[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003304657A - Permanent magnet type synchronous motor - Google Patents

Permanent magnet type synchronous motor

Info

Publication number
JP2003304657A
JP2003304657A JP2002108752A JP2002108752A JP2003304657A JP 2003304657 A JP2003304657 A JP 2003304657A JP 2002108752 A JP2002108752 A JP 2002108752A JP 2002108752 A JP2002108752 A JP 2002108752A JP 2003304657 A JP2003304657 A JP 2003304657A
Authority
JP
Japan
Prior art keywords
permanent magnet
synchronous motor
type synchronous
magnet type
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002108752A
Other languages
Japanese (ja)
Inventor
Takayuki Mizuno
孝行 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002108752A priority Critical patent/JP2003304657A/en
Publication of JP2003304657A publication Critical patent/JP2003304657A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost permanent magnet system of synchronous motor by reducing the eddy current loss in a permanent magnet. <P>SOLUTION: This motor is equipped with a permanent magnet 2 placed around a rotor iron core 1, and a stator iron core 3 integrally molded is equipped with windings 4 by a concentrated winding method. In this case, this is constituted so that the amplitude the main variation components of the magnetic flux density at the center in the circumferential direction of the permanent magnet 2, the frequency of these main variation components, and the sectional area of the permanent magnet 2 satisfy the formula for reducing eddy current losses examined beforehand, when the rotor iron core 1 is rotated. Therefore, the eddy current loss of the permanent magnet 2 is decreased, and a low-cost permanent magnet system of synchronous motor is realized. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石式同期モ
ータに関するものである。更に詳細には、例えば、固定
子鉄心を分割することなく一体に成形し、鉄心歯部に巻
線を直巻きする集中巻方式で、3000min-1以上の
高速回転で使用される永久磁石式同期モータ(以下「P
Mモータ」と称する)において、磁石内に発生する渦電
流を低減するように工夫したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet type synchronous motor. More particularly, for example, integrally molded without dividing the stator core, a concentrated winding method for winding a winding core teeth straight, permanent magnet synchronous to be used in high-speed rotation than 3000 min -1 Motor (hereinafter "P
(Hereinafter referred to as "M motor"), it is devised so as to reduce the eddy current generated in the magnet.

【0002】[0002]

【従来の技術】固定子鉄心を分割することなく固定子を
一体に成形し、鉄心歯部に巻線を直巻きする集中巻方式
のPMモータでは、一般に、ノズル式の巻線機により巻
線が施される。巻線機により巻線を行なうにはスロット
開口幅を少なくともノズルの通る寸法以上とする必要が
あり、開口幅が広くなる傾向にある。また、電気自動車
用などでは、モータ回転速度が3000min-1以上の
高速回転でPMモータが使用されることになる。
2. Description of the Related Art In a concentrated winding type PM motor in which a stator is integrally molded without splitting the stator core and windings are directly wound around the teeth of the core, winding is generally performed by a nozzle type winding machine. Is applied. In order to perform winding with a winding machine, the slot opening width needs to be at least equal to or larger than the size through which the nozzle passes, and the opening width tends to be widened. In addition, for electric vehicles and the like, the PM motor is used at a high rotation speed of 3000 min −1 or more.

【0003】このような場合、ギャップパーミアンスの
変動や電機子反作用高調波起磁力の影響により、PMモ
ータの永久磁石内部に渦電流が流れ、磁石が異常発熱す
ることがある。渦電流は変動磁束の大きさ及びその周波
数の二乗に比例するため、スロット開口幅が広いほど、
高速回転になるほど影響が大きくなり、場合によっては
磁石が熱減磁を起こす恐れがある。
In such a case, an eddy current may flow inside the permanent magnet of the PM motor due to the fluctuation of the gap permeance and the influence of the armature reaction higher harmonic magnetomotive force, and the magnet may abnormally generate heat. Since the eddy current is proportional to the magnitude of the fluctuating magnetic flux and the square of its frequency, the wider the slot opening width,
The higher the rotation speed, the greater the influence, and in some cases the magnet may be thermally demagnetized.

【0004】この対策として、1極分の永久磁石を(P
Mモータに備えた各永久磁石をそれぞれ)軸方向あるい
は周方向に複数個に分割し、分割した磁石片(分割永久
磁石)のそれぞれを電気的に絶縁して1極分の磁石(磁
極)として用いる方法が知られている。図4(a)は軸
方向に分割した1極分の磁石を示し、図4(b)は周方
向に分割した1極分の磁石を示す。
As a countermeasure against this, a permanent magnet for one pole (P
Each permanent magnet included in the M motor is divided into a plurality in the axial direction or the circumferential direction, and each of the divided magnet pieces (divided permanent magnets) is electrically insulated to form one pole magnet (magnetic pole). The method used is known. 4A shows a magnet for one pole divided in the axial direction, and FIG. 4B shows a magnet for one pole divided in the circumferential direction.

【0005】PMモータの永久磁石の渦電流損は、永久
磁石の分割数にほぼ反比例して減少するので、分割数が
多いほど渦電流損を低減することができる。図5は、永
久磁石の分割数と渦電流との関係を示す。この図より、
永久磁石を分割することが、渦電流損の低減に有効であ
ることがわかる。
Since the eddy current loss of the permanent magnet of the PM motor decreases almost in inverse proportion to the number of divisions of the permanent magnet, the eddy current loss can be reduced as the number of divisions increases. FIG. 5 shows the relationship between the number of divisions of the permanent magnet and the eddy current. From this figure,
It can be seen that dividing the permanent magnet is effective in reducing the eddy current loss.

【0006】[0006]

【発明が解決しようとする課題】しかし、分割数が多い
ほど永久磁石の製造コスト、永久磁石の組み付け工数な
どが増加する問題がある。
However, there is a problem that the manufacturing cost of the permanent magnet, the number of assembling steps of the permanent magnet, and the like increase as the number of divisions increases.

【0007】本発明は、上記従来記述に鑑み、渦電流損
の評価方法を検討し、渦電流損を実用上問題ないレベル
に抑え、安価となるPMモータを提供することを目的と
する。
In view of the above description, it is an object of the present invention to provide a PM motor which is inexpensive and which suppresses the eddy current loss to a level that poses no practical problem.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の構成は、回転子鉄心に永久磁石を備え、固定子鉄心
に巻線を備えた永久磁石式同期モータにおいて、回転子
を回転させたときに、永久磁石の周方向に関する中央部
における磁束密度の変動主成分の振幅とこの変動主成分
の周波数と前記永久磁石の断面積とが(2)式を満足す
る構造になっていることを特徴とする。
SUMMARY OF THE INVENTION The structure of the present invention for solving the above problems is to rotate a rotor in a permanent magnet type synchronous motor having a rotor core with permanent magnets and a stator core with windings. In this case, the amplitude of the fluctuation main component of the magnetic flux density in the central portion of the permanent magnet in the circumferential direction, the frequency of the fluctuation main component, and the cross-sectional area of the permanent magnet have a structure satisfying the expression (2). Is characterized by.

【0009】[0009]

【数5】 [Equation 5]

【0010】また本発明の構成は、回転子鉄心に永久磁
石を備え、固定子鉄心に巻線を備えた永久磁石式同期モ
ータにおいて、前記固定子鉄心に形成したスロットの開
口幅を調整して、(4)式を満足させる構造になってい
ると共に、前記開口幅は最少でも巻線機のノズルが通る
幅以上になっていることを特徴とする。
According to the structure of the present invention, in a permanent magnet type synchronous motor having a rotor core provided with permanent magnets and a stator core provided with windings, the opening width of slots formed in the stator core is adjusted. , (4) is satisfied, and the opening width is at least the width through which the nozzle of the winding machine passes.

【0011】[0011]

【数6】 [Equation 6]

【0012】また本発明の構成は、回転子鉄心に永久磁
石を備え、固定子鉄心に巻線を備えた永久磁石式同期モ
ータにおいて、1極当たりの永久磁石をn分割し、n個
に分割した分割永久磁石により1極分の磁極を構成する
と共に、(6)式を満足する最少のnを採用しているこ
とを特徴とする。
Further, according to the structure of the present invention, in the permanent magnet type synchronous motor having the permanent magnets in the rotor core and the windings in the stator core, the permanent magnet per pole is divided into n and divided into n pieces. It is characterized in that a magnetic pole for one pole is constituted by the divided permanent magnets and the minimum n that satisfies the expression (6) is adopted.

【0013】[0013]

【数7】 [Equation 7]

【0014】また本発明の構成は、回転子鉄心に永久磁
石を備え、固定子鉄心に巻線を備えており、前記永久磁
石の変動磁束成分が電流値に大きく影響を受ける永久磁
石式同期モータにおいて、(7)式を満足させるような
電流値以下で使用するようにしたことを特徴とする。
Further, according to the structure of the present invention, the rotor core is provided with the permanent magnets, the stator core is provided with the windings, and the fluctuating magnetic flux component of the permanent magnets is greatly affected by the current value. In the above, it is characterized in that it is used at a current value equal to or less than that which satisfies the expression (7).

【0015】[0015]

【数8】 [Equation 8]

【0016】また本発明の構成は、前記固定子鉄心は分
割することなく一体に成形されており、固定子鉄心の歯
部に巻線を直巻きする集中巻方式を採用していることを
特徴とする。
Further, the structure of the present invention is characterized in that the stator core is integrally formed without being divided, and a concentrated winding system is adopted in which the winding is directly wound around the teeth of the stator core. And

【0017】また本発明の構成は、回転速度が3000
min -1以上となる電気自動車用のモータとして使用され
ることを特徴とする。
Further, in the structure of the present invention, the rotation speed is 3000.
It is characterized by being used as a motor for an electric vehicle with a min -1 or more.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づき詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0019】まず、永久磁石内の渦電流の発生メカニズ
ムを検討し、評価方法を求める。図1は集中巻方式の表
面磁石形PMモータ(以下「SPM」と略称する)の構
造例で、12コイル/8極の例である。図1に示すよう
に、回転子鉄心1の周面(表面)に永久磁石2が備えら
れており、固定子3には集中巻方式の巻線4が備えられ
ている。
First, the generation mechanism of the eddy current in the permanent magnet is examined and the evaluation method is obtained. FIG. 1 is a structural example of a concentrated winding type surface magnet type PM motor (hereinafter abbreviated as “SPM”), which is an example of 12 coils / 8 poles. As shown in FIG. 1, a permanent magnet 2 is provided on the peripheral surface (surface) of a rotor core 1, and a stator 3 is provided with a concentrated winding type winding 4.

【0020】いま、1極の永久磁石2の中央(周方向に
関しての永久磁石2の中央)にA点を取り、図1の位置
から回転子鉄心1が時計方向に30°(電気角120
°)回転した場合のA点での磁束密度の変化を調べる
と、図2のようになる。A点の磁束密度は回転子鉄心1
の回転位置により変動することになる。すなわち、A点
が、固定子鉄心3の鉄心歯部と対向する場合と、固定子
鉄心3のスロット開口部と対向する場合とで、ギャップ
のパーミアンスが異なるため、永久磁石2の磁束が変化
することになる。
Now, a point A is set at the center of the one-pole permanent magnet 2 (the center of the permanent magnet 2 in the circumferential direction), and the rotor core 1 is rotated clockwise from the position of FIG. 1 by 30 ° (electrical angle 120).
°) When the change of the magnetic flux density at point A when rotated is examined, it becomes as shown in FIG. Magnetic flux density at point A is rotor core 1
Will vary depending on the rotational position of. That is, since the permeance of the gap is different between the case where the point A faces the core tooth portion of the stator core 3 and the case where the point A faces the slot opening of the stator core 3, the magnetic flux of the permanent magnet 2 changes. It will be.

【0021】このような状態で、希土類磁石などの電気
抵抗の比較的小さな永久磁石2を使用すると、電磁誘導
の法則に従って、永久磁石2内に磁束の変化を打ち消す
ような渦電流が流れることになる。渦電流は磁束変動の
大きさ及び周波数の二乗に比例するので、磁束の変動が
少なくても高速回転になれば大きな渦電流損が生じる。
When a permanent magnet 2 having a relatively small electric resistance such as a rare earth magnet is used in such a state, an eddy current that cancels a change in magnetic flux flows in the permanent magnet 2 according to the law of electromagnetic induction. Become. Since the eddy current is proportional to the magnitude of the magnetic flux fluctuation and the square of the frequency, even if the fluctuation of the magnetic flux is small, a large eddy current loss occurs at high speed rotation.

【0022】図1の場合では、3スロットで2極分とな
ることから、磁束変動の主成分の周波数は電源周波数の
3倍となる。この脈動周波数は、スロット数と極数の取
り方により決定される。また、変動磁束の大きさは、ス
ロット開口幅、ギャップ長、電機子反作用の大きさに影
響される。なお、図1はSPMの例であるが、埋込磁石
形(以下(IPM)と略称する)においても同様に考え
ることができる。
In the case of FIG. 1, since there are two poles in three slots, the frequency of the main component of the magnetic flux fluctuation is three times the power supply frequency. This pulsation frequency is determined by the number of slots and the number of poles. Further, the magnitude of the fluctuating magnetic flux is influenced by the slot opening width, the gap length, and the magnitude of the armature reaction. Although FIG. 1 shows an example of the SPM, the same can be considered for an embedded magnet type (hereinafter abbreviated as (IPM)).

【0023】磁石に発生する渦電流損は、磁束変動の大
きさφh及びその周波数fhの二乗に比例し、単位面積
当りの損失が大きいほど、磁石の発熱が大きくなると考
えることができる。そこで、渦電流損の評価式として
(1)式を定義する。
The eddy current loss generated in the magnet is proportional to the magnitude φh of the magnetic flux fluctuation and the square of its frequency fh, and it can be considered that the larger the loss per unit area, the greater the heat generation of the magnet. Therefore, the expression (1) is defined as the evaluation expression of the eddy current loss.

【0024】[0024]

【数9】 [Equation 9]

【0025】ここで、種々のモータA〜Eにつき、温度
試験を実施して、(1)式で示す渦電流評価値Wedy の
値と磁石の異常発熱との関係を調べた結果をまとめる
と、表1のようになる。
Here, the results of examining the relationship between the value of the eddy current evaluation value Wedy shown by the equation (1) and the abnormal heat generation of the magnet by carrying out a temperature test on the various motors A to E are summarized as follows. It becomes like Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】表1より、(1)式に示す渦電流評価値W
edy の値が3.5を越えると磁石の発熱上問題となり、
3.4以下であれば問題ないことがわかる。そこで、
(2)式となるように設計すれば、渦電流損による発熱
を抑えたPMモータができることになる。
From Table 1, eddy current evaluation value W shown in equation (1)
If the value of edy exceeds 3.5, it will cause a problem in heat generation of the magnet,
It can be seen that there is no problem if it is 3.4 or less. Therefore,
If the design is made so as to satisfy the formula (2), it is possible to provide a PM motor that suppresses heat generation due to eddy current loss.

【0028】[0028]

【数10】 [Equation 10]

【0029】<第1の実施例>図1は第1の実施例にか
かる集中巻方式の表面磁石形PMモータ(以下「SP
M」と略称する)の構造例で、12コイル/8極の例で
ある。図1に示すように、回転子鉄心1の周面(表面)
に永久磁石2が備えられており、固定子3には集中巻方
式の巻線4が備えられている。回転子鉄心1は分割する
ことなく一体に成形されている。
<First Embodiment> FIG. 1 shows a concentrated magnet type surface magnet type PM motor according to the first embodiment (hereinafter referred to as "SP").
(Abbreviated as “M”), which is an example of 12 coils / 8 poles. As shown in FIG. 1, the peripheral surface (front surface) of the rotor core 1
Is provided with a permanent magnet 2, and the stator 3 is provided with a concentrated winding type winding 4. The rotor core 1 is integrally formed without being divided.

【0030】第1の実施例のPMモータでは、回転子鉄
心1を回転させたときに、永久磁石2の中央部(周方向
に関しての中央部)における磁束密度の変動主成分の振
幅とこの変動主成分の周波数と永久磁石2の断面積(磁
束が透過していく面積)が(3)式を満足するように構
成している。このような構成としているため、渦電流損
による発熱を抑えることができる。
In the PM motor of the first embodiment, when the rotor core 1 is rotated, the fluctuation of the magnetic flux density in the central portion (the central portion in the circumferential direction) of the permanent magnet 2 and the fluctuation of the main component and this fluctuation. The frequency of the main component and the cross-sectional area of the permanent magnet 2 (the area through which the magnetic flux penetrates) satisfy the equation (3). With such a configuration, heat generation due to eddy current loss can be suppressed.

【0031】[0031]

【数11】 [Equation 11]

【0032】<第2の実施例>(2)式のBhはスロッ
トの開口幅に大きく影響を受ける。したがって、スロッ
ト数/極数、磁石寸法が決定している場合にはスロット
の開口幅を調整して(2)式を満足させることができ
る。
<Second Embodiment> Bh in the expression (2) is greatly affected by the opening width of the slot. Therefore, when the number of slots / the number of poles and the magnet size are determined, the opening width of the slots can be adjusted to satisfy the expression (2).

【0033】図3は、同一のスロット数/極数、磁石寸
法のモータにおいて、スロット開口幅/スロットピッチ
を変化させた場合の磁束変動成分の変化の様子(一例)
を示す。変動磁束成分の大きさはスロット開口幅にほぼ
比例して増減するので、第2の実施例のPMモータで
は、スロット開口幅を調整して、(4)式を満足させる
PMモータの構造とした。ただし、この場合のスロット
開口幅は巻線機のノズルが通る幅以上としている。
FIG. 3 shows how the magnetic flux fluctuation component changes when the slot opening width / slot pitch is changed in a motor having the same number of slots / number of poles and magnet size (one example).
Indicates. Since the magnitude of the fluctuating magnetic flux component increases and decreases substantially in proportion to the slot opening width, in the PM motor of the second embodiment, the slot opening width is adjusted to make the PM motor structure satisfying the expression (4). . However, the slot opening width in this case is set to be larger than the width through which the nozzle of the winding machine passes.

【0034】[0034]

【数12】 [Equation 12]

【0035】<第3の実施例>1極当りの磁石の総面積
をSmax とすれば、これをn分割(但しnは整数)した
場合の1 個当たりの面積Smは、(5)式のようにな
る。(2)式より、渦電流評価値はSmに比例するの
で、n数が多いほど渦電流評価値は小となる。しかし、
nが多くなるほどコストアップになることから、第3の
実施例のPMモータでは、(6)式を満足する最少のn
を採用したPMモータの構造とした。
<Third Embodiment> If the total area of magnets per pole is Smax, the area Sm per magnet when this is divided into n (where n is an integer) is given by the equation (5). Like Since the eddy current evaluation value is proportional to Sm from the equation (2), the larger the n number, the smaller the eddy current evaluation value. But,
Since the cost increases as n increases, in the PM motor of the third embodiment, the minimum n satisfying the expression (6) is satisfied.
Is adopted as the structure of the PM motor.

【0036】[0036]

【数13】 [Equation 13]

【0037】<第4の実施例>(2)式のBhは電流値
(電機子反作用)によっても大きく影響を受ける。した
がって、スロット開口幅、スロット数/極数、磁石寸法
などが決定している場合には電流値に制限を設けて、渦
電流損を抑えることができる。この場合、変動磁束が電
流Iの関数となることから、第4の実施例のPMモータ
では、(7)式を満足させるような変動磁束となる電流
値以下で使用するようにしたPMモータの構造とした。
<Fourth Embodiment> Bh in the equation (2) is greatly affected by the current value (armature reaction). Therefore, when the slot opening width, the number of slots / the number of poles, the magnet size, etc. are determined, the current value can be limited to suppress the eddy current loss. In this case, since the fluctuating magnetic flux is a function of the current I, in the PM motor of the fourth embodiment, the PM motor of the PM motor used at a current value equal to or lower than the fluctuating magnetic flux satisfying the expression (7) is used. With the structure.

【0038】[0038]

【数14】 [Equation 14]

【0039】[0039]

【発明の効果】以上、実施の形態および実施例と共に具
体的に説明したように、本発明では、渦電流損の評価を
することにより最適な構造となる永久磁石式同期モータ
を構成したので、次のような効果を奏することができ
る。
As described above in detail with the embodiments and examples, in the present invention, since the permanent magnet type synchronous motor having the optimum structure is constructed by evaluating the eddy current loss, The following effects can be achieved.

【0040】(1)渦電流損による磁石の異常発熱を防
止することができ、信頼性が向上する。 (2)渦電流防止策が安価に実現できる。 (3)磁石の発熱が少なくなるので、高耐熱の磁石を使
用しなくてもよくなる。耐熱性の低い磁石ほど磁束密度
が高いので、モータの小型化が可能となる。
(1) Abnormal heat generation of the magnet due to eddy current loss can be prevented, and reliability is improved. (2) The eddy current prevention measure can be realized at low cost. (3) Since the heat generated by the magnet is reduced, it is not necessary to use a high heat resistant magnet. Since the magnet having lower heat resistance has a higher magnetic flux density, the motor can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる永久磁石同期モータを
示す構成図。
FIG. 1 is a configuration diagram showing a permanent magnet synchronous motor according to an embodiment of the present invention.

【図2】磁石中央部の磁束密度変動を示す特性図。FIG. 2 is a characteristic diagram showing variations in magnetic flux density in the central portion of the magnet.

【図3】スロット開口幅/スロットピッチと変動磁束成
分との関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a slot opening width / slot pitch and a fluctuating magnetic flux component.

【図4】分割した永久磁石の例を示す斜視図。FIG. 4 is a perspective view showing an example of a divided permanent magnet.

【図5】永久磁石の分割が渦電流損に及ぼす影響を示す
特性図。
FIG. 5 is a characteristic diagram showing the effect of division of a permanent magnet on eddy current loss.

【符号の説明】[Explanation of symbols]

1 回転子鉄心 2 永久磁石 3 固定子鉄心 4 巻線 1 rotor core 2 permanent magnet 3 Stator core 4 windings

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 回転子鉄心に永久磁石を備え、固定子鉄
心に巻線を備えた永久磁石式同期モータにおいて、 回転子を回転させたときに、永久磁石の周方向に関する
中央部における磁束密度の変動主成分の振幅とこの変動
主成分の周波数と前記永久磁石の断面積とが(2)式を
満足する構造になっていることを特徴とする永久磁石式
同期モータ。 【数1】
1. A permanent magnet type synchronous motor having a rotor core provided with permanent magnets and a stator core provided with windings. When the rotor is rotated, the magnetic flux density in the central portion in the circumferential direction of the permanent magnets. The permanent magnet synchronous motor is characterized in that the amplitude of the fluctuation main component, the frequency of the fluctuation main component, and the cross-sectional area of the permanent magnet satisfy the formula (2). [Equation 1]
【請求項2】 回転子鉄心に永久磁石を備え、固定子鉄
心に巻線を備えた永久磁石式同期モータにおいて、 前記固定子鉄心に形成したスロットの開口幅を調整し
て、(4)式を満足させる構造になっていると共に、前
記開口幅は最少でも巻線機のノズルが通る幅以上になっ
ていることを特徴とする永久磁石式同期モータ。 【数2】
2. A permanent magnet type synchronous motor having a rotor core provided with permanent magnets and a stator core provided with windings, wherein the opening width of a slot formed in the stator core is adjusted to obtain the formula (4). The permanent magnet synchronous motor is characterized in that the opening width is at least the width through which the nozzle of the winding machine passes. [Equation 2]
【請求項3】 回転子鉄心に永久磁石を備え、固定子鉄
心に巻線を備えた永久磁石式同期モータにおいて、 1極当たりの永久磁石をn分割し、n個に分割した分割
永久磁石により1極分の磁極を構成すると共に、(6)
式を満足する最少のnを採用していることを特徴とする
永久磁石式同期モータ。 【数3】
3. A permanent magnet type synchronous motor having a rotor core provided with permanent magnets and a stator core provided with windings, wherein the permanent magnet per pole is divided into n, and the divided permanent magnets are divided into n pieces. A magnetic pole for one pole is formed, and (6)
A permanent magnet synchronous motor characterized by adopting a minimum n that satisfies the formula. [Equation 3]
【請求項4】 回転子鉄心に永久磁石を備え、固定子鉄
心に巻線を備えており、前記永久磁石の変動磁束成分が
電流値に大きく影響を受ける永久磁石式同期モータにお
いて、 (7)式を満足させるような電流値以下で使用するよう
にしたことを特徴とする永久磁石式同期モータ。 【数4】
4. A permanent magnet type synchronous motor in which a rotor iron core is provided with a permanent magnet and a stator iron core is provided with windings, and a fluctuating magnetic flux component of the permanent magnet is greatly affected by a current value. A permanent magnet type synchronous motor characterized by being used below a current value that satisfies the formula. [Equation 4]
【請求項5】 請求項1乃至請求項4の何れか一項にお
いて、 前記固定子鉄心は分割することなく一体に成形されてお
り、固定子鉄心の歯部に巻線を直巻きする集中巻方式を
採用していることを特徴とする永久磁石式同期モータ。
5. The concentrated winding according to any one of claims 1 to 4, wherein the stator core is integrally formed without being divided, and a winding is directly wound around a tooth portion of the stator core. Permanent magnet type synchronous motor characterized by adopting the method.
【請求項6】 回転速度が3000min -1以上となる電
気自動車用のモータとして使用されることを特徴とする
請求項1乃至請求項5の何れか一項の永久磁石式同期モ
ータ。
6. The permanent magnet type synchronous motor according to claim 1, wherein the permanent magnet type synchronous motor is used as a motor for an electric vehicle having a rotation speed of 3000 min −1 or more.
JP2002108752A 2002-04-11 2002-04-11 Permanent magnet type synchronous motor Pending JP2003304657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108752A JP2003304657A (en) 2002-04-11 2002-04-11 Permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108752A JP2003304657A (en) 2002-04-11 2002-04-11 Permanent magnet type synchronous motor

Publications (1)

Publication Number Publication Date
JP2003304657A true JP2003304657A (en) 2003-10-24

Family

ID=29392405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108752A Pending JP2003304657A (en) 2002-04-11 2002-04-11 Permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP2003304657A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304474A (en) * 2005-04-20 2006-11-02 Fujitsu General Ltd Axial air-gap type electric motor
JP2010220440A (en) * 2009-03-18 2010-09-30 Nissan Motor Co Ltd Permanent magnet type rotary electric machine
JP2011188685A (en) * 2010-03-10 2011-09-22 Mitsubishi Electric Corp Permanent magnet motor
CN103779991A (en) * 2014-01-16 2014-05-07 江苏大学 Parallel type hybrid magnetic material motor
CN112152400A (en) * 2020-09-23 2020-12-29 沈阳工业大学 Method for optimizing eddy current loss of permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472406A (en) * 1977-11-18 1979-06-09 Meidensha Electric Mfg Co Ltd Direct current machine
JPH1198729A (en) * 1997-09-18 1999-04-09 Fanuc Ltd Rotor structure of synchronous motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472406A (en) * 1977-11-18 1979-06-09 Meidensha Electric Mfg Co Ltd Direct current machine
JPH1198729A (en) * 1997-09-18 1999-04-09 Fanuc Ltd Rotor structure of synchronous motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304474A (en) * 2005-04-20 2006-11-02 Fujitsu General Ltd Axial air-gap type electric motor
JP4720982B2 (en) * 2005-04-20 2011-07-13 株式会社富士通ゼネラル Axial air gap type electric motor
JP2010220440A (en) * 2009-03-18 2010-09-30 Nissan Motor Co Ltd Permanent magnet type rotary electric machine
JP2011188685A (en) * 2010-03-10 2011-09-22 Mitsubishi Electric Corp Permanent magnet motor
CN103779991A (en) * 2014-01-16 2014-05-07 江苏大学 Parallel type hybrid magnetic material motor
CN112152400A (en) * 2020-09-23 2020-12-29 沈阳工业大学 Method for optimizing eddy current loss of permanent magnet

Similar Documents

Publication Publication Date Title
JP4311643B2 (en) Method for manufacturing permanent magnet type rotating electric machine and method for manufacturing permanent magnet type synchronous generator for wind power generation
JP5742804B2 (en) Rotating electric machine rotor and rotating electric machine
US8766506B2 (en) Stator core
Xu et al. Cogging torque reduction of a hybrid axial field flux-switching permanent-magnet machine with three methods
JP6485316B2 (en) Rotating electric machine
JP6048191B2 (en) Multi-gap rotating electric machine
US10236730B2 (en) Electric machine with low magnetic slot leakage
EP0237935B1 (en) Permanent magnet field dc machine
US7928616B2 (en) Systems and apparatus involving toothed armatures in superconducting machines
US20120086288A1 (en) Electric rotating machine
US10432043B2 (en) Slotted rotor-bridge for electrical machines
Zhang et al. High speed permanent magnet motor design and power loss analysis
JP3703907B2 (en) Brushless DC motor
Chen et al. Flux regulation ability of a hybrid excitation doubly salient machine
US8987971B2 (en) Rotor core for an electric machine
JP2003304657A (en) Permanent magnet type synchronous motor
JP2009254030A (en) Motor
WO2011089797A1 (en) Rotor, rotating electrical machine using same, and power generator
JP2004166395A (en) Rotating electric machine for vehicle
JPH1198728A (en) Permanent magnet dynamo-electric machine
JP5884463B2 (en) Rotating electric machine
JP3350971B2 (en) PM type vernier motor
JP5884464B2 (en) Rotating electric machine
CN114157066A (en) Rotating electrical machine
JP2022076731A (en) Rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009