[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003302088A - Precision temperature/humidity control method and its device - Google Patents

Precision temperature/humidity control method and its device

Info

Publication number
JP2003302088A
JP2003302088A JP2002110369A JP2002110369A JP2003302088A JP 2003302088 A JP2003302088 A JP 2003302088A JP 2002110369 A JP2002110369 A JP 2002110369A JP 2002110369 A JP2002110369 A JP 2002110369A JP 2003302088 A JP2003302088 A JP 2003302088A
Authority
JP
Japan
Prior art keywords
temperature
humidity
control
air
humidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002110369A
Other languages
Japanese (ja)
Other versions
JP3650758B2 (en
Inventor
Mutsuo Shoda
睦生 正田
Takashi Hanazawa
隆 花澤
Yoshiyuki Noda
善之 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kogyosha Co Ltd
Original Assignee
Asahi Kogyosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogyosha Co Ltd filed Critical Asahi Kogyosha Co Ltd
Priority to JP2002110369A priority Critical patent/JP3650758B2/en
Publication of JP2003302088A publication Critical patent/JP2003302088A/en
Application granted granted Critical
Publication of JP3650758B2 publication Critical patent/JP3650758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precision temperature/humidity control method and its device which reduced power consumption. <P>SOLUTION: In air-conditioned air SA whose temperature and humidity is controlled by installing a reheater 20 on the blowing side of an evaporator 19 for cooling an outside air OA, by introducing a part of hot gas coming from a compressor 14 into the reheater 20, by reheating air cooled by the evaporator 19 with that hot gas and by humidifying the reheated air with a humidifier 21, this method and its device is provided with: a blowing-out temperature control part 40 for controlling diversion ratio of a three-way proportional control valve 16 based on a set temperature and the temperature of the air-conditioned air SA; a blowing-out humidity control part 41 for controlling humidification quantity at the humidifier 21 with a set humidity and the humidity of the air-conditioned air; and a humidification output control part 45 for generating control output to the humidifier 21 and a control output for controlling an operation frequency of an inverter device 27, an opening degree of an electronic expansion valve 17, and a cooling water amount to a condenser 15 based on input in advance of a humidification output set value SP6 to be the minimum humidification amount. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、精密温調すべき空
間に精密温湿度制御した空調空気を供給するための精密
温湿度制御方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision temperature / humidity control method and device for supplying precision temperature / humidity-controlled conditioned air to a space to be precisely temperature controlled.

【0002】[0002]

【従来の技術】半導体プロセスをはじめとした精密加工
を行うプロセスにおいて、プロセス装置は年間を通じて
安定した運転状態を維持し、また停止状態においても装
置自身の精度を維持するために安定した環境下におかれ
る必要がある。このため、半導体プロセス装置を取り扱
う場合、温湿度制御がされたクリーンルーム内にプロセ
ス装置を設置すると共に、特に加工精度の高いプロセス
装置は隔壁で仕切ったチャンバと呼ばれる容器内に収容
して稼働している。
2. Description of the Related Art In a process for performing precision processing such as a semiconductor process, a process device is maintained in a stable operating condition throughout the year, and is maintained in a stable environment in order to maintain the accuracy of the device itself even when stopped. Need to be placed. For this reason, when handling semiconductor process equipment, the process equipment is installed in a clean room where temperature and humidity are controlled, and particularly high-precision processing equipment is housed in a chamber called a chamber partitioned by partition walls to operate. There is.

【0003】このチャンバ内はプロセス装置の環境を維
持するため、±0.1℃またはこれ以上の安定度に精密
温度制御された空間となっており、プロセス装置はこの
環境下で加工精度を確保している。
In order to maintain the environment of the process equipment, the inside of this chamber is a space which is precisely temperature-controlled to a stability of ± 0.1 ° C. or higher, and the process equipment ensures the processing accuracy in this environment. is doing.

【0004】チャンバの温湿度制御は、冷凍サイクルを
用いて行われ、外気やチャンバ内の空気を蒸発器に導入
して冷却した後、これを電気ヒータで再加熱すると共
に、超音波加湿器やパン型加湿器で加湿して設定温湿度
になるようにしている。
The temperature and humidity of the chamber are controlled by using a refrigeration cycle. After the outside air or the air in the chamber is introduced into the evaporator and cooled, it is reheated by an electric heater, and an ultrasonic humidifier or A pan-type humidifier is used to achieve the set temperature and humidity.

【0005】半導体製造プロセス装置は半導体の世代が
進むにつれ、大型化すると同時に消費する電力の量も大
型化し、半導体工場での消費電力は膨大な量を必要とし
てきている。特に上記の高度な温度制御を必要するプロ
セス装置のための再加熱用電気ヒータは消費電力のうち
のかなりの割合を占めている。
The semiconductor manufacturing process apparatus has become large in size as the semiconductor generation advances, and at the same time, the amount of power consumed becomes large, and a huge amount of power is required in a semiconductor factory. In particular, the electric heater for reheating for the above-mentioned process equipment that requires a high degree of temperature control accounts for a considerable proportion of power consumption.

【0006】そこで、本発明者は、特願平11−201
992号(発明の名称;精密温調制御装置)にて、蒸発
器の吹き出し側に、冷凍サイクルに接続された再熱器を
設置し、その再熱器に、圧縮機からのホットガスを流す
ことで、冷凍サイクルの廃熱を利用して温度制御を行う
ようことを提案した。この精密温調制御装置において
は、圧縮機からのホットガスを凝縮器と再熱器に分流し
て供給するためには、通常の三方弁では、応答性が悪い
ため、電−空比例制御弁を用い、電気信号を空気圧に変
換し、その空気圧で比例制御弁の分流比を調整すること
で、応答性がよく±0.1℃以上の精密温調制御を可能
としたものである。
Therefore, the inventor of the present invention has filed Japanese Patent Application No. 11-201.
No. 992 (Title of the invention: Precision temperature control device), a reheater connected to the refrigeration cycle is installed on the blowing side of the evaporator, and hot gas from the compressor is flowed to the reheater. Therefore, it was proposed to control the temperature by utilizing the waste heat of the refrigeration cycle. In this precision temperature control device, in order to split the hot gas from the compressor and supply it to the condenser and the reheater, the normal three-way valve has poor response, so the electro-pneumatic proportional control valve By converting the electric signal into air pressure by using, and adjusting the shunt ratio of the proportional control valve by the air pressure, the responsiveness is good and the precise temperature control of ± 0.1 ° C. or higher is possible.

【0007】[0007]

【発明が解決しようとする課題】ところで、先の提案に
おいては、冷凍サイクルは、温湿度制御のためには、冷
却能力を略最大で運転して冷却・除湿した空気を、設定
温湿度となるように加熱すると共に加湿しているため、
冷凍サイクルと加湿器を運転する消費電力が、未だ嵩む
問題を残している。
By the way, in the above proposal, the refrigeration cycle is operated at a cooling capacity of approximately the maximum in order to control the temperature and humidity, and the cooled and dehumidified air becomes the set temperature and humidity. As it is heated and humidified,
The power consumption for operating the refrigeration cycle and the humidifier still remains a problem.

【0008】そこで、本発明の目的は、上記課題を解決
し、精密温湿度制御を行うにおいてさらに消費電力を低
減できる精密温湿度制御方法及びその装置を提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a precision temperature / humidity control method and apparatus for solving the above-mentioned problems and capable of further reducing power consumption in performing precision temperature / humidity control.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、冷凍サイクルの蒸発器で冷却し
た空気を、設定温湿度となるよう加熱すると共に加湿し
て空調空気を精密温調すべき空間に供給するための精密
温湿度制御方法において、冷凍サイクルの圧縮機をイン
バータ装置で能力可変に運転し、設定温度と空調空気の
温度に基づいて加熱量を制御すると共に設定湿度と空調
空気の湿度から加湿器での加湿量を制御し、その加湿器
の制御出力が最小の加湿量となるようにインバータ装置
で圧縮機の能力を制御するようにした精密温湿度制御方
法である。
In order to achieve the above object, the invention of claim 1 heats and cools the air cooled by the evaporator of the refrigerating cycle to a set temperature and humidity to obtain conditioned air. In a precision temperature and humidity control method for supplying to a space where precision temperature control is to be performed, the compressor of the refrigeration cycle is operated with variable capacity by an inverter device, and the heating amount is controlled and set based on the set temperature and the temperature of the conditioned air. A precise temperature and humidity control method that controls the humidification amount in the humidifier from the humidity and the humidity of the conditioned air, and controls the compressor capacity by the inverter device so that the control output of the humidifier becomes the minimum humidification amount. Is.

【0010】請求項2の発明は、インバータ装置で駆動
される圧縮機、三方比例制御弁、冷却水で冷媒を凝縮さ
せる凝縮器、膨張弁、蒸発器を順次接続し、上記三方比
例制御弁に、圧縮機から三方比例制御弁を介して分流さ
れたホットガスを導入する再加熱器を接続し、その再加
熱器の出口側を凝縮器の入口側に接続して冷凍サイクル
を構成し、上記外気を冷却する蒸発器の吹出側に上記再
加熱器を設置し、圧縮機からでたホットガスの一部を再
加熱器に導入し、そのホットガスで、蒸発器で冷却され
た空気を再加熱すると共にその再加熱された空気を加湿
器で加湿して温湿度制御された空調空気とするに際し
て、設定温度と空調空気の温度に基づいて三方比例制御
弁の分流比を制御する吹出温度制御部と、設定湿度と空
調空気の湿度から加湿器での加湿量を制御する吹出湿度
制御部と、その加湿器への制御出力と予め最小の加湿量
となるように加湿出力設定値とが入力され、これに基づ
いてインバータ装置の運転周波数、電子膨張弁の開度、
凝縮器への冷却水量を制御する制御出力をつくり出すた
めの加湿出力制御部とを備えた精密温湿度制御装置であ
る。
According to a second aspect of the present invention, a compressor driven by an inverter device, a three-way proportional control valve, a condenser for condensing a refrigerant with cooling water, an expansion valve, and an evaporator are sequentially connected, and the three-way proportional control valve is connected. , Connecting a reheater for introducing hot gas shunted from the compressor via a three-way proportional control valve, and connecting the outlet side of the reheater to the inlet side of the condenser to form a refrigeration cycle, The above reheater is installed on the outlet side of the evaporator that cools the outside air, and a portion of the hot gas from the compressor is introduced into the reheater, and the hot gas reheats the air cooled by the evaporator. When heating and reheating the reheated air with a humidifier to make it temperature- and humidity-controlled air-conditioned air, blow-out temperature control that controls the diversion ratio of the three-way proportional control valve based on the set temperature and the temperature of the air-conditioned air Part, the set humidity and the humidity of the conditioned air Blow-out humidity control unit for controlling the amount of humidification in the humidifier, the humidification output set value is input so that the control output to the humidifier and the minimum amount of humidification in advance, the operating frequency of the inverter device based on this, Opening of electronic expansion valve,
It is a precise temperature / humidity control device having a humidification output control unit for producing a control output for controlling the amount of cooling water to a condenser.

【0011】請求項3の発明は、蒸発器の冷媒蒸発圧力
と上記加湿出力制御部からの制御出力とが冷媒蒸発圧力
制御部に入力され、それに応じて冷媒蒸発圧力制御部が
インバータ装置の運転周波数を制御する請求項2記載の
精密温湿度制御装置である。
According to a third aspect of the present invention, the refrigerant evaporation pressure of the evaporator and the control output from the humidification output control section are input to the refrigerant evaporation pressure control section, and the refrigerant evaporation pressure control section operates the inverter device accordingly. The precise temperature / humidity control device according to claim 2, wherein the frequency is controlled.

【0012】請求項4の発明は、圧縮機の冷媒吸込温度
と上記加湿出力制御部からの制御出力とが吸込冷媒温度
制御部に入力され、それに応じて吸込冷媒温度制御部が
電子膨張弁の弁開度を制御する請求項2記載の精密温湿
度制御装置である。
According to a fourth aspect of the present invention, the refrigerant suction temperature of the compressor and the control output from the humidification output control section are input to the suction refrigerant temperature control section, and the suction refrigerant temperature control section operates in response to the electronic expansion valve. The precision temperature / humidity control device according to claim 2, wherein the valve opening degree is controlled.

【0013】請求項5の発明は、凝縮器の凝縮圧力と上
記加湿出力制御部からの制御出力とが凝縮圧力制御部に
入力され、それに応じて凝縮圧力制御部が、凝縮器への
冷却水量を調整する冷却水制御弁を制御する請求項2記
載の精密温湿度制御装置である。
According to a fifth aspect of the present invention, the condensing pressure of the condenser and the control output from the humidification output control section are input to the condensing pressure control section, and the condensing pressure control section accordingly responds to the amount of cooling water to the condenser. The precise temperature / humidity control device according to claim 2, wherein a cooling water control valve for adjusting the temperature is controlled.

【0014】請求項6の発明は、吹出湿度制御部の制御
出力は、ローパスフィルタ等を介して加湿出力制御部へ
入力される請求項2記載の精密温湿度制御装置である。
A sixth aspect of the present invention is the precision temperature and humidity control apparatus according to the second aspect, wherein the control output of the blowout humidity control section is input to the humidification output control section through a low-pass filter or the like.

【0015】請求項7の発明は、加湿出力制御部に入力
される加湿出力設定値は、空調空気の吹き出し風量に応
じて、予め最小の加湿量となるよう設定される請求項2
記載の精密温湿度制御装置である。
According to a seventh aspect of the present invention, the humidification output set value input to the humidification output control unit is set in advance so as to be a minimum humidification amount in accordance with the blown air volume of the conditioned air.
It is the described precise temperature and humidity control device.

【0016】[0016]

【発明の実施の形態】以下、本発明の好適実施の形態を
添付図面に基づいて詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0017】先ず、図2により精密温湿度装置を説明す
る。
First, the precision temperature and humidity device will be described with reference to FIG.

【0018】図2において、10は、ケーシングで、ケ
ーシング10の下部に機械室11が形成され、ケーシン
グ10の側面中央からケーシング10の頂部にかけてL
字状に空調室12が形成され、ケーシング10内の上部
に制御室13が形成される。機械室11には、図3で詳
細に説明するが、圧縮機14、凝縮器15、電−空比例
制御弁16、電子膨張弁17等が収容される。空調室1
2には、外気OAの吸込口18に位置して蒸発器19、
再熱器20が配置され、その再熱器20の下流側の空調
室12には、パン型或いは超音波型の加湿器21が配置
され、空調室12の吹出口22側には、ファン23が配
置される。吹出口22には、空調空間(図示せず)に温
湿度制御された空調空気SAを送るダクト24が接続さ
れる。
In FIG. 2, reference numeral 10 denotes a casing, and a machine room 11 is formed in the lower portion of the casing 10, and L extends from the center of the side surface of the casing 10 to the top of the casing 10.
An air-conditioning chamber 12 is formed in a letter shape, and a control chamber 13 is formed in an upper portion inside the casing 10. As will be described in detail with reference to FIG. 3, the machine chamber 11 accommodates a compressor 14, a condenser 15, an electro-pneumatic proportional control valve 16, an electronic expansion valve 17, and the like. Air-conditioned room 1
2, the evaporator 19 located at the suction port 18 for the outside air OA,
A reheater 20 is disposed, a pan-type or ultrasonic-type humidifier 21 is disposed in the air conditioning chamber 12 on the downstream side of the reheater 20, and a fan 23 is disposed on the air outlet 22 side of the air conditioning chamber 12. Are placed. A duct 24 for sending the temperature- and humidity-controlled air-conditioned air SA to an air-conditioned space (not shown) is connected to the air outlet 22.

【0019】図3は、精密温湿度装置の冷凍サイクルを
示したものであり、圧縮機14の吐出側に電−空比例制
御弁16が接続され、その一方のポート16aに凝縮器
15が接続され、凝縮器15の出口側に電子膨張弁17
が接続され、その電子膨張弁17に蒸発器19が接続さ
れ、蒸発器19の出口側が圧縮機14の吸込側に接続さ
れる。
FIG. 3 shows a refrigeration cycle of a precision temperature and humidity device, in which an electro-pneumatic proportional control valve 16 is connected to the discharge side of the compressor 14, and a condenser 15 is connected to one port 16a thereof. The electronic expansion valve 17 is provided on the outlet side of the condenser 15.
Is connected, the evaporator 19 is connected to the electronic expansion valve 17, and the outlet side of the evaporator 19 is connected to the suction side of the compressor 14.

【0020】電−空比例制御弁16の他方のポート16
bには、再熱器20が接続され、その再熱器20の出口
側が戻しライン25を介して凝縮器15の入口側に接続
される。また戻しライン25には、逆止弁26が接続さ
れる。
The other port 16 of the electro-pneumatic proportional control valve 16
The reheater 20 is connected to b, and the outlet side of the reheater 20 is connected to the inlet side of the condenser 15 via the return line 25. A check valve 26 is connected to the return line 25.

【0021】圧縮機14は、運転周波数可変のインバー
タ装置27により駆動される。インバータ装置27は、
商用電源を直流に変換し、これをトランジスタで出力周
波数可変の三相或いは単相交流に変換して圧縮機14を
駆動するもので、後述する制御装置30からの運転指令
周波数に応じて、トランジスタをパルス幅変調によりス
イッチングして圧縮機14のモータを駆動する。
The compressor 14 is driven by an inverter device 27 whose operating frequency is variable. The inverter device 27 is
The commercial power source is converted to direct current, and the transistor is used to drive the compressor 14 by converting it into a three-phase or single-phase alternating current with a variable output frequency. The transistor is operated in accordance with an operation command frequency from a control device 30 described later. Is driven by pulse width modulation to drive the motor of the compressor 14.

【0022】電−空比例制御弁16は、空気圧で開閉作
動される絞り弁31a,31bと、入力された電気信号
に応じた空気圧を発生し、その空気圧で絞り弁31a,
31bを作動する電−空変換器32と、その電−空変換
器32に圧縮空気を供給する圧縮源33とからなる。絞
り弁31a,31bは、その弁開度が連動するようにさ
れ、一方の弁開度が100%のとき他方が0%で、空気
圧に応じて、その合計開度が常時100%となるように
両者の弁開度が設定されるようになっている。
The electro-pneumatic proportional control valve 16 generates throttle valves 31a and 31b which are opened / closed by pneumatic pressure and pneumatic pressure in accordance with an inputted electric signal, and the throttle valve 31a, 31b is generated by the pneumatic pressure.
The electro-pneumatic converter 32 operates 31b, and the compression source 33 which supplies compressed air to the electro-pneumatic converter 32. The throttle valves 31a and 31b are designed so that their valve opening degrees are interlocked with each other, and when one valve opening degree is 100%, the other is 0% so that the total opening degree thereof is always 100% according to the air pressure. Both valve opening degrees are set.

【0023】凝縮器15には、圧縮機14からのホット
ガスを冷却するための冷却水供給ライン34と、冷却後
の冷却水を排水する排水ライン35が接続され、その排
水ライン35に冷却水量を調整する冷却水制御弁36が
接続される。
To the condenser 15, a cooling water supply line 34 for cooling the hot gas from the compressor 14 and a drain line 35 for draining the cooled cooling water are connected, and the amount of cooling water in the drain line 35. Is connected to the cooling water control valve 36.

【0024】次に、再熱器20を接続した精密温湿度装
置による冷凍サイクルの作動を説明する。
Next, the operation of the refrigeration cycle by the precision temperature and humidity device connected to the reheater 20 will be described.

【0025】図3の冷凍サイクルにおける冷媒は、圧縮
機14で高温高圧冷媒ガス(ホットガス)とされて凝縮
器15に流れ、そこで冷却水と熱交換されて凝縮され、
電子膨張弁17で減圧されて、気液混合冷媒となって蒸
発器19に流れ、そこでファン23で吸い込まれた外気
OAと熱交換して蒸発して圧縮機14に戻り再度圧縮さ
れて循環する。
The refrigerant in the refrigeration cycle shown in FIG. 3 is made into high-temperature high-pressure refrigerant gas (hot gas) in the compressor 14 and flows into the condenser 15, where it is heat-exchanged with cooling water and condensed.
It is decompressed by the electronic expansion valve 17, becomes a gas-liquid mixed refrigerant, and flows into the evaporator 19, where it exchanges heat with the outside air OA sucked by the fan 23 to evaporate and return to the compressor 14 to be compressed again and circulated. .

【0026】この冷凍サイクルの運転中、電−空制御弁
16の分流比が調整されて圧縮機14からのホットガス
の一部が再加熱器20に流され、蒸発器19で冷却され
た空気をホットガスで設定温度まで再加熱し、ダクト2
4から吹き出す空調空気の温度を制御すると共に加湿器
21により設定湿度に加湿制御する。
During the operation of this refrigeration cycle, the diversion ratio of the electro-pneumatic control valve 16 is adjusted so that a part of the hot gas from the compressor 14 is made to flow to the reheater 20 and cooled by the evaporator 19. Is reheated to the set temperature with hot gas and duct 2
The temperature of the conditioned air blown from No. 4 is controlled and the humidifier 21 controls the humidification to the set humidity.

【0027】図2,図3に示すようにファン23の吹出
側には、吹出温度を検出する吹出温度センサS1と、湿
度を検出する湿度センサS2、空調空気の風量を検出す
る風量センサS6が設けられる。また、蒸発器19の出
口側の配管には、冷媒の蒸発圧力を検出する蒸発圧力セ
ンサS3と、冷媒の温度を検出する吸込温度センサS4
が設けられ、さらに、圧縮機14の出口側には、冷媒の
凝縮圧力を検出する凝縮圧力センサS5が設けられる。
As shown in FIGS. 2 and 3, on the outlet side of the fan 23, there are provided an outlet temperature sensor S1 for detecting the outlet temperature, a humidity sensor S2 for detecting the humidity, and an air volume sensor S6 for detecting the air volume of the conditioned air. It is provided. Further, in the pipe on the outlet side of the evaporator 19, an evaporation pressure sensor S3 that detects the evaporation pressure of the refrigerant and a suction temperature sensor S4 that detects the temperature of the refrigerant.
Is provided on the outlet side of the compressor 14, and a condensation pressure sensor S5 for detecting the condensation pressure of the refrigerant is provided.

【0028】これら、センサS1〜S6の検出値は、制
御装置30に入力され、その検出値に基づいて制御装置
30は、インバータ装置27の運転周波数、電子膨張弁
17の弁開度(減圧度)、加湿器21での加湿量、電−
空比例制御弁16の分流比(再加熱量)を制御する。こ
の際、制御装置30は、加湿器21の制御出力が最小の
加湿量となるようにインバータ装置27で圧縮機14の
能力を制御すると共に、その能力で、冷凍サイクルが安
定するよう電子膨張弁17、凝縮器15への冷却水量を
制御するようになっている。
The detection values of these sensors S1 to S6 are input to the control device 30, and based on the detection values, the control device 30 determines the operating frequency of the inverter device 27, the valve opening degree of the electronic expansion valve 17 (the degree of pressure reduction). ), Humidification amount in the humidifier 21, electric
The split flow ratio (reheat amount) of the air proportional control valve 16 is controlled. At this time, the control device 30 controls the capacity of the compressor 14 by the inverter device 27 so that the control output of the humidifier 21 becomes the minimum humidification amount, and at the same time, the electronic expansion valve so that the refrigeration cycle is stabilized by the capacity. 17, the amount of cooling water to the condenser 15 is controlled.

【0029】この制御装置30は、吹出温度センサS1
の検出値に基づいて、吹出温度を設定温度にすべく電−
空比例制御弁16の電−空変換器32に電気信号を出力
して、再熱器20に流れるホットガス量を制御して再熱
制御を行うと共に、湿度センサS2の検出値に基づい
て、設定湿度となるように加湿器20での加湿量を制御
する。
The control device 30 has a blow-out temperature sensor S1.
Based on the detected value of the
An electric signal is output to the electro-pneumatic converter 32 of the air proportional control valve 16, the amount of hot gas flowing to the reheater 20 is controlled to perform reheat control, and based on the detection value of the humidity sensor S2. The humidification amount in the humidifier 20 is controlled so that the humidity is set.

【0030】また、制御装置30は、蒸発圧力センサS
3の検出値に基づいて、インバータ装置27の運転周波
数を制御し、冷媒の吸込温度センサS4の検出値に基づ
いて電子膨張弁17の減圧度を制御し、さらに凝縮圧力
センサS5の検出値に基づいて、冷却水制御弁36を制
御するようになっている。
Further, the control device 30 has the evaporation pressure sensor S.
3, the operating frequency of the inverter device 27 is controlled, the decompression degree of the electronic expansion valve 17 is controlled based on the detection value of the refrigerant suction temperature sensor S4, and the condensing pressure sensor S5 is detected. Based on this, the cooling water control valve 36 is controlled.

【0031】この制御装置30は、蒸発器19に吸い込
む外気OAの状態(温湿度)と、吹き出す空調空気SA
の設定温湿度に応じて、先ず、空調空気SAの温湿度が
設定値となるように制御し、その制御中の加湿出力を検
出し、加湿器21での加湿量が最小となるように加湿出
力制御を行い、その上で冷凍サイクルが安定運転するよ
うにインバータ装置27、電子膨張弁17、冷却水制御
弁36を制御する。
The control device 30 controls the state (temperature and humidity) of the outside air OA sucked into the evaporator 19 and the conditioned air SA blown out.
According to the set temperature and humidity, first, the temperature and humidity of the conditioned air SA are controlled to reach a set value, the humidification output during the control is detected, and the humidification amount in the humidifier 21 is minimized. The output control is performed, and the inverter device 27, the electronic expansion valve 17, and the cooling water control valve 36 are controlled so that the refrigeration cycle operates stably.

【0032】この制御装置30の詳細を図1により説明
する。
Details of the control device 30 will be described with reference to FIG.

【0033】制御装置30は、吹出温度制御部40と吹
出湿度制御部41と冷媒蒸発圧力制御部42と吸込冷媒
温度制御部43と凝縮圧力制御部44と、加湿出力制御
部45とから構成される。
The controller 30 comprises a blow-out temperature control section 40, a blow-out humidity control section 41, a refrigerant evaporation pressure control section 42, a suction refrigerant temperature control section 43, a condensing pressure control section 44, and a humidification output control section 45. It

【0034】吹出温度制御部40は、温度センサS1か
ら入力される検出温度PV1と設定温度SP1とを比較
演算し、その結果に基づいて電−空比例制御弁16に制
御信号MV1を出力して、再熱制御を行う。
The blow-out temperature control section 40 compares the detected temperature PV1 input from the temperature sensor S1 with the set temperature SP1 and outputs a control signal MV1 to the electro-pneumatic proportional control valve 16 based on the result. , Reheat control.

【0035】吹出湿度制御部41は、湿度センサS2か
ら入力される検出湿度PV2と設定湿度SP2とを比較
演算し、その結果に基づいて加湿器21に制御信号MV
2を出力して、加湿制御を行う。
The blowout humidity control section 41 compares the detected humidity PV2 input from the humidity sensor S2 with the set humidity SP2, and based on the result, outputs a control signal MV to the humidifier 21.
2 is output to perform humidification control.

【0036】冷媒蒸発圧力制御部42は、蒸発圧力セン
サS3から入力される検出圧力PV3と設定蒸発圧力R
SP3とを比較演算し、その結果に基づいてインバータ
装置27に制御信号MV3を出力し、圧縮機14の運転
周波数を可変することで蒸発圧力制御を行う。この場
合、冷媒蒸発圧力制御部42は、圧縮機14の吸込圧力
が、0.4〜0.54MPaの可変範囲に入るように制
御がなされる。
The refrigerant evaporation pressure control unit 42 detects the detected pressure PV3 input from the evaporation pressure sensor S3 and the set evaporation pressure R.
Evaporative pressure control is performed by comparing and calculating SP3, outputting a control signal MV3 to the inverter device 27 based on the result, and varying the operating frequency of the compressor 14. In this case, the refrigerant evaporation pressure control unit 42 is controlled so that the suction pressure of the compressor 14 falls within the variable range of 0.4 to 0.54 MPa.

【0037】吸込冷媒温度制御部43は、冷媒吸込温度
センサS4から入力される検出吸込温度PV4と設定吸
込温度RSP4とを比較演算し、その結果に基づいて電
子膨張弁17に制御信号MV4を出力して、その開度を
可変することで吸込冷媒温度の制御を行う。この場合、
吸込冷媒温度制御部43は、吸込冷媒温度が、14〜1
8℃の可変範囲に入るように制御がなされる。
The suction refrigerant temperature control section 43 compares the detected suction temperature PV4 input from the refrigerant suction temperature sensor S4 with the set suction temperature RSP4, and outputs a control signal MV4 to the electronic expansion valve 17 based on the result. Then, the suction refrigerant temperature is controlled by changing the opening degree. in this case,
The suction refrigerant temperature control unit 43 determines that the suction refrigerant temperature is 14 to 1
The control is performed so as to fall within the variable range of 8 ° C.

【0038】凝縮圧力制御部44は、凝縮圧力センサS
5から入力される検出圧力と設定凝縮圧力RSP5とを
比較演算し、その結果に基づいて、冷却水制御弁36に
制御信号MV5を出力して冷却水量を可変することで、
凝縮圧力制御を行う。この場合、凝縮圧力制御部44
は、凝縮圧力が、1.4〜1.6MPaの可変範囲に入
るように制御がなされる。
The condensation pressure control unit 44 includes a condensation pressure sensor S
By comparing and calculating the detected pressure input from 5 and the set condensing pressure RSP5, and based on the result, by outputting the control signal MV5 to the cooling water control valve 36 and varying the cooling water amount,
Condensation pressure control is performed. In this case, the condensation pressure control unit 44
Is controlled so that the condensing pressure falls within a variable range of 1.4 to 1.6 MPa.

【0039】加湿出力制御部45は、吹出湿度制御部4
1の加湿制御信号MV2を、一次遅れ4段結合処理など
にて高次成分をカットするローパスフィルタ46を通し
て入力される制御信号PV6と加湿出力設定値SP6と
を比較演算し、その結果に基づいて、制御出力MV6を
出力し、冷媒蒸発圧力制御部42には、制御出力MV6
に基づいて変換された設定蒸発圧力RSP3が入力さ
れ、吸込冷媒温度制御部43には、同様に設定吸込温度
RSP4が入力され、凝縮圧力制御部44には、設定凝
縮圧力RSP5が入力される。
The humidification output control unit 45 is the blowing humidity control unit 4
The humidification control signal MV2 of 1 is compared with the humidification output set value SP6 and the control signal PV6 input through the low-pass filter 46 that cuts high-order components by the first-order lag four-stage coupling process, and based on the result. , And outputs the control output MV6 to the refrigerant evaporation pressure control unit 42.
The set evaporation pressure RSP3 converted based on the above is input to the suction refrigerant temperature control unit 43, and the set condensation pressure RSP5 is input to the condensation pressure control unit 44.

【0040】この加湿出力制御部45に入力される加湿
出力設定値SP6は、風量センサS6で検出された風量
値に基づいて決定される。すなわち、風量センサS6で
検出された風量値が、スケーリング48に入力され、そ
の風量値に基づいて、スケーリング48は、その風量範
囲中、最大風量時には25%を、最小風量時には10%
となるよう、その風量範囲で、25〜10%の値を選択
し、これを加湿出力設定器49に入力し、加湿出力設定
器49が、これを受けて加湿出力制御部45に加湿出力
設定値SP6を出力する。
The humidification output set value SP6 input to the humidification output control unit 45 is determined based on the air volume value detected by the air volume sensor S6. That is, the air volume value detected by the air volume sensor S6 is input to the scaling 48, and based on the air volume value, the scaling 48 outputs 25% at the maximum air volume and 10% at the minimum air volume in the air volume range.
In the air flow range, a value of 25 to 10% is selected, and this is input to the humidification output setting device 49, and the humidification output setting device 49 receives this and sets the humidification output control unit 45 to the humidification output setting device. The value SP6 is output.

【0041】この加湿出力設定値SP6は、吹出湿度制
御部41での最大加湿量(除湿量をゼロ或いは最小とし
て冷却したときの冷却空気の絶対湿度と空調空気SAの
絶対湿度との差)に対する加湿器21の最大加湿能力の
比(最大加湿量/最大加湿能力)であり、これは風量に
より変化するため、風量センサS6とスケーリング48
で、風量に応じて、10〜25%の設定値を選択する。
The humidification output set value SP6 is relative to the maximum humidification amount (the difference between the absolute humidity of the cooling air and the absolute humidity of the conditioned air SA when cooling is performed with the dehumidification amount of zero or minimum) in the blowout humidity control section 41. This is the ratio of the maximum humidification capacity of the humidifier 21 (maximum humidification amount / maximum humidification capacity), which changes depending on the air volume, so the air volume sensor S6 and the scaling 48
Then, a set value of 10 to 25% is selected according to the air volume.

【0042】この設定値入力の範囲(10〜25%)
で、制御出力MV6は、0〜100%の値をとる。この
0〜100%の制御出力MV6に対して、設定蒸発圧力
RSP3は、0.4〜0.54MPaの可変範囲で、0
〜100%の値をとり、設定吸込温度RSP4は、14
〜18℃の可変範囲で、0〜100%の値をとり、設定
凝縮圧力RSP5は、1.4〜1.6MPaの可変範囲
で、0〜100%の値をとるようにされる。
Input range of this set value (10 to 25%)
Then, the control output MV6 takes a value of 0 to 100%. With respect to the control output MV6 of 0 to 100%, the set evaporation pressure RSP3 is 0 in the variable range of 0.4 to 0.54 MPa.
It takes a value of ~ 100%, and the set suction temperature RSP4 is 14
It takes a value of 0 to 100% in a variable range of -18 ° C, and the set condensing pressure RSP5 takes a value of 0 to 100% in a variable range of 1.4 to 1.6 MPa.

【0043】以上において、加湿器21への制御信号M
V2を、ローパスフィルタ46を通して加湿の制御出力
PV6を検出し、その制御出力PV6と加湿出力設定値
SPを比較演算することで、加湿出力を最小とする制御
信号MV6をつくり、その制御信号MV6に基づいて、
冷凍サイクルの能力を制御する冷媒蒸発圧力制御部42
と吸込冷媒温度制御部43と凝縮圧力制御部44の設定
値を可変とすることで、冷却能力(ここでの目的は除湿
量)を最小とすることが可能となる。
In the above, the control signal M to the humidifier 21
The control output PV6 of the humidification is detected from V2 through the low-pass filter 46, and the control output PV6 and the humidification output set value SP are compared and calculated to generate a control signal MV6 that minimizes the humidification output. On the basis of,
Refrigerant evaporation pressure control unit 42 for controlling the capacity of the refrigeration cycle
By making the set values of the suction refrigerant temperature control unit 43 and the condensation pressure control unit 44 variable, the cooling capacity (the purpose here is the dehumidification amount) can be minimized.

【0044】また、湿度制御の制御信号MV2の値を一
次遅れ4段結合などのフィルタ処理を行うローパスフィ
ルタ46を通して加湿の制御出力PV6とすることで、
冷媒蒸発圧力制御部42と吸込冷媒温度制御部43と凝
縮圧力制御部44の発振を防止し、精密温湿度装置の本
来の目的である温度制御、湿度制御を乱すことなく最小
のエネルギーで運転が可能となる。
Further, the value of the control signal MV2 for the humidity control is set as the humidification control output PV6 through the low-pass filter 46 which performs the filter processing such as the first-order lag four-stage coupling.
Oscillation of the refrigerant evaporating pressure control unit 42, the suction refrigerant temperature control unit 43, and the condensing pressure control unit 44 is prevented, and operation is performed with minimum energy without disturbing the temperature control and humidity control, which are the original purpose of the precision temperature and humidity device. It will be possible.

【0045】また、加湿出力設定値SP6は、加湿器2
1の最大加湿能力の10〜25%の範囲に設定し、湿度
制御の制御代、外乱追従性等を考慮して最小の値(10
%近く)にすることで、外乱に対する追従性もよく、省
エネ性を向上できる。この場合、10%以下では、冷却
能力(除湿能力)が小さく外乱による温湿度の追従性が
悪くなり、また25%以上では、省エネ性が少なくなる
ので好ましくない。
The humidification output set value SP6 is equal to the humidifier 2
It is set in the range of 10 to 25% of the maximum humidification capacity of 1 and the minimum value (10
%), The followability to disturbance is good and the energy saving can be improved. In this case, if it is 10% or less, the cooling capacity (dehumidifying capacity) is small, and the followability of temperature and humidity due to disturbance is deteriorated.

【0046】次に、本発明の制御装置30による精密温
湿度制御と上述した先願の制御を、図4〜図7の空気線
図により説明する。
Next, the precise temperature and humidity control by the control device 30 of the present invention and the control of the above-mentioned prior application will be described with reference to the psychrometric charts of FIGS.

【0047】図6、図7は、先願の制御を示したもので
ある。
FIGS. 6 and 7 show the control of the prior application.

【0048】図6は、外気OA(温度27℃,相対湿度
50%RH)を、空調空気SA(設定温度21℃,設定
相対湿度50%RH)にする際の空気線図上での変化を
示したもので、外気OAを、蒸発器で、点CA’(温度
10℃,相対湿度90%RH)まで冷却し、これを再熱
器で、絶対湿度はそのままで、点HA’(温度21℃、
相対湿度45%RH)まで再熱し、これを相対湿度50
%RHまで加湿して空調空気SAとした例を示し、外気
OAを、最大冷却能力で、点CA’まで冷却している状
態を示している。
FIG. 6 shows the change on the air diagram when the outside air OA (temperature 27 ° C., relative humidity 50% RH) is changed to conditioned air SA (set temperature 21 ° C., set relative humidity 50% RH). As shown, the outside air OA is cooled by an evaporator to a point CA ′ (temperature 10 ° C., relative humidity 90% RH), and this is reheated with absolute humidity as it is and at a point HA ′ (temperature 21 ℃,
Relative humidity 45% RH) and reheat this to a relative humidity of 50
An example is shown in which the conditioned air SA is humidified to% RH and the outside air OA is cooled to the point CA ′ with the maximum cooling capacity.

【0049】図7は、外気OA(温度21℃,相対湿度
50%RH)を、空調空気SA(設定温度27℃,設定
相対湿度50%RH)にする際の変化を示したもので、
外気OAを最大冷却能力で、点CA’(温度3℃、相対
湿度90%RH)まで冷却し、これを点HA’(温度2
7℃,相対湿度20%RH)まで再加熱(最大加熱)
し、さらに、相対湿度50%RHまで最大加湿して空調
空気SAとした例を示している。
FIG. 7 shows changes when the outside air OA (temperature 21 ° C., relative humidity 50% RH) is changed to conditioned air SA (set temperature 27 ° C., set relative humidity 50% RH).
The outside air OA is cooled to the point CA ′ (temperature 3 ° C., relative humidity 90% RH) with the maximum cooling capacity, and this is cooled to the point HA ′ (temperature 2
Reheat up to 7 ℃, relative humidity 20% RH (maximum heating)
Furthermore, an example is shown in which the conditioned air SA is further humidified to a relative humidity of 50% RH.

【0050】さて、図4は、図7の先願の制御に対応す
る本発明の精密温湿度制御を示したものである。
Now, FIG. 4 shows the precise temperature and humidity control of the present invention corresponding to the control of the prior application of FIG.

【0051】すなわち、図4は、外気OA(温度21
℃,相対湿度50%RH)を、空調空気SA(設定温度
27℃,設定相対湿度50%RH)にする場合、冷却に
よる除湿量をゼロとして点CAまで冷却し、その冷却空
気を再熱器20で、点HAの設定温度27℃まで最大加
熱し、これを空調空気SAの設定湿度(相対湿度50%
RH)まで最大加湿した状態を示している。
That is, FIG. 4 shows that the outside air OA (temperature 21
When the air conditioning air SA (set temperature 27 ° C., set relative humidity 50% RH) is set to ℃, relative humidity 50% RH), the dehumidification amount by cooling is set to zero and the air is cooled to the point CA, and the cooling air is reheated. At 20, the point HA is heated up to the set temperature of 27 ° C., which is set to the set humidity of the conditioned air SA (relative humidity 50%).
RH) shows the state of maximum humidification.

【0052】この図4と図7を比較すれば明らかなよう
に、先願では、略最大冷却能力で、外気OAを冷却する
ため、除湿量が多くなり、その冷却空気を設定温度(2
7℃)の点HA’まで最大加熱し、その点HA’から最
大加湿を行って空調空気SAとしていたが、本発明で
は、最大加熱と最大加湿を行うにあたって、先ず、外気
OAを、除湿量ゼロの状態で、点CAまで、冷却し、こ
れを設定温度(27℃)の点HAまで最大加熱し、その
点HAから最大加湿を行って空調空気SAとすること
で、過度の冷却による除湿量を無くし、その分、加湿量
も少なくすることが可能となる。
As is clear from a comparison between FIG. 4 and FIG. 7, in the prior application, the outside air OA is cooled with substantially the maximum cooling capacity, so that the dehumidifying amount increases and the cooling air is cooled to the set temperature (2).
(7 ° C.) is heated up to the point HA ′ and the humidification is performed from the point HA ′ to obtain the conditioned air SA. However, in the present invention, when performing the maximum heating and the maximum humidification, first, the outside air OA is dehumidified. Dehumidification by excessive cooling by cooling to point CA in the state of zero, heating it to point HA of the set temperature (27 ° C) to the maximum, and performing maximum humidification from that point HA to make conditioned air SA It is possible to eliminate the amount and to reduce the humidification amount accordingly.

【0053】図5は、本発明と先願での制御を比較して
示したもので、外気OA(温度23℃,相対湿度45%
RH)を、空調空気SA(設定温度23℃,設定湿度4
5%RH)にするときの状態を示したものである。
FIG. 5 shows a comparison between the control of the present invention and the control of the prior application, and shows the outside air OA (temperature 23 ° C., relative humidity 45%).
RH, conditioned air SA (set temperature 23 ℃, set humidity 4
5% RH).

【0054】先願においては、外気OAを点CA’(温
度3℃,相対湿度90%)まで冷却し、これを点HA’
(設定温度23℃)まで加熱し、さらに空調空気SAの
湿度(相対湿度45%)まで最大加湿を行って精密温湿
度制御を行っていたが、本発明においては、先ず、除湿
量がゼロに近い点CA(温度10℃、相対湿度90%R
H)まで冷却し、これを点HA(設定温度23℃)まで
加熱し、さらに空調空気SAの湿度(相対湿度45%R
H)まで加湿(加湿出力設定値SP)することで、冷凍
サイクルの負荷を最小に設定しつつ、精密温湿度制御す
ることが可能となる。
In the prior application, the outside air OA is cooled to a point CA '(temperature 3 ° C., relative humidity 90%), and this is cooled to a point HA'.
Although the temperature was set to 23 ° C. and the humidity of the conditioned air SA (45% relative humidity) was maximally humidified for precise temperature / humidity control, the dehumidification amount is set to zero in the present invention. Close point CA (temperature 10 ° C, relative humidity 90% R
H), heat it to point HA (set temperature 23 ° C), and further adjust the humidity of conditioned air SA (relative humidity 45% R
By performing humidification up to H) (humidification output set value SP), it is possible to perform precise temperature / humidity control while setting the load of the refrigeration cycle to a minimum.

【0055】このように、最大加湿量(図4でのSAの
絶対湿度と点HAの絶対湿度の差)に対する加湿器21
の加湿最大能力からみた制御出力の能力値の比を加湿出
力とし、これを風量センサS6の検出値に応じて加湿出
力設定値SPを25〜10%に設定し、図5の最小加湿
量(最小風量)のときの加湿出力設定値SPを10%と
し、最大加湿量(最大風量)のときの加湿出力設定値S
Pを25%とし、外気OAと空調空気SAの絶対湿度差
に基づいて、加湿出力設定値SPを10〜25%の値を
選定し、その加湿出力設定値SPと吹出湿度制御部41
からローパスフィルタ46を介して入力される制御出力
PV6が、加湿出力設定値SPとなるように、加湿出力
制御部46が演算して制御出力MV6をつくり出し、そ
の制御出力MV6に基づいて、インバータ装置27、電
子膨張弁17、冷却水制御弁36の各設定値RSP3,
RSP4,RSP5を設定して冷凍サイクルを運転する
ことで、加湿量を最小にしつつ、精密温湿度制御の追従
性がよく、しかも省エネルギ運転が行える。
As described above, the humidifier 21 with respect to the maximum humidification amount (difference between the absolute humidity of SA and the absolute humidity of point HA in FIG. 4).
The humidification output is defined as the ratio of the control output capacity values viewed from the maximum humidification capacity, and the humidification output set value SP is set to 25 to 10% according to the detection value of the air volume sensor S6. Humidification output set value SP for minimum air volume) is set to 10%, and humidification output set value S for maximum humidification volume (maximum air volume)
P is set to 25%, a humidification output set value SP of 10 to 25% is selected based on the absolute humidity difference between the outside air OA and the conditioned air SA, and the humidification output set value SP and the blowing humidity control unit 41 are selected.
From the low-pass filter 46 to the control output PV6 so that the humidification output set value SP is calculated by the humidification output control unit 46 to generate the control output MV6, and the inverter device MV6 is used based on the control output MV6. 27, electronic expansion valve 17, each set value RSP3 of the cooling water control valve 36,
By setting the RSP4 and RSP5 and operating the refrigeration cycle, the amount of humidification can be minimized, the precision temperature / humidity control can follow well, and energy-saving operation can be performed.

【0056】この省エネルギ効果は、先願の精密温湿度
制御装置と本発明の精密温湿度制御装置で、同じ能力の
ものを使用し、処理風量22.5m3 /min、外気O
A23℃、相対湿度40%RHとし、空調空気SAを、
設定温度23℃、45%RHとしたときの消費電力測定
値(有効電力)を検証したところ、先願では、ファンの
電力1.26kW、冷凍機の電力1.88kW、加湿器
の電力1.6kWで、4.74kWであるが、本発明で
は、ファンの電力1.26kW、冷凍機の電力0.89
kW、加湿器の電力1.0kWで、3.15kWであ
り、1.6kWの省エネ効果が得られた。
This energy saving effect is obtained by using the precision temperature / humidity control device of the prior application and the precision temperature / humidity control device of the present invention having the same capacity, treating air volume of 22.5 m 3 / min, outside air O
A23 ℃, relative humidity 40% RH, conditioned air SA,
When the measured power consumption value (active power) at a set temperature of 23 ° C. and 45% RH was verified, in the previous application, the fan power was 1.26 kW, the refrigerator power was 1.88 kW, and the humidifier power was 1. Although it is 6 kW and 4.74 kW, in the present invention, the fan power is 1.26 kW and the refrigerator power is 0.89.
kW, humidifier power 1.0 kW, 3.15 kW, 1.6 kW energy saving effect was obtained.

【0057】なお、上述の実施の形態では、外気OAと
説明したが、この外気OAは、クリーンルーム内の空気
でも、また空調空間から循環して吸引した空気でもよ
い。
Although the outside air OA has been described in the above embodiment, the outside air OA may be air in the clean room or air circulated and sucked from the air-conditioned space.

【0058】また、加湿出力設定値SPを10〜25%
としたが、この設定値は、加湿器21の能力で可変であ
り、必ずしも上記の範囲に限定されるものではないこと
は勿論である。
Further, the humidification output set value SP is set to 10 to 25%.
However, it goes without saying that this set value is variable depending on the capacity of the humidifier 21, and is not necessarily limited to the above range.

【0059】さらに、上述の実施の形態では、冷凍サイ
クルに接続した再加熱器により、蒸発器で冷却された空
気を加熱して設定温度とする例で説明したが、再加熱器
のみならず従来の電気ヒータで再加熱する精密温湿度制
御にも適用できることは勿論であり、この場合、圧縮機
の消費電力と同時に電気ヒータでの消費電力も低減でき
る。
Further, in the above-described embodiment, the example in which the air cooled by the evaporator is heated to the set temperature by the reheater connected to the refrigeration cycle has been described. It is needless to say that the present invention can be applied to precise temperature / humidity control in which the electric heater reheats the electric heater.

【0060】[0060]

【発明の効果】以上要するに本発明によれば、冷凍サイ
クルの圧縮機をインバータ装置で能力可変に運転し、加
湿量が最小となるような加湿出力設定値を設定し、これ
を実際の加湿制御出力と比較演算して、冷凍サイクルを
運転する設定値とすることで、無駄な除湿を抑えて加湿
量を少なし、冷凍サイクルを安定に運転しつつ省エネル
ギーを達成することができる。
In summary, according to the present invention, the compressor of the refrigeration cycle is variably operated by the inverter device, the humidification output set value that minimizes the humidification amount is set, and this is used as the actual humidification control. By performing a comparison calculation with the output and setting the set value for operating the refrigeration cycle, it is possible to suppress wasteful dehumidification, reduce the humidification amount, and achieve energy saving while operating the refrigeration cycle stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の精密温湿度制御方法及びその装置の一
実施の形態を示す制御ブロック図である。
FIG. 1 is a control block diagram showing an embodiment of a precise temperature / humidity control method and an apparatus thereof according to the present invention.

【図2】本発明の精密温湿度制御方法及びその装置の一
実施の形態を示す装置図である。
FIG. 2 is an apparatus diagram showing an embodiment of a precise temperature and humidity control method and an apparatus thereof according to the present invention.

【図3】本発明の精密温湿度制御方法及びその装置の一
実施の形態を示す冷凍サイクル図である。
FIG. 3 is a refrigeration cycle diagram showing an embodiment of a precise temperature and humidity control method and an apparatus thereof according to the present invention.

【図4】本発明において、精密温湿度制御したときの空
気線図上の温湿度操作を示す図である。
FIG. 4 is a diagram showing a temperature / humidity operation on a psychrometric diagram when precise temperature / humidity control is performed in the present invention.

【図5】本発明と先願の発明において、精密温湿度制御
したときの空気線図上の温湿度操作を示す図である。
FIG. 5 is a diagram showing a temperature / humidity operation on a psychrometric diagram when precise temperature / humidity control is performed in the present invention and the invention of the prior application.

【図6】先願の発明において、精密温湿度制御したとき
の空気線図上の温湿度操作を示す図である。
FIG. 6 is a diagram showing a temperature / humidity operation on a psychrometric diagram when precise temperature / humidity control is performed in the invention of the prior application.

【図7】同じく先願の発明において、精密温湿度制御し
たときの空気線図上の温湿度操作を示す図である。
FIG. 7 is a diagram showing a temperature / humidity operation on a psychrometric diagram when precision temperature / humidity control is performed in the invention of the prior application.

【符号の説明】[Explanation of symbols]

14 圧縮機 15 凝縮器 16 三方比例制御弁 17 電子膨張弁 19 蒸発器 20 再加熱器 21 加湿器 27 インバータ装置 40 吹出温度制御部 41 吹出湿度制御部 45 加湿出力制御部 SP6 加湿出力設定値 OA 外気 SA 空調空気 14 compressor 15 condenser 16 Three-way proportional control valve 17 Electronic expansion valve 19 evaporator 20 Reheater 21 humidifier 27 Inverter device 40 Blowout temperature controller 41 Blowout humidity controller 45 Humidification output control unit SP6 humidification output set value OA outside air SA air-conditioned air

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野田 善之 千葉県船橋市習志野4丁目9番3号 株式 会社朝日工業社機器事業部内 Fターム(参考) 3L055 AA00 3L060 AA03 CC01 CC02 CC04 CC06 CC07 CC09 CC16 DD02 EE04 EE09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshiyuki Noda             4-9-3 Narashino, Funabashi-shi, Chiba Stocks             Company Asahi Industry Co., Ltd. F-term (reference) 3L055 AA00                 3L060 AA03 CC01 CC02 CC04 CC06                       CC07 CC09 CC16 DD02 EE04                       EE09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクルの蒸発器で冷却した空気
を、設定温湿度となるよう加熱すると共に加湿して空調
空気を精密温調すべき空間に供給するための精密温湿度
制御方法において、冷凍サイクルの圧縮機をインバータ
装置で能力可変に運転し、設定温度と空調空気の温度に
基づいて加熱量を制御すると共に設定湿度と空調空気の
湿度から加湿器での加湿量を制御し、その加湿器の制御
出力が最小の加湿量となるようにインバータ装置で圧縮
機の能力を制御することを特徴とする精密温湿度制御方
法。
1. A precision temperature and humidity control method for heating air cooled by an evaporator of a refrigeration cycle to a set temperature and humidity and humidifying the air to supply the conditioned air to a space to be precisely temperature controlled, wherein the refrigeration is performed. The compressor of the cycle is operated by the inverter device with variable capacity, the heating amount is controlled based on the set temperature and the temperature of the conditioned air, and the humidification amount in the humidifier is controlled based on the set humidity and the humidity of the conditioned air. A precision temperature and humidity control method characterized in that the capacity of the compressor is controlled by an inverter device so that the control output of the device becomes a minimum amount of humidification.
【請求項2】 インバータ装置で駆動される圧縮機、三
方比例制御弁、冷却水で冷媒を凝縮させる凝縮器、電子
膨張弁、蒸発器を順次接続し、上記三方比例制御弁に、
圧縮機から三方比例制御弁を介して分流されたホットガ
スを導入する再加熱器を接続し、その再加熱器の出口側
を凝縮器の入口側に接続して冷凍サイクルを構成し、上
記外気を冷却する蒸発器の吹出側に上記再加熱器を設置
し、圧縮機からでたホットガスの一部を再加熱器に導入
し、そのホットガスで、蒸発器で冷却された空気を再加
熱すると共にその再加熱された空気を加湿器で加湿して
温湿度制御された空調空気とするに際して、設定温度と
空調空気の温度に基づいて三方比例制御弁の分流比を制
御する吹出温度制御部と、設定湿度と空調空気の湿度か
ら加湿器での加湿量を制御する吹出湿度制御部と、その
加湿器への制御出力と予め最小の加湿量となるように加
湿出力設定値とが入力され、これに基づいてインバータ
装置の運転周波数、電子膨張弁の開度、凝縮器への冷却
水量を制御するための制御出力をつくり出す加湿出力制
御部とを備えたことを特徴とする精密温湿度制御装置。
2. A compressor driven by an inverter device, a three-way proportional control valve, a condenser for condensing a refrigerant with cooling water, an electronic expansion valve, and an evaporator are sequentially connected, and the three-way proportional control valve is connected to the three-way proportional control valve.
Connect a reheater that introduces hot gas shunted from the compressor through a three-way proportional control valve, and configure the refrigeration cycle by connecting the outlet side of the reheater to the inlet side of the condenser, The reheater is installed on the outlet side of the evaporator to cool the air, and part of the hot gas from the compressor is introduced into the reheater, and the hot gas reheats the air cooled in the evaporator. In addition, when the reheated air is humidified by a humidifier to be temperature-humidity-controlled air-conditioned air, a blow-out temperature controller that controls the diversion ratio of the three-way proportional control valve based on the set temperature and the temperature of the air-conditioned air. , A blowout humidity control unit that controls the humidification amount in the humidifier from the set humidity and the humidity of the conditioned air, the control output to the humidifier, and the humidification output set value so that the minimum humidification amount is input in advance. , The operating frequency of the inverter device based on this Opening of the electronic expansion valve, precise temperature and humidity control apparatus characterized by comprising a humidifying output controller to produce a control output for controlling the amount of cooling water to the condenser.
【請求項3】 蒸発器の冷媒蒸発圧力と上記加湿出力制
御部からの制御出力とが冷媒蒸発圧力制御部に入力さ
れ、それに応じて冷媒蒸発圧力制御部がインバータ装置
の運転周波数を制御する請求項2記載の精密温湿度制御
装置。
3. The refrigerant evaporation pressure of the evaporator and the control output from the humidification output control section are input to the refrigerant evaporation pressure control section, and the refrigerant evaporation pressure control section controls the operating frequency of the inverter device accordingly. Item 2. A precise temperature and humidity controller according to item 2.
【請求項4】 圧縮機の冷媒吸込温度と上記加湿出力制
御部からの制御出力とが吸込冷媒温度制御部に入力さ
れ、それに応じて吸込冷媒温度制御部が電子膨張弁の弁
開度を制御する請求項2記載の精密温湿度制御装置。
4. The refrigerant suction temperature of the compressor and the control output from the humidification output control section are input to the suction refrigerant temperature control section, and the suction refrigerant temperature control section controls the valve opening degree of the electronic expansion valve accordingly. The precise temperature and humidity control device according to claim 2.
【請求項5】 凝縮器の凝縮圧力と上記加湿出力制御部
からの制御出力とが凝縮圧力制御部に入力され、それに
応じて凝縮圧力制御部が、凝縮器への冷却水量を調整す
る冷却水制御弁を制御する請求項2記載の精密温湿度制
御装置。
5. Condensing pressure of the condenser and control output from the humidification output control section are input to the condensing pressure control section, and the condensing pressure control section adjusts the amount of cooling water to the condenser accordingly. The precise temperature and humidity control device according to claim 2, which controls a control valve.
【請求項6】 吹出湿度制御部の制御出力は、ローパス
フィルタ等を介して加湿出力制御部へ入力される請求項
2記載の精密温湿度制御装置。
6. The precision temperature and humidity control device according to claim 2, wherein the control output of the blowout humidity control unit is input to the humidification output control unit via a low-pass filter or the like.
【請求項7】 加湿出力制御部に入力される加湿出力設
定値は、空調空気の吹き出し風量に応じて、予め最小の
加湿量となるよう設定される請求項2記載の精密温湿度
制御装置。
7. The precise temperature / humidity control device according to claim 2, wherein the humidification output set value input to the humidification output control unit is set in advance so as to have a minimum humidification amount in accordance with the amount of blown air of the conditioned air.
JP2002110369A 2002-04-12 2002-04-12 Precision temperature and humidity controller Expired - Fee Related JP3650758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002110369A JP3650758B2 (en) 2002-04-12 2002-04-12 Precision temperature and humidity controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110369A JP3650758B2 (en) 2002-04-12 2002-04-12 Precision temperature and humidity controller

Publications (2)

Publication Number Publication Date
JP2003302088A true JP2003302088A (en) 2003-10-24
JP3650758B2 JP3650758B2 (en) 2005-05-25

Family

ID=29393526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110369A Expired - Fee Related JP3650758B2 (en) 2002-04-12 2002-04-12 Precision temperature and humidity controller

Country Status (1)

Country Link
JP (1) JP3650758B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078242A (en) * 2005-09-14 2007-03-29 Mitsubishi Electric Corp Air conditioner
JP2009139061A (en) * 2007-12-10 2009-06-25 Nippon Spindle Mfg Co Ltd Temperature regulator
JP2009257650A (en) * 2008-04-15 2009-11-05 Orion Mach Co Ltd Temperature and humidity adjusting device
JP2009257649A (en) * 2008-04-15 2009-11-05 Orion Mach Co Ltd Temperature and humidity adjusting device
JP2009293834A (en) * 2008-06-03 2009-12-17 Orion Mach Co Ltd Temperature and humidity regulator
JP2010007960A (en) * 2008-06-26 2010-01-14 Orion Mach Co Ltd Temperature/humidity controller
JP2010230184A (en) * 2009-03-26 2010-10-14 Orion Mach Co Ltd Temperature and humidity control device
JP2011127884A (en) * 2009-12-21 2011-06-30 Orion Machinery Co Ltd Temperature/humidity control device and method
WO2011155069A1 (en) 2010-06-11 2011-12-15 三菱電機株式会社 Ventilation and air-conditioning apparatus and method for controlling same
JP2013122349A (en) * 2011-12-12 2013-06-20 Orion Machinery Co Ltd Temperature and humidity adjusting device
JP2013122350A (en) * 2011-12-12 2013-06-20 Orion Machinery Co Ltd Temperature and humidity adjusting device
KR20150026208A (en) * 2013-09-02 2015-03-11 엘지전자 주식회사 An air conditioner and a control method the same
KR20150140568A (en) * 2014-06-06 2015-12-16 캐논 가부시끼가이샤 Lithography apparatus and method of manufacturing article
CN105757912A (en) * 2016-04-27 2016-07-13 合肥工业大学智能制造技术研究院 System for quickly and accurately regulating and controlling micro ambient temperature and humidity of museum showcase
CN106247463A (en) * 2016-09-30 2016-12-21 美的集团武汉制冷设备有限公司 Air conditioner room unit and air-conditioner
CN106440037A (en) * 2016-09-30 2017-02-22 美的集团武汉制冷设备有限公司 Indoor unit of air conditioner and air conditioner
KR101854881B1 (en) 2011-11-16 2018-06-21 주식회사 대유위니아 control method of apparatus for humidification and dehumidification
CN108240680A (en) * 2016-12-26 2018-07-03 成都三益福达机械设备制造有限公司 A kind of variable air rate automatic energy saving air cleaning and conditioning system
CN108294356A (en) * 2018-03-09 2018-07-20 四川中烟工业有限责任公司 A kind of cut tobacco winnowing machine circulated air humiture control system and its control method on the spot
CN112944564A (en) * 2021-02-23 2021-06-11 青岛海尔空调电子有限公司 Control method of machine room air conditioner
CN114543208A (en) * 2020-12-29 2022-05-27 徐州嘉搏纺织股份有限公司 Accurate control system of humiture of air around textile production line
WO2023279872A1 (en) * 2021-07-09 2023-01-12 青岛海尔空调器有限总公司 Air conditioner control method and apparatus, and air conditioner
JP2023039922A (en) * 2021-09-09 2023-03-22 グラット ゲゼルシャフト ミット ベシュレンクテル ハフツング Process gas preparation apparatus and process gas preparation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168556A (en) * 1989-11-27 1991-07-22 Takasago Thermal Eng Co Ltd Method and apparatus for control of thermo-humidistatic air conditioning by packaged air conditioner
JPH0510566A (en) * 1991-07-03 1993-01-19 Matsushita Seiko Co Ltd Controller for air conditioner
JPH05312387A (en) * 1992-05-12 1993-11-22 Mitsubishi Electric Corp Air conditioning system
JPH0694284A (en) * 1992-09-16 1994-04-05 Hitachi Ltd Air-conditioning machine
JPH06307705A (en) * 1993-04-20 1994-11-01 Toshiba Corp Humidity control method for air conditioner
JPH10131859A (en) * 1996-10-28 1998-05-19 Matsushita Refrig Co Ltd Vibration reducing device in air conditioner
JPH11101486A (en) * 1997-09-30 1999-04-13 Yamatake Corp Constant temperature constant humidity air conditioning control system
JP2000199657A (en) * 1998-10-29 2000-07-18 Asahi Kogyosha Co Ltd Precise temperature regulating method and device therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168556A (en) * 1989-11-27 1991-07-22 Takasago Thermal Eng Co Ltd Method and apparatus for control of thermo-humidistatic air conditioning by packaged air conditioner
JPH0510566A (en) * 1991-07-03 1993-01-19 Matsushita Seiko Co Ltd Controller for air conditioner
JPH05312387A (en) * 1992-05-12 1993-11-22 Mitsubishi Electric Corp Air conditioning system
JPH0694284A (en) * 1992-09-16 1994-04-05 Hitachi Ltd Air-conditioning machine
JPH06307705A (en) * 1993-04-20 1994-11-01 Toshiba Corp Humidity control method for air conditioner
JPH10131859A (en) * 1996-10-28 1998-05-19 Matsushita Refrig Co Ltd Vibration reducing device in air conditioner
JPH11101486A (en) * 1997-09-30 1999-04-13 Yamatake Corp Constant temperature constant humidity air conditioning control system
JP2000199657A (en) * 1998-10-29 2000-07-18 Asahi Kogyosha Co Ltd Precise temperature regulating method and device therefor

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668021B2 (en) * 2005-09-14 2011-04-13 三菱電機株式会社 Air conditioner
JP2007078242A (en) * 2005-09-14 2007-03-29 Mitsubishi Electric Corp Air conditioner
JP2009139061A (en) * 2007-12-10 2009-06-25 Nippon Spindle Mfg Co Ltd Temperature regulator
JP2009257650A (en) * 2008-04-15 2009-11-05 Orion Mach Co Ltd Temperature and humidity adjusting device
JP2009257649A (en) * 2008-04-15 2009-11-05 Orion Mach Co Ltd Temperature and humidity adjusting device
JP2009293834A (en) * 2008-06-03 2009-12-17 Orion Mach Co Ltd Temperature and humidity regulator
JP2010007960A (en) * 2008-06-26 2010-01-14 Orion Mach Co Ltd Temperature/humidity controller
JP2010230184A (en) * 2009-03-26 2010-10-14 Orion Mach Co Ltd Temperature and humidity control device
JP2011127884A (en) * 2009-12-21 2011-06-30 Orion Machinery Co Ltd Temperature/humidity control device and method
WO2011155069A1 (en) 2010-06-11 2011-12-15 三菱電機株式会社 Ventilation and air-conditioning apparatus and method for controlling same
KR101854881B1 (en) 2011-11-16 2018-06-21 주식회사 대유위니아 control method of apparatus for humidification and dehumidification
JP2013122349A (en) * 2011-12-12 2013-06-20 Orion Machinery Co Ltd Temperature and humidity adjusting device
JP2013122350A (en) * 2011-12-12 2013-06-20 Orion Machinery Co Ltd Temperature and humidity adjusting device
KR102099264B1 (en) 2013-09-02 2020-04-10 엘지전자 주식회사 An air conditioner and a control method the same
KR20150026208A (en) * 2013-09-02 2015-03-11 엘지전자 주식회사 An air conditioner and a control method the same
KR101879268B1 (en) * 2014-06-06 2018-07-17 캐논 가부시끼가이샤 Lithography apparatus and method of manufacturing article
TWI557520B (en) * 2014-06-06 2016-11-11 佳能股份有限公司 Lithography apparatus and method of manufacturing article
US9257921B2 (en) 2014-06-06 2016-02-09 Canon Kabushiki Kaisha Lithography apparatus and method of manufacturing article
KR20150140568A (en) * 2014-06-06 2015-12-16 캐논 가부시끼가이샤 Lithography apparatus and method of manufacturing article
CN105757912A (en) * 2016-04-27 2016-07-13 合肥工业大学智能制造技术研究院 System for quickly and accurately regulating and controlling micro ambient temperature and humidity of museum showcase
CN105757912B (en) * 2016-04-27 2018-11-30 合肥工业大学智能制造技术研究院 A kind of quick accuracy controlling system of museum's showcase microenvironment temperature and humidity
CN106247463B (en) * 2016-09-30 2022-02-11 美的集团武汉制冷设备有限公司 Air conditioner indoor unit and air conditioner
CN106440037A (en) * 2016-09-30 2017-02-22 美的集团武汉制冷设备有限公司 Indoor unit of air conditioner and air conditioner
CN106247463A (en) * 2016-09-30 2016-12-21 美的集团武汉制冷设备有限公司 Air conditioner room unit and air-conditioner
CN108240680A (en) * 2016-12-26 2018-07-03 成都三益福达机械设备制造有限公司 A kind of variable air rate automatic energy saving air cleaning and conditioning system
CN108240680B (en) * 2016-12-26 2023-09-19 成都三益福达机械设备制造有限公司 Variable air volume automatic energy-saving purifying air conditioning system
CN108294356A (en) * 2018-03-09 2018-07-20 四川中烟工业有限责任公司 A kind of cut tobacco winnowing machine circulated air humiture control system and its control method on the spot
CN114543208A (en) * 2020-12-29 2022-05-27 徐州嘉搏纺织股份有限公司 Accurate control system of humiture of air around textile production line
CN114543208B (en) * 2020-12-29 2023-07-14 徐州嘉搏纺织股份有限公司 Accurate control system of humiture of weaving production line surrounding air
CN112944564A (en) * 2021-02-23 2021-06-11 青岛海尔空调电子有限公司 Control method of machine room air conditioner
CN112944564B (en) * 2021-02-23 2022-11-22 青岛海尔空调电子有限公司 Control method of machine room air conditioner
WO2023279872A1 (en) * 2021-07-09 2023-01-12 青岛海尔空调器有限总公司 Air conditioner control method and apparatus, and air conditioner
JP2023039922A (en) * 2021-09-09 2023-03-22 グラット ゲゼルシャフト ミット ベシュレンクテル ハフツング Process gas preparation apparatus and process gas preparation method

Also Published As

Publication number Publication date
JP3650758B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3650758B2 (en) Precision temperature and humidity controller
JP5097852B1 (en) Air conditioning method and air conditioning apparatus
CN102914030B (en) Thermostat dehumidification control method of air conditioner
TWI577950B (en) Air conditioning device and its operation method
JP5328951B2 (en) Air conditioning system
JP2019178805A (en) Air conditioner, air conditioning system and air conditioning facility
JPH11101520A (en) Air cycle type air conditioner
JP5391785B2 (en) Air conditioning system
CN103925668A (en) Direct-current frequency conversion constant-temperature and humidity set achieving condensation heat recovery and heat and humidity separation control method
JP3752484B2 (en) Precision temperature control method and apparatus
WO2015173895A1 (en) Air conditioning system
CN108548277B (en) Air conditioner, temperature and humidity adjusting device thereof, temperature and humidity adjusting control system and temperature and humidity adjusting control method
JP6897848B2 (en) Air conditioning system
CN114893851B (en) Laboratory fresh air handling unit based on double-evaporation-temperature refrigerating system
JP5369577B2 (en) Air conditioning system
JP3283245B2 (en) Precision temperature controller
JP2000018766A (en) Air conditioner
JP7374633B2 (en) Air conditioners and air conditioning systems
JP2019066097A (en) Air conditioning device
JP2019052817A (en) Air conditioner
JP2001324193A (en) Device and method for introducing fresh air
JP4583290B2 (en) Air conditioning system
JP7058250B2 (en) Air conditioner with dehumidifying function and its control method
JP2007198646A (en) Air conditioner
KR101297383B1 (en) System for automatic control of temperature and humidity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3650758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees