[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003301265A - Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it - Google Patents

Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it

Info

Publication number
JP2003301265A
JP2003301265A JP2003031362A JP2003031362A JP2003301265A JP 2003301265 A JP2003301265 A JP 2003301265A JP 2003031362 A JP2003031362 A JP 2003031362A JP 2003031362 A JP2003031362 A JP 2003031362A JP 2003301265 A JP2003301265 A JP 2003301265A
Authority
JP
Japan
Prior art keywords
thin film
ito
oxygen
ito thin
spike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003031362A
Other languages
Japanese (ja)
Inventor
Kentaro Uchiumi
健太郎 内海
Kenichi Ito
謙一 伊藤
Tetsuo Shibutami
哲夫 渋田見
Hideki Teraoka
秀樹 寺岡
Yuichi Nagasaki
裕一 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003031362A priority Critical patent/JP2003301265A/en
Publication of JP2003301265A publication Critical patent/JP2003301265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ITO thin film having low resistance, no spike-shaped protrusion on the surface, and superior smoothness, which is suitable for a transparent anode of an organic electroluminescence element. <P>SOLUTION: The ITO sputtering target made of an ITO sintered compact comprises a composition of indium, tin and oxygen, a sintered density of 99.5% or higher by relative density, a bulk specific resistance of 70-100 μΩcm, and an integrated intensity of an X-ray diffraction peak for the (220) plane of an In<SB>4</SB>Sn<SB>3</SB>O<SB>12</SB>phase, which is an intermediate compound of stannic oxide and indium oxide, in quantity of less than 30% with respect to that for the (211) plane of an In<SB>2</SB>O<SB>3</SB>phase. The manufacturing method is characterized by forming the film with a sputtering method using the target, in an oxygen partial pressure of 0.5-1.0%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スパイク状突起の
ない表面平滑性に優れたITO薄膜及びその製造方法に
関するものである。当該ITO薄膜は有機EL(Ele
ctro Luminescence)ディスプレイに
用いる透明陽極として特に優れたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ITO thin film having no spike-like protrusion and excellent in surface smoothness, and a method for manufacturing the same. The ITO thin film is an organic EL (Ele
It is particularly excellent as a transparent anode used for a ctro Luminescence display.

【0002】[0002]

【従来の技術】近年の情報化社会の発展にともない、マ
ン−マシーンインターフェイスである表示機器に要求さ
れる技術レベルが高まっている。なかでも、有機EL
(Electro Luminescence)パネル
は、自発光のため視認性に優れ、薄型、軽量、高速応
答、高視野角、高コントラストといった特徴を有してい
る。有機EL素子の構造は、図1に示すようにガラス基
板1上に、透明陽極2、ホール輸送層3、発光層4、電
子輸送層5、金属陰極6が順次積層された構造となって
いる。パネル構造は、帯状の直交させた透明陽極と背面
電極からなるX−Yのマトリクス構造のもの(パッシブ
タイプ)と薄膜トランジスタ(TFT)を用いた構造の
もの(アクティブタイプ)に大別される。いずれの場合
も、高精細化や高速応答化に対応するため、透明陽極2
には低い抵抗率が要求され、ITO(Indium T
in Oxide)薄膜が使用されている。
2. Description of the Related Art With the development of information society in recent years, the technical level required for a display device which is a man-machine interface is increasing. Above all, organic EL
The (Electro Luminescence) panel has excellent visibility because it emits light by itself, and has features such as thinness, light weight, high-speed response, high viewing angle, and high contrast. As shown in FIG. 1, the organic EL element has a structure in which a transparent anode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a metal cathode 6 are sequentially stacked on a glass substrate 1. . The panel structure is roughly classified into an XY matrix structure (passive type) composed of strip-shaped orthogonal transparent anodes and back electrodes and a structure using a thin film transistor (TFT) (active type). In either case, the transparent anode 2 is used for high definition and high speed response.
Low resistivity is required for ITO (Indium T
in Oxide) thin films have been used.

【0003】ITO薄膜の製造方法としては、薄膜の大
面積化が容易でかつ高性能の膜が得られるスパッタリン
グ法が主流となっている。ITO薄膜形成用スパッタリ
ングターゲットとしては金属インジウムとスズの合金か
らなるターゲット、あるいは酸化インジウムと酸化スズ
とを含んでなる複合酸化物(ITO)ターゲットが用い
られている。このうち、得られた膜の抵抗値および透過
率の経時変化が少なく成膜条件のコントロールが容易で
あるという理由から主としてITOターゲットが使用さ
れている。
As a method for producing an ITO thin film, a sputtering method is mainly used because it is easy to increase the area of the thin film and a high performance film can be obtained. As a sputtering target for forming an ITO thin film, a target made of an alloy of metallic indium and tin, or a complex oxide (ITO) target containing indium oxide and tin oxide is used. Among them, the ITO target is mainly used because the resistance value and the transmittance of the obtained film do not change with time and the film formation conditions can be easily controlled.

【0004】ITO薄膜は室温でスパッタリング成膜す
るとアモルファスな膜が得られるが、アモルファスなI
TO薄膜は抵抗率が高いため、ITO薄膜の抵抗率を低
下させるには、薄膜を結晶化させることが必要である。
結晶性のITO薄膜をスパッタリング法で成膜する基板
温度は150℃以上で成膜する必要があるが、従来、こ
の様な条件でスパッタリング成膜された結晶性ITO薄
膜上には、スパイク状の突起がITO薄膜上に形成され
るという問題があった。当該スパイク状突起のあるIT
O薄膜を有機ELディスプレイの透明陽極に用いるとダ
ークスポット不良が発生するため、その低減が望まれて
いた。ダークスポット不良とは、有機EL素子を長時間
発光させた場合に、非発光点(黒点)が現れて表示品質
が劣化する現象のことである。
When an ITO thin film is formed by sputtering at room temperature, an amorphous film can be obtained.
Since the TO thin film has a high resistivity, it is necessary to crystallize the thin film in order to reduce the resistivity of the ITO thin film.
It is necessary to form a crystalline ITO thin film by a sputtering method at a substrate temperature of 150 ° C. or higher, but conventionally, a crystalline ITO thin film formed by sputtering under such conditions has a spike-like shape. There is a problem that the protrusions are formed on the ITO thin film. IT with the spike-like protrusion
When an O thin film is used as a transparent anode of an organic EL display, a dark spot defect occurs, and it has been desired to reduce it. The dark spot defect is a phenomenon in which a non-light emitting point (black point) appears and the display quality is deteriorated when the organic EL element emits light for a long time.

【0005】一般にITO薄膜をスパッタリング法で形
成する場合には、スパッタリングガスとしてアルゴンと
酸素が用いられる。ガス中の酸素量を変化させることに
より得られる薄膜の抵抗率は変化し、ある酸素分圧値で
極小値を示す(図2参照)。有機EL等の表示素子に透
明陽極として用いるITO薄膜は低抵抗であることが好
ましいため、一般にITO薄膜の成膜は、抵抗率が極小
値を示す酸素分圧で成膜されていた。しかし、当該酸素
分圧の前後でITO薄膜を形成した場合、必ず多くのス
パイク状突起が形成されていた。
Generally, when forming an ITO thin film by a sputtering method, argon and oxygen are used as a sputtering gas. The resistivity of the thin film obtained by changing the amount of oxygen in the gas changes, and shows a minimum value at a certain oxygen partial pressure value (see FIG. 2). Since it is preferable that the ITO thin film used as a transparent anode for a display element such as an organic EL has a low resistance, the ITO thin film is generally formed at an oxygen partial pressure at which the resistivity shows a minimum value. However, when the ITO thin film was formed before and after the oxygen partial pressure, many spike-like protrusions were always formed.

【0006】ITO薄膜上のスパイク状突起を低減する
には成膜する基板温度を低くして、アモルファスの薄膜
とすることが考えられる。しかしアモルファスのITO
薄膜では、スパイク状突起の形成は低減できるが、IT
O薄膜の抵抗率が高くなるため、表示素子の透明陽極に
用いるには十分ではなかった。
In order to reduce spike-like protrusions on the ITO thin film, it is conceivable to lower the temperature of the substrate on which the film is formed to form an amorphous thin film. But amorphous ITO
Thin films can reduce the formation of spike-like protrusions, but IT
Since the O thin film has a high resistivity, it was not sufficient for use as a transparent anode of a display element.

【0007】一方、これまで種々のITOターゲットを
用いてITO薄膜を成膜することが提案されている。我
々も、焼結密度、酸素含有量、中間化合物量に特徴のあ
るITOターゲットを提案している(例えば特許文献1
参照)。しかし、当該特許文献では、広い酸素分圧(ア
ルゴン中の酸素分圧が0〜1%の範囲)においてターゲ
ット上にノジュールの生成なく低抵抗なITO薄膜が得
られることは開示されていたが、スパイク状突起のない
ITO薄膜を形成する方法については何ら示唆されてい
なかった。
On the other hand, it has been proposed so far to form an ITO thin film by using various ITO targets. We have also proposed an ITO target characterized by a sintered density, an oxygen content, and an intermediate compound amount (for example, Patent Document 1).
reference). However, although the patent document discloses that a low resistance ITO thin film can be obtained without generating nodules on the target in a wide oxygen partial pressure (oxygen partial pressure in argon is in the range of 0 to 1%), There has been no suggestion of a method for forming an ITO thin film without spike-like protrusions.

【0008】また平坦なITO薄膜を形成する方法とし
て、これまでインジウムとスズと酸素以外の異種元素成
分を含むITO薄膜が種々提案されている(例えば特許
文献2〜8参照)。しかしこれらの異種元素を含むIT
O薄膜は、スパイク状突起を完全になくすことは出来
ず、また異種元素がITO薄膜の抵抗率を高めるという
問題があった。さらに異種元素を含むITO薄膜を表示
素子に用いた場合、それらの元素が不純物として表示素
子に悪影響を及ぼすことがあり、実用上好ましくなかっ
た。
As a method for forming a flat ITO thin film, various ITO thin films containing indium, tin, and a different element component other than oxygen have been proposed (see, for example, Patent Documents 2 to 8). However, IT containing these different elements
The O thin film cannot completely eliminate the spike-like protrusions, and there is a problem that a different element increases the resistivity of the ITO thin film. Furthermore, when an ITO thin film containing different elements is used for a display element, those elements may adversely affect the display element as impurities, which is not preferable in practice.

【0009】[0009]

【特許文献1】特開2000−233969号公報[Patent Document 1] Japanese Unexamined Patent Publication No. 2000-233969

【特許文献2】特開2000−129432号公報[Patent Document 2] Japanese Patent Laid-Open No. 2000-129432

【特許文献3】特開2000−169219号公報[Patent Document 3] Japanese Patent Laid-Open No. 2000-169219

【特許文献4】特開2000−169220号公報[Patent Document 4] Japanese Patent Laid-Open No. 2000-169220

【特許文献5】特開2000−185968号公報[Patent Document 5] Japanese Unexamined Patent Publication No. 2000-185968

【特許文献6】特開2001−151572号公報[Patent Document 6] Japanese Unexamined Patent Application Publication No. 2001-151572

【特許文献7】特開2001−307553号公報[Patent Document 7] Japanese Patent Laid-Open No. 2001-307553

【特許文献8】特開2002−050231号公報[Patent Document 8] Japanese Unexamined Patent Application Publication No. 2002-050231

【0010】[0010]

【発明が解決しようとする課題】以上説明した様に、こ
れまでインジウムとスズと酸素からなるITO薄膜にお
いて、スパイク状突起のない平坦なITO薄膜が望まれ
ているにも拘わらず、その様なITO薄膜は得られてい
なかった。本発明は、有機EL等の表示素子に用いる透
明陽極として好適な、低抵抗かつ表面にスパイク状突起
のないITO薄膜及びその製造方法を提供するものであ
る。
As described above, in the case of an ITO thin film composed of indium, tin, and oxygen, a flat ITO thin film having no spike-like protrusions has been desired so far. No ITO thin film was obtained. The present invention provides an ITO thin film suitable for a transparent anode used for a display element such as an organic EL and having a low resistance and no spike-like protrusions on the surface, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは低抵抗で透
過率に優れるITO薄膜表面のスパイク状突起を低減さ
せる方法について鋭意検討を重ねた結果、ある特定の条
件を満たすITOターゲットを用い、なおかつ限定した
範囲のアルゴンガスと酸素ガス圧の比(酸素分圧:O2
/Ar)においてITO薄膜表面のスパイク状突起が著
しく低減されることを見出し本発明を完成させるに至っ
たものである。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on a method of reducing spike-like protrusions on the surface of an ITO thin film having low resistance and excellent transmittance, and as a result, using an ITO target satisfying a specific condition. , And the ratio of argon gas and oxygen gas pressure within a limited range (oxygen partial pressure: O 2
/ Ar), the spike-like protrusions on the surface of the ITO thin film are remarkably reduced, and the present invention has been completed.

【0012】以下本発明のITO薄膜について説明す
る。
The ITO thin film of the present invention will be described below.

【0013】本発明のITO薄膜はインジウムとスズと
酸素からなり、その表面形状がベアリングカーブの0.
1%値Rbと50%値Rbの差が15nm未満のITO
薄膜である。
The ITO thin film of the present invention is composed of indium, tin and oxygen, and the surface shape of which is a bearing curve of 0.
ITO whose difference between 1% value Rb and 50% value Rb is less than 15 nm
It is a thin film.

【0014】本発明におけるITO薄膜は、インジウム
とスズと酸素からなる薄膜であり、その他の異種元素を
意図的に添加したものではない。但し、通常考えられ得
る不純物が含まれたITO薄膜を除外するものではな
い。
The ITO thin film in the present invention is a thin film composed of indium, tin and oxygen, and does not intentionally contain other different elements. However, it does not exclude an ITO thin film containing impurities that can be usually considered.

【0015】本発明でいうベアリングカーブとは、IT
O薄膜を基板に対して水平にスライスした際に、当該ス
ライス面より上に突出した突起部分の断面積の和の変化
によって表面突起物の存在状態を評価したものであり、
薄膜の表面状態の評価では一般的なものである。
The bearing curve referred to in the present invention means IT
When the O thin film is sliced horizontally with respect to the substrate, the presence state of the surface protrusions is evaluated by the change in the sum of the sectional areas of the protrusions protruding above the sliced surface,
This is common in the evaluation of the surface condition of thin films.

【0016】例えば図3に示した表面突起形状を有する
ITO薄膜の場合、水平方向にスライスしたときに図中
のk、l、m、nの部分の断面積の合計(k+l+m+
n)がそのスライス位置における突起断面積であり、当
該スライス面を上下に移動させることによって上記断面
積の変化をプロットしたものがベアリングカーブであ
る。ベアリングカーブは図4に示す様なプロファイルと
なり、(ある高さにおける各表面突起の断面積の総和)
/(測定全面積)×100が当該スライス面のRbの%
値である。すなわちベアリングカーブの50%値Rbと
は、当該スライス面より上にある突起が測定膜の断面積
の50%にあたる位置、0.1%Rb値とは、そのスラ
イス面より上にある突起が測定膜の断面積の0.1%に
相当する膜表面近くの位置にあたる。本発明のITO薄
膜は、Rbが50%と0.1%の間隔が15nm未満の
狭い範囲、すなわち突起物がなく表面平滑性に優れた薄
膜である。ここで完全に平滑でスパイク状突起のない膜
は50%値Rbと0.1%値Rbの位置は一致すること
になりその差は0nmとなる。本発明のITO薄膜はよ
り一般的な表面粗さRaでは1〜2nm程度に相当し、
50%値Rbと0.1%値Rbの間隔下限は2nm程度
である。
For example, in the case of the ITO thin film having the surface projection shape shown in FIG. 3, when it is sliced in the horizontal direction, the total cross-sectional area (k + l + m +) of the portions k, l, m and n in the drawing is (k + 1 + m +
n) is the protrusion cross-sectional area at the slice position, and the bearing curve is obtained by plotting the change in the cross-sectional area by moving the slice surface up and down. The bearing curve has the profile shown in Fig. 4 (total cross-sectional area of each surface protrusion at a certain height)
/ (Measured total area) x 100 is% of Rb of the slice surface
It is a value. That is, the 50% value Rb of the bearing curve is the position where the protrusion above the slice surface corresponds to 50% of the cross-sectional area of the measurement film, and the 0.1% Rb value is the protrusion above the slice surface. It corresponds to a position near the film surface corresponding to 0.1% of the cross-sectional area of the film. The ITO thin film of the present invention is a thin film in which the interval between Rb of 50% and 0.1% is narrower than 15 nm, that is, there is no protrusion and the surface smoothness is excellent. Here, in the film which is completely smooth and has no spike-like protrusions, the positions of the 50% value Rb and the 0.1% value Rb coincide with each other, and the difference between them is 0 nm. The ITO thin film of the present invention corresponds to a more general surface roughness Ra of about 1 to 2 nm,
The lower limit of the interval between the 50% value Rb and the 0.1% value Rb is about 2 nm.

【0017】ベアリングカーブは、原子間力顕微鏡(A
FM)等によって三次元測定を行うことによって評価で
きる。
The bearing curve is the atomic force microscope (A
It can be evaluated by performing a three-dimensional measurement using FM) or the like.

【0018】また本発明のITO薄膜の抵抗率は特に限
定はしないが、100〜200μΩ・cmの範囲である
ことが好ましい。ITO薄膜の抵抗率が200μΩ・c
mより大きいものでは、表示素子の透明陽極としては不
十分である。一方、本発明の方法で得られるITO薄膜
の抵抗率の下限は100μΩ・cm程度が実質的に得ら
れる下限であり、多くは130〜150μΩ・cmの範
囲である。
The resistivity of the ITO thin film of the present invention is not particularly limited, but it is preferably in the range of 100 to 200 μΩ · cm. The resistivity of ITO thin film is 200μΩ ・ c
If it is larger than m, it is insufficient as a transparent anode of a display element. On the other hand, the lower limit of the resistivity of the ITO thin film obtained by the method of the present invention is substantially the lower limit of about 100 μΩ · cm, and most is in the range of 130 to 150 μΩ · cm.

【0019】次に本発明のITO薄膜の製造方法につい
て説明する。
Next, the method for producing the ITO thin film of the present invention will be described.

【0020】本発明のITO薄膜はインジウム、スズ及
び酸素からなり、焼結密度が相対密度で99.5%以
上、バルク抵抗率が70〜100μΩ・cm、かつ、酸
化インジウムと酸化スズの中間化合物であるIn4Sn3
12相の(220)面のX線回折ピークの積分強度がI
23相の(211)面のX線回折ピークの積分強度の
30%未満であるITO焼結体からなるITOスパッタ
リングターゲットを用てスパッタリング成膜する際に、
スパッタリング雰囲気中の酸素分圧を0.5〜1.0%
の限られた範囲の酸素酸素分圧で成膜することによって
製造する。
The ITO thin film of the present invention comprises indium, tin and oxygen, has a sintered density of 99.5% or more in relative density, a bulk resistivity of 70 to 100 μΩ · cm, and an intermediate compound of indium oxide and tin oxide. In 4 Sn 3
The integrated intensity of the X-ray diffraction peak of the (220) plane of the O 12 phase is I
When forming a film by sputtering using an ITO sputtering target made of an ITO sintered body having an integrated intensity of the X-ray diffraction peak of the (211) plane of the n 2 O 3 phase of less than 30%,
Oxygen partial pressure in the sputtering atmosphere is 0.5 to 1.0%
It is manufactured by forming a film with oxygen in a limited range of oxygen.

【0021】本発明のITO薄膜を製造するために用い
るITOターゲットは、例えば以下のような方法により
製造することができる。
The ITO target used for producing the ITO thin film of the present invention can be produced, for example, by the following method.

【0022】ITO焼結体の原料としては酸化インジウ
ム粉末及び酸化スズ粉末を用い、ボールミル等の粉砕装
置を用いて酸化インジウム粉末及び酸化スズ粉末を最大
粒径が1μm以下、メジアン径が0.4μm以下に粉砕
したものを用いることが望ましい。なお本発明でいう粒
径とは二次粒径を意味し、メジアン径とは粒度の体積で
の累積分布の50%に相当する粉末の粒子径を意味す
る。
Indium oxide powder and tin oxide powder are used as raw materials for the ITO sintered body, and the maximum particle size of the indium oxide powder and tin oxide powder is 1 μm or less and the median diameter is 0.4 μm using a crushing device such as a ball mill. It is desirable to use the one crushed below. In the present invention, the particle size means the secondary particle size, and the median size means the particle size of the powder corresponding to 50% of the cumulative distribution in the volume of the particle size.

【0023】混合粉末中の酸化スズ含有量は、スパッタ
リングによりITO薄膜を形成した際に抵抗率が最も低
下する5〜11重量%とすることが望ましい。
The content of tin oxide in the mixed powder is preferably 5 to 11% by weight at which the resistivity becomes the lowest when the ITO thin film is formed by sputtering.

【0024】次に得られた混合粉末をプレス法あるいは
鋳込み法等の成形方法により成形してITO成形体とす
る。プレス成形により成形体を製造する場合には所定の
大きさの金型に前記混合粉末を充填した後、プレス機を
用いて100〜300kg/cm2の圧力でプレスして
成形体とする。一方、鋳込み成形により成形体とする場
合には混合粉末を水、バインダーおよび分散材と混合し
てスラリー化し、鋳込み成形用の型の中へ注入して成形
体とした後乾燥する。
Then, the obtained mixed powder is molded by a molding method such as a pressing method or a casting method to obtain an ITO molded body. In the case of manufacturing a molded body by press molding, the above-mentioned mixed powder is filled in a mold of a predetermined size and then pressed at a pressure of 100 to 300 kg / cm 2 using a pressing machine to obtain a molded body. On the other hand, in the case of forming into a molded product by cast molding, the mixed powder is mixed with water, a binder and a dispersant to form a slurry, which is poured into a mold for cast molding to form a molded product and then dried.

【0025】次に得られたITO成形体は必要に応じて
冷間等方圧プレス(CIP)による圧密化処理を行って
も良い。この際CIPの圧力は十分な圧密効果を得るた
め2ton/cm2以上であることが望ましい。
The obtained ITO molded body may be subjected to a consolidation treatment by a cold isostatic pressing (CIP) if necessary. At this time, the CIP pressure is preferably 2 ton / cm 2 or more in order to obtain a sufficient consolidation effect.

【0026】次に得られたITO成形体を焼結炉内で焼
結するが、焼結炉内の雰囲気は、室温から少なくとも1
500℃までは酸化性雰囲気とする。保持温度は150
0℃を越える温度とし、好ましくは1550℃以上、よ
り好ましくは1600℃以上である。酸化スズの蒸発を
防ぐため、上限は1650℃とする。こうすることによ
り、焼結密度が相対密度で99.5%以上のITO焼結
体を得ることが可能となる。
Next, the ITO molded body thus obtained is sintered in a sintering furnace, and the atmosphere in the sintering furnace is from room temperature to at least 1 atmosphere.
An oxidizing atmosphere is used up to 500 ° C. Hold temperature is 150
The temperature is higher than 0 ° C, preferably 1550 ° C or higher, more preferably 1600 ° C or higher. To prevent evaporation of tin oxide, the upper limit is 1650 ° C. By doing so, it becomes possible to obtain an ITO sintered body having a relative density of 99.5% or more in relative density.

【0027】次に本発明のITO焼結体は還元させるた
め、昇温時、1600℃を超える温度において、雰囲気
を酸化性雰囲気から非酸化性雰囲気に切り換える。これ
により、焼結体中の格子酸素を除くとともに中間化合物
相を低減することが可能となる。1500℃を超える温
度まで酸化性雰囲気にした場合、密度上昇効果は得られ
るが、焼結体の還元効果が得難くなることがある。
Next, in order to reduce the ITO sintered body of the present invention, the atmosphere is switched from the oxidizing atmosphere to the non-oxidizing atmosphere at a temperature higher than 1600 ° C. when the temperature is raised. This makes it possible to remove lattice oxygen in the sintered body and reduce the intermediate compound phase. When the oxidizing atmosphere is used up to a temperature exceeding 1500 ° C., the density increasing effect can be obtained, but the reducing effect of the sintered body may be difficult to obtain.

【0028】さらに、少なくとも800℃までの降温速
度は100℃/時間を超える速度、好ましくは200℃
/時間以上に設定する。これにより中間化合物の一層の
低減が可能となる。降温速度を100℃/時間未満とし
た場合、中間化合物低減効果を得難いことがある。
Further, the temperature decreasing rate up to at least 800 ° C. is a rate exceeding 100 ° C./hour, preferably 200 ° C.
/ Set to more than an hour. This makes it possible to further reduce the amount of intermediate compounds. When the rate of temperature decrease is less than 100 ° C./hour, it may be difficult to obtain the effect of reducing intermediate compounds.

【0029】酸化性雰囲気としては、酸素濃度が20容
量%以上あればよく、具体的には、大気雰囲気、大気加
圧雰囲気、純酸素雰囲気または酸素加圧雰囲気を例示す
ることができるが、特に純酸素雰囲気中であることが好
ましい。さらに純酸素雰囲気焼結時の純酸素ガスの酸素
流量(L/min)と成形体仕込量(kg)の比(仕込
重量/酸素流量)は1.0以下で焼結炉内に導入するこ
とがより望ましい。
The oxidizing atmosphere may have an oxygen concentration of 20% by volume or more, and specific examples thereof include an air atmosphere, an air pressure atmosphere, a pure oxygen atmosphere and an oxygen pressure atmosphere. It is preferably in a pure oxygen atmosphere. Further, the ratio of the oxygen flow rate (L / min) of the pure oxygen gas and the charged amount (kg) of the compact (charged weight / oxygen flow rate) during sintering in a pure oxygen atmosphere should be 1.0 or less and be introduced into the sintering furnace. Is more desirable.

【0030】非酸化性雰囲気としては、真空雰囲気、不
活性ガス雰囲気、または窒素ガス雰囲気とすることが望
ましい。不活性ガス雰囲気或いは窒素ガス雰囲気焼結時
には導入ガスを不活性ガス流量(L/min)と成形体
仕込量(kg)の比(仕込重量/不活性ガス流量)で
1.0以下で焼結炉内に導入することが好ましい。
The non-oxidizing atmosphere is preferably a vacuum atmosphere, an inert gas atmosphere, or a nitrogen gas atmosphere. When sintering in an inert gas atmosphere or nitrogen gas atmosphere, the introduced gas is sintered at a ratio (charge weight / inert gas flow rate) of the inert gas flow rate (L / min) to the compact body charge amount (kg) of 1.0 or less. It is preferably introduced into the furnace.

【0031】焼結時間としては、所望の保持温度に達し
てから、3時間以上保持することが好ましい。
The sintering time is preferably 3 hours or more after reaching the desired holding temperature.

【0032】以上の方法により得られる焼結密度が相対
密度で99.5%以上、バルク抵抗率が70〜100μ
Ωcm、かつ酸化インジウムと酸化スズの中間化合物で
あるIn4Sn312相の(220)面のX線回折ピーク
の積分強度が、In23相の(211)面のX線回折ピ
ークの積分強度の30%未満のITO焼結体を得ること
ができる。
The sintered density obtained by the above method is 99.5% or more in relative density, and the bulk resistivity is 70 to 100 μm.
The integrated intensity of the X-ray diffraction peak of the (220) plane of the In 4 Sn 3 O 12 phase, which is an intermediate compound of Ωcm and indium oxide and tin oxide, is the X-ray diffraction peak of the (211) plane of the In 2 O 3 phase. It is possible to obtain an ITO sintered body having an integrated strength of less than 30%.

【0033】また本発明でいうIn4Sn312相の(2
20)面のX線回折ピークとは、X線管球のターゲット
がCuであるX線回折装置を用いた時に、2θ=50.
7°(d値が1.797)付近に現れるピークである。
また、In23相の(211)面のX線回折ピークと
は、上記と同様のX線回折装置を用いたときに、2θ=
21.4°(d値が4.151)付近に現れるピークで
ある。
The In 4 Sn 3 O 12 phase (2
The X-ray diffraction peak of the (20) plane is 2θ = 50.x when an X-ray diffractometer in which the target of the X-ray tube is Cu.
It is a peak that appears around 7 ° (d value is 1.797).
Further, the X-ray diffraction peak of the (211) plane of the In 2 O 3 phase is 2θ = when an X-ray diffractometer similar to the above is used.
It is a peak appearing near 21.4 ° (d value is 4.151).

【0034】通常のITOターゲットには、酸化インジ
ウムの立方晶系ビックスバイト構造と酸化インジウムと
酸化スズの中間化合物(In4Sn312)の蛍石構造が
混在している。この様なITOターゲットを用いてIT
O薄膜のスパイク状突起を低減するには、ITOターゲ
ット中の中間化合物の低減、及びビックスバイト構造の
格子酸素の低減、の双方が必要である。立方晶系ビック
スバイト構造では、インジウムイオンに対して酸素イオ
ンが6配位し、残りの2つの陰イオンサイトは空となっ
ており、この空のサイトは準イオンサイトと呼ばれる。
この空きサイトに酸素が入ると、蛍石構造の酸化インジ
ウムと酸化スズの中間化合物(In4Sn312)が形成
される。従って、中間化合物を低減させることにより焼
結体中の酸素の低減が可能となる。中間化合物量の評価
は、ITO焼結体のX線回折で行うことができる。
A normal ITO target contains a cubic bixbyite structure of indium oxide and a fluorite structure of an intermediate compound (In 4 Sn 3 O 12 ) of indium oxide and tin oxide. IT using such ITO target
In order to reduce the spike-like protrusions of the O thin film, it is necessary to reduce both the intermediate compound in the ITO target and the lattice oxygen of the bixbyite structure. In the cubic bixbyite structure, oxygen ions are six-coordinated with indium ions, and the remaining two anion sites are empty, and these empty sites are called quasi-ion sites.
When oxygen enters this empty site, an intermediate compound (In 4 Sn 3 O 12 ) of indium oxide and tin oxide having a fluorite structure is formed. Therefore, oxygen in the sintered body can be reduced by reducing the amount of the intermediate compound. The amount of the intermediate compound can be evaluated by X-ray diffraction of the ITO sintered body.

【0035】In4Sn312相の(220)面のX線回
折ピークの積分強度を、In23相の(211)面のX
線回折ピークの積分強度の30%未満、特に26%以下
とすることがが好ましい。
The integrated intensity of the X-ray diffraction peak of the (220) plane of the In 4 Sn 3 O 12 phase was calculated from the X-ray intensity of the (211) plane of the In 2 O 3 phase.
The integrated intensity of the line diffraction peak is preferably less than 30%, and particularly preferably 26% or less.

【0036】本発明でターゲットとして用いるITO焼
結体のバルク抵抗率は70〜100μΩ・cmであるこ
とが重要である。ターゲットの抵抗率が高いとスパッタ
成膜時の放電が安定せず、異常放電が発生し、得られる
ITO薄膜の表面が荒れて本発明の範囲の表面とならな
いからである。ITO焼結体の抵抗率は一般的な四探針
法等で測定することができる。
It is important that the bulk resistivity of the ITO sintered body used as the target in the present invention is 70 to 100 μΩ · cm. This is because if the resistivity of the target is high, the discharge during sputtering film formation is not stable, abnormal discharge occurs, and the surface of the obtained ITO thin film becomes rough and does not fall within the range of the present invention. The resistivity of the ITO sintered body can be measured by a general four-point probe method or the like.

【0037】さらに本発明でターゲットして用いるIT
O焼結体の焼結密度は99.5%以上のものを用いなけ
ればならない。焼結体中の酸素量を低減させても焼結密
度が低いとスパッタリング中に異常放電が発生しやす
く、異常放電が発生した際のスプラッツが基板に付着す
ると、該付着部を起点としてスパイク状突起が形成され
る。ここでITO焼結体の相対密度100%は酸化錫が
10重量%の場合で7.156g/cm3である。IT
O焼結体の相対密度は、一般的なアルキメデス法で測定
することができる。
Further, IT used as a target in the present invention
The sintered density of the O sintered body must be 99.5% or more. Even if the amount of oxygen in the sintered body is reduced, if the sintering density is low, abnormal discharge is likely to occur during sputtering, and if Splats adheres to the substrate when abnormal discharge occurs, spikes will start from the adhesion part. A protrusion is formed. Here, the relative density of 100% of the ITO sintered body is 7.156 g / cm 3 when tin oxide is 10% by weight. IT
The relative density of the O sintered body can be measured by a general Archimedes method.

【0038】このようにして得られたITO焼結体は所
望の形状に研削加工してITOスパッタリングターゲッ
トとする。得られた加工済みのITO焼結体は、インジ
ウム半田等を用いて無酸素銅等からなるバッキングプレ
ートにボンディングすることにより容易にターゲット化
することができる。
The ITO sintered body thus obtained is ground into a desired shape and used as an ITO sputtering target. The obtained processed ITO sintered body can be easily targeted by bonding it to a backing plate made of oxygen-free copper or the like using indium solder or the like.

【0039】得られたターゲットをスパッタリング装置
内に設置し、アルゴンなどの不活性ガスと酸素ガスとを
スパッタリングガスとして用い、直流(dc)または高
周波(rf)あるいは双方の電界を印加してスパッタリ
ングを行うことにより、ガラス基板やフィルム基板上に
ITO薄膜を得ることができる。
The obtained target is placed in a sputtering apparatus, and an inert gas such as argon and an oxygen gas are used as a sputtering gas, and a direct current (dc) or a high frequency (rf) or both electric fields are applied to perform sputtering. By doing so, an ITO thin film can be obtained on a glass substrate or a film substrate.

【0040】スパッタリング成膜における基板温度は特
に限定しないが、結晶性で低抵抗のITO薄膜を得るた
めに、150℃以上、特に200℃以上とすることが好
ましい。
The substrate temperature in sputtering film formation is not particularly limited, but it is preferably 150 ° C. or higher, particularly 200 ° C. or higher in order to obtain a crystalline and low-resistance ITO thin film.

【0041】本発明では、上記のITOターゲットを用
いてスパタッリング成膜するが、成膜時の酸素分圧を
0.5〜1.0%の極めて限定した範囲にすることによ
ってスパイク状突起のないITO薄膜が得られる。
In the present invention, spattering film formation is carried out using the above ITO target, but by setting the oxygen partial pressure during film formation to an extremely limited range of 0.5 to 1.0%, there is no spike-like protrusion. An ITO thin film is obtained.

【0042】我々は特開2000−233969号公報
にてノジュール、パーティクルの発生が少ないターゲッ
トを報告している。しかし上記の公報で用いたターゲッ
トは、密度が99.5%を超えたものでは中間化合物量
が30%以上であり、中間化合物量が30%未満のもの
では密度が99.5%未満のものでしかなかった。その
ため当該公報の方法では、ノジュール、パーティクルは
発生していないが、スパイク状突起のないITO薄膜を
得ることはできていなかった。そのため当該公報にはス
パイク状突起のないITO薄膜の成膜については言及さ
れていない。
We have reported a target in which generation of nodules and particles is small in Japanese Patent Laid-Open No. 2000-233969. However, the target used in the above publication has an intermediate compound amount of 30% or more when the density exceeds 99.5%, and a density of less than 99.5% when the intermediate compound amount is less than 30%. It was only. Therefore, no nodules and particles were generated by the method of the publication, but an ITO thin film without spike-like protrusions could not be obtained. Therefore, the publication does not mention the formation of an ITO thin film having no spike-like protrusion.

【0043】本発明で用いたITOターゲットと上記公
報で用いたターゲットで違いが生じた理由としては最終
的な焼結温度、降温速度が影響していると考えられる。
The reason for the difference between the ITO target used in the present invention and the target used in the above publication is considered to be the influence of the final sintering temperature and the temperature lowering rate.

【0044】それに対して、本発明では密度、中間化合
物量をさらに限定したITOターゲットを用い、それに
加えて酸素濃度として0.5〜1.0%、特に好ましく
は0.5〜0.7%という極めて限られた酸素濃度範囲
においてスパイク状突起がないITO薄膜が得られるこ
とを見出したものである。
On the other hand, in the present invention, an ITO target in which the density and the amount of the intermediate compound are further limited is used, and in addition, the oxygen concentration is 0.5 to 1.0%, particularly preferably 0.5 to 0.7%. The inventors have found that an ITO thin film having no spike-like protrusion can be obtained in the extremely limited oxygen concentration range.

【0045】本発明の方法でスパイク状突起のないIT
O薄膜が得られる原因は定かではないが、例えば以下の
様に考えられる。本発明の方法では酸素含有量と中間化
合物の少ないITOターゲットを用いることにより、成
膜時にターゲットから放出される総酸素量を少なくし、
スパッタリングガスによって導入する酸素量によって不
足酸素を補うことになる。この様な成膜ではITO薄膜
を堆積させる基板表面近傍にフリーの酸素イオンが多く
存在することになり、ターゲットから飛散して来る中間
化合物を含むクラスター粒子類が当該酸素イオンと反応
し易いと考えられる。そのため当該クラスター類が直接
堆積することによる局部的な膜組織の異常成長の抑制、
すなわちスパイク状突起形成が抑制できると考えられ
る。
IT without spikes by the method of the present invention
The reason why the O thin film is obtained is not clear, but it can be considered as follows, for example. In the method of the present invention, by using an ITO target with a low oxygen content and a small amount of intermediate compounds, the total amount of oxygen released from the target during film formation is reduced,
The amount of oxygen introduced by the sputtering gas supplements the lack of oxygen. In such a film formation, many free oxygen ions exist near the surface of the substrate on which the ITO thin film is deposited, and it is considered that the cluster particles containing the intermediate compound scattered from the target easily react with the oxygen ions. To be Therefore, suppression of local abnormal growth of film structure due to direct deposition of the clusters,
That is, it is considered that formation of spike-like protrusions can be suppressed.

【0046】本発明の効果が上述のメカニズムによると
すれば、酸素濃度が本発明の範囲外の低い濃度で、飛散
クラスター類を分解するに十分な酸素イオンを供給しな
い場合にはスパイク状突起の生成抑制はできない。一
方、酸素濃度がさらに高くなると、スパッタリング中の
放電が不安定となり、異常放電が生じ易いため、酸素分
圧が1%を超えた条件でもスパイク状突起の抑制は出来
ない。
If the effect of the present invention is due to the above-mentioned mechanism, when the oxygen concentration is low outside the range of the present invention and sufficient oxygen ions for decomposing scattered clusters are not supplied, spike-like protrusions The generation cannot be suppressed. On the other hand, if the oxygen concentration is further increased, the discharge during sputtering becomes unstable and abnormal discharge is likely to occur, so that spike-like protrusions cannot be suppressed even under the condition that the oxygen partial pressure exceeds 1%.

【0047】さらに還元されたターゲットを用いるだけ
では本発明の目的は達成されず、高密度で中間化合物の
少ないターゲットを用いることが必須であるため、本発
明は従来の還元ITOターゲトを高い酸素分圧でスパッ
タ成膜する方法とも異なる技術である。
The purpose of the present invention is not achieved only by using a reduced target, and since it is essential to use a target having a high density and a small amount of intermediate compounds, the present invention uses a conventional reduced ITO target with a high oxygen content. This technique is also different from the method of forming a film by sputtering by pressure.

【0048】[0048]

【実施例】以下に本発明を実施例により更に説明する
が、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited thereto.

【0049】なお、本発明で規定したITOターゲット
の密度はアルキメデス法により、バルク抵抗率は四探針
法により、薄膜のベアリングカーブは原子間力顕微鏡
(AFM)により評価エリア(20μm×20μm)で
測定した。また、ITO焼結体ターゲットのX線回折ス
ペクトルは、以下の条件で測定した。 X線源:Cukαを用い、Kα1のみによる回折ピーク
を測定 パワー:50kV、200mA 測定法:2θ/θ、連続スキャン スキャンスピード:2度/分(スキャン範囲(2θ):
20〜60度) 実施例1 最大粒径が1μm以下、メジアン径が0.4μm以下の
酸化インジウム粉末900g及び酸化スズ粉末100g
をポリエチレン性のポットに入れ、乾式ボールミルによ
り72時間混合し、混合粉末を調製した。次に該混合粉
末を金型に入れ、300kg/cm2の圧力でプレスし
て成形体とした。該成形体をCIPにより3ton/c
2の圧力で緻密化処理した。
The density of the ITO target defined in the present invention is measured by the Archimedes method, the bulk resistivity is measured by the four-point probe method, and the bearing curve of the thin film is measured by an atomic force microscope (AFM) in an evaluation area (20 μm × 20 μm). It was measured. The X-ray diffraction spectrum of the ITO sintered body target was measured under the following conditions. X-ray source: Cukα was used to measure the diffraction peak only by Kα1 Power: 50 kV, 200 mA Measurement method: 2θ / θ, continuous scan Scan speed: 2 ° / min (scan range (2θ):
20 to 60 degrees) Example 1 900 g of indium oxide powder and 100 g of tin oxide powder having a maximum particle diameter of 1 μm or less and a median diameter of 0.4 μm or less.
Was put in a polyethylene pot and mixed by a dry ball mill for 72 hours to prepare a mixed powder. Next, the mixed powder was put into a mold and pressed at a pressure of 300 kg / cm 2 to obtain a molded body. The molded body is 3 ton / c by CIP
Densification treatment was performed at a pressure of m 2 .

【0050】次に得られたITO成形体を以下の条件で
焼結した。 (焼結条件) 昇温速度:50℃/hr、焼結温度:1600℃、保持
時間:5時間、降温速度:150℃/hr、焼結雰囲
気:1510℃到達時に酸素雰囲気から窒素雰囲気に切
り換え400℃まで同雰囲気、(仕込重量/酸素流
量):0.8 得られた焼結体のバルク抵抗率、密度、In4Sn312
相の(220)面とIn23相の(211)面の回折強
度比を表1に示した。
Next, the obtained ITO molded body was sintered under the following conditions. (Sintering conditions) Temperature rising rate: 50 ° C./hr, sintering temperature: 1600 ° C., holding time: 5 hours, temperature dropping rate: 150 ° C./hr, sintering atmosphere: switching from oxygen atmosphere to nitrogen atmosphere when reaching 1510 ° C. Same atmosphere up to 400 ° C., (charged weight / oxygen flow rate): 0.8 Bulk resistivity, density, In 4 Sn 3 O 12 of the obtained sintered body
Table 1 shows the diffraction intensity ratios of the (220) plane of the phase and the (211) plane of the In 2 O 3 phase.

【0051】得られたITO焼結体は100mm×18
0mm×6mmtに切削加工し、インジウム半田を用い
て無酸素銅製のバッキングプレートにボンディングして
ITOターゲットとし、以下の条件でスパッタリング成
膜を行った。 (スパッタリング成膜条件)装置:DCマグネトロンス
パッタ装置、磁界強度:1000Gauss(ターゲッ
ト直上、水平成分)、基板温度:200℃、スパッタリ
ングガス:ArとO2の混合ガス、スパッタリングガス
圧:5mTorr、酸素分圧:0.0〜1.0%、DC
パワー:600W、膜厚:150nm 得られたITO薄膜の抵抗率を四探針法による測定値、
抵抗率の酸素分圧依存性を図5に、膜抵抗率及び膜抵抗
率が極小になる酸素分圧を表1に示した。
The obtained ITO sintered body was 100 mm × 18
It was cut to 0 mm × 6 mmt, bonded to a backing plate made of oxygen-free copper using indium solder to form an ITO target, and sputtering film formation was performed under the following conditions. (Sputtering film forming conditions) Device: DC magnetron sputtering device, magnetic field strength: 1000 Gauss (directly above target, horizontal component), substrate temperature: 200 ° C., sputtering gas: mixed gas of Ar and O 2 , sputtering gas pressure: 5 mTorr, oxygen content Pressure: 0.0-1.0%, DC
Power: 600 W, film thickness: 150 nm The resistivity of the obtained ITO thin film was measured by the four-point probe method,
FIG. 5 shows the oxygen partial pressure dependence of the resistivity, and Table 1 shows the film resistivity and the oxygen partial pressure at which the film resistivity becomes minimum.

【0052】酸素分圧を0〜1.1%の範囲でITO薄
膜を成膜した結果、酸素分圧が0.5%、0.7%、
0.9%で得られたITO薄膜にはスパイク状突起がな
かったが、酸素分圧が0%、0.1%、0.3%、1.
1%ではスパイク状突起が認めれられた。酸素分圧0.
5%で作製したITO薄膜の表面状態をAFMで観察し
た結果を図6に、ベアリングカーブから求めた0.1%
値Rbと50%値Rbの差を表1に示す。得られたIT
O薄膜にはスパイク状突起はなく、低抵抗率で、有機E
L素子の透明陽極として好適なITO薄膜であった。
As a result of forming an ITO thin film with an oxygen partial pressure in the range of 0 to 1.1%, the oxygen partial pressure was 0.5%, 0.7%,
The ITO thin film obtained at 0.9% had no spike-like protrusions, but the oxygen partial pressure was 0%, 0.1%, 0.3%, 1.
At 1%, spike-like protrusions were recognized. Oxygen partial pressure 0.
The result of observing the surface condition of the ITO thin film prepared with 5% by AFM is shown in FIG.
Table 1 shows the difference between the value Rb and the 50% value Rb. IT obtained
The O thin film does not have spike-like protrusions and has a low resistivity
The ITO thin film was suitable as a transparent anode for the L element.

【0053】実施例2 ITO焼結体の焼結雰囲気切換条件を、1600℃到達
時に酸素雰囲気から窒素雰囲気に切り換えたこと以外
は、実施例1と同じ方法でITO焼結体を作製した。
Example 2 An ITO sintered body was produced in the same manner as in Example 1 except that the sintering atmosphere switching condition of the ITO sintered body was switched from the oxygen atmosphere to the nitrogen atmosphere when the temperature reached 1600 ° C.

【0054】得られた焼結体のバルク抵抗率、密度、I
4Sn312相の(220)面とIn23相の(21
1)面の回折強度比を表1に示した。
Bulk resistivity, density, I of the obtained sintered body
The (220) plane of the n 4 Sn 3 O 12 phase and the (21) of the In 2 O 3 phase
The diffraction intensity ratio of the 1) plane is shown in Table 1.

【0055】次に、実施例1と同じ方法で薄膜を作製し
た。抵抗率の酸素分圧依存性を図5に、膜抵抗率及び膜
抵抗率が極小になる酸素分圧を表1に示した。
Next, a thin film was prepared by the same method as in Example 1. FIG. 5 shows the oxygen partial pressure dependence of the resistivity, and Table 1 shows the film resistivity and the oxygen partial pressure at which the film resistivity becomes minimum.

【0056】酸素分圧を0〜1.1%の範囲でITO薄
膜を成膜した結果、酸素分圧が0.5%、0.7%、
0.9%で得られたITO薄膜にはスパイク状突起がな
かったが、酸素分圧が0%、0.1%、0.3%、1.
1%ではスパイク状突起が認められた。酸素分圧0.7
%で作製したITO薄膜の表面状態をAFMで観察した
結果を図7に、ベアリングカーブから求めた0.1%値
Rbと50%値Rbの差を表1に示す。
As a result of forming an ITO thin film with an oxygen partial pressure in the range of 0 to 1.1%, the oxygen partial pressure was 0.5%, 0.7%,
The ITO thin film obtained at 0.9% had no spike-like protrusions, but the oxygen partial pressure was 0%, 0.1%, 0.3%, 1.
At 1%, spike-like protrusions were recognized. Oxygen partial pressure 0.7
FIG. 7 shows the result of observing the surface condition of the ITO thin film prepared by using AFM with AFM, and Table 1 shows the difference between the 0.1% value Rb and the 50% value Rb obtained from the bearing curve.

【0057】得られたITO薄膜にはスパイク状突起は
なく、低抵抗率で、有機EL素子の透明陽極として好適
なITO薄膜であった。
The ITO thin film thus obtained had no spike-like protrusions, had a low resistivity, and was an ITO thin film suitable as a transparent anode of an organic EL device.

【0058】比較例1 焼結温度を1500℃、降温速度を100℃/時間とし
た以外は、実施例1と同じ方法で焼結体を作製した。
Comparative Example 1 A sintered body was produced in the same manner as in Example 1 except that the sintering temperature was 1500 ° C. and the temperature lowering rate was 100 ° C./hour.

【0059】得られた焼結体のバルク抵抗率、密度、I
4Sn312相の(220)面とIn23相の(21
1)面の回折強度比を表1に示した。得られた焼結体は
密度は99.5%以上であったが、中間化合物量が30
%と多いものであった。
Bulk resistivity, density, I of the obtained sintered body
The (220) plane of the n 4 Sn 3 O 12 phase and the (21) of the In 2 O 3 phase
The diffraction intensity ratio of the 1) plane is shown in Table 1. The density of the obtained sintered body was 99.5% or more, but the amount of the intermediate compound was 30.
It was a large percentage.

【0060】次に、実施例1と同じ方法でITO薄膜を
作製した。抵抗率の酸素分圧依存性を図4に、膜抵抗率
及び酸素分圧を表1に示した。
Next, an ITO thin film was prepared by the same method as in Example 1. FIG. 4 shows the oxygen partial pressure dependence of the resistivity, and Table 1 shows the film resistivity and oxygen partial pressure.

【0061】酸素分圧を0〜1.1%の範囲でITO薄
膜を成膜した結果、酸素分圧が0〜1.1%まで全ての
酸素分圧においてITO薄膜にはスパイク状突起が認め
られた。酸素分圧0.5%で作製した試料の表面状態を
AFMで観察した結果を図8に示す。ベアリングカーブ
から求めた0.1%値Rbと50%値Rbの差を表1に
示す。
As a result of forming an ITO thin film with an oxygen partial pressure in the range of 0 to 1.1%, spike-like protrusions were observed in the ITO thin film at all oxygen partial pressures from 0 to 1.1%. Was given. FIG. 8 shows the results of observing the surface condition of the sample prepared with an oxygen partial pressure of 0.5% by AFM. Table 1 shows the difference between the 0.1% value Rb and the 50% value Rb obtained from the bearing curve.

【0062】中間化合物の多いITOターゲットを用い
たため、スパイク状突起が認められ、有機EL素子に用
いるには不十分なITO薄膜であった。
Since an ITO target containing many intermediate compounds was used, spike-like protrusions were observed, and the ITO thin film was insufficient for use in an organic EL device.

【0063】比較例2 焼結温度を1500℃、降温速度を100℃/時間、焼
結雰囲気切換を1300℃到達時に酸素雰囲気から窒素
雰囲気に切り換えたこと以外は実施例1と同じ方法で焼
結体を作製した。
Comparative Example 2 Sintering was carried out in the same manner as in Example 1 except that the sintering temperature was 1500 ° C., the temperature lowering rate was 100 ° C./hour, and the sintering atmosphere was switched from the oxygen atmosphere to the nitrogen atmosphere when reaching 1300 ° C. The body was made.

【0064】得られた焼結体のバルク抵抗率、密度、I
4Sn312相の(220)面とIn23相の(21
1)面の回折強度比を表1に示した。焼結体は中間化合
物量は少なかったが、密度が99.5%より低いもので
あった。
The bulk resistivity, density, and I of the obtained sintered body
The (220) plane of the n 4 Sn 3 O 12 phase and the (21) of the In 2 O 3 phase
The diffraction intensity ratio of the 1) plane is shown in Table 1. The amount of the intermediate compound in the sintered body was small, but the density was lower than 99.5%.

【0065】次に、実施例1と同じ方法でITO薄膜を
作製した。抵抗率の酸素分圧依存性を図5に、膜抵抗率
と酸素分圧を表1に示した。
Next, an ITO thin film was prepared by the same method as in Example 1. FIG. 5 shows the oxygen partial pressure dependence of the resistivity, and Table 1 shows the film resistivity and oxygen partial pressure.

【0066】酸素分圧を0〜0.9%の範囲でITO薄
膜を成膜した結果、酸素分圧が0〜0.9%まで全ての
酸素分圧においてITO薄膜にはスパイク状突起が認め
られた。
As a result of forming an ITO thin film with an oxygen partial pressure in the range of 0 to 0.9%, spike-like protrusions were observed in the ITO thin film at all oxygen partial pressures from 0 to 0.9%. Was given.

【0067】抵抗率が極小となった酸素分圧0.3%で
作製した試料の表面状態をAFMで観察した結果を図9
に示す。ベアリングカーブから求めた0.1%値Rbと
50%値Rbの差を表1に示す。中間化合物量は少ない
ターゲットを用いたが、密度が低いターゲットであった
ため、得られたITO薄膜には多くのスパイク状突起が
認められ、有機EL素子に用いるには不十分なITO薄
膜しか得られなかった。
FIG. 9 shows the results of observing the surface condition of the sample prepared at an oxygen partial pressure of 0.3% with the minimum resistivity with AFM.
Shown in. Table 1 shows the difference between the 0.1% value Rb and the 50% value Rb obtained from the bearing curve. Although a target with a small amount of the intermediate compound was used, since the target had a low density, many spike-like protrusions were observed in the obtained ITO thin film, and an ITO thin film insufficient for use in an organic EL device was obtained. There wasn't.

【0068】比較例3 焼結温度を1500℃、降温速度を100℃とし、ガス
の切り換えを行わなかったこと以外は実施例1と同じ方
法で焼結体を作製した。
Comparative Example 3 A sintered body was produced in the same manner as in Example 1 except that the sintering temperature was 1500 ° C., the temperature lowering rate was 100 ° C., and gas switching was not performed.

【0069】得られた焼結体のバルク抵抗率、密度、I
4Sn312相の(220)面とIn23相の(21
1)面の回折強度比を表1に示した。焼結体は密度が高
いものであったが、中間化合物量が極めて多いものであ
った。
Bulk resistivity, density, I of the obtained sintered body
The (220) plane of the n 4 Sn 3 O 12 phase and the (21) of the In 2 O 3 phase
The diffraction intensity ratio of the 1) plane is shown in Table 1. The sintered body had a high density, but the amount of the intermediate compound was extremely large.

【0070】次に、実施例1と同じ方法で薄膜を作製し
た。抵抗率の酸素分圧依存性を図5に、膜抵抗率と酸素
分圧を表1に示した。
Next, a thin film was formed by the same method as in Example 1. FIG. 5 shows the oxygen partial pressure dependence of the resistivity, and Table 1 shows the film resistivity and oxygen partial pressure.

【0071】酸素分圧を0〜0.7%の範囲でITO薄
膜を成膜した結果、酸素分圧が0〜0.7%まで全ての
酸素分圧においてITO薄膜にはスパイク状突起が認め
られた。
As a result of forming an ITO thin film with an oxygen partial pressure in the range of 0 to 0.7%, spike-like protrusions were observed in the ITO thin film at all oxygen partial pressures from 0 to 0.7%. Was given.

【0072】抵抗率が極小となった酸素分圧0.1%で
作製した試料の表面状態をAFMで観察した結果を図1
0に示す。ベアリングカーブから求めた0.1%値Rb
と50%値Rbの差を表1に示す。密度は十分に高いI
TOターゲットを用いたが、中間化合物が極めて多いタ
ーゲットを低酸素分圧で成膜したため、多くのスパイク
状突起が認められ、有機EL素子に用いるには不適当な
ITO薄膜しか得られなかった。
FIG. 1 shows the result of observing the surface condition of the sample prepared with the oxygen partial pressure of 0.1% at which the resistivity became the minimum with AFM.
It shows in 0. 0.1% value Rb calculated from the bearing curve
Table 1 shows the difference between the Rb and the 50% value Rb. Density is high enough
Although a TO target was used, since a target containing an extremely large amount of intermediate compound was formed at a low oxygen partial pressure, many spike-like protrusions were observed and only an ITO thin film unsuitable for use in an organic EL device was obtained.

【0073】[0073]

【表1】 [Table 1]

【0074】[0074]

【発明の効果】上述したように、本発明のITO薄膜
は、低抵抗率でかつスパイク状突起が無いため、有機E
L素子の透明陽極に用いるITO薄膜として優れてい
る。
As described above, the ITO thin film of the present invention has a low resistivity and does not have spike-like projections.
Excellent as an ITO thin film used for the transparent anode of the L element.

【図面の簡単な説明】[Brief description of drawings]

【図1】有機EL素子の構造を示す図である。FIG. 1 is a diagram showing a structure of an organic EL element.

【図2】薄膜の抵抗率と酸素分圧の関係を示す図であ
る。図中、X軸(横軸)は酸素分圧(任意単位a.
u.)を、Y軸(縦軸)は抵抗率(任意単位a.u.)
を示す。
FIG. 2 is a diagram showing the relationship between the resistivity of a thin film and the oxygen partial pressure. In the figure, the X-axis (horizontal axis) is the oxygen partial pressure (arbitrary unit a.
u. ), And the Y axis (vertical axis) is the resistivity (arbitrary unit au).
Indicates.

【図3】ITO薄膜の表面形状、並びに当該ITO薄膜
のベアリングカーブを求めるために任意の面で膜を切断
した際のイメージを示した図である。
FIG. 3 is a diagram showing an image when a film is cut on an arbitrary surface in order to obtain a surface shape of the ITO thin film and a bearing curve of the ITO thin film.

【図4】図3の方法によって求めたベアリングカーブの
イメージを示す図である。
FIG. 4 is a diagram showing an image of a bearing curve obtained by the method of FIG.

【図5】実施例及び比較例で得たITO薄膜の抵抗率と
酸素分圧の関係を示す図である。実施例1は黒四角
(■)、実施例2は黒丸(●)、比較例1は白四角
(□)、比較例2は白丸(○)、比較例3は白三角
(△)で示す。図3中、X軸(横軸)は酸素分圧(単位
%)を、Y軸(縦軸)は抵抗率(単位μΩ・cm)を示
す。
FIG. 5 is a diagram showing the relationship between the resistivity and oxygen partial pressure of the ITO thin films obtained in Examples and Comparative Examples. Example 1 is indicated by a black square (■), Example 2 is indicated by a black circle (●), Comparative Example 1 is indicated by a white square (□), Comparative Example 2 is indicated by a white circle (◯), and Comparative Example 3 is indicated by a white triangle (Δ). In FIG. 3, the X axis (horizontal axis) represents oxygen partial pressure (unit%), and the Y axis (vertical axis) represents resistivity (unit μΩ · cm).

【図6】実施例1で作製した試料の表面状態をAFMで
観察した像である。図6中、X軸(横軸)は観察部分の
長さ(単位はμm)を、Y軸(縦軸)は観察部分の厚み
方向の長さ(単位はnm)を示す。スパイク状突起が認
められない。
FIG. 6 is an image of the surface state of the sample manufactured in Example 1 observed by AFM. In FIG. 6, the X axis (horizontal axis) represents the length of the observed portion (unit is μm), and the Y axis (vertical axis) represents the length in the thickness direction of the observed portion (unit is nm). No spike-like protrusion is observed.

【図7】実施例2で作製した試料の表面状態をAFMで
観察した像である。図中、X軸(横軸)は観察部分の長
さ(単位はμm)を、Y軸(縦軸)は観察部分の厚み方
向の長さ(単位はnm)を示す。スパイク状突起が認め
れらない。
FIG. 7 is an image obtained by observing the surface state of the sample manufactured in Example 2 with an AFM. In the figure, the X-axis (horizontal axis) shows the length of the observed portion (unit is μm), and the Y-axis (vertical axis) shows the length of the observed portion in the thickness direction (unit is nm). No spike-like protrusion is observed.

【図8】比較例1で作製した試料の表面状態をAFMで
観察した像である。図中、X軸(横軸)は観察部分の長
さ(単位はμm)を、Y軸(縦軸)は観察部分の厚み方
向の長さ(単位はnm)を示す。図中の白い楔形状部分
がスパイク状突起である。
FIG. 8 is an image of the surface condition of the sample manufactured in Comparative Example 1, observed by AFM. In the figure, the X-axis (horizontal axis) shows the length of the observed portion (unit is μm), and the Y-axis (vertical axis) shows the length of the observed portion in the thickness direction (unit is nm). The white wedge-shaped part in the figure is a spike-shaped protrusion.

【図9】比較例2で作製した試料の表面状態をAFMで
観察した像である。図中、X軸(横軸)は観察部分の長
さ(単位はμm)を、Y軸(縦軸)は観察部分の厚み方
向の長さ(単位はnm)を示す。図中の白い楔形状部分
がスパイク状突起である。
FIG. 9 is an image obtained by observing the surface state of the sample manufactured in Comparative Example 2 with an AFM. In the figure, the X-axis (horizontal axis) shows the length of the observed portion (unit is μm), and the Y-axis (vertical axis) shows the length of the observed portion in the thickness direction (unit is nm). The white wedge-shaped part in the figure is a spike-shaped protrusion.

【図10】比較例3で作製した試料の表面状態をAFM
で観察した像である。図中、X軸(横軸)は観察部分の
長さ(単位はμm)を、Y軸(縦軸)は観察部分の厚み
方向の長さ(単位はnm)を示す。図中の白い楔形状部
分がスパイク状突起である。
FIG. 10 shows the surface condition of the sample prepared in Comparative Example 3 by AFM.
It is the image observed in. In the figure, the X-axis (horizontal axis) shows the length of the observed portion (unit is μm), and the Y-axis (vertical axis) shows the length of the observed portion in the thickness direction (unit is nm). The white wedge-shaped part in the figure is a spike-shaped protrusion.

【符号の説明】[Explanation of symbols]

1:ガラス基板 2:透明陽極 3:ホール輸送層 4:発光層 5:電子輸送層 6:金属陰極 1: Glass substrate 2: Transparent anode 3: Hall transport layer 4: Light emitting layer 5: Electron transport layer 6: Metal cathode

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 33/28 C04B 35/00 R (72)発明者 長崎 裕一 山形県山形市桜田東2−11−16 Fターム(参考) 3K007 AB05 AB08 AB17 CB01 DB03 FA01 4G030 AA34 AA39 BA02 BA15 CA01 GA04 GA11 GA22 GA24 GA27 4K029 BC09 BD00 CA05 DC01 DC05 DC09 EA03 EA05 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H05B 33/28 C04B 35/00 R (72) Inventor Yuichi Nagasaki 2-11-16 Sakuradahigashi, Yamagata City, Yamagata Prefecture F Term ( Reference) 3K007 AB05 AB08 AB17 CB01 DB03 FA01 4G030 AA34 AA39 BA02 BA15 CA01 GA04 GA11 GA22 GA24 GA27 4K029 BC09 BD00 CA05 DC01 DC05 DC09 EA03 EA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】インジウム、スズ及び酸素からなるITO
薄膜であり、当該表面形状がベアリングカーブの0.1
%値Rbと50%値Rbの差が15nm未満であるIT
O薄膜。
1. An ITO comprising indium, tin and oxygen
It is a thin film and the surface shape is 0.1 of the bearing curve.
IT in which the difference between the% value Rb and the 50% value Rb is less than 15 nm
O thin film.
【請求項2】実質的にインジウム、スズ及び酸素からな
り、焼結密度が相対密度で99.5%以上、バルク抵抗
率が70μΩ・cm以上100μΩ・cm以下、かつ、
酸化インジウムと酸化スズの中間化合物であるIn4
312相の(220)面のX線回折ピークの積分強度
がIn23相の(211)面のX線回折ピークの積分強
度の30%未満であるITO焼結体からなるITOスパ
ッタリングターゲットを用てスパッタリング成膜する際
に、スパッタリング雰囲気中の酸素分圧を0.5〜1.
0%の範囲とすることを特徴とする請求項1に記載のI
TO薄膜の製造方法。
2. Sintering density is 99.5% or more in relative density, bulk resistivity is 70 μΩ · cm or more and 100 μΩ · cm or less, and substantially consisting of indium, tin and oxygen.
In 4 S, an intermediate compound of indium oxide and tin oxide
ITO composed of an ITO sintered body in which the integrated intensity of the X-ray diffraction peak of the (220) plane of the n 3 O 12 phase is less than 30% of the integrated intensity of the X-ray diffraction peak of the (211) plane of the In 2 O 3 phase When forming a film by sputtering using a sputtering target, the oxygen partial pressure in the sputtering atmosphere is 0.5 to 1.
I in the range of 0% according to claim 1, characterized in that
Method of manufacturing TO thin film.
【請求項3】実質的にインジウム、スズ及び酸素からな
り、焼結密度が相対密度で99.5%以上、バルク抵抗
率が70μΩ・cm以上100μΩ・cm以下、かつ、
酸化インジウムと酸化スズの中間化合物であるIn4
312相の(220)面のX線回折ピークの積分強度
がIn23相の(211)面のX線回折ピークの積分強
度の30%未満であることを特徴とするITO焼結体か
らなるITOスパッタリングターゲット。
3. Sintering density is 99.5% or more in relative density, bulk resistivity is 70 μΩ · cm or more and 100 μΩ · cm or less, and substantially consisting of indium, tin and oxygen.
In 4 S, an intermediate compound of indium oxide and tin oxide
An ITO calcination characterized in that the integrated intensity of the X-ray diffraction peak of the (220) plane of the n 3 O 12 phase is less than 30% of the integrated intensity of the X-ray diffraction peak of the (211) plane of the In 2 O 3 phase. An ITO sputtering target consisting of a unit.
JP2003031362A 2002-02-08 2003-02-07 Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it Pending JP2003301265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031362A JP2003301265A (en) 2002-02-08 2003-02-07 Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002032610 2002-02-08
JP2002-32610 2002-02-08
JP2003031362A JP2003301265A (en) 2002-02-08 2003-02-07 Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it

Publications (1)

Publication Number Publication Date
JP2003301265A true JP2003301265A (en) 2003-10-24

Family

ID=29405007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031362A Pending JP2003301265A (en) 2002-02-08 2003-02-07 Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it

Country Status (1)

Country Link
JP (1) JP2003301265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338916A (en) * 2005-05-31 2006-12-14 Sony Corp Organic el element, display device and manufacturing method of organic el element
WO2009020084A1 (en) * 2007-08-06 2009-02-12 Mitsui Mining & Smelting Co., Ltd. Ito sintered body and ito sputtering target
JP2009144238A (en) * 2007-12-14 2009-07-02 Samsung Corning Precision Glass Co Ltd Indium tin oxide target, method for manufacturing the same, transparent conductive film of indium tin oxide, and method for manufacturing the same
WO2014156234A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Ito sputtering target and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338916A (en) * 2005-05-31 2006-12-14 Sony Corp Organic el element, display device and manufacturing method of organic el element
WO2009020084A1 (en) * 2007-08-06 2009-02-12 Mitsui Mining & Smelting Co., Ltd. Ito sintered body and ito sputtering target
JP2009040620A (en) * 2007-08-06 2009-02-26 Mitsui Mining & Smelting Co Ltd Ito sintered body and ito sputtering target
JP2009144238A (en) * 2007-12-14 2009-07-02 Samsung Corning Precision Glass Co Ltd Indium tin oxide target, method for manufacturing the same, transparent conductive film of indium tin oxide, and method for manufacturing the same
WO2014156234A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Ito sputtering target and method for manufacturing same
JP5987105B2 (en) * 2013-03-29 2016-09-06 Jx金属株式会社 ITO sputtering target and manufacturing method thereof
JPWO2014156234A1 (en) * 2013-03-29 2017-02-16 Jx金属株式会社 ITO sputtering target and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6015801B2 (en) Oxide sintered body, manufacturing method thereof, target, and transparent conductive film
JP5716768B2 (en) Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
JP5880667B2 (en) Target and manufacturing method thereof
JP5561358B2 (en) Transparent conductive film
JP2005314131A (en) Oxide sintered compact, sputtering target, transparent conductive thin film, and their production method
JP4779798B2 (en) Oxide sintered body, target, and transparent conductive film obtained using the same
JP2006193363A (en) Oxide sintered compact, sputtering target, and transparent electroconductive thin film
JP4917725B2 (en) Transparent conductive film, method for producing the same, and use thereof
JP2003301265A (en) Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it
JP4524577B2 (en) Transparent conductive film and sputtering target
JP4211558B2 (en) Sputtering target material, manufacturing method thereof, and manufacturing method of transparent conductive film using the same
JP2002030429A (en) Ito sputtering target and manufacturing method
JP3603693B2 (en) ITO sputtering target
JP2006219357A (en) Oxide sintered compact, sputtering target and transparent electroconductive membrane
JP2010265507A (en) UPPER-EMISSION-TYPE ORGANIC EL ELEMENT, AND Al ALLOY SPUTTERING TARGET USED FOR FORMING REFLECTION FILM WHICH CONSTITUTES ANODE LAYER OF THE UPPER-EMISSION-TYPE ORGANIC EL ELEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124