また、浄化に多大なエネルギー投入が必要であり、有価
物の回収を行うことができないという問題がある。特開
平9−75985号公報における水質浄化装置は、活性
炭等を用いた担体表面から内部に進むにしたがって酸素
は消費されて行き、酸素が無くなるところで光合成細菌
は活性を持つようになるため、光は大幅に減衰しており
(酸素よりも先に光が無くなる)、十分な光合成活性が
得られないという問題がある。また、増殖した光合成細
菌は水域の食物連鎖に組み込まれるため、水質浄化の役
割は果たすが、有価物の回収はできないという問題があ
る。特開平11−289913号公報における浄化フィ
ルタ及び浄化装置は、光合成に有利な波長を選択的に照
射するものであるが、処理対象が養殖魚の飼育用水であ
るため、かなりの酸素を含んでおり、このような条件で
光合成細菌が発生する可能性はかなり低いという問題が
ある。酸素を含む水が処理の対象となっているため、嫌
気条件下で浄化能を発揮するタイプの光合成細菌の維持
は困難である。However, the conventional methods for purifying sewage using photosynthetic bacteria have the following problems. JP-A-9
Since the water quality improving device in Japanese Patent No. 85282 fixes photosynthetic bacteria to agar gel, it takes 1 to 2 weeks.
There is a problem that the gel collapses after continuous operation for about a week, and the purification ability decreases. The floating-type water purification device in Japanese Patent Laid-Open No. 9-234482 uses photosynthetic bacteria partially, but does not collect nitrogen and phosphorus, so the total amount of nitrogen and phosphorus contained in the water area does not decrease. Therefore, although the water quality is temporarily improved during the operation of the device, there is a problem that the water quality is restored after the operation is stopped for a while.
In addition, a large amount of energy is required for purification, and there is a problem that valuable materials cannot be recovered. In the water purification apparatus disclosed in Japanese Patent Laid-Open No. 9-75985, oxygen is consumed as it progresses from the surface of a carrier using activated carbon or the like to the inside, and photosynthetic bacteria become active in the place where oxygen disappears. It is greatly attenuated (light disappears before oxygen), and there is a problem that sufficient photosynthetic activity cannot be obtained. In addition, the photosynthetic bacteria that have proliferated are incorporated into the food chain of the body of water, and thus play a role of water purification, but there is a problem that valuable materials cannot be recovered. The purification filter and the purification device in JP-A No. 11-289913 selectively irradiate a wavelength advantageous for photosynthesis, but since the treatment target is water for breeding cultured fish, it contains a considerable amount of oxygen. There is a problem that photosynthetic bacteria are unlikely to occur under such conditions. Since water containing oxygen is the target of treatment, it is difficult to maintain the type of photosynthetic bacteria that exerts its purifying ability under anaerobic conditions.
【0006】その他、光合成細菌を用いた従来の汚水浄
化方法では、光条件・栄養条件・嫌気好気条件等、光合
成細菌の代謝活性にかかわる様々な要素の不均一化が起
こり、全ての光合成細菌の有効な活性は期待できないと
いう問題がある。また、酸素条件をコントロールしたリ
アクター等の内部に人工的に光照射を行い、酸素・光の
条件を整えなければならず、リアクターの設置・汚水発
生源からリアクターまでの水の輸送・光源用エネルギー
の確保等の必要があり、多大な手間とエネルギーを投入
しなければならないという問題がある。一方、近い将
来、資源としての燐は枯渇する可能性が指摘されてお
り、燐の回収等、有効な資源対策が切望されている。In addition, in the conventional method for purifying sewage using photosynthetic bacteria, heterogeneity of various elements related to metabolic activity of photosynthetic bacteria such as light conditions, nutritional conditions, anaerobic and aerobic conditions occurs, and all photosynthetic bacteria are caused. There is a problem that the effective activity of the can not be expected. In addition, it is necessary to artificially irradiate the inside of a reactor or the like with controlled oxygen conditions to adjust the conditions of oxygen and light, and to install the reactor, transport water from the wastewater generation source to the reactor, and use energy for the light source. However, there is a problem in that a large amount of labor and energy must be input. On the other hand, it has been pointed out that phosphorus as a resource may be depleted in the near future, and effective resource measures such as recovery of phosphorus are strongly desired.
【0007】[0007]
【発明が解決しようとする課題】本発明の課題は、富栄
養化し貧酸素化あるいは無酸素化した汚濁した水塊を、
光合成細菌を付着し育成した管状体内を通過させ、光合
成を促進させることにより、水塊内に含まれる汚濁物質
を除去するとともに、有用な資源を回収する汚水浄化用
管状体を提供すること、及び富栄養化した水域を低コス
ト且つ低エネルギーで浄化する汚水浄化方法を提供する
ことにある。SUMMARY OF THE INVENTION An object of the present invention is to remove a polluted water mass that has been eutrophic, deoxidized, or deoxidized.
Passing through a tubular body to which photosynthetic bacteria are adhered and grown, and promoting photosynthesis, while removing pollutants contained in the water mass, providing a sewage purification tubular body that recovers useful resources, and An object of the present invention is to provide a sewage purification method for purifying a eutrophic water area at low cost and with low energy.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、光合成微生物は富栄
養化水域に見られる植物プランクトンが存在するところ
では優占することができないが、植物プランクトンがい
ない、または少ない状況下(例えば濾過水中等)で光条
件が整うと活発な活動を行い、多量の栄養塩を吸収する
ことを見出し、本発明を完成するに至った。Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have shown that photosynthetic microorganisms cannot predominate in the presence of phytoplankton found in eutrophic waters. The present invention has been completed by discovering that, when light conditions are satisfied under a condition where phytoplankton is absent or abundant (for example, filtered water), active activities are performed and a large amount of nutrient salts are absorbed.
【0009】すなわち、本発明は、以下の[1]〜[1
0]に記載した事項により特定される。
[1]内壁面の少なくとも一部が光合成微生物付着能を
有し、貧酸素化又は無酸素化した汚水の通過により光合
成可能な管状体から構成されることを特徴とする汚水浄
化用管状体。
[2]管状体の内面の少なくとも一部が、光合成微生物
付着能及び光透過性能を有するポリマーであることを特
徴とする[1]に記載の汚水浄化用管状体。
[3]ポリマーがガス透過性能を有することを特徴とす
る[2]に記載の汚水浄化用管状体。
[4]ポリマーがポリテトラフルオロエチレン、ポリ塩
化ビニル、シリコン樹脂から選択される少なくとも1種
であることを特徴とする[2]又は〔3〕に記載の汚水
浄化用管状体。
[5]管状体の断面が円形、多角形又はこれらの組み合
わせであることを特徴とする[1]乃至[4]の内いず
れか1項に記載の汚水浄化用管状体。
[6][1]乃至[5]の内いずれか1項に記載の管状
体に貧酸素化又は無酸素化した汚水を微量酸素の存在下
で、通水することを特徴とする汚水浄化方法。
[7]管状体に光合成微生物を付着させた後、汚水を該
管状体内に通水することを特徴とする[6]に記載の汚
水浄化方法。
[8]汚水を浄化した後、管状体内に付着した有価物を
回収することを特徴とする[6]又は[7]に記載の汚
水浄化方法。
[9]有価物が燐含有物であることを特徴とする[8]
に記載の汚水浄化方法。
[10]汚水が嫌気性汚水であることを特徴とする
[6]乃至[9]の内いずれか1項に記載の汚水浄化方
法。That is, the present invention provides the following [1] to [1]
[0]]. [1] A tubular body for purifying wastewater, wherein at least a part of the inner wall surface has a photosynthetic microorganism-adhering ability, and is composed of a tubular body capable of photosynthesizing by passage of deoxygenated or deoxygenated wastewater. [2] The sewage purification tubular body according to [1], wherein at least a part of the inner surface of the tubular body is a polymer having a photosynthetic microorganism adhering ability and a light transmitting ability. [3] The sewage purification tubular body according to [2], wherein the polymer has gas permeability. [4] The sewage purification tubular body according to [2] or [3], wherein the polymer is at least one selected from polytetrafluoroethylene, polyvinyl chloride, and silicone resin. [5] The tubular body for purifying wastewater according to any one of [1] to [4], wherein the tubular body has a circular shape, a polygonal shape, or a combination thereof. [6] A method for purifying sewage, characterized in that the tubular body according to any one of [1] to [5] is passed through the sewage deoxidized or deoxygenated in the tubular body in the presence of a trace amount of oxygen. . [7] The method for purifying sewage according to [6], wherein after adhering the photosynthetic microorganisms to the tubular body, sewage is passed through the tubular body. [8] The method for purifying sewage according to [6] or [7], which comprises recovering valuable substances attached to the tubular body after purifying sewage. [9] The valuable material is a phosphorus-containing material [8]
The sewage purification method described in. [10] The wastewater purification method according to any one of [6] to [9], wherein the wastewater is anaerobic wastewater.
【0010】[0010]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、現場水域において躍層付近に優占する光合成
微生物を、光条件が良好な水表面に設置した汚水浄化用
管状体の内壁面に付着させ、競合する植物プランクトン
がいない状況下で光合成を行わせ、水中に溶解している
高濃度の汚濁物質を除去するとともに、燐含有物等の有
価物を回収する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The present invention attaches photosynthetic microorganisms predominantly in the vicinity of the stratum corneum in the on-site water area to the inner wall surface of a sewage purification tubular body installed on a water surface with good light conditions, and photosynthesis occurs in the absence of competing phytoplankton. Is performed to remove high-concentration pollutants dissolved in water and to recover valuable substances such as phosphorus-containing substances.
【0011】本発明における管状体の材質は、内壁面の
少なくとも一部が光合成微生物付着能を有するものであ
れば、特に限定されるものではないが、管状体の内壁面
に凹凸を有する材質にすると、光合成微生物が内壁面に
付着しやすく、また付着面積が増大し好ましい。管状体
の内面の少なくとも一部が光合成微生物付着能及び光透
過性能を有するポリマー、例えば、ポリテトラフルオロ
エチレン、ポリ塩化ビニル、シリコン樹脂、ポリエチレ
ン、ポリスチレン、AS樹脂、ABS樹脂、ポリプロピ
レン、アクリル樹脂、メタクリル樹脂、ポリエチレンテ
レフタレート、ポリアミド、ポリカーボネート、ポリア
セタール、変性ポリフェニレンエーテル、ポリブチレン
テレフタレート、ポリフェニレンサルファイド、ポリア
リレート、ポリサルホン、ポリエーテルサルホン、ポリ
エーテルエーテルケトン、ポリエーテルイミド、ポリア
ミドイミド、液晶ポリマー、ポリイミド、ポリフタルア
ミド、ポリアクリロニトリル、フッ素樹脂、フェノール
樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、不飽
和ポリエステル、ポリウレタン、ジアリルフタレート樹
脂、アルキド樹脂や、ポリ乳酸、ポリヒドロキシ酪酸、
ポリカプロラクトン、ポリブチレンサクシネート、ポリ
エチレンサクシネート、ポリビニルアルコール、ポリウ
レタン等の生分解性ポリマーの1種又は2種以上を用い
ると地球規模でのプラスチック廃棄物処理問題を回避す
る上で好ましい。中でもガス透過性能を有するポリマー
が好ましい。但し、汚水から光合成微生物の生育に必要
な酸素が供給される場合には、ガス透過性能を有してい
なくても構わない。なお、光合成細菌付着能、光透過性
能およびガス透過性能は、管状体の内面全面に有する必
要はなく、一部であってもよい。The material of the tubular body in the present invention is not particularly limited as long as at least a part of the inner wall surface has photosynthetic microorganism adhering ability, but a material having unevenness on the inner wall surface of the tubular body is used. Then, the photosynthetic microorganisms are easily attached to the inner wall surface, and the attachment area is increased, which is preferable. A polymer in which at least a part of the inner surface of the tubular body has photosynthetic microorganism adhesion and light transmission properties, for example, polytetrafluoroethylene, polyvinyl chloride, silicone resin, polyethylene, polystyrene, AS resin, ABS resin, polypropylene, acrylic resin, Methacrylic resin, polyethylene terephthalate, polyamide, polycarbonate, polyacetal, modified polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, liquid crystal polymer, polyimide, Polyphthalamide, polyacrylonitrile, fluororesin, phenolic resin, urea resin, melamine resin, epoxy resin, unsaturated polyester Le, polyurethane, diallyl phthalate resin, or alkyd resins, polylactic acid, polyhydroxybutyric acid,
It is preferable to use one or more biodegradable polymers such as polycaprolactone, polybutylene succinate, polyethylene succinate, polyvinyl alcohol and polyurethane in order to avoid the problem of plastic waste treatment on a global scale. Among them, a polymer having gas permeability is preferable. However, when oxygen required for growth of photosynthetic microorganisms is supplied from the sewage, it does not need to have gas permeability. The photosynthetic bacteria-adhering ability, light-transmitting ability, and gas-permeating ability do not need to be provided on the entire inner surface of the tubular body, and may be part thereof.
【0012】ここで、光合成微生物付着能とは、1個以
上の光合成微生物が管状体の内壁面に付着する性質をい
い、内壁面に凹凸を有すると付着能が高まる。ガス透過
性能とは、管状体の内壁面に付着した光合成微生物が光
合成を行う際に必要となる、適切な量の酸素を管状体外
側から分子拡散等の過程により供給する性質をいう。光
透過性能とは、管状体の内壁面に付着した光合成微生物
が光合成を行うの際に必要な量の光を透過する性質をい
う。光合成細菌の代謝活性が最大となる光透過率となる
材質が好ましい。例えば、紅色硫黄細菌の場合、代謝活
性が最大となる、約5000ルックス以下の光を透過す
る材質が好ましい。これより強い光は光合成細菌が不活
性になる等の障害が生じる恐れがあるので、この場合に
は、何らかの遮光物を設ける必要がある。Here, the photosynthetic microorganism adhering ability means the property that one or more photosynthetic microorganisms adhere to the inner wall surface of the tubular body, and if the inner wall surface has irregularities, the adhering ability increases. The gas permeation performance refers to the property of supplying an appropriate amount of oxygen from the outside of the tubular body through a process such as molecular diffusion, which is required when the photosynthetic microorganisms attached to the inner wall surface of the tubular body perform photosynthesis. The light transmission performance refers to the property of transmitting a required amount of light when the photosynthetic microorganisms attached to the inner wall surface of the tubular body perform photosynthesis. A material having a light transmittance that maximizes the metabolic activity of photosynthetic bacteria is preferable. For example, in the case of purple sulfur bacteria, a material that transmits light of about 5000 lux or less, which maximizes metabolic activity, is preferable. Light stronger than this may cause damage such as inactivation of photosynthetic bacteria. In this case, some kind of light shield must be provided.
【0013】本発明に用いる光合成微生物としては、嫌
気型の光合成細菌又は嫌気型の光合成微生物が挙げられ
る。具体的には、光エネルギーを用いて光無機栄養又は
光有機栄養によって生育する細菌であり、ロドスピリル
ム属、ロドシュードモナス属、クロマテウム属、クロロ
フレクサス属、クロロビウム属等があり、ロドシュード
モナス カプスラータ、ロドシュードモナス フィリデ
ィス、ロドスピリルムルブラム等が好適に用いられる。
例えば、下水汚泥には、ロドシュードモマス属のパルス
トリス(Joong Kyun Kim, Bum-kyu Lee, Sang-Hee Kim,
Jung-Hye Moon, Aquacultural Enginnering, 1999参
照)、畜産排水には紅色硫黄細菌(J.L.Sund, C.J. Even
son, K.A. Strevett, R.W. Nairn, D. Athay, E. Trawi
nski, Journal of Environmental Quality, 2001参
照)、海洋にはロードブルム属である非硫黄光合成細菌
(Tadashi Matsunaga, Tomoyuki Hatano, Akiyo Yamada,
Mitsufumi Matsumoto,Biotechnology and Bioengineer
ing, 2000参照)が用いられる。特に、紅色硫黄細菌は、
有機化合物を光同化することができ、例えば、脂肪酸、
その他の有機酸、第一級アルコール及び第二アルコー
ル、炭水化物、芳香族化合物も同化される。また、これ
らの光合成細菌は、光同化し得る有機物質のほとんどを
同時に呼吸基質として利用できる。また、還元型無機硫
黄化合物を用いて光合成独立栄養的に生育することが可
能である。これらの光合成細菌は、湖沼等高濃度生息域
から採水し、培養、濃縮してもよいが、市販の光合成細
菌を用いてもよい。また、光合成細菌を包括固定する担
体としては、寒天、カラーギーナン、アルギン酸等の天
然高分子ゲル及びポリビニルアルコール、ポリアクリル
アミド等の合成高分子ゲルがあるが、光合成細菌その他
存在する微生物に対する栄養塩としても利用できる寒天
が用いられる。嫌気型の光合成細菌は環境中では、水温
成層部等ほとんど光はないが、酸素がごく微量に含まれ
る場所で生育している。Examples of the photosynthetic microorganisms used in the present invention include anaerobic photosynthetic bacteria and anaerobic photosynthetic microorganisms. Specifically, it is a bacterium that grows by photoinorganic nutrition or photoorganotrophy using light energy, and there are Rhodospirillum genus, Rhodopseudomonas genus, Chromatheum genus, Chloroflexus genus, Chlorobium genus, etc. Filidis, Rhodospirillum rubrum and the like are preferably used.
For example, for sewage sludge, Rhodo-Pseudo-Momas pulse tris (Joong Kyun Kim, Bum-kyu Lee, Sang-Hee Kim,
Jung-Hye Moon, Aquacultural Enginnering, 1999 ), and red sulfur bacteria (JLSund, CJ Even
son, KA Strevett, RW Nairn, D. Athay, E. Trawi
nski, Journal of Environmental Quality, 2001 ), non-sulfur photosynthetic bacteria belonging to the genus Rhodrum in the ocean
(Tadashi Matsunaga, Tomoyuki Hatano, Akiyo Yamada,
Mitsufumi Matsumoto, Biotechnology and Bioengineer
ing, 2000 ) is used. In particular, purple sulfur bacteria
Organic compounds can be photo-assimilated, such as fatty acids,
Other organic acids, primary and secondary alcohols, carbohydrates, aromatics are also assimilated. In addition, these photosynthetic bacteria can simultaneously utilize most of the organic substances capable of photoassimilation as respiratory substrates. Further, it is possible to grow photoautoautotrophically using a reduced inorganic sulfur compound. These photosynthetic bacteria may be sampled from a highly concentrated habitat such as a lake, cultivated and concentrated, or commercially available photosynthetic bacteria may be used. Further, as a carrier for entrapping immobilization of photosynthetic bacteria, there are natural polymer gels such as agar, color geninan, alginic acid and the like, and polyvinyl alcohol, synthetic polymer gels such as polyacrylamide, but also as nutrient salts for photosynthetic bacteria and other existing microorganisms. Available agar is used. Anaerobic photosynthetic bacteria grow in an environment where there is little light such as a water temperature stratified layer, but oxygen is contained in a very small amount.
【0014】本発明に用いる管状体の形状は、断面が円
形、正方形、長方形、菱形、三角形、五角形、六角形等
の多角形又はこれらの組み合わせが用いられるが、これ
らに限定されるものではない。また、管状体の長さは、
特に限定されるものではなく、設置場所に応じて適宜変
更できる。The shape of the tubular body used in the present invention may be a polygon such as a circle, a square, a rectangle, a rhombus, a triangle, a pentagon, and a hexagon, or a combination thereof, but is not limited thereto. . The length of the tubular body is
It is not particularly limited and can be appropriately changed according to the installation place.
【0015】本発明における汚水としては、貧酸素化又
は無酸素化した汚水が用いられ、具体的には、富栄養化
した底層水、畜産排水、工場廃水等が挙げられるが、こ
れらに限定されるものではない。嫌気性汚水であると光
合成細菌の代謝活性が促進され好ましい。ここで、貧酸
素化とは、分子状酸素は少量溶存しているが、魚に代表
されるような好気的代謝を行う生物が継続的に生育する
ことが困難な程度にまで溶存酸素濃度が減少することを
いう。また、無酸素化とは、分子状酸素が欠乏すること
をいう。The sewage used in the present invention is deficient or anoxic sewage, and specific examples include eutrophication bottom water, livestock wastewater, and factory wastewater, but are not limited thereto. Not something. Anaerobic sewage is preferred because it promotes the metabolic activity of photosynthetic bacteria. Here, hypoxia means that a small amount of molecular oxygen is dissolved, but the dissolved oxygen concentration is such that organisms that perform aerobic metabolism such as fish are difficult to continuously grow. Means decrease. Further, deoxidation means that molecular oxygen is deficient.
【0016】本発明における汚水浄化用管状体は、1以
上の管状体から構成されるが、その数あるいは配置の仕
方は、設置場所に応じて適宜変更される。本発明の汚水
浄化用管状体は、富栄養化した水域や、畜産排水等にみ
られるような汚染された水質を浄化し、有用な資源を回
収する他、養殖生簀との併用等、種々の用途に広く利用
される。The sewage purification tubular body of the present invention is composed of one or more tubular bodies, but the number or arrangement of the tubular bodies may be appropriately changed depending on the place of installation. The sewage purification tubular body of the present invention purifies contaminated water quality such as that found in eutrophied water bodies and livestock wastewater, recovers useful resources, and is used in combination with aquaculture cages in various ways. Widely used for purposes.
【0017】養殖生簀では、過剰の餌散布および養殖魚
の排泄により汚濁物質が生簀直下に堆積し、しばしば周
辺の底層水質の悪化が認められる。養殖生簀に本発明に
係る管状体を併用すると、特に汚染の著しい養殖生簀直
下を中心とした水域の水質改善を行うことができる。こ
のように、養殖生簀に本発明に係る管状体を併用する
と、他の比較的汚染していない水域に設置した場合より
も効率の良い浄化が可能となる。また、養殖生簀と併用
することにより、本発明の汚水浄化用管状体によるシス
テムを別途設置する労力及びコストが削減できる。[0017] In aquaculture cages, pollutants are deposited directly below the cages due to excessive bait dispersion and excretion of cultured fish, and often the surrounding bottom water quality is deteriorated. When the tubular body according to the present invention is used in combination with the aquaculture cage, it is possible to improve the water quality of the water area, especially immediately below the aquaculture cage where the contamination is remarkable. As described above, when the tubular body according to the present invention is used together with the aquaculture cage, the purification can be performed more efficiently than when the tubular body according to the present invention is installed in other relatively uncontaminated water area. Further, by using it together with the aquaculture cage, it is possible to reduce the labor and cost of separately installing the system of the tubular body for purifying sewage of the present invention.
【0018】畜舎から排出された畜産排水は、現状では
沈殿池に一定期間滞留させ、上水をそのまま排出してい
ることが多い。ほとんどの場合、沈殿池底層では無酸素
化しているので、本発明を応用すれば非常に簡略な設
備、低コスト、低環境負荷の浄化システムを構築するこ
とが可能となる。At present, the livestock wastewater discharged from a livestock house is often retained in a sedimentation basin for a certain period of time and discharged as it is. In most cases, the bottom layer of the sedimentation basin is deoxidized, so that application of the present invention makes it possible to construct a very simple facility, low cost, and low environmental load purification system.
【0019】以下、本発明の汚水浄化用管状体を用いた
汚水浄化方法を説明する。光条件が良好な水表面に設置
した本発明の管状体に、微量酸素の存在下、貧酸素化又
は無酸素化した汚水を満たすと、現場水域において躍層
付近に優占する光合成微生物が本発明の管状体の内壁面
に付着する。次いで、管状体のガス透過性により管状体
周囲から酸素が管状体内へと透過し、光合成微生物の付
着している内壁付近が生育に理想的な微好気条件とな
る。通常、貧酸素化又は無酸素化した汚水(底層水)に
は、光合成微生物の代謝の基質となる溶存物質が高濃度
に蓄積している。その後、上記のような、競合する植物
プランクトンがいない状況下で光合成を行わせ、水中に
溶解している高濃度の汚濁物質を除去し、必要に応じて
有価物を回収する。The sewage purification method using the sewage purification tubular body of the present invention will be described below. When the tubular body of the present invention installed on a water surface with good light conditions is filled with sewage that is deoxygenated or deoxygenated in the presence of a trace amount of oxygen, a photosynthetic microorganism that predominates near the stratum corneum in the on-site water area is present. It adheres to the inner wall surface of the tubular body of the invention. Then, due to the gas permeability of the tubular body, oxygen permeates from the periphery of the tubular body into the tubular body, and the vicinity of the inner wall to which the photosynthetic microorganisms are attached becomes an ideal microaerobic condition for growth. Usually, dissolved oxygen, which is a substrate for metabolism of photosynthetic microorganisms, is accumulated in high concentration in sewage (bottom layer water) that has been deoxidized or deoxidized. Then, photosynthesis is carried out in the absence of competing phytoplankton as described above, high-concentration pollutants dissolved in water are removed, and valuable substances are recovered as necessary.
【0020】ここで、微量酸素とは、本発明に用いる光
合成微生物が、光合成の際に必要となる量の酸素をい
う。酸素が過剰に存在すると、光合成微生物の光合成活
性が低下し、または光合成活性が失われる。一方、本発
明の光合成微生物を担体を用いて固定化させる場合に
は、管状体に光合成微生物を付着させた後、貧酸素化又
は無酸素化した汚水を管状体内に通水する。Here, the trace amount of oxygen means the amount of oxygen required for photosynthesis by the photosynthetic microorganism used in the present invention. When oxygen is present in excess, the photosynthetic activity of the photosynthetic microorganism is reduced or the photosynthetic activity is lost. On the other hand, when the photosynthetic microorganism of the present invention is immobilized using a carrier, the photosynthetic microorganism is attached to the tubular body, and then the oxygen-depleted or deoxygenated waste water is passed through the tubular body.
【0021】光合成微生物の付着方法としては、酸素の
拡散供給等により、管状体内が光合成微生物の生育に理
想的な微好気条件にすることにより、管状体の内壁面に
光合成微生物が付着、増殖する方法、担体に固定化させ
る方法等が挙げられるが、これらに限定されるものでは
ない。As a method for adhering the photosynthetic microorganisms, the photosynthetic microorganisms are adhered and proliferated on the inner wall surface of the tubular body by making the inside of the tubular body a microaerobic condition ideal for the growth of the photosynthetic microorganisms by diffusion supply of oxygen or the like. However, the method is not limited to these.
【0022】本発明の回収対象の有価物又は汚染物質と
しては、燐,窒素の他、鉄、銅、亜鉛、ニッケル、マン
ガン、カドミウム、水銀、アンチモン等の金属、有機ス
ズ化合物(トリブチルスズ化合物、ジブチルスズ化合
物、モノブチルスズ化合物、トリフェニルスズ化合
物)、フタル酸エステル類、フェノール類(ノニルフェ
ノール、ビスフェノールA)、有機塩素化合物(PC
B、ダイオキシン類)等の環境ホルモン、各種抗生物質
等が挙げられるが、これらに限定されるものではない。
有価物の回収方法としては、公知のあらゆる方法が用い
られ、限定されるものではない。Examples of valuable substances or pollutants to be recovered according to the present invention include phosphorus, nitrogen, metals such as iron, copper, zinc, nickel, manganese, cadmium, mercury and antimony, and organic tin compounds (tributyltin compound, dibutyltin). Compounds, monobutyltin compounds, triphenyltin compounds), phthalates, phenols (nonylphenol, bisphenol A), organochlorine compounds (PC
B, dioxins, etc., environmental hormones, various antibiotics, etc., but not limited thereto.
As a method of recovering the valuable resource, any known method can be used and is not limited.
【0023】以下、具体的に、本発明の管状体を用いた
汚水浄化システムについて、図面を参照しつつ説明す
る。
(実施の形態1)図1は富栄養化水域での汚水浄化シス
テムを示す構成図であり、図2は汚水浄化システムの要
部概略図である。The sewage purification system using the tubular body of the present invention will be specifically described below with reference to the drawings. (Embodiment 1) FIG. 1 is a configuration diagram showing a sewage purification system in a eutrophic water area, and FIG. 2 is a schematic view of a main part of the sewage purification system.
【0024】図1及び図2において、1は汚水浄化シス
テム、2は光合成微生物の一つである紅色硫黄細菌を内
壁面に付着・育成させた汚水浄化用管状体、3は汚水浄
化用管状体2を設置する浮体、4は密度躍層よりも下層
の水を管状体2まで揚水する揚水ポンプ、5は密度躍層
よりも下層の水を管状体2まで揚水する揚水パイプ、6
は浮体3の水平位置と鉛直位置を調整するワイヤー、8
は浄化し資源を回収した後の処理水を再び下層へと送水
する送水パイプ、9は浮体3の鉛直位置を調整するおも
り、10はアンカー、11は流量を調整するバルブ、1
2は揚水ポンプ4を駆動する太陽光発電装置である。In FIGS. 1 and 2, 1 is a sewage purification system, 2 is a sewage purification tubular body in which red sulfur bacterium, which is one of photosynthetic microorganisms, is adhered and grown on the inner wall surface, 3 is a sewage purification tubular body 2 is a floating body, 4 is a pump for pumping water below the density layer to the tubular body 2, 5 is a pumping pipe for pumping water below the density layer to the tubular body 2, 6
Is a wire for adjusting the horizontal and vertical positions of the floating body 3, 8
Is a water supply pipe for supplying treated water after purification and resource recovery to the lower layer again, 9 is a weight for adjusting the vertical position of the floating body 3, 10 is an anchor, 11 is a valve for adjusting the flow rate, 1
Reference numeral 2 is a photovoltaic power generator that drives the pumping pump 4.
【0025】本システム1において、ワイヤー6は、ア
ンカー10から、浮体3に設置されている滑車を介して
ぶら下がった状態にあり、ワイヤー6の先端にはおもり
9が設けられている。すなわち、ワイヤー6は、浮体3
の水平位置と鉛直位置を調整することが可能であり、常
に張力がかかった状態にある。また、浮体3は、おもり
9による下向きの力、アンカー10からの横向きの力、
浮力3による上向きの力によって、釣り合いが保たれる
ところで静止している。このため、本システム1の利点
は、潮汐等の水位変動に対応できる。例えば、水面が上
がるとアンカー10から浮体3までのワイヤー6を伸ば
す必要があるが、その分、浮体3から鉛直下向きのワイ
ヤー6によって自動的に調節される。本システム1にお
いては、富栄養化に伴い貧酸素化又は無酸素化した底層
水を対象にしているため、底層水を一時的に浮体にまで
揚水し、そこで浄化・資源回収を行い、底層に戻すシス
テムとなっている。また、一連の管状体2は浮体3に取
り付けられており、また、浮体3は他の構造物等から完
全に独立して設置させることが可能なため、任意の水域
で使用することが可能である。本システム1において
は、管状体2に用いる光合成微生物は、通常、嫌気的環
境下で生息しており、生息条件を満たしている密度躍層
よりも下層の水を揚水する必要があるため、揚水ポンプ
4及び揚水パイプ5を設置するのが好ましい。In the present system 1, the wire 6 is in a state of hanging from the anchor 10 via a pulley installed on the floating body 3, and a weight 9 is provided at the tip of the wire 6. That is, the wire 6 is the floating body 3.
It is possible to adjust the horizontal and vertical position of the and is always in tension. In addition, the floating body 3 has a downward force by the weight 9, a lateral force from the anchor 10,
Due to the upward force of the buoyancy 3, it is stationary where the balance is maintained. Therefore, the advantage of the present system 1 is that it can cope with water level fluctuations such as tide. For example, when the water surface rises, it is necessary to extend the wire 6 from the anchor 10 to the floating body 3, but the wire 6 extending vertically downward from the floating body 3 is automatically adjusted accordingly. In this system 1, since the bottom layer water that has become deficient or anoxic due to eutrophication is targeted, the bottom layer water is temporarily pumped up to a floating body, where purification and resource recovery are performed, and the bottom layer water is collected. It is a return system. Further, since the series of tubular bodies 2 are attached to the floating body 3, and the floating body 3 can be installed completely independently of other structures, it can be used in any water area. is there. In the present system 1, the photosynthetic microorganisms used for the tubular body 2 normally live in an anaerobic environment, and it is necessary to pump water below the pycnocline satisfying the habitat conditions. It is preferable to install the pump 4 and the pumping pipe 5.
【0026】以上のように構成された汚水浄化システム
1を用いた汚水浄化方法について、以下説明する。本発
明の管状体に、微量酸素の存在下、貧酸素化又は無酸素
化した汚水を満たすと、光合成微生物の一つである光合
成細菌が本発明の管状体の内壁面に付着する。次に、有
光層(表層付近)に光合成細菌が付着した汚水浄化用管
状体2を浮体3上に設置する。その後、管状体2内に処
理対象となる嫌気状態の水(底層水)を揚水ポンプ4を
用いて移動させる。この時、管状体2の外側と内側の酸
素濃度の濃度勾配により、拡散で酸素が管状体2内に供
給される。拡散により管状体2の内壁に供給された微量
酸素は光合成細菌の代謝活性(光合成)に利用される。
この際、管状体2内を流れている処理水中の汚濁物質
を、管状体2の内壁に付着した光合成細菌が摂取する。
すなわち、内壁面に付着した光合成細菌の光合成作用に
より、水中に含有されるリン・窒素・重金属などの汚濁
物質が同化・吸収され、水質が浄化される。この結果、
処理水の汚濁物質が除去され、管状体2の内壁に付着し
た光合成細菌の生体内に保持される。この管状体2を回
収することで、対象水(水域)から汚濁物質の除去が完
了する。なお、光合成細菌は管状体2の内壁に付着させ
るため、処理水への汚濁物質の回帰を防ぐことが可能と
なる。A sewage purification method using the sewage purification system 1 configured as described above will be described below. When the tubular body of the present invention is filled with oxygen-deficient or anoxic sewage in the presence of a trace amount of oxygen, photosynthetic bacteria, which are one of the photosynthetic microorganisms, adhere to the inner wall surface of the tubular body of the present invention. Next, the sewage purification tubular body 2 having photosynthetic bacteria attached to the light-bearing layer (near the surface layer) is placed on the floating body 3. Then, anaerobic water (bottom layer water) to be treated is moved into the tubular body 2 by using the pump 4. At this time, oxygen is supplied into the tubular body 2 by diffusion due to the concentration gradient of the oxygen concentration on the outer side and the inner side of the tubular body 2. The trace amount of oxygen supplied to the inner wall of the tubular body 2 by diffusion is utilized for metabolic activity (photosynthesis) of photosynthetic bacteria.
At this time, the photosynthetic bacteria attached to the inner wall of the tubular body 2 ingest the pollutants in the treated water flowing in the tubular body 2.
That is, the photosynthetic action of the photosynthetic bacteria attached to the inner wall surface assimilates and absorbs pollutants such as phosphorus, nitrogen, and heavy metals contained in water, and purifies the water quality. As a result,
The pollutants of the treated water are removed and retained in the living body of photosynthetic bacteria attached to the inner wall of the tubular body 2. By collecting the tubular body 2, the removal of pollutants from the target water (water area) is completed. Since the photosynthetic bacteria adhere to the inner wall of the tubular body 2, it is possible to prevent the pollutants from returning to the treated water.
【0027】このように、管状体2の内壁面には高濃度
にリン・窒素・重金属の集積が起こるので、資源回収の
点から見ても非常に有利な手段となる。また、富栄養化
した水域での溶存汚濁物質は、光合成細菌へ同化・吸収
されるため、光合成細菌による物質同化が効率的におこ
り、最も効率のよい水質浄化、資源回収が行われる。汚
泥やスラリーの発生は無く、これらによる二次的汚染や
回収処理の負担も無いため、利用性に優れる。Thus, phosphorus, nitrogen, and heavy metals are accumulated in high concentration on the inner wall surface of the tubular body 2, which is a very advantageous means from the viewpoint of resource recovery. Further, the dissolved pollutants in the eutrophic water are assimilated and absorbed by the photosynthetic bacteria, so that the photosynthetic bacteria efficiently assimilate the substances, and the most efficient water purification and resource recovery are performed. There is no generation of sludge or slurry, and there is no burden of secondary pollution and recovery processing due to these, so it is excellent in usability.
【0028】[0028]
【実施例】以下、実施例をもって本発明を更に詳細に説
明するが、これらの例は単なる実例であって本発明を限
定するものではなく、また本発明の範囲を逸脱しない範
囲で変更させてもよい。本実施例において、新しい水質
浄化システム構築に向けた基礎研究として、光合成微生
物の管状体の壁面付着量、栄養塩吸収速度などの水質浄
化能と、管状体の材質、流量、光条件、栄養塩濃度など
の環境条件との関係の定量化を確認した。The present invention will be described in more detail with reference to the following examples, but these examples are merely illustrative and do not limit the present invention, and may be modified without departing from the scope of the present invention. Good. In this example, as a basic research toward the construction of a new water purification system, the water purification ability such as the wall adhesion amount of the tubular body of photosynthetic microorganisms, nutrient salt absorption rate, the material of the tubular body, the flow rate, the light conditions, the nutrient salt The quantification of the relationship with environmental conditions such as concentration was confirmed.
【0029】実施例1
連続培養系室内実験により、光合成細菌による栄養塩摂
取能の定量化を行った。実験装置を図3に示す。本実験
装置は、ペリスターポンプ28により供給水がサンプル
コア25内に、サンプルコア25内の直上水がDOの測
定と各種溶存物質濃度測定用のサンプルビンに、送られ
る連続培養系となっている。装置全体を厚手の黒いカー
テンのような布で覆い、サンプルコア25を真っ暗な状
態にした。これは、泥を採ってきた現場が真っ暗である
ので、現場の状況に合わせるためである。ここで、サン
プルコア25とは、現場から採取した泥を入れた内径
8.5cmのアクリル樹脂製のパイプであり、堆積物部
分と直上水部分からなる。泥入りアクリルパイプを併用
することにより、現場の堆積物状の水を擬似的に再現す
ることが可能となる。一方、内壁に光合成細菌を付着さ
せたタイゴンチューブ31(商品名;ノートン社製)
は、サンプルコア25あるいは参照コア26の各上端と
ポンプ28とを接続するラインの水平部分に設置した。
本実験装置は、チューブ31内を流れる水の水質条件
(DO濃度、pH等)を定常に保つことができるという
点に最大の特徴があり、特定の環境条件の影響のみを抽
出して調べることができる。Example 1 A laboratory experiment of a continuous culture system quantified the nutrient uptake ability of photosynthetic bacteria. The experimental apparatus is shown in FIG. The present experimental apparatus is a continuous culture system in which the water supplied to the sample core 25 by the perister pump 28 and the water directly above the sample core 25 are sent to the sample bottles for DO measurement and various dissolved substance concentration measurements. There is. The entire device was covered with a thick black curtain-like cloth, leaving the sample core 25 in a pitch dark state. This is because the site where the mud has been collected is pitch-black, so that it matches the situation at the site. Here, the sample core 25 is a pipe made of acrylic resin having an inner diameter of 8.5 cm and containing mud sampled from the site, and is composed of a deposit portion and a direct water portion. By using the acrylic pipe containing mud together, it becomes possible to simulate the water in the form of sediment on site. On the other hand, Tygon tube 31 (trade name; manufactured by Norton) with photosynthetic bacteria attached to the inner wall
Was installed in the horizontal portion of the line connecting the respective upper ends of the sample core 25 or the reference core 26 and the pump 28.
The main feature of this experimental device is that the water quality conditions (DO concentration, pH, etc.) of the water flowing in the tube 31 can be kept steady, and only the effects of specific environmental conditions should be extracted and investigated. You can
【0030】サンプルは、島根県東部に位置する中海湖
心より採取した堆積物及び底層水を使用した。供給水に
は、ワットマンGF/Cを用いて吸引ろ過した底層水を
窒素曝気によりDO濃度を0mg/lに調整し用いた。
実験条件としては、サンプルコア25の堆積物部分は暗
条件、恒温水槽30中にて約29℃、チューブ31部分
は明条件、室温とした。また、光合成細菌の発生、増殖
を確実に行うため、堆積物コアを併用した。その結果を
図4、図5に示す。図4、図5より、供給水には高濃度
に栄養塩が含まれているが(PO4 −3−Pは約75μ
g/l、NH4 +−Nは約150μg/l)、流出水中
の栄養塩濃度は極端に減少していることがわかる(PO
4 −3−Pは約45μg/l、NH 4 +−Nは約20μ
g/l)。これは、チューブ内壁に付着した紅色硫黄細
菌が行う光合成により摂取された結果と考えられる。こ
のように、本実施例からは光合成細菌の増殖条件、栄養
塩摂取速度などの知見が得られた。また、堆積物が無い
条件においても、光合成細菌が発生、増殖可能であると
の結果が得られた。下記式(1)(数1)により、単位
面積当りの紅色硫黄細菌による栄養塩摂取速度を計算し
た。The sample is Lake Nakaumi located in the eastern part of Shimane Prefecture.
The sediment and bottom water collected from the heart were used. To supply water
Is bottom water that has been suction filtered using Whatman GF / C.
The DO concentration was adjusted to 0 mg / l by nitrogen aeration and used.
As the experimental condition, the deposit portion of the sample core 25 is dark.
Conditions, about 29 ℃ in the constant temperature water tank 30, tube 31 part
Was light conditions and room temperature. In addition, the development and proliferation of photosynthetic bacteria
In order to ensure that the The result
This is shown in FIGS. From Figure 4 and Figure 5, the feed water has a high concentration.
Contains nutrient salts (POFour -3-P is about 75μ
g / l, NHFour +-N is about 150 μg / l), in the effluent
It can be seen that the nutrient concentration of
Four -3-P is about 45 μg / l, NH Four +-N is about 20μ
g / l). This is a red sulfur fine particle adhering to the inner wall of the tube.
It is considered to be the result of ingestion by photosynthesis performed by the bacterium. This
As shown in FIG.
Information such as salt intake rate was obtained. Also, there is no deposit
Photosynthetic bacteria can develop and grow even under conditions
The result was obtained. Unit is calculated by the following formula (1) (Equation 1)
Calculate the nutrient uptake rate by red sulfur bacteria per area
It was
【0031】[0031]
【数1】
(式中、Rは単位面積当りの紅色硫黄細菌による栄養塩
摂取速度、Aはチューブ内面積、Cinは供給水内栄養
塩濃度、Coutは流出水内栄養塩濃度、Qは流量を表
す)[Equation 1] (In the formula, R is the nutrient salt intake rate per unit area by the red sulfur bacterium, A is the tube inner area, C in is the nutrient concentration in the supplied water, C out is the nutrient concentration in the outflow water, and Q is the flow rate. )
【0032】この結果、PO4 −3−P摂取速度は約1
0mg/m2/day、NH4 +−N摂取速度は約31
mg/m2/dayと見積もられた。ただし、この計算
過程には堆積物からの溶出量が考慮されていないこと、
流出水の濃度は極めて低く栄養塩摂取には不利であるこ
となどを考慮すると、真の栄養塩摂取速度を過小評価し
ている可能性が高い。上記の結果を元にReynolds数を考
慮して、直径30cm、長さ10mのチューブを10本
用いた場合の年間水処理能力を単純計算すると約800
0m2/yrとなる。As a result, the PO 4 -3- P intake rate was about 1
0 mg / m 2 / day, NH 4 + -N intake rate is about 31
It was estimated to be mg / m 2 / day. However, the amount of elution from the sediment is not considered in this calculation process,
Considering that the concentration of effluent is extremely low and is disadvantageous for nutrient intake, it is likely that the true nutrient intake rate is underestimated. Taking into account the Reynolds number based on the above results, a simple calculation of the annual water treatment capacity when using 10 tubes with a diameter of 30 cm and a length of 10 m is about 800.
It becomes 0 m 2 / yr.
【0033】実施例2
各種チューブの空気中での酸素透過係数を求めるための
酸素透過実験を室内で行った。本実施例に用いたチュー
ブは、ビニル(ポリ塩化ビニル)チューブ、シリコン
(SR)チューブ、トアロンチューブ(商品名;東亜化
学社製)、タイゴンチューブ(商品名;ノートン社製)
で行った。尚、トアロンチューブは、PVCと塩素化P
E、メタアクリル酸メチルのグラフト重合したものを熱
融合したものである。チューブの大きさは、それぞれ内
径4mm、外径6mm、肉厚1mmである。溶存酸素
(DO)透過係数kは、下記式(2)(数2)を用いて
計算した。Example 2 An oxygen permeation experiment for determining the oxygen permeation coefficient of various tubes in air was conducted indoors. The tubes used in this example are vinyl (polyvinyl chloride) tubes, silicone (SR) tubes, Toaron tubes (trade name: manufactured by Toa Kagaku), and Tygon tubes (trade name: manufactured by Norton).
I went there. In addition, Toaron tube is PVC and chlorinated P
E, a graft polymer of methyl methacrylate is thermally fused. The tube has an inner diameter of 4 mm, an outer diameter of 6 mm, and a wall thickness of 1 mm. The dissolved oxygen (DO) permeation coefficient k was calculated using the following equation (2) (Equation 2).
【0034】[0034]
【数2】
(式中、Coutは流出水中のDO濃度、Cinは流入水中
のDO濃度、Csatは飽和DO濃度、CはDO透過の対
象となるチューブ内のDO濃度(流出水と流入水の平均
濃度)、Lはチューブの壁面厚さ、AはDO透過の対象
となるチューブの面積、Qは流量を表す)[Equation 2] (In the formula, C out is the DO concentration in the outflow water, C in is the DO concentration in the inflow water, C sat is the saturated DO concentration, and C is the DO concentration in the tube that is the target of the DO permeation (the average of the outflow water and the inflow water. (Concentration), L is the wall thickness of the tube, A is the area of the tube that is the target of DO permeation, and Q is the flow rate).
【0035】各チューブが室温約15℃の空気中に存在
する場合、DO透過係数を表1(表1)に示す。表1よ
り、酸素透過が小さい順にビニルチューブ、トアロンチ
ューブ、タイゴンチューブ、SRチューブであることが
わかった。特にSRチューブの酸素透過率が際立って高
かった。The DO permeability coefficient is shown in Table 1 when each tube is present in air at room temperature of about 15 ° C. From Table 1, it was found that they were a vinyl tube, a Toaron tube, a Tygon tube, and an SR tube in ascending order of oxygen transmission. Especially, the oxygen permeability of the SR tube was remarkably high.
【0036】実施例3
各チューブが約13℃の水中(DO濃度は飽和)に浸さ
れている場合、DO透過係数を表1(表1)に示す。表
1より、酸素透過が小さい順にビニルチューブ、タイゴ
ンチューブ、トアロンチューブ、SRチューブであるこ
とがわかった。特にSRチューブの酸素透過率が際立っ
て高かった。実施例2と比較すると、タイゴンチューブ
とトアロンチューブの順位が入れ替わっていた。タイゴ
ンチューブ、SRチューブで小さい値が、トアロンチュ
ーブで大きい値が、ビニルチューブで同等の値が得られ
たが、顕著な差は見られなかった。実施例2及び実施例
3より、チューブが水中にある場合と、空気中にある場
合を比較すると、DO透過係数にはそれほど大きな変化
は見られなかった。これにより、光合成細菌を用いた水
質浄化施設を設計する際、チューブは空気中、水中のい
ずれに設置することも可能と考えられる。Example 3 The DO permeability coefficient is shown in Table 1 (Table 1) when each tube was immersed in water (DO concentration was saturated) at about 13 ° C. From Table 1, it was found that they were a vinyl tube, a Tygon tube, a Toaron tube, and an SR tube in ascending order of oxygen permeability. Especially, the oxygen permeability of the SR tube was remarkably high. Compared with Example 2, the order of the Tygon tube and the Toaron tube was interchanged. Small values were obtained for Tygon tubes and SR tubes, large values for Toaron tubes, and equivalent values for vinyl tubes, but no significant difference was observed. From Examples 2 and 3, comparing the case where the tube is in water and the case where the tube is in air, the DO permeation coefficient does not change so much. Therefore, when designing a water purification facility using photosynthetic bacteria, it is considered possible to install the tube either in air or in water.
【0037】実施例4
各チューブが約20℃の水中(DO濃度は飽和)に浸さ
れている場合、DO透過係数を表1(表1)に示す。表
1より、酸素透過が小さい順にビニルチューブ、トアロ
ンチューブ、タイゴンチューブ、SRチューブであるこ
とがわかった。特にSRチューブの酸素透過率が際立っ
て高かった。実施例3と比較すると、タイゴンチューブ
とトアロンチューブの順位が入れ替わっていた。トアロ
ンチューブ以外で大きい値が得られた。実施例3及び実
施例4より、チューブが水中にあるとき、トアロンチュ
ーブ以外は水温の増加に伴いDO透過係数が大きくなる
ことがわかる。Example 4 When each tube is immersed in water (DO concentration is saturated) at about 20 ° C., the DO permeability coefficient is shown in Table 1 (Table 1). From Table 1, it was found that they were a vinyl tube, a Toaron tube, a Tygon tube, and an SR tube in ascending order of oxygen transmission. Especially, the oxygen permeability of the SR tube was remarkably high. Compared with Example 3, the order of the Tygon tube and the Toaron tube was exchanged. A large value was obtained except for the Toaron tube. From Examples 3 and 4, it can be seen that when the tube is in water, the DO permeation coefficient increases as the water temperature increases except for the Toaron tube.
【0038】実施例5
各チューブが約30℃の水中(DO濃度は飽和)に浸さ
れている場合、DO透過係数を表1(表1)に示す。表
1より、酸素透過が小さい順にビニルチューブ、トアロ
ンチューブ、タイゴンチューブ、SRチューブであるこ
とがわかった。特にSRチューブの酸素透過率が際立っ
て高かった。実施例3と比較すると、タイゴンチューブ
とトアロンチューブの順位が入れ替わっていた。12℃
−14℃の水中にある場合とは同じ順番だった。全ての
チューブで水温が低い場合よりも大きい値が得られた。Example 5 When each tube is immersed in water (DO concentration is saturated) at about 30 ° C., the DO permeability coefficient is shown in Table 1 (Table 1). From Table 1, it was found that they were a vinyl tube, a Toaron tube, a Tygon tube, and an SR tube in ascending order of oxygen transmission. Especially, the oxygen permeability of the SR tube was remarkably high. Compared with Example 3, the order of the Tygon tube and the Toaron tube was exchanged. 12 ° C
It was in the same order as it was in -14 ° C water. Greater values were obtained in all tubes than when the water temperature was low.
【0039】[0039]
【表1】 [Table 1]
【0040】実施例3乃至実施例5より、トアロンチュ
ーブ以外は水温の増加に伴うDO透過係数の顕著な増加
は見られなかった。しかし、他のチューブに関しては、
水温の増加に伴いDO透過係数が高くなる傾向が認めら
れた。実施例2乃至実施例5より、DO透過係数はシリ
コンチューブが最も高く、適当な環境条件の設定で、最
も高い(光合成細菌による)水質浄化能を発揮する可能
性が高いことがわかる。シリコンチューブの場合、水温
の増加に伴いDO透過係数が大きくなった。また光合成
細菌の代謝活性は30℃付近で最大となることが多い
(R. spheroidesでは30℃が最適生育温度である。「光
合成細菌で環境保全」(小林達治 著)参照)。以上の
ことから、水温30℃以下の条件では(環境中の海水は
水温30℃以下と考えられる)、水温の増加に伴って水
質浄化能が伸びる可能性が高いことがわかる。From Examples 3 to 5, no significant increase in DO permeation coefficient with increasing water temperature was observed except for the Toaron tube. But for other tubes,
It was observed that the DO permeation coefficient tends to increase as the water temperature increases. From Examples 2 to 5, it is understood that the silicone tube has the highest DO permeation coefficient, and the highest water purification ability (by photosynthetic bacteria) is likely to be exhibited under the appropriate environmental conditions. In the case of the silicone tube, the DO permeation coefficient increased as the water temperature increased. The metabolic activity of photosynthetic bacteria often reaches its maximum around 30 ° C (30 ° C is the optimum growth temperature for R. spheroides. See "Environmental conservation with photosynthetic bacteria" (Tatsuharu Kobayashi)). From the above, it is understood that under the condition that the water temperature is 30 ° C or lower (the seawater in the environment is considered to be the water temperature of 30 ° C or lower), there is a high possibility that the water purification capacity will increase with the increase of the water temperature.
【0041】[0041]
【発明の効果】本発明の汚水浄化用管状体によれば、富
栄養化し貧酸素化あるいは無酸素化した汚濁した水塊
を、光合成細菌を付着し育成した管状体内を通過させ、
光合成を促進させることにより、容易かつ簡便に、水塊
内に含まれる汚濁物質を除去するとともに、有用な資源
を回収することができ、新しい水質浄化システムを構築
することができる。また、光合成細菌を管状体の内壁面
に薄く広く付着させることができるため、光・酸素供給
・栄養供給などの諸条件を光合成細菌全体に均一に与え
ることが可能である。また、1つの最適な条件を整える
と、その条件が全ての個体に行き渡るので、すべての光
合成細菌個体に対して最適な条件を与えることが容易に
なり、保持する光合成細菌の水質浄化能を最大限引き出
すことが可能となる。また、水処理を行う光合成細菌が
管状体の内壁に薄く広がるため、大量の汚泥は発生する
ことなく、管状体内の水を抜くことで簡単に脱水も可能
であり、多大な設備、経費や労力を必要としない。更
に、現場水域に容易に設置可能で、水の長距離輸送の必
要が無く、自然光を使用するので、大きなエネルギーの
投入を必要とせず、例えば太陽光発電等で簡易に十分に
対応できる。EFFECTS OF THE INVENTION According to the sewage purification tubular body of the present invention, a polluted water mass enriched in eutrophication, anoxia or anoxia is passed through a tubular body grown with adhering photosynthetic bacteria,
By promoting photosynthesis, it is possible to easily and simply remove pollutants contained in the water mass and collect useful resources, and to construct a new water purification system. Moreover, since the photosynthetic bacteria can be attached thinly and widely to the inner wall surface of the tubular body, it is possible to uniformly apply various conditions such as light, oxygen supply, and nutrient supply to the entire photosynthetic bacteria. In addition, if one optimal condition is prepared, the condition will be distributed to all individuals, so it becomes easy to give optimal conditions to all photosynthetic bacterial individuals, and the water purification ability of the photosynthetic bacteria to be retained is maximized. It is possible to withdraw the limit. In addition, since the photosynthetic bacteria that perform water treatment spread thinly on the inner wall of the tubular body, it is possible to easily dehydrate by draining the water inside the tubular body without generating a large amount of sludge, which requires a large amount of equipment, cost and labor. Does not need Furthermore, since it can be easily installed in the water area of the site, does not require long-distance transportation of water, and uses natural light, it does not require a large amount of energy input, and can be easily and sufficiently coped with, for example, solar power generation.
【0042】本発明の汚水浄化方法によれば、富栄養化
した水域を低コスト且つ低エネルギーで浄化することが
できる。また、必要な人工的なエネルギーは、底層水を
有光層(表層付近)に異動させるためのみであるので、
非常に小さなエネルギーの投入のみで稼動可能である。According to the sewage purification method of the present invention, it is possible to purify an eutrophic water area at low cost and with low energy. Also, the necessary artificial energy is only to transfer the bottom layer water to the light layer (near the surface layer),
It can be operated with very little energy input.
【図1】本実施の形態における汚水浄化システムを示す
構成図FIG. 1 is a configuration diagram showing a wastewater purification system in the present embodiment.
【図2】本実施の形態における汚水浄化システムの要部
概略図FIG. 2 is a schematic view of a main part of the wastewater purification system according to the present embodiment.
【図3】本発明の実施例1における連続培養系実験装置
概略図FIG. 3 is a schematic diagram of a continuous culture system experimental apparatus in Example 1 of the present invention.
【図4】本発明の実施例1における光合成細菌の栄養塩
摂取能(PO4 −3−P)を示すグラフFIG. 4 is a graph showing nutrient uptake ability (PO 4 -3- P) of photosynthetic bacteria in Example 1 of the present invention.
【図5】本発明の実施例1における光合成細菌の栄養塩
摂取能(NH4 +−N)を示すグラフFIG. 5 is a graph showing nutrient uptake ability (NH 4 + −N) of photosynthetic bacteria in Example 1 of the present invention.
1 汚水浄化システム 2 汚水浄化用管状体 3 浮体 4 揚水ポンプ 5 揚水パイプ 6 ワイヤー 8 送水パイプ 9 おもり 10 アンカー 11 バルブ 12 太陽光発電装置 A 密度躍層 21 DOメーター 22 供給タンク(1) 22’ 供給タンク(2) 23 酸素ボンベ 24 窒素ボンベ 25 サンプルコア 26 参照コア 27 DOメーター 28 ポンプ 29 攪拌器 30 恒温水槽 31 チューブ 1 Sewage purification system 2 Tubular body for purifying sewage 3 floating body 4 Pumping pump 5 pumping pipe 6 wires 8 water supply pipe 9 weights 10 anchor 11 valves 12 solar power generator A density layer 21 DO meter 22 Supply tank (1) 22 'Supply tank (2) 23 Oxygen cylinder 24 nitrogen cylinder 25 sample cores 26 Reference Core 27 DO meter 28 pumps 29 stirrer 30 constant temperature water tank 31 tubes
Claims (10)
付着能を有し、貧酸素化又は無酸素化した汚水の通過に
より光合成可能な管状体から構成されることを特徴とす
る汚水浄化用管状体。1. A pipe for purifying sewage, characterized in that at least a part of the inner wall surface has a photosynthetic microorganism adhering ability, and is composed of a tubular body capable of photosynthesis by passage of sewage that has been deoxidized or deoxygenated. body.
成微生物付着能及び光透過性能を有するポリマーである
ことを特徴とする請求項1に記載の汚水浄化用管状体。2. The tubular body for purifying wastewater according to claim 1, wherein at least a part of the inner surface of the tubular body is a polymer having photosynthetic microorganism adhering ability and light transmitting ability.
特徴とする請求項2に記載の汚水浄化用管状体。3. The sewage purification tubular body according to claim 2, wherein the polymer has gas permeability.
ン、ポリ塩化ビニル、シリコン樹脂から選択される少な
くとも1種であることを特徴とする請求項2又は3に記
載の汚水浄化用管状体。4. The tubular body for purifying sewage according to claim 2 or 3, wherein the polymer is at least one selected from polytetrafluoroethylene, polyvinyl chloride, and silicone resin.
の組み合わせであることを特徴とする請求項1乃至4の
内いずれか1項に記載の汚水浄化用管状体。5. The sewage purification tubular body according to any one of claims 1 to 4, wherein the tubular body has a circular cross section, a polygonal cross section, or a combination thereof.
の管状体に貧酸素化又は無酸素化した汚水を微量酸素の
存在下で、通水することを特徴とする汚水浄化方法。6. A method for purifying sewage, characterized in that the sewage deoxidized or deoxygenated is passed through the tubular body according to any one of claims 1 to 5 in the presence of a trace amount of oxygen. .
汚水を該管状体内に通水することを特徴とする請求項6
に記載の汚水浄化方法。7. After attaching photosynthetic microorganisms to the tubular body,
7. Sewage is passed through the tubular body.
The sewage purification method described in.
有価物を回収することを特徴とする請求項6又は7に記
載の汚水浄化方法。8. The method for purifying sewage according to claim 6 or 7, wherein after the sewage is purified, the valuable substances attached to the tubular body are recovered.
る請求項8に記載の汚水浄化方法。9. The wastewater purification method according to claim 8, wherein the valuable resource is a phosphorus-containing material.
する請求項6乃至9の内いずれか1項に記載の汚水浄化
方法。10. The sewage purification method according to any one of claims 6 to 9, wherein the sewage is anaerobic sewage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002123726A JP4430851B2 (en) | 2002-04-25 | 2002-04-25 | Tubular body for sewage purification and sewage purification method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002123726A JP4430851B2 (en) | 2002-04-25 | 2002-04-25 | Tubular body for sewage purification and sewage purification method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003311294A true JP2003311294A (en) | 2003-11-05 |
JP4430851B2 JP4430851B2 (en) | 2010-03-10 |
Family
ID=29538940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002123726A Expired - Lifetime JP4430851B2 (en) | 2002-04-25 | 2002-04-25 | Tubular body for sewage purification and sewage purification method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4430851B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005224720A (en) * | 2004-02-13 | 2005-08-25 | Techno Network Shikoku Co Ltd | Bacteria reactor and algae reactor for water treatment, and water purification apparatus using them |
WO2006070885A1 (en) * | 2004-12-28 | 2006-07-06 | Nippon Sheet Glass Company, Limited | Method of detoxifying harmful compound |
KR100817605B1 (en) * | 2007-09-05 | 2008-03-31 | 주식회사 청우네이처 | Method of manufactering the purification perparations and method of purification of lakes and marshes by using thereof |
JP2009286448A (en) * | 2008-05-30 | 2009-12-10 | Fuji Xerox Co Ltd | Resin storing container, cartridge for developing agents, and cartridge for toner |
JP2011050902A (en) * | 2009-09-03 | 2011-03-17 | Toshiba Corp | Water treatment system for sewage |
JP2011251286A (en) * | 2005-03-03 | 2011-12-15 | National Institute Of Advanced Industrial Science & Technology | Water treated by reducing concentration of nutrient salt in salt water and method for producing the same |
KR101193250B1 (en) | 2010-08-23 | 2012-10-19 | 인제대학교 산학협력단 | Diffuser for creation of density stratification and creation apparatus with the same, creation method of density stratification |
JP2013119073A (en) * | 2011-12-08 | 2013-06-17 | Toshiba Corp | Water treatment apparatus |
JP6084323B1 (en) * | 2016-05-17 | 2017-02-22 | 有限会社トータスコーポレーション | Height adjusting device and height adjusting system |
-
2002
- 2002-04-25 JP JP2002123726A patent/JP4430851B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005224720A (en) * | 2004-02-13 | 2005-08-25 | Techno Network Shikoku Co Ltd | Bacteria reactor and algae reactor for water treatment, and water purification apparatus using them |
WO2006070885A1 (en) * | 2004-12-28 | 2006-07-06 | Nippon Sheet Glass Company, Limited | Method of detoxifying harmful compound |
JP2011251286A (en) * | 2005-03-03 | 2011-12-15 | National Institute Of Advanced Industrial Science & Technology | Water treated by reducing concentration of nutrient salt in salt water and method for producing the same |
KR100817605B1 (en) * | 2007-09-05 | 2008-03-31 | 주식회사 청우네이처 | Method of manufactering the purification perparations and method of purification of lakes and marshes by using thereof |
JP2009286448A (en) * | 2008-05-30 | 2009-12-10 | Fuji Xerox Co Ltd | Resin storing container, cartridge for developing agents, and cartridge for toner |
JP2011050902A (en) * | 2009-09-03 | 2011-03-17 | Toshiba Corp | Water treatment system for sewage |
KR101193250B1 (en) | 2010-08-23 | 2012-10-19 | 인제대학교 산학협력단 | Diffuser for creation of density stratification and creation apparatus with the same, creation method of density stratification |
JP2013119073A (en) * | 2011-12-08 | 2013-06-17 | Toshiba Corp | Water treatment apparatus |
JP6084323B1 (en) * | 2016-05-17 | 2017-02-22 | 有限会社トータスコーポレーション | Height adjusting device and height adjusting system |
JP2017205212A (en) * | 2016-05-17 | 2017-11-24 | 有限会社トータスコーポレーション | Height adjusting device and height adjusting system |
Also Published As
Publication number | Publication date |
---|---|
JP4430851B2 (en) | 2010-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yeh et al. | Artificial floating islands for environmental improvement | |
CA2145031C (en) | Method and apparatus for in situ water purification including sludge reduction within water bodies by biofiltration and for hypolimnetic aeration of lakes | |
US5254252A (en) | Ecological treatment system for flowing water | |
KR101743653B1 (en) | Apparatus for purifying water using microalgae | |
CN102083756B (en) | Novel system and method for sewage treatment | |
CN102249400B (en) | Device for ecologically restoring natural water body in situ | |
CN107176687B (en) | Three-dimensional partition combined ecological floating bed and application thereof | |
CN110143737A (en) | A kind of river Ecology original position dredging restorative procedure | |
CN112028252A (en) | In-situ three-dimensional ecological restoration system and restoration method for slow-flow low-organic nutritive salt eutrophic water body | |
JP4430851B2 (en) | Tubular body for sewage purification and sewage purification method using the same | |
WO2020030574A1 (en) | Water treatment system for a recirculation aquaculture facility | |
CN100584778C (en) | Method for modifying eutrophication water body water quality | |
CN207933136U (en) | A kind of microorganism remediation water body system | |
CN106277298A (en) | The suspension bed sewage disposal system of buried embedded carrier solidification microorganism | |
US7008539B2 (en) | Submerged ammonia removal system and method | |
KR101834375B1 (en) | Stagnant water bodies and river restoration system | |
CN109879536A (en) | A kind of domestic sewage in rural areas purification system and purification method | |
CN205973964U (en) | Suspension bed sewage treatment system of embedded carrier of formula of burying solidification microorganism | |
CN209923026U (en) | Water quality purification microbial ecological unit and water quality purification microbial ecological system | |
CN209835894U (en) | Ecological bank protection of water purification type | |
CN109399859A (en) | A kind of sewage disposal system using electrolysis method joint biological treatment | |
CN202156957U (en) | In-situ ecological restoration device for natural water body | |
CN113955904A (en) | Method for controlling cyanobacterial bloom in large scale | |
CN111943434A (en) | Micro-polluted drinking water source biological ecological restoration system and method | |
CN1644535A (en) | Applying method for purifying water quality technology by netting case grass planting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050517 |
|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20050419 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091028 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4430851 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131225 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |