[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003301288A - Electrolytically reduced water containing colloid and manufacturing method therefor - Google Patents

Electrolytically reduced water containing colloid and manufacturing method therefor

Info

Publication number
JP2003301288A
JP2003301288A JP2002107924A JP2002107924A JP2003301288A JP 2003301288 A JP2003301288 A JP 2003301288A JP 2002107924 A JP2002107924 A JP 2002107924A JP 2002107924 A JP2002107924 A JP 2002107924A JP 2003301288 A JP2003301288 A JP 2003301288A
Authority
JP
Japan
Prior art keywords
colloid
reduced water
cathode
electrolytically reduced
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002107924A
Other languages
Japanese (ja)
Other versions
JP3569270B2 (en
Inventor
Sanetaka Shirahata
實隆 白畑
Kazumichi Otsubo
一道 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Trim Co Ltd
Original Assignee
Nihon Trim Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Trim Co Ltd filed Critical Nihon Trim Co Ltd
Priority to JP2002107924A priority Critical patent/JP3569270B2/en
Publication of JP2003301288A publication Critical patent/JP2003301288A/en
Application granted granted Critical
Publication of JP3569270B2 publication Critical patent/JP3569270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable electrolytically reduced water containing colloids, which has strong antioxidant properties, is utilized for treating or preventing cancer or diabetes, and prevents bacteria from proliferating, and to provide a manufacturing method therefor. <P>SOLUTION: The electrolytically reduced water containing the colloids includes the colloids of a hydrogen absorbing metal as a carrier of active hydrogen. The method for manufacturing the electrolytically reduced water containing the colloids comprises a step of adding the colloids of the hydrogen absorbing metal to an aqueous electrolytic solution, a step of introducing the solution to a cathode chamber and an anode chamber which are separated by a diaphragm, a step of electrolyzing the solution, and a step of taking out the electrolytically reduced water formed in the cathode chamber. Alternatively, the method for manufacturing the electrolytically reduced water containing the colloids comprises a step of introducing the aqueous electrolytic solution to the cathode chamber and the anode chamber, a step of electrolyzing the solution, a step of taking out the cathode water formed in the cathode chamber, and a step of adding the colloids of the hydrogen absorbing metal to the cathode water. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、活性酸素消去作用
およびフリーラジカル消去作用(これらの作用を以下、
「抗酸化作用」という。)の大きい安定なコロイド含有
電解還元水およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to an active oxygen scavenging action and a free radical scavenging action.
It is called "antioxidant". ) Large and stable colloid-containing electrolytically reduced water and a method for producing the same.

【0002】[0002]

【従来の技術】隔膜で隔てられた陰極室と陽極室のそれ
ぞれにNaOHなどの電解質を溶解した水を導入して電
気分解すると、反応性の大きい原子状水素である活性水
素が陰極室に発生する。陰極室に発生した活性水素の豊
富な水は一般に電解還元水(陰極水)と呼ばれ、電解還
元水は様々な疾病の予防や治療に役立ち、老化の進行を
抑制するほか、医療以外の分野でも、食品の保存や半導
体の洗浄など、多くの分野で利用が期待されている。電
解還元水のこのような効用は、電解還元水中の活性水素
が有する還元性(抗酸化性)によって起こる抗酸化作用
によるものである。活性酸素とは、酸素分子に電子が1
個入ったもの(O2・-)、ヒドロキシル基(・OH)、
過酸化水素(H22)および一重項酸素(12)などを
指し、活性水素によりつぎの機構で活性酸素は消去さ
れ、還元作用および抗酸化作用と呼ばれる。
2. Description of the Related Art When water in which an electrolyte such as NaOH is dissolved is introduced into a cathode chamber and an anode chamber separated by a diaphragm and electrolyzed, active hydrogen, which is highly reactive atomic hydrogen, is generated in the cathode chamber. To do. The water rich in active hydrogen generated in the cathode chamber is generally called electrolyzed reduced water (cathode water). Electrolyzed reduced water is useful for the prevention and treatment of various diseases, suppresses the progress of aging, and is used in fields other than medicine. However, it is expected to be used in many fields such as food preservation and semiconductor cleaning. Such an effect of the electrolytically reduced water is due to the antioxidative action caused by the reducing property (antioxidant property) of the active hydrogen in the electrolytically reduced water. Active oxygen means that oxygen molecule has one electron
Pieces containing (O 2 ·-), hydroxyl group (· OH),
It refers to hydrogen peroxide (H 2 O 2 ), singlet oxygen ( 1 O 2 ), etc. The active oxygen eliminates the active oxygen by the following mechanism, and is called a reducing action and an antioxidant action.

【0003】活性酸素消去作用は,つぎの反応式で示さ
れる。 O2・-+2H・→H22+e- ・OH+H・→H2O H22+2H・→2H2O また、フリーラジカル消去作用は、つぎの反応式で示さ
れる。
The action of eliminating active oxygen is represented by the following reaction formula. O 2 · − + 2H · → H 2 O 2 + e · OH + H · → H 2 O H 2 O 2 + 2H · → 2H 2 O The free radical scavenging action is represented by the following reaction formula.

【0004】R・+H・→RH このような効能が期待される電解還元水であるが、従来
の技術では抗酸化作用の強い電解還元水は製造できなか
った。したがって、たとえば癌や糖尿病の治療に用いた
場合、多量の電解還元水を長期間にわたり飲用しなけれ
ば効果が得られなかった。また、活性水素自体は非常に
不安定であり、すぐに水素イオンおよび水素ガスとなる
から、単体として活性水素が存在する時間はきわめて短
く、電解還元水の抗酸化作用は不安定であった。
R. + H..fwdarw.RH Although the electrolytic reduced water is expected to have such an effect, the electrolytic reduced water having a strong antioxidant action could not be produced by the conventional technique. Therefore, when it is used for treating cancer or diabetes, for example, the effect cannot be obtained unless a large amount of electrolytically reduced water is drunk for a long period of time. In addition, active hydrogen itself is extremely unstable, and immediately becomes hydrogen ions and hydrogen gas. Therefore, the time during which active hydrogen exists as a simple substance is extremely short, and the antioxidant action of electrolytically reduced water is unstable.

【0005】[0005]

【発明が解決しようとする課題】本発明は、抗酸化作用
が強く、かつ安定なコロイド含有電解還元水およびその
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a colloid-containing electrolytically reduced water having a strong antioxidative action and stable, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明のコロイド含有電
解還元水は、電解還元水に活性水素のキャリアとして水
素吸蔵金属のコロイドを含むことを特徴とする。水素吸
蔵金属のコロイドとしては、白金コロイド、パラジウム
コロイドまたはバナジウムコロイドが好ましい。
The colloid-containing electrolytic reduced water of the present invention is characterized in that the electrolytic reduced water contains a hydrogen storage metal colloid as a carrier of active hydrogen. As the hydrogen storage metal colloid, a platinum colloid, a palladium colloid or a vanadium colloid is preferable.

【0007】本発明のコロイド含有電解還元水の製造方
法は、電解質を含む水溶液に水素吸蔵金属のコロイドを
添加する工程と、その水溶液を隔膜で隔てられた陰極室
と陽極室のそれぞれに導入する工程と、陰極室に陰極を
浸漬し、陽極室に陽極を浸漬した状態で、陰極と陽極と
の間で通電することにより、水溶液を電気分解する工程
と、陰極室で得られた電解還元水を取出す工程と、から
なる。
In the method for producing colloid-containing electrolytically reduced water of the present invention, a step of adding a hydrogen storage metal colloid to an aqueous solution containing an electrolyte and introducing the aqueous solution into each of a cathode chamber and an anode chamber separated by a diaphragm. Step, the cathode is immersed in the cathode chamber, while the anode is immersed in the anode chamber, by energizing between the cathode and the anode, the step of electrolyzing the aqueous solution, electrolytic reduced water obtained in the cathode chamber And the process of taking out.

【0008】また、本発明のコロイド含有電解還元水の
製造方法は、隔膜で隔てられた陰極室と陽極室のそれぞ
れに電解質を含む水溶液を導入する工程と、陰極室に陰
極を浸漬し、陽極室に陽極を浸漬した状態で、陰極と陽
極との間で通電することにより、水溶液を電気分解する
工程と、陰極室で得られた陰極水を取出す工程と、陰極
水に水素吸蔵金属のコロイドを添加する工程とからな
る。
Further, the method for producing colloid-containing electrolytically reduced water of the present invention comprises the steps of introducing an aqueous solution containing an electrolyte into each of the cathode chamber and the anode chamber separated by a diaphragm, and immersing the cathode in the cathode chamber to form an anode. In a state where the anode is immersed in the chamber, a step of electrolyzing the aqueous solution by energizing between the cathode and the anode, a step of extracting the cathode water obtained in the cathode chamber, and a colloid of a hydrogen storage metal in the cathode water. Is added.

【0009】白金コロイドはヘキサクロロ白金酸(H2
PtCl6)を還元することにより、パラジウムコロイ
ドは塩化パラジウム(PdCl2)を還元することによ
り、また、バナジウムコロイドは塩化バナジウム(VC
2)を還元することにより、得るのが好ましい。
Platinum colloid is hexachloroplatinic acid (H 2
PtCl 6 ) reduces the palladium colloid by reducing palladium chloride (PdCl 2 ), and the vanadium colloid changes by vanadium chloride (VC).
It is preferably obtained by reducing l 2 ).

【0010】[0010]

【発明の実施の形態】(コロイド含有電解還元水)本発
明のコロイド含有電解還元水は、電解還元水に活性水素
のキャリアとして水素吸蔵金属のコロイドを含むことを
特徴とする。電解還元水中の活性水素は単体では不安定
であり、すぐに水素イオンおよび水素ガスになり、抗酸
化作用を喪失する。しかし、電解還元水が水素吸蔵金属
のコロイドを含んでいると、活性水素は水素吸蔵金属の
コロイドの中に取り込まれ、活性水素の状態で安定に存
在する。また、活性水素は最も小さな原子であるため、
ほとんどすべての金属および金属コロイドに吸着、吸蔵
されることが知られている。このため、水素吸蔵金属の
コロイドが活性水素のキャリアとして機能し、電解還元
水の抗酸化作用を高い状態で、安定に保持することがで
きる。また、ナノメータスケールの水素吸蔵金属のコロ
イドは、金属片や粉末状の金属に比べて表面原子の割合
が大きいために活性水素吸着、吸蔵能が大きく、さらに
均一な分散体を形成し、沈殿する傾向も小さいため、飲
用にも適する。また、コロイド状態で用いることによ
り、金属を溶解して用いる場合に比べて金属を多量に配
合することができ、濃度のコントロールも容易となる。
BEST MODE FOR CARRYING OUT THE INVENTION (Colloid-containing electrolytic reduced water) The colloid-containing electrolytic reduced water of the present invention is characterized in that the electrolytic reduced water contains a hydrogen storage metal colloid as a carrier of active hydrogen. Active hydrogen in electrolytically reduced water is unstable as a simple substance, and immediately becomes hydrogen ions and hydrogen gas, and loses its antioxidant effect. However, when the electrolyzed reduced water contains a hydrogen storage metal colloid, the active hydrogen is taken into the hydrogen storage metal colloid and stably exists in the active hydrogen state. Also, because active hydrogen is the smallest atom,
It is known to be adsorbed and stored on almost all metals and metal colloids. Therefore, the hydrogen storage metal colloid functions as a carrier of active hydrogen, and the electrolytic reduction water can be stably maintained in a high antioxidative state. In addition, the nanometer-scale hydrogen storage metal colloid has a large proportion of surface atoms compared to metal pieces and powdery metal, and therefore has a large active hydrogen adsorption and storage capacity, and forms a uniform dispersion and precipitates. The tendency is small, so it is suitable for drinking. In addition, when used in a colloidal state, a large amount of metal can be blended, and the concentration can be easily controlled as compared with the case where the metal is dissolved and used.

【0011】本発明の水素吸蔵金属のコロイドは、水素
吸蔵金属の微粒子が水に分散した、いわゆる分散コロイ
ドである。水素吸蔵金属とは、金属結晶の格子間に水素
をたやすく吸着、吸蔵して金属水素化物を生成する金属
をいう。水素吸蔵金属には、白金、パラジウム、バナジ
ウム、マグネシウム、ジルコニウムなどのほか、水素吸
蔵合金が含まれる。水素吸蔵合金としては、Mg2
i、LaNi5、TiFeなどがある。水素吸蔵金属と
しては、電解還元水中の活性水素を吸蔵しやすく、活性
水素の状態で安定に保持できる点で、白金、パラジウム
またはバナジウムが好ましい。
The hydrogen storage metal colloid of the present invention is a so-called dispersed colloid in which fine particles of the hydrogen storage metal are dispersed in water. The hydrogen storage metal is a metal that easily absorbs and stores hydrogen between lattices of metal crystals to form a metal hydride. Hydrogen storage metals include platinum, palladium, vanadium, magnesium, zirconium, and the like, as well as hydrogen storage alloys. As a hydrogen storage alloy, Mg 2 N
i, LaNi 5 , TiFe and the like. As the hydrogen storage metal, platinum, palladium or vanadium is preferable because it can easily store active hydrogen in the electrolytically reduced water and can stably retain the active hydrogen.

【0012】水素吸蔵金属のコロイドとして分散してい
る金属微粒子の大きさ(粒子の直径または一辺の長さ)
は、表面原子の割合が大きく、抗酸化作用および分散性
が良好な点で、0.3nm〜1μmが好ましく、0.3
nm〜3nmがより好ましい。
Size of fine metal particles dispersed as a hydrogen storage metal colloid (particle diameter or side length)
Is preferably 0.3 nm to 1 μm in terms of a large proportion of surface atoms, good antioxidative effect and dispersibility, and 0.3
nm to 3 nm is more preferable.

【0013】コロイド含有電解還元水は、塩素(C
2)および次亜塩素酸(HClO)の含有量が少ない
ものが好ましい。塩素や次亜塩素酸は生体に有害な作用
を及ぼし、コロイド含有電解還元水の有用な生理学的効
果を減ずるからである。具体的には、塩素および次亜塩
素酸は、0.1mg/l未満が好ましく、より好ましく
は0.08mg/l以下であり、特に好ましくは0.0
1mg/l以下である。
The colloid-containing electrolytically reduced water contains chlorine (C
It is preferable that the content of l 2 ) and hypochlorous acid (HClO) is small. This is because chlorine and hypochlorous acid have a harmful effect on the living body and reduce the useful physiological effect of electrolytically reduced water containing colloid. Specifically, chlorine and hypochlorous acid are preferably less than 0.1 mg / l, more preferably 0.08 mg / l or less, and particularly preferably 0.0
It is 1 mg / l or less.

【0014】電解還元水は、活性水素を吸蔵しやすく、
活性水素の状態で安定に保持できる点で、Na、K、C
a、Mg、Fe、Ag、Cuなどのコロイドまたはこれ
らのイオン、白金イオン、パラジウムイオンもしくはバ
ナジウムイオンを含むものが好ましい。本発明の電解還
元水中の金属イオンまたは金属コロイドの濃度は、たと
えば1mg/l〜500mg/lであり、好ましくは5
mg/l〜200mg/lであり、より好ましくは10
mg/l〜100mg/lである。
Electrolytically reduced water easily absorbs active hydrogen,
Na, K, and C can be stably held in the state of active hydrogen.
Colloids of a, Mg, Fe, Ag, Cu or the like, or those containing these ions, platinum ion, palladium ion or vanadium ion are preferable. The concentration of the metal ion or metal colloid in the electrolytically reduced water of the present invention is, for example, 1 mg / l to 500 mg / l, preferably 5 mg / l.
mg / l to 200 mg / l, more preferably 10
It is mg / l to 100 mg / l.

【0015】コロイド含有電解還元水における、その他
の無機物質、重金属および一般有機化学物質の含有量
は、日本国における上水道水の基準を満たすことが好ま
しい。たとえば、カドミウム0.01mg/l以下、水
銀0.0005mg/l以下、ベンゼン0.01mg/
l以下、総トリハロメタン0.1mg/l以下が好まし
い。
The content of other inorganic substances, heavy metals and general organic chemical substances in the colloid-containing electrolytically reduced water preferably satisfies the standards for tap water in Japan. For example, cadmium 0.01 mg / l or less, mercury 0.0005 mg / l or less, benzene 0.01 mg / l
It is preferably 1 or less, and total trihalomethane is 0.1 mg / l or less.

【0016】コロイド含有電解還元水の酸化還元電位
は、活性水素を吸蔵する能力が大きい点で、12℃〜1
4℃において−5〜−1000mVが好ましく、より好
ましくは−20〜−1000mVであり、特に好ましく
は−50mV〜−1000mVである。酸化還元電位
は、酸化還元電位計(東亜電波工業製)により測定する
ことができる。
The redox potential of the colloid-containing electrolytically reduced water is 12 ° C to 1 because it has a large ability to occlude active hydrogen.
At 4 ° C, it is preferably -5 to -1000 mV, more preferably -20 to -1000 mV, and particularly preferably -50 mV to -1000 mV. The redox potential can be measured by a redox potential meter (manufactured by Toa Denpa Kogyo).

【0017】コロイド含有電解還元水のpHは、飲用さ
れる点および活性水素の安定性を高める点で、12℃〜
14℃において7〜11が好ましく、より好ましくは8
〜11である。pHの調整は、リン酸ナトリウムなどの
緩衝剤または電気分解において陽極で得られる酸性水を
使用することができる。
The pH of the colloid-containing electrolytically reduced water is 12 ° C. or higher in that it is drunk and the stability of active hydrogen is increased.
7-11 is preferable at 14 degreeC, More preferably, it is 8
~ 11. The pH adjustment can use a buffer such as sodium phosphate or acidic water obtained at the anode in electrolysis.

【0018】コロイド含有電解還元水中の活性水素は、
十分な抗酸化作用を確保し、抗癌(制癌)作用、抗菌作
用、あるいは酸化ストレス抑制作用を発揮させる点で、
12℃〜14℃において0.01μM〜10μM(μM
はμmol/lである)が好ましく、より好ましくは
0.1μM〜10μM、特に好ましくは1μM〜10μ
Mである。コロイド含有電解還元水中に存在する活性水
素の定量は、3,5−ジブロモ−4−ニトロソベンゼン
スルフォン酸のナトリウム塩(DBNBS)が活性水素
と反応してDBNBSアゾ化合物を生成する着色反応を
利用して行なうことができる。すなわち、DBNBSア
ゾ化合物は波長450nmに吸収ピークを有するから、
吸光度より活性水素量を計算することができる。
Active hydrogen in the electrolytically reduced water containing colloid is
In terms of securing sufficient antioxidative effect and exerting anticancer (anticancer) effect, antibacterial effect, or oxidative stress suppressing effect,
0.01 μM to 10 μM (μM at 12 ° C. to 14 ° C.)
Is preferably μmol / l), more preferably 0.1 μM to 10 μM, particularly preferably 1 μM to 10 μM.
It is M. The active hydrogen present in the colloid-containing electrolytically reduced water was quantified by using a coloring reaction in which a sodium salt of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) reacts with active hydrogen to produce a DBNBS azo compound. Can be done. That is, since the DBNBS azo compound has an absorption peak at a wavelength of 450 nm,
The amount of active hydrogen can be calculated from the absorbance.

【0019】(コロイド含有電解還元水の製造方法)本
発明のコロイド含有電解還元水の製造方法は、電解質水
溶液に水素吸蔵金属のコロイドを添加する工程と、隔膜
で隔てられた陰極室と陽極室にその水溶液を導入する工
程と、水溶液を電気分解する工程と、陰極室で得られた
電解還元水を取出す工程と、からなる。また、本発明の
コロイド含有電解還元水の製造方法は、電解質水溶液を
陰極室と陽極室に導入する工程と、水溶液を電気分解す
る工程と、陰極室で得られた陰極水を取出す工程と、陰
極水に水素吸蔵金属のコロイドを添加する工程と、から
なる。
(Method for producing colloid-containing electrolytic reduced water) The method for producing colloid-containing electrolytic reduced water according to the present invention comprises a step of adding a hydrogen storage metal colloid to an aqueous electrolyte solution, and a cathode chamber and an anode chamber separated by a diaphragm. Of the aqueous solution, the step of electrolyzing the aqueous solution, and the step of taking out the electrolytically reduced water obtained in the cathode chamber. Further, the method for producing colloid-containing electrolytic reduced water of the present invention, a step of introducing an electrolyte aqueous solution into the cathode chamber and the anode chamber, a step of electrolyzing the aqueous solution, a step of extracting the cathode water obtained in the cathode chamber, And a step of adding a hydrogen storage metal colloid to the cathode water.

【0020】図1は、本発明で使用する電解槽10の概
念図である。電解槽10は、陰極11を含む陰極室12
と陽極13を含む陽極室14とを備える。陰極室12と
陽極室14とは隔膜15により分離されている。陰極室
12には、電気分解により得られる陰極水(電解還元
水)を取出す陰極水取出管16が接続されており、陽極
室14には、電気分解により得られる陽極水(酸性水)
を取出す陽極水排水管17が接続されている。陰極室1
2および陽極室14のそれぞれには、給水管18が接続
されている。
FIG. 1 is a conceptual diagram of an electrolytic cell 10 used in the present invention. The electrolytic cell 10 includes a cathode chamber 12 including a cathode 11.
And an anode chamber 14 including an anode 13. The cathode chamber 12 and the anode chamber 14 are separated by a diaphragm 15. A cathode water extraction pipe 16 for extracting cathode water (electrolytically reduced water) obtained by electrolysis is connected to the cathode chamber 12, and anode water (acidic water) obtained by electrolysis is connected to the anode chamber 14.
An anode water drain pipe 17 for taking out is connected. Cathode chamber 1
A water supply pipe 18 is connected to each of the anode 2 and the anode chamber 14.

【0021】電気分解をする前に、給水管を通して陰極
室と陽極室のそれぞれに電解質を含む水溶液を導入す
る。電解質とは、水に溶けてイオン伝導性を示す物質を
いい、NaOHやNaClなどがある。
Before electrolysis, an aqueous solution containing an electrolyte is introduced into each of the cathode chamber and the anode chamber through a water supply pipe. The electrolyte refers to a substance that exhibits ion conductivity when dissolved in water, and examples thereof include NaOH and NaCl.

【0022】電解質を溶解する水としては、比抵抗10
×104Ω・cm以上の純水を使用することができる
が、比抵抗100×104Ω・cm以上である超純水を
使用することが好ましい。純水は、水素型強酸性陽イオ
ン交換樹脂と水酸型強塩基性交換樹脂によるイオン交換
脱塩法により製造することができる。超純水は、強酸性
陽イオン交換樹脂と強塩基性陰イオン交換樹脂とを混合
した混床式ポリシャにより製造することができる。
As water for dissolving the electrolyte, a specific resistance of 10
While × can be used 10 4 Ω · cm or more pure water, it is preferable to use ultrapure water which is the resistivity 100 × 10 4 Ω · cm or more. Pure water can be produced by an ion-exchange desalting method using a hydrogen-type strongly acidic cation exchange resin and a hydroxide-type strongly basic exchange resin. Ultrapure water can be produced by a mixed bed polisher in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed.

【0023】電解質を含む水溶液を電気分解する工程で
は、陰極室に陰極水(電解還元水)が発生し、陽極室に
陽極水(酸性水)が発生する。電解質の水溶液を電気分
解すると、陰極室には水素イオン(H+)が集まり、水
素イオンは陰極から供給された電子(e-)と結合し、
活性水素(原子状水素H・)となる。活性水素は反応性
が大きいため、電気分解の条件によっては、2つの活性
水素が結合して水素ガス(H2)となる。電解還元水が
癌の増殖抑制効果や転移抑制効果などを奏するのは、電
解還元水中の活性水素が抗酸化作用を発揮するからであ
る。したがって、抗酸化作用を高めるために、水素ガス
になる前の状態、すなわち活性水素の状態で水中に多量
に溶存させる必要がある。
In the step of electrolyzing an aqueous solution containing an electrolyte, cathode water (electrolytically reduced water) is generated in the cathode chamber and anode water (acidic water) is generated in the anode chamber. When the aqueous solution of the electrolyte is electrolyzed, hydrogen ions (H + ) gather in the cathode chamber, and the hydrogen ions combine with the electrons (e ) supplied from the cathode,
It becomes active hydrogen (atomic hydrogen H.). Since active hydrogen has high reactivity, two active hydrogens combine to form hydrogen gas (H 2 ) depending on the conditions of electrolysis. The reason why the electrolytically-reduced water has the effect of suppressing the growth of cancer and the effect of suppressing metastasis is that active hydrogen in the electrolytically-reduced water exerts an antioxidant effect. Therefore, in order to enhance the antioxidant effect, it is necessary to dissolve a large amount in water in a state before becoming hydrogen gas, that is, in a state of active hydrogen.

【0024】電気分解に使用する装置は、活性水素の濃
度を高める点で、電解槽を直列に連結した装置や、電解
還元水が電解槽を繰り返し何度も通過するようにした装
置が好ましい。図2(a)に電解槽を2つ直列に連結し
た装置(日本トリム製TI−7000S)、図2(b)
に電解槽を3つ直列に連結した装置(日本トリム製TI
−7000 3S)、図2(c)に電解還元水が循環し
て3つの電解槽を何度も通過するようにした装置(循環
電解還元装置)を示す。
The device used for electrolysis is preferably a device in which electrolysis cells are connected in series or a device in which electrolytically reduced water repeatedly passes through the electrolysis cell in order to increase the concentration of active hydrogen. An apparatus (TI-7000S manufactured by Nippon Trim) in which two electrolytic cells are connected in series to FIG. 2 (a), FIG. 2 (b)
A device in which three electrolytic cells are connected in series to each other (TI
-7000 3S), FIG. 2C shows a device (circulation electrolytic reduction device) in which electrolytically reduced water is circulated and passes through three electrolytic cells many times.

【0025】たとえば、図2(a)に示す電解槽を2つ
直列に連結した装置では、第1の電解槽1において電気
分解により得られた陰極水(電解還元水)は、第1の電
解槽1の陰極室24から第2の電解槽2の陰極室29に
導入され、さらに電気分解される。このため、活性水素
の濃度の高い陰極水(電解還元水)を製造することがで
きる。電解槽を3つ以上直列に連結した装置においても
同様である。図2(c)に示す陰極水(電解還元水)が
3つの電解槽を何度も通過するようにした装置において
も、各電解槽の陰極室同士が連結され、陽極室同士が連
結されているが、第3の電解槽3を通過した後、ただち
に排水されることなく、配管に設けているコックを調整
することにより、一つの系内を何度も循環するため、さ
らに活性水素濃度の高い陰極水(電解還元水)を製造す
ることができる。図2(c)には、3つの電解槽を連結
した例を示したが、2つの電解槽を連結した場合も、4
つ以上の電解槽を連結した場合も同様である。電気分解
後、陰極室より陰極水(電解還元水)を取出す。
For example, in the device shown in FIG. 2A in which two electrolysis cells are connected in series, the cathode water (electrolytically reduced water) obtained by electrolysis in the first electrolysis cell 1 is first electrolyzed. It is introduced from the cathode chamber 24 of the cell 1 into the cathode chamber 29 of the second electrolytic cell 2 and is further electrolyzed. Therefore, cathode water (electrolytically reduced water) having a high concentration of active hydrogen can be produced. The same applies to an apparatus in which three or more electrolytic cells are connected in series. Also in the device shown in FIG. 2C in which the cathode water (electrolytically reduced water) is allowed to pass through the three electrolytic cells many times, the cathode chambers of the electrolytic cells are connected to each other and the anode chambers are connected to each other. However, after passing through the third electrolyzer 3, it is circulated many times in one system by adjusting the cock provided in the pipe without being drained immediately. High cathode water (electrolytically reduced water) can be produced. FIG. 2 (c) shows an example in which three electrolysis cells are connected, but when two electrolysis cells are connected, 4
The same applies when two or more electrolytic cells are connected. After electrolysis, take out cathode water (electrolytically reduced water) from the cathode chamber.

【0026】本発明のコロイド含有電解還元水の製造方
法では、水素吸蔵金属のコロイドは電気分解をする前に
電解質水溶液に添加することができる。また電気分解後
の陰極水に添加することもできる。水素吸蔵金属のコロ
イドを電気分解前に電解質水溶液に添加しておくと、電
気分解により発生する寿命の短い活性水素を発生後ただ
ちに水素吸蔵金属のコロイド内に取り込み安定化するこ
とができる。また、水素吸蔵金属のコロイドを電気分解
後の陰極水に添加すると、作業効率を上げることができ
る。
In the method for producing electrolytically reduced water containing colloid of the present invention, the hydrogen storage metal colloid can be added to the aqueous electrolyte solution before electrolysis. It can also be added to the cathode water after electrolysis. When the hydrogen storage metal colloid is added to the electrolyte aqueous solution before electrolysis, active hydrogen having a short life generated by electrolysis can be immediately incorporated into the hydrogen storage metal colloid and stabilized. Further, the work efficiency can be improved by adding a colloid of a hydrogen storage metal to the cathode water after electrolysis.

【0027】水素吸蔵金属のコロイドのうち白金コロイ
ドは、均一かつ微細なコロイドを形成でき、さらに、活
性水素(H・)が白金コロイドの表面に安定して保持で
きる点で、ヘキサクロロ白金酸(H2PtCl6)を還元
する方法により製造することが好ましい。たとえば、ヘ
キサクロロ白金酸水溶液の表面にブンゼンバーナの外炎
を当てて還元する方法、ヘキサクロロ白金酸水溶液をヒ
ドラジンまたはエタノールなどで還元する方法が好まし
い。その他、純水の中に浸した2本の白金線の間でアー
クを飛ばす方法によっても白金コロイドを製造すること
ができる。
Among the hydrogen storage metal colloids, platinum colloids can form uniform and fine colloids, and active hydrogen (H.) can be stably retained on the surface of the platinum colloids. 2 PtCl 6 ) is preferably produced. For example, a method of applying an external flame of Bunsen burner to the surface of the aqueous solution of hexachloroplatinic acid for reduction and a method of reducing the aqueous solution of hexachloroplatinic acid with hydrazine or ethanol are preferable. Alternatively, the platinum colloid can be produced by a method of blowing an arc between two platinum wires immersed in pure water.

【0028】水素吸蔵金属のコロイドのうちパラジウム
コロイドは、パラジウムコロイド内に大量に水素を吸蔵
することができる点で、塩化パラジウム(PdCl2
を還元する方法により製造することが好ましい。たとえ
ば、塩化パラジウムの水溶液をギ酸ナトリウムと炭酸ナ
トリウムで還元する方法および水素ガス(H2)を吹き
込み(バブリング)還元する方法が好ましい。
Among the hydrogen storage metal colloids, the palladium colloid is palladium chloride (PdCl 2 ) because it can store a large amount of hydrogen in the palladium colloid.
Is preferably produced by a method of reducing. For example, a method of reducing an aqueous solution of palladium chloride with sodium formate and sodium carbonate and a method of blowing (bubbling) hydrogen gas (H 2 ) are preferable.

【0029】水素吸蔵金属のコロイドのうちバナジウム
コロイドは、バナジウムコロイド内に大量に水素を吸蔵
することができる点で、塩化バナジウム(VCl2)を
還元する方法により製造することが好ましい。たとえ
ば、塩化バナジウムの水溶液をギ酸ナトリウムと炭酸ナ
トリウムで還元する方法および水素ガス(H2)を吹き
込み(バブリング)還元する方法が好ましい。
Among the hydrogen storage metal colloids, the vanadium colloid is preferably produced by a method of reducing vanadium chloride (VCl 2 ) because it can store a large amount of hydrogen in the vanadium colloid. For example, a method of reducing an aqueous solution of vanadium chloride with sodium formate and sodium carbonate and a method of blowing (bubbling) hydrogen gas (H 2 ) are preferable.

【0030】水素吸蔵金属のコロイドは、相溶性を高め
る点で、水系の分散体が好ましい。水素吸蔵金属のコロ
イドの添加量は、電解質水溶液全体に対して0.01〜
1000ppmが好ましく、0.1〜500ppmがよ
り好ましく、1〜300ppmが特に好ましい。水素吸
蔵金属のコロイドの添加量が0.01ppm未満では吸
蔵できる活性水素の量が少なくなり、十分な抗酸化作用
が得られない。一方、水素吸蔵金属のコロイドの添加量
が1000ppmより多くなると、微細なコロイドの安
定した保持が困難になる。
The hydrogen storage metal colloid is preferably an aqueous dispersion from the viewpoint of enhancing the compatibility. The amount of hydrogen storage metal colloid added is 0.01 to the total electrolyte aqueous solution.
1000 ppm is preferable, 0.1-500 ppm is more preferable, 1-300 ppm is particularly preferable. If the amount of the hydrogen storage metal colloid added is less than 0.01 ppm, the amount of active hydrogen that can be stored is small, and a sufficient antioxidant effect cannot be obtained. On the other hand, if the amount of the hydrogen storage metal colloid added exceeds 1000 ppm, it becomes difficult to stably retain the fine colloid.

【0031】実施例1 超純水86mlを密閉容器に入れ、ウォーターバスで6
0℃まで昇温した。還元剤として99%エタノール10
mlを加え、界面活性剤(和光純薬工業株式会社製Tw
een80)100μlを加え、攪拌を続けながら、7
0℃まで昇温し、ヘキサクロロ白金酸106mgを加
え、0.2gのNaHCO3を超純水に溶解して4ml
としたものを緩衝剤として混合した。温度を70℃に維
持し、ヘキサクロロ白金酸が白金に還元されて黒色にな
った時点で加温および攪拌を停止した。12時間静置し
た後、超純水500mlを加えながら分画分子量100
00の濾過膜を使い限外濾過し、洗浄と濃縮を行なっ
た。
Example 1 86 ml of ultrapure water was placed in a closed container and placed in a water bath for 6 minutes.
The temperature was raised to 0 ° C. 99% ethanol as reducing agent 10
ml, and a surfactant (Tw manufactured by Wako Pure Chemical Industries, Ltd.
een80) 100 μl was added, and while continuing stirring, 7
The temperature was raised to 0 ° C., 106 mg of hexachloroplatinic acid was added, 0.2 g of NaHCO 3 was dissolved in ultrapure water, and 4 ml was added.
Was mixed as a buffer. The temperature was maintained at 70 ° C., and when hexachloroplatinic acid was reduced to platinum and turned black, heating and stirring were stopped. After allowing to stand for 12 hours, add 500 ml of ultrapure water and cut off the molecular weight to 100.
Ultrafiltration was performed using a No. 00 filter membrane, and washing and concentration were performed.

【0032】限外濾過後、超純水50mlを加えた。透
過型電子顕微鏡で観察したところ、図6に示すように、
1nm〜5nmの微粒子が多数認められた。これらの微
粒子が白金コロイドであることが電顕元素分析法により
確認された。また、高速液体クロマトグラフィ(HPL
C)で測定したところ、波長220nmに吸収ピークが
あった。ヘキサクロロ白金酸のイオンは220nmに吸
収を持たないが、ヘキサクロロ白金酸が還元されて白金
コロイドになると220nmに吸収を持つようになるこ
とから、図6に示した微粒子は、白金コロイドであるこ
とが確認できた。
After ultrafiltration, 50 ml of ultrapure water was added. When observed with a transmission electron microscope, as shown in FIG.
Many fine particles of 1 nm to 5 nm were recognized. It was confirmed by electron microscopic analysis that these fine particles were platinum colloids. In addition, high performance liquid chromatography (HPL
When measured in C), there was an absorption peak at a wavelength of 220 nm. Hexachloroplatinic acid ions have no absorption at 220 nm, but when hexachloroplatinic acid is reduced to platinum colloid, it absorbs at 220 nm. Therefore, the fine particles shown in FIG. 6 are platinum colloids. It could be confirmed.

【0033】超純水中に、電解質(NaOH)を溶解し
て、5mMのNaOH水溶液を得た。この水溶液100
0mlに前述の白金コロイドを2ppmとなるように添
加した。図2(c)に示す陰極水が3つの電解槽を何度
も通過するようにした装置(循環電解還元装置)に入れ
て、0.13A/cm2で60分間電気分解し、陰極室
からコロイド含有電解還元水を取出した。
An electrolyte (NaOH) was dissolved in ultrapure water to obtain a 5 mM NaOH aqueous solution. This aqueous solution 100
The platinum colloid described above was added to 0 ml so as to be 2 ppm. The cathode water shown in FIG. 2 (c) was placed in an apparatus (circulation electrolytic reduction apparatus) that allowed it to pass through three electrolysis cells many times, and electrolyzed at 0.13 A / cm 2 for 60 minutes to remove it from the cathode chamber. The colloid-containing electrolytically reduced water was taken out.

【0034】製造したコロイド含有電解還元水およびコ
ントロールとしての超純水について、活性酸素消去能を
フェントン反応法で測定した。フェントン反応法は、活
性酸素のうち・OHを測定する方法であり、過酸化水素
から鉄を触媒として・OHを発生させ、・OHにより発
光試薬であるルミノールを励起させ、そのときに生じる
発光を利用して活性酸素の減少を見る方法である。具体
的な操作方法は、東北電子産業株式会社製の高感度化学
発光測定器(CLD−110)のセル中に0.1Mのト
リス塩酸緩衝液(pH7.8)、2.5μMのルミノー
ル、5μMのDTPA(diethylenetria
mine−N,N,N',N'',N'''−pentaac
etic acid)、5μMのFeSO4、50μM
の過酸化水素を終濃度になるように加えた後、試験体を
添加し、全量が2mlとなるように調製した上で発光強
度の変化を測定した。測定結果を図3に示す。測定結果
から明らかなとおり、コントロールである超純水の発光
強度が6.2×105であるのに対して、本実施例のコ
ロイド含有電解還元水の発光強度は1.5×105であ
り、75%の活性酸素消去能が認められた(図3)。
The active oxygen scavenging ability of the produced colloid-containing electrolytically reduced water and ultrapure water as a control was measured by the Fenton reaction method. The Fenton reaction method is a method of measuring .OH in active oxygen, generating .OH using hydrogen peroxide with iron as a catalyst, and exciting .luminum, which is a luminescent reagent, with .OH to generate luminescence generated at that time. This is a method of utilizing the decrease in active oxygen. A specific operation method is as follows: 0.1 M Tris-HCl buffer (pH 7.8), 2.5 μM luminol, 5 μM in a cell of a high-sensitivity chemiluminescence measuring device (CLD-110) manufactured by Tohoku Electronics Sangyo Co., Ltd. DTPA (diethylethylene)
mine-N, N, N ', N ", N'"-pentaac
5 μM FeSO 4 , 50 μM
After adding hydrogen peroxide of 2 to a final concentration, a test sample was added to adjust the total amount to 2 ml, and the change in luminescence intensity was measured. The measurement result is shown in FIG. As is apparent from the measurement results, the emission intensity of the control ultrapure water is 6.2 × 10 5 , whereas the emission intensity of the colloid-containing electrolytically reduced water of this example is 1.5 × 10 5 . Yes, 75% active oxygen scavenging ability was observed (Fig. 3).

【0035】また、活性酸素消去能の安定性を調べるた
めに、経時変化を測定した。測定結果を図7に示す。図
7の結果から明らかなとおり、活性酸素消去能は21日
間を経過しても同一のレベルに維持されていたことから
(図7)、長期間にわたり安定した活性酸素消去能を発
揮することがわかった。
Further, in order to investigate the stability of the active oxygen scavenging ability, the change with time was measured. The measurement result is shown in FIG. 7. As is clear from the results of FIG. 7, the active oxygen scavenging ability was maintained at the same level even after 21 days (FIG. 7), and therefore, the stable active oxygen scavenging ability can be exerted over a long period of time. all right.

【0036】実施例2 超純水中に、電解質(NaOH)を溶解して、5mMの
NaOH水溶液を得た。この水溶液を1槽の電解槽から
なる装置(日本トリム製TI−8000)を用いて、
0.13A/cm2で電気分解し、陰極室から陰極水を
取出した。
Example 2 An electrolyte (NaOH) was dissolved in ultrapure water to obtain a 5 mM NaOH aqueous solution. Using this device (TI-8000 manufactured by Nippon Trim) consisting of one electrolytic bath,
Electrolysis was carried out at 0.13 A / cm 2 , and cathode water was taken out from the cathode chamber.

【0037】実施例1において製造した白金コロイド
を、濃度が0.02ppm、0.2ppmおよび2pp
mとなるように陰極水に添加した後、活性酸素消去能を
測定した。活性酸素消去能の測定は、フェントン反応
法、過酸化水素法およびHX−XOD法により実施し
た。いずれの方法においても、東北電子産業株式会社製
の高感度化学発光測定器CLD−110により測定し
た。
The platinum colloid prepared in Example 1 was used in a concentration of 0.02 ppm, 0.2 ppm and 2 pp.
After adding to the cathode water so that it became m, the active oxygen scavenging ability was measured. The active oxygen scavenging ability was measured by the Fenton reaction method, hydrogen peroxide method and HX-XOD method. In any method, measurement was performed using a high-sensitivity chemiluminescence measuring device CLD-110 manufactured by Tohoku Electronics Industrial Co., Ltd.

【0038】フェントン反応法の原理および操作方法に
ついては前述のとおりである。また、過酸化水素法は、
活性酸素のうちH22を測定する方法であり、前述のフ
ェントン反応の反応液からDTPAのFeSO4混液を
除いた反応液を用いて、H2 2に由来するルミノール発
光を測定するものである。
In the principle and operation method of the Fenton reaction method
This is as described above. In addition, the hydrogen peroxide method
H out of active oxygen2O2Is a method of measuring
FeSO of DTPA from the reaction solution of Enton's reactionFourMixed liquid
Using the removed reaction solution,2O 2From Luminor
It measures light.

【0039】HX−XOD法は、活性酸素のうちO2・-
を測定する方法であり、HX(ヒポキサンチン)を基質
とし、XOD(キサンチンオキシダーゼ)によりO2・-
を発生させ、O2・-が発光試薬であるCLA(和光純薬
工業株式会社製)を励起させ、そのときに生じる発光を
利用して活性酸素の減少を見る方法である。具体的な操
作方法は、CLD−110のセル中に、0.2μMのリ
ン酸緩衝液(pH7.8)、1μMのCLA、5U/m
lのXOD、10μMのHXを終濃度になるように加え
た後、試験体を添加し、全量が2mlとなるように調製
した上で発光強度の変化を測定した。フェントン反応法
による測定結果を図4(a)に、過酸化水素法による測
定結果を図4(b)に、また、HX−XOD法による測
定結果を図4(c)に示す。
The HX-XOD method uses O 2 · − among active oxygen.
Is a method for measuring O 2 · − by using HX (hypoxanthine) as a substrate and XOD (xanthine oxidase).
Is generated, O 2 · − excites CLA (manufactured by Wako Pure Chemical Industries, Ltd.), which is a luminescent reagent, and the decrease in active oxygen is observed by utilizing the luminescence generated at that time. A specific operation method is as follows: 0.2 μM phosphate buffer (pH 7.8), 1 μM CLA, 5 U / m in a cell of CLD-110.
After adding 1 L of XOD and 10 μM of HX to a final concentration, a test sample was added, and the total amount was adjusted to 2 ml, and then the change in luminescence intensity was measured. The measurement result by the Fenton reaction method is shown in FIG. 4 (a), the measurement result by the hydrogen peroxide method is shown in FIG. 4 (b), and the measurement result by the HX-XOD method is shown in FIG. 4 (c).

【0040】測定結果から明らかなとおり、白金コロイ
ドを2ppm程度添加することにより65〜90%程度
の活性酸素消去能が認められた。また、活性酸素消去能
の安定性を調べるためオートクレーブ処理を行なったと
ころ、オートクレーブによる1回処理および2回処理で
は活性酸素消去能に大きな変化はみられなかった(デー
タ不掲載)。したがって、活性酸素消去能は安定してい
ることがわかった。
As is clear from the measurement results, the active oxygen scavenging ability of about 65 to 90% was recognized by adding about 2 ppm of platinum colloid. Further, when autoclave treatment was carried out to examine the stability of the active oxygen scavenging ability, no significant change was observed in the active oxygen scavenging ability between the single treatment and the double treatment by the autoclave (data not shown). Therefore, it was found that the active oxygen scavenging ability is stable.

【0041】実施例3 本発明のコロイド含有電解還元水により細胞内の活性酸
素濃度がどのように影響を受けるかについて、活性酸素
と反応して蛍光を発するDCFH−DA(ジクロロフル
オレッセインジアセテート)を用い、in vitro
で評価した。細胞は、細胞銀行(ATCC(米国))よ
り入手したHT1080細胞(高転移性ヒト繊維肉腫細
胞株)を用いた。
Example 3 DCFH-DA (dichlorofluorescein diacetate), which reacts with active oxygen and emits fluorescence, as to how the active oxygen concentration in cells is affected by the colloid-containing electrolytically reduced water of the present invention. In vitro
It was evaluated by. As the cells, HT1080 cells (highly metastatic human fibrosarcoma cell line) obtained from Cell Bank (ATCC (USA)) were used.

【0042】超純水中に電解質(NaOH)を溶解し
て、5mMのNaOH水溶液を得た後、図2(c)に示
す陰極水が3つの電解槽を何度も通過するようにした装
置(循環電解還元装置)に入れて、0.13A/cm2
で60分間電気分解し、陰極室から陰極水を得た。この
陰極水に、実施例1で製造した白金コロイドを0.5p
pmとなるように添加した。得られたコロイド含有電解
還元水を用いた10%牛胎児血清添加MEM培地中で、
HT1080細胞を1時間培養した後、蛍光試薬DCF
H−DAを添加し、共焦点レーザ生物顕微鏡(モレキュ
ラー・ダイナミック社製)により蛍光強度を測定した。
コントロールとしては、超純水のみ、および超純水に実
施例1で製造した白金コロイドを0.5ppm添加した
ものを用いた。測定の結果を図5に示す。
An apparatus in which an electrolyte (NaOH) was dissolved in ultrapure water to obtain a 5 mM NaOH aqueous solution, and then cathode water shown in FIG. 2 (c) was allowed to pass through three electrolytic cells many times. (Circulation electrolytic reduction device), 0.13 A / cm 2
At 60 ° C. for 60 minutes to obtain cathode water from the cathode chamber. 0.5 p of the platinum colloid produced in Example 1 was added to this cathode water.
pm was added. In the MEM medium containing 10% fetal bovine serum using the obtained colloid-containing electrolytically reduced water,
After culturing HT1080 cells for 1 hour, the fluorescent reagent DCF
H-DA was added, and the fluorescence intensity was measured with a confocal laser biological microscope (Molecular Dynamic).
As a control, ultrapure water alone or ultrapure water containing 0.5 ppm of the platinum colloid produced in Example 1 was used. The measurement results are shown in FIG.

【0043】測定結果から明らかなとおり、超純水では
蛍光強度が255であり、超純水に白金コロイドを0.
5ppm添加しても蛍光強度は246であり、あまり変
化しなかったが、白金コロイドを0.5ppm含む電解
還元水では蛍光強度は124となり、超純水の場合の4
9%にまで低下した。したがって、白金コロイドを含む
電解還元水により細胞内の活性酸素濃度が低下し、還元
状態へ変化したことがわかった。
As is clear from the measurement results, the fluorescence intensity of ultrapure water was 255, and platinum colloid was added to ultrapure water in an amount of 0.1%.
The fluorescence intensity was 246, which did not change much even when 5 ppm was added, but the fluorescence intensity was 124 in electrolytic reduced water containing 0.5 ppm of platinum colloid, which was 4 in the case of ultrapure water.
It fell to 9%. Therefore, it was found that the electrolytically reduced water containing the platinum colloid reduced the intracellular active oxygen concentration and changed it to the reduced state.

【0044】今回開示された実施の形態および実施例は
すべての点で例示であって制限的なものではないと考え
られるべきである。本発明の範囲は上記した説明ではな
くて特許請求の範囲によって示され、特許請求の範囲と
均等の意味および範囲内でのすべての変更が含まれるこ
とが意図される。
The embodiments and examples disclosed this time must be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.

【0045】[0045]

【発明の効果】本発明によれば、抗酸化作用が強く、か
つ安定なコロイド含有電解還元水およびその製造方法を
提供することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a stable colloid-containing electrolytically reduced water having a strong antioxidant effect and a method for producing the same.

【0046】本発明の水素吸蔵金属のコロイドを含む電
解還元水は、抗酸化作用が強いため、癌や糖尿病の治療
や予防に利用でき、細菌の増殖を抑制することができ
る。また細胞などの生体を酸化ストレスから保護する目
的で用いることもできる。
Since the electrolytically reduced water containing the hydrogen storage metal colloid of the present invention has a strong antioxidative effect, it can be used for the treatment and prevention of cancer and diabetes, and the growth of bacteria can be suppressed. It can also be used for the purpose of protecting living bodies such as cells from oxidative stress.

【図面の簡単な説明】[Brief description of drawings]

【図1】 水の電気分解に用いる電解槽を示す模式図で
ある。
FIG. 1 is a schematic diagram showing an electrolytic cell used for electrolysis of water.

【図2】 水の電気分解の効率を高めた電解槽を示す模
式図であり、(a)は、電解槽を2つ直列に連結した装
置(日本トリム製TI−7000S)、(b)は、電解
槽を3つ直列に連結した装置(日本トリム製TI−70
00 3S)、また、(c)は、電解還元水が循環して
3つの電解槽を何度も通過するようにした装置(循環電
解還元装置)を示す。
FIG. 2 is a schematic diagram showing an electrolysis cell in which the efficiency of electrolysis of water is enhanced. (A) is a device (TI-7000S manufactured by Nippon Trim) in which two electrolysis cells are connected in series, and (b) is , A device in which three electrolytic cells are connected in series (TI-70 manufactured by Nippon Trim
00 3S), and (c) shows a device (circulation electrolytic reduction device) in which electrolytic reduced water is circulated and passes through three electrolytic cells many times.

【図3】 白金コロイドを含む電解還元水の活性酸素消
去能を示す図である。
FIG. 3 is a diagram showing the ability of electrolytic reduced water containing platinum colloid to eliminate active oxygen.

【図4】 白金コロイドの濃度の変化に伴う活性酸素消
去能の変化を示す図であり、(a)は、フェントン反応
法による測定結果を、(b)は、過酸化水素法による測
定結果、また、(c)は、HX−XOD法による測定結
果を示す。
FIG. 4 is a diagram showing a change in active oxygen scavenging ability with a change in concentration of platinum colloid, (a) shows a measurement result by a Fenton reaction method, (b) shows a measurement result by a hydrogen peroxide method, Moreover, (c) shows the measurement result by the HX-XOD method.

【図5】 白金コロイドを含む電解還元水による細胞内
活性酸素の影響を示す図である。
FIG. 5 is a diagram showing the influence of intracellular active oxygen by electrolytically reduced water containing platinum colloid.

【図6】 透過型電子顕微鏡による白金コロイドの表面
状態を表す図である。
FIG. 6 is a diagram showing a surface state of a platinum colloid by a transmission electron microscope.

【図7】 活性酸素消去能の経時変化を示す図である。FIG. 7 is a diagram showing changes over time in the active oxygen scavenging ability.

【符号の説明】[Explanation of symbols]

1 第1の電解槽、2 第2の電解槽、3 第3の電解
槽、10 電解層、11 陰極、12 陰極室、13
陽極、14 陽極室、15 隔膜。
1 1st electrolysis tank, 2 2nd electrolysis tank, 3 3rd electrolysis tank, 10 electrolysis layer, 11 cathode, 12 cathode chamber, 13
Anode, 14 Anode chamber, 15 diaphragm.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61P 3/10 A61P 35/00 35/00 43/00 111 43/00 111 C25B 9/00 R (72)発明者 大坪 一道 大阪市北区大淀中1−8−34 株式会社日 本トリム内 Fターム(参考) 4C086 AA01 AA02 HA07 HA10 HA12 MA02 MA04 MA17 NA14 ZB26 ZC02 ZC35 4C087 AA01 AA02 BA01 CA01 MA02 MA17 NA14 ZB26 ZC02 ZC35 4K021 AB25 BA02 BA16 BC01 BC09 DB01 DB07 DC15 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) A61P 3/10 A61P 35/00 35/00 43/00 111 43/00 111 C25B 9/00 R (72) Inventor Itsudo Otsubo 1-8-34 Oyodochu, Kita-ku, Osaka City F-term in Japan Trim Co., Ltd. (reference) 4C086 AA01 AA02 HA07 HA10 HA12 MA02 MA04 MA17 NA14 ZB26 ZC02 ZC35 4C087 AA01 AA02 BA01 CA01 MA02 MA17 NA14 ZB26 ZC02 ZC35 4K021 AB25 BA02 BA16 BC01 BC09 DB01 DB07 DC15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電解質水溶液を電気分解することにより
得られる電解還元水であって、活性水素のキャリアとし
て水素吸蔵金属のコロイドを含むことを特徴とするコロ
イド含有電解還元水。
1. Colloid-containing electrolytic reduced water, which is electrolytically reduced water obtained by electrolyzing an aqueous electrolyte solution and contains a colloid of a hydrogen storage metal as a carrier of active hydrogen.
【請求項2】 前記水素吸蔵金属のコロイドは、白金コ
ロイド、パラジウムコロイドまたはバナジウムコロイド
である請求項1記載のコロイド含有電解還元水。
2. The electrolytically reduced water containing colloid according to claim 1, wherein the hydrogen storage metal colloid is a platinum colloid, a palladium colloid or a vanadium colloid.
【請求項3】 電解質を含む水溶液に水素吸蔵金属のコ
ロイドを添加する工程と、 隔膜で隔てられた陰極室と陽極室のそれぞれに前記水溶
液を導入する工程と、 前記陰極室に陰極を浸漬し、前記陽極室に陽極を浸漬し
た状態で、該陰極と該陽極との間で通電することによ
り、前記水溶液を電気分解する工程と、 前記陰極室で得られた電解還元水を取出す工程と、 からなるコロイド含有電解還元水の製造方法。
3. A step of adding a hydrogen storage metal colloid to an aqueous solution containing an electrolyte, a step of introducing the aqueous solution into each of a cathode chamber and an anode chamber separated by a diaphragm, and immersing a cathode in the cathode chamber. The step of electrolyzing the aqueous solution by energizing between the cathode and the anode while the anode is immersed in the anode chamber, and the step of extracting the electrolytically reduced water obtained in the cathode chamber, And a method for producing electrolytically reduced water containing colloid.
【請求項4】 隔膜で隔てられた陰極室と陽極室のそれ
ぞれに電解質を含む水溶液を導入する工程と、 前記陰極室に陰極を浸漬し、前記陽極室に陽極を浸漬し
た状態で、該陰極と該陽極との間で通電することによ
り、前記水溶液を電気分解する工程と、 前記陰極室で得られた陰極水を取出す工程と、 前記陰極水に水素吸蔵金属のコロイドを添加する工程
と、 からなるコロイド含有電解還元水の製造方法。
4. A step of introducing an aqueous solution containing an electrolyte into each of a cathode chamber and an anode chamber separated by a diaphragm; and a step of immersing the cathode in the cathode chamber and immersing the anode in the anode chamber. By energizing between the anode and the anode, a step of electrolyzing the aqueous solution, a step of extracting cathode water obtained in the cathode chamber, a step of adding a hydrogen storage metal colloid to the cathode water, And a method for producing electrolytically reduced water containing colloid.
【請求項5】 前記水素吸蔵金属のコロイドは、ヘキサ
クロロ白金酸(H2PtCl6)を還元することにより得
られる白金コロイドである請求項3または4記載のコロ
イド含有電解還元水の製造方法。
5. The method of producing electrolytically reduced water containing colloid according to claim 3, wherein the hydrogen storage metal colloid is a platinum colloid obtained by reducing hexachloroplatinic acid (H 2 PtCl 6 ).
【請求項6】 前記水素吸蔵金属のコロイドは、塩化パ
ラジウム(PdCl 2)を還元することにより得られる
パラジウムコロイドである請求項3または4記載のコロ
イド含有電解還元水の製造方法。
6. The hydrogen storage metal colloid is a chloride chloride.
Radium (PdCl 2) Is obtained by reducing
The roller according to claim 3 or 4, which is a palladium colloid.
Id-containing electrolytic reduced water manufacturing method.
【請求項7】 前記水素吸蔵金属のコロイドは、塩化バ
ナジウム(VCl2)を還元することにより得られるバ
ナジウムコロイドである請求項3または4記載のコロイ
ド含有電解還元水の製造方法。
7. The method for producing electrolytically reduced water containing colloid according to claim 3, wherein the hydrogen storage metal colloid is a vanadium colloid obtained by reducing vanadium chloride (VCl 2 ).
JP2002107924A 2002-04-10 2002-04-10 Colloid-containing electrolytic reduced water and method for producing the same Expired - Lifetime JP3569270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107924A JP3569270B2 (en) 2002-04-10 2002-04-10 Colloid-containing electrolytic reduced water and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107924A JP3569270B2 (en) 2002-04-10 2002-04-10 Colloid-containing electrolytic reduced water and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003301288A true JP2003301288A (en) 2003-10-24
JP3569270B2 JP3569270B2 (en) 2004-09-22

Family

ID=29391825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107924A Expired - Lifetime JP3569270B2 (en) 2002-04-10 2002-04-10 Colloid-containing electrolytic reduced water and method for producing the same

Country Status (1)

Country Link
JP (1) JP3569270B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073722A1 (en) * 2003-02-20 2004-09-02 Shetech Co., Ltd. Superoxide anion decomposing agent
WO2004073723A1 (en) * 2003-02-20 2004-09-02 She Tec Co., Ltd. Medical drug containing fine particle of noble metal
JP2005040781A (en) * 2003-07-08 2005-02-17 Kyushu Hitachi Maxell Ltd Water conditioner
JP2005120084A (en) * 2003-09-25 2005-05-12 Hoshizaki Electric Co Ltd Immunostimulator, method and apparatus for producing the same
JP2005270938A (en) * 2004-03-26 2005-10-06 Ainobekkusu Kk Method for manufacturing hydrogen enriched water and hydrogen enriched water
JP2005296939A (en) * 2004-03-15 2005-10-27 Japan Organo Co Ltd Method and apparatus for producing active oxygen removal water
WO2006011559A1 (en) * 2004-07-29 2006-02-02 Inovex Co., Ltd. Composition for eliminating active oxygen in vivo
WO2006035523A1 (en) * 2004-09-27 2006-04-06 Hoshizaki Denki Kabushiki Kaisha Immunopotentiator and method and apparatus for producing the same
JP2006158797A (en) * 2004-12-10 2006-06-22 Eamex Co Polymer actuator element
WO2007074749A1 (en) * 2005-12-27 2007-07-05 Apt Co., Ltd. Prophylactic and/or therapeutic agent for chronic obstructive pulmonary disease
JP2007230964A (en) * 2006-03-03 2007-09-13 Hiroshima Kasei Ltd Lotion and method for producing the lotion
JP2009526083A (en) * 2006-02-10 2009-07-16 イーエルシー マネージメント エルエルシー Inorganic ions in structured water
JP2009196968A (en) * 2008-02-25 2009-09-03 Nagasaki Univ Cancer treatment apparatus provided with hydrogen occlusion alloy member
JP2009231724A (en) * 2008-03-25 2009-10-08 Fujitsu Microelectronics Ltd Manufacturing method of semiconductor device and semiconductor device
JP2009285632A (en) * 2008-05-30 2009-12-10 Prefectural Univ Of Hiroshima Water conditioner for hydrogen-containing-electrolytic water, bathtub equipment and method for manufacturing hydrogen-containing-electrolytic water
KR101235745B1 (en) 2012-10-04 2013-02-21 권재만 Method for cultivating high functional apple which contains vanadium helping insulin metabolism of patients with type 2 diabetes mellitus
JP2014119271A (en) * 2012-12-13 2014-06-30 Fresh:Kk Water
WO2018199099A1 (en) * 2017-04-26 2018-11-01 株式会社日本トリム Electrolyzed-water generation device and electrolyzed-water generation method
CN110114314A (en) * 2017-03-22 2019-08-09 日本多宁股份有限公司 Electrolytic water generating device and electrolyzed water producing method
JP2020032387A (en) * 2018-08-31 2020-03-05 株式会社日本トリム Electrolyzed water generator and electrolyzed water generation method
JP6928408B1 (en) * 2021-03-18 2021-09-01 株式会社ミスターウォーターマン Water conditioning system and addition unit used for it
JP7029839B1 (en) 2021-03-18 2022-03-04 株式会社ミスターウォーターマン Water conditioning system and addition unit used for it
CN114540842A (en) * 2022-02-25 2022-05-27 山东第一医科大学附属省立医院(山东省立医院) Device for preparing sodium hypochlorite disinfection colloid by electrolyzing salt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330146A (en) * 2003-05-09 2004-11-25 Nippon Torimu:Kk Production method of active hydrogen dissolved water, and active hydrogen dissolved water and carcinogenesis inhibitor obtained by the production method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838043B2 (en) 2003-02-20 2010-11-23 Apt Co., Ltd Superoxide anion decomposing agent
WO2004073722A1 (en) * 2003-02-20 2004-09-02 Shetech Co., Ltd. Superoxide anion decomposing agent
JPWO2004073722A1 (en) * 2003-02-20 2006-06-01 株式会社シーテック Superoxide anion decomposer
WO2004073723A1 (en) * 2003-02-20 2004-09-02 She Tec Co., Ltd. Medical drug containing fine particle of noble metal
JP2005040781A (en) * 2003-07-08 2005-02-17 Kyushu Hitachi Maxell Ltd Water conditioner
JP2005120084A (en) * 2003-09-25 2005-05-12 Hoshizaki Electric Co Ltd Immunostimulator, method and apparatus for producing the same
JP2005296939A (en) * 2004-03-15 2005-10-27 Japan Organo Co Ltd Method and apparatus for producing active oxygen removal water
JP2005270938A (en) * 2004-03-26 2005-10-06 Ainobekkusu Kk Method for manufacturing hydrogen enriched water and hydrogen enriched water
WO2006011559A1 (en) * 2004-07-29 2006-02-02 Inovex Co., Ltd. Composition for eliminating active oxygen in vivo
WO2006035523A1 (en) * 2004-09-27 2006-04-06 Hoshizaki Denki Kabushiki Kaisha Immunopotentiator and method and apparatus for producing the same
JP2006158797A (en) * 2004-12-10 2006-06-22 Eamex Co Polymer actuator element
WO2007074749A1 (en) * 2005-12-27 2007-07-05 Apt Co., Ltd. Prophylactic and/or therapeutic agent for chronic obstructive pulmonary disease
JP2009526083A (en) * 2006-02-10 2009-07-16 イーエルシー マネージメント エルエルシー Inorganic ions in structured water
JP2007230964A (en) * 2006-03-03 2007-09-13 Hiroshima Kasei Ltd Lotion and method for producing the lotion
JP4600889B2 (en) * 2006-03-03 2010-12-22 広島化成株式会社 Method for producing lotion
JP2009196968A (en) * 2008-02-25 2009-09-03 Nagasaki Univ Cancer treatment apparatus provided with hydrogen occlusion alloy member
JP2009231724A (en) * 2008-03-25 2009-10-08 Fujitsu Microelectronics Ltd Manufacturing method of semiconductor device and semiconductor device
JP2009285632A (en) * 2008-05-30 2009-12-10 Prefectural Univ Of Hiroshima Water conditioner for hydrogen-containing-electrolytic water, bathtub equipment and method for manufacturing hydrogen-containing-electrolytic water
KR101235745B1 (en) 2012-10-04 2013-02-21 권재만 Method for cultivating high functional apple which contains vanadium helping insulin metabolism of patients with type 2 diabetes mellitus
JP2014119271A (en) * 2012-12-13 2014-06-30 Fresh:Kk Water
CN110114314A (en) * 2017-03-22 2019-08-09 日本多宁股份有限公司 Electrolytic water generating device and electrolyzed water producing method
JP2018183740A (en) * 2017-04-26 2018-11-22 株式会社日本トリム Electrolytic water generator
WO2018199099A1 (en) * 2017-04-26 2018-11-01 株式会社日本トリム Electrolyzed-water generation device and electrolyzed-water generation method
JP2020032387A (en) * 2018-08-31 2020-03-05 株式会社日本トリム Electrolyzed water generator and electrolyzed water generation method
WO2020045063A1 (en) * 2018-08-31 2020-03-05 株式会社日本トリム Electrolyzed water generator and electrolyzed water generation method
JP6928408B1 (en) * 2021-03-18 2021-09-01 株式会社ミスターウォーターマン Water conditioning system and addition unit used for it
JP7029839B1 (en) 2021-03-18 2022-03-04 株式会社ミスターウォーターマン Water conditioning system and addition unit used for it
WO2022196808A1 (en) * 2021-03-18 2022-09-22 株式会社ミスターウォーターマン Water purification system and addition unit used by same
JP2022143857A (en) * 2021-03-18 2022-10-03 株式会社ミスターウォーターマン Water purification system and addition unit used in the same
JP2022145418A (en) * 2021-03-18 2022-10-04 株式会社ミスターウォーターマン Water purification system and addition unit used in the same
CN114540842A (en) * 2022-02-25 2022-05-27 山东第一医科大学附属省立医院(山东省立医院) Device for preparing sodium hypochlorite disinfection colloid by electrolyzing salt
CN114540842B (en) * 2022-02-25 2024-01-19 山东第一医科大学附属省立医院(山东省立医院) Device for preparing sodium hypochlorite disinfection colloid by electrolyzing salt

Also Published As

Publication number Publication date
JP3569270B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP3569270B2 (en) Colloid-containing electrolytic reduced water and method for producing the same
JP4004523B1 (en) Dialysate preparation water, dialysate using the same, dialysate production method and dialyzer
EP1162176B1 (en) Electrolyzed water of anode side and process for production thereof
JP2004330146A (en) Production method of active hydrogen dissolved water, and active hydrogen dissolved water and carcinogenesis inhibitor obtained by the production method
CA2316656C (en) Electrolytic reduced water, anti-cancer drug, and producing method and apparatus thereof
US20090311342A1 (en) Method for activating and stabilizing dissolved hydrogen in water
EP0889007A1 (en) Reducing electrolytic water and method for preparing the same
EP1101510B1 (en) Condensate of superoxide anion radical abolisher, producing method thereof and superoxide anion radical abolisher powder
Guo et al. Determination of inequable fate and toxicity of Ag nanoparticles in a Phanerochaete chrysosporium biofilm system through different sulfide sources
CN110049952A (en) The method of operation of Ultrapure Water Purifiers and Ultrapure Water Purifiers
JP3826645B2 (en) Electrolyzed water generator
Lapin et al. Biochemical effects of molecular hydrogen in aqueous systems
CN104671362B (en) Remove electrode of bromate and preparation method thereof in water
JP2001070944A (en) Electrolytic water generator
CN106512005A (en) Method for preparing gold@resveratrol multi-function nanometer composite photo-thermal reagent without using surfactant and composite photo-thermal reagent
Yuan et al. The combined effect of light irradiation and chloride on the physicochemical properties of silver nanoparticles
JP4130763B2 (en) Generation method of non-oxidizing strong acid water
JP7347867B2 (en) Active oxygen water and method for producing active oxygen water
JP6255456B2 (en) Electrolyzer for hydrogen molecule dissolved water production
JP2001079549A (en) Production of electrolytic water, electrolyzed water on cathode side, electrolytic auxiliary and water electrolytic device
JP3269784B2 (en) Ozone water production method and ozone water production device
JP2007297281A (en) Agent for eliminating active oxygen in vivo
Villanueva et al. In-situ Electrochemical Generation of Ferrate Ion [Fe (VI)] in Acidic Conditions: A Potential Wastewater Decontamination Process
KR100658409B1 (en) Electrolyzed water of anode side and process for production thereof
Rojas-Andrade Structural Engineering of Carbon and Metal Nanostructures for Antibacterial Applications

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Ref document number: 3569270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term