JP2003347188A - Electron beam lithography device - Google Patents
Electron beam lithography deviceInfo
- Publication number
- JP2003347188A JP2003347188A JP2002150290A JP2002150290A JP2003347188A JP 2003347188 A JP2003347188 A JP 2003347188A JP 2002150290 A JP2002150290 A JP 2002150290A JP 2002150290 A JP2002150290 A JP 2002150290A JP 2003347188 A JP2003347188 A JP 2003347188A
- Authority
- JP
- Japan
- Prior art keywords
- deflector
- deflection
- signal
- correction
- focus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electron Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体集積回路など
の製造に用いられる電子ビーム描画装置に係り、特に、
高速かつ高精度な描画を行う電子ビーム描画装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam writing apparatus used for manufacturing a semiconductor integrated circuit and the like.
The present invention relates to an electron beam writing apparatus that performs high-speed and high-accuracy writing.
【0002】[0002]
【従来の技術】LSIを代表とする半導体集積回路の高
密度化、高集積化が急速に進み、これに伴い形成すべき
回路パターンの微細化も急速に進んでいる。特に100
nmノード以下のパターン形成は、従来の光リソグラフ
ィー技術の延長では非常に困難とされている。これに対
し、電子ビーム描画は微細パターンを形成するためには
有効な手段であるが、生産現場に適用するためには、高
い描画精度を維持しつつ、更に高い描画速度向上が要求
されている。2. Description of the Related Art High density and high integration of semiconductor integrated circuits typified by LSIs are rapidly progressing, and accordingly, miniaturization of circuit patterns to be formed is rapidly progressing. Especially 100
Pattern formation at the nm node and below is extremely difficult with the extension of conventional photolithography technology. On the other hand, electron beam lithography is an effective means for forming a fine pattern, but in order to apply it to a production site, a higher lithography speed is required while maintaining high lithography accuracy. .
【0003】描画速度を低下させる要因の一つに、偏向
器や焦点補正器を構成するコイルが発生する磁場により
周囲の金属材料に生ずる渦電流がある。電子ビーム描画
装置における焦点補正は、描画対象である試料の高さ変
動や、偏向による像面湾曲成分を補正することに用いる
ため重要である。すなわち、磁場による偏向器や焦点補
正器が発生する磁場が、電気抵抗の小さい周囲の金属材
料に作用することにより、その表面で発生した渦電流が
磁場を発生し、電子ビームに不要な偏向作用を発生させ
ることになる。渦電流の影響が消えるまでの時間は、描
画周期に比べて長いため、待ち時間を増大させ結果とし
て描画速度が低下することになる。偏向器や焦点補正器
を静電型にすれば渦電流の問題が無く、高速化が可能と
なる。例えば、特公平4−47944号公報や特許31
38005号公報では、磁場レンズ中に円筒型偏向板を
配置して高速な静電型レンズの焦点補正器を用いてい
る。これらの例は、低電圧で焦点補正を行う、すなわち
高感度化を課題としている。One of the factors that lowers the drawing speed is an eddy current generated in a surrounding metal material by a magnetic field generated by a coil constituting a deflector or a focus corrector. Focus correction in an electron beam lithography apparatus is important because it is used for correcting a height variation of a sample to be written and a field curvature component due to deflection. In other words, the magnetic field generated by the deflector and focus corrector due to the magnetic field acts on the surrounding metal material having a small electric resistance, so that the eddy current generated on the surface generates a magnetic field, and unnecessary deflection action on the electron beam Will be generated. Since the time until the influence of the eddy current disappears is longer than the drawing cycle, the waiting time is increased, and as a result, the drawing speed is reduced. If the deflector and the focus compensator are of an electrostatic type, there is no problem of eddy current, and high-speed operation is possible. For example, Japanese Patent Publication No. 4-47944 and Patent
Japanese Patent No. 38005 discloses a high-speed electrostatic lens focus corrector in which a cylindrical deflection plate is disposed in a magnetic field lens. In these examples, the focus is to be corrected at a low voltage, that is, to increase the sensitivity.
【0004】静電型の偏向器と静電型のレンズを同時に
用いる場合、それぞれ別の電極を相互に干渉しないよう
に配置する必要があり、電子光学系の光路が長くなる。
また、偏向器と焦点補正器とを独立に設置することは、
それぞれの機械誤差の影響で、電子光学的収差を増加さ
せる原因となるため好ましくない。このため、特開20
00−173522号公報では、偏向器駆動電源を静電
レンズ用の高電圧に浮かすことにより重畳し、偏向器に
静電レンズの収束作用を同時に持たせている。When an electrostatic deflector and an electrostatic lens are used at the same time, it is necessary to arrange different electrodes so as not to interfere with each other, and the optical path of the electron optical system becomes longer.
In addition, installing a deflector and a focus compensator independently,
It is not preferable because each mechanical error causes an increase in electro-optical aberration. For this reason, JP-A-20
In Japanese Patent Application Publication No. 00-173522, the deflector driving power supply is floated to a high voltage for the electrostatic lens and is superimposed, so that the deflector simultaneously has the function of converging the electrostatic lens.
【0005】図1に、磁場レンズ中に円筒型偏向板を配
置して高速な静電レンズの焦点補正器を用いている従来
の例を断面図の形で具体的に示す。FIG. 1 is a sectional view showing a conventional example in which a cylindrical deflection plate is disposed in a magnetic lens and a high-speed electrostatic lens focus corrector is used.
【0006】電子銃201から放出された電子ビーム2
02は矩形の開口を持つ第1マスク203上に照射さ
れ、さらに第2マスク205上に結像される。第2マス
ク205上の像は2つの縮小レンズ206と第1対物レ
ンズ207と第2対物レンズ208で投影され、主偏向
器214および副偏向器216で偏向され、感光剤の塗
布された試料209上に照射され描画を行う。さらに、
焦点補正器218により焦点補正が行なわれる。The electron beam 2 emitted from the electron gun 201
Numeral 02 is irradiated on the first mask 203 having a rectangular opening, and further imaged on the second mask 205. The image on the second mask 205 is projected by the two reduction lenses 206, the first objective lens 207, and the second objective lens 208, deflected by the main deflector 214 and the sub deflector 216, and is coated with a photosensitive agent. Irradiate on the top to draw. further,
Focus correction is performed by the focus corrector 218.
【0007】このとき第2マスク205にあらかじめ設
けてある複数のパターン形状の開口を、選択偏向器20
4により選択し、開口形状のビームで描画することも可
能である。At this time, a plurality of pattern-shaped openings provided in advance in the second mask 205 are connected to the selective deflector 20.
4, it is also possible to draw with an aperture-shaped beam.
【0008】対物偏向レンズ内の主偏向器214により
一定の領域の描画を行い、さらに、副偏向器216でこ
の領域をシフトさせながら、より広い領域の描画を行
う。副偏向器216による制御で偏向可能な領域以外
は、XYステージ210上に設置された試料(被描画対
象)209をXYステージ制御装置212により移動さ
せて描画を行う。A predetermined area is drawn by the main deflector 214 in the objective deflecting lens, and a wider area is drawn while shifting this area by the sub deflector 216. The XY stage control device 212 moves the sample (object to be drawn) 209 placed on the XY stage 210 to perform drawing, except for the area that can be deflected by the control of the sub deflector 216.
【0009】描画全体は描画パターンデータに従って、
描画制御装置211によって統一的に制御され、主偏向
制御装置213および副偏向制御装置215によりパタ
ーンデータに応じてビームを偏向することによりビーム
位置を制御する。また、試料高さ計測装置220がXY
ステージ210上部に設けられ、試料209の高さデー
タを光学的手段により取得している。この試料209の
高さ信号Hは描画制御装置211に与えられて、焦点補
正制御装置217を介して焦点補正器218に補正制御
信号が与えられる。The entire drawing is performed according to the drawing pattern data.
The beam position is controlled by the main deflection control device 213 and the sub deflection control device 215 deflecting the beam according to the pattern data. The sample height measuring device 220 is XY
It is provided above the stage 210 and acquires height data of the sample 209 by optical means. The height signal H of the sample 209 is supplied to the drawing control device 211, and a correction control signal is supplied to the focus corrector 218 via the focus correction control device 217.
【0010】ここで、主偏向器214、副偏向器216
および焦点補正器218は、8極偏向板による構成とさ
れているが、これを図2に示す。偏向板X1からX4お
よびY1からY4からなる8極の偏向板が等間隔で同一
円周上に配列されている。したがって、図1で主偏向器
214、副偏向器216および焦点補正器218を対向
する2枚の偏向板のように表示したのは、これらを代表
してのものである。Here, the main deflector 214 and the sub deflector 216
The focus corrector 218 has an eight-pole deflecting plate, which is shown in FIG. Eight-pole deflecting plates consisting of deflecting plates X1 to X4 and Y1 to Y4 are arranged on the same circumference at equal intervals. Therefore, in FIG. 1, the main deflector 214, the sub deflector 216, and the focus corrector 218 are represented as two opposing deflector plates, which are representative.
【0011】ここで、8極偏向板に印加する信号電圧を
定義する。図2に示す8極の偏向板に印加する信号電圧
は(1)式のとおりであり、これを数1に示す。Here, the signal voltage applied to the 8-pole deflection plate is defined. The signal voltage applied to the eight-pole deflecting plate shown in FIG. 2 is as shown in equation (1).
【0012】[0012]
【数1】
ここで、XはX座標を示す偏向信号を、YはY座標を示
す偏向信号を、rは定数を、Xs、Ysは上記偏向信号
Xおよび偏向信号Yの関数である2つの方向の非点補正
信号を、Dfは上記偏向信号X、偏向信号Yおよび高さ
信号Hの関数である焦点補正信号を示す。(Equation 1) Here, X is a deflection signal indicating an X coordinate, Y is a deflection signal indicating a Y coordinate, r is a constant, and Xs and Ys are astigmatism points in two directions which are functions of the deflection signal X and the deflection signal Y. Df indicates a focus correction signal which is a function of the deflection signal X, the deflection signal Y and the height signal H.
【0013】次に、主偏向制御装置213の構成を図3
を用いて説明する。Next, the configuration of the main deflection control device 213 is shown in FIG.
This will be described with reference to FIG.
【0014】描画制御装置212から出力される偏向信
号XおよびYは、上記(1)式を満足するように、所定の
演算処理がなされて、図3に示すように、主偏向器21
4および副偏向器216を構成する偏向板X1からX4
およびY1からY4に加えられる。また、偏向信号X、
Yおよび高さ信号Hは、所定の演算処理がなされて、図
3に示すように、焦点補正器218を構成する偏向板X
1からX4およびY1からY4に加えられる。The deflection signals X and Y output from the drawing control unit 212 are subjected to predetermined arithmetic processing so as to satisfy the above-mentioned equation (1), and as shown in FIG.
4 and the deflection plates X1 to X4 constituting the sub deflector 216
And Y1 to Y4. Also, the deflection signal X,
The Y and the height signal H are subjected to predetermined arithmetic processing, and as shown in FIG.
1 to X4 and Y1 to Y4.
【0015】次に、(1)式に対応した演算処理を行う
構成の具体例を説明する。まず、偏向板X1からX4の
信号電圧の演算処理について説明する。Next, a description will be given of a specific example of a configuration for performing arithmetic processing corresponding to the equation (1). First, the calculation processing of the signal voltages of the deflection plates X1 to X4 will be described.
【0016】偏向信号XおよびYは、例えば、20ビッ
トのデジタルデータで描画制御装置212から出力され
る。偏向信号X、YはDA変換器701X、702Yに
よりアナログ信号に変換される。DA変換器702Yか
ら出力された信号は、定数倍回路によりr倍されてrY
になされる。この定数rは、例えば(√2−1)であ
る。DA変換器701Xおよび定数倍回路の出力Xおよ
びrYは加算回路707X1から707X4によって
(1)式に対応する極性で加算される。これら加算回路
の出力は、8極偏向板に印加される信号電圧の内、偏向
板X1からX4の偏向電圧の基本部となるものである。The deflection signals X and Y are output from the drawing control unit 212 as, for example, 20-bit digital data. The deflection signals X and Y are converted into analog signals by DA converters 701X and 702Y. The signal output from the DA converter 702Y is multiplied by r by a constant multiplying circuit and rY
Is made. This constant r is, for example, (√2-1). The outputs X and rY of the DA converter 701X and the constant multiplying circuit are added by adders 707X1 to 707X4 with the polarity corresponding to the expression (1). The outputs of these adders serve as a basic part of the deflection voltages of the deflection plates X1 to X4 among the signal voltages applied to the 8-pole deflection plates.
【0017】703Xおよび704Yは演算回路であ
り、偏向信号XおよびYを入力としてX,Yの非点補正
信号を演算し、12ビットのデジタルデータで出力す
る。このデジタルデータがDA変換器704X、704
Yによりアナログ信号に変換される。それぞれのDA変
換器から出力された信号は、増幅回路705X,705
Yにより必要な感度から決まる値に増幅され、非点補正
信号Xs,Ysとして出力される。これら非点補正信号
Xs,Ysは、(1)式に対応する極性で、加算回路7
07X1から707X4の出力に、加算回路708X1
から708X4によって加算される。Numerals 703X and 704Y denote arithmetic circuits, which calculate the X and Y astigmatism correction signals with the deflection signals X and Y as inputs and output them as 12-bit digital data. This digital data is stored in the DA converters 704X and 704.
It is converted to an analog signal by Y. The signals output from the respective DA converters are amplified by amplifier circuits 705X and 705.
It is amplified to a value determined from the required sensitivity by Y, and output as astigmatism correction signals Xs, Ys. These astigmatism correction signals Xs and Ys have polarities corresponding to the equation (1), and
The outputs of 07X1 to 707X4 are added to an adder circuit 708X1.
To 708X4.
【0018】加算回路708X1から708X4の出力
信号は、増幅回路709X1から709X4によって増
幅され、主偏向器214および副偏向器216を構成す
る偏向板X1からX4に加えられる。The output signals of the adders 708X1 to 708X4 are amplified by the amplifiers 709X1 to 709X4 and applied to the deflecting plates X1 to X4 constituting the main deflector 214 and the sub deflector 216.
【0019】次に、主偏向器214および副偏向器21
6を構成する偏向板Y1からY4に加えられる電圧は、
描画制御装置212から出力される偏向信号XおよびY
を取り替えて、上述と同じ処理で作られる。すなわち、
偏向信号Y、XはDA変換器701Y、702Xにより
アナログ信号に変換される。DA変換器702Xから出
力された信号は、定数倍回路によりr倍されてrYにな
される。この定数rは、例えば(√2−1)である。D
A変換器701Yおよび定数倍回路の出力YおよびrX
は加算回路707Y1から707Y4によって(1)式
に対応する極性で加算される。これら加算回路の出力
は、8極偏向板に印加される信号電圧の内、偏向板Y1
からY4の偏向電圧の基本部となるものである。Next, the main deflector 214 and the sub deflector 21
The voltage applied to the deflecting plates Y1 to Y4 that constitutes No. 6 is
Deflection signals X and Y output from drawing controller 212
Is replaced by the same process as described above. That is,
The deflection signals Y and X are converted into analog signals by the DA converters 701Y and 702X. The signal output from the DA converter 702X is multiplied by r by a constant multiplying circuit to be rY. This constant r is, for example, (√2-1). D
A converter 701Y and outputs Y and rX of constant multiplying circuit
Are added by adders 707Y1 to 707Y4 with the polarity corresponding to the expression (1). The output of these addition circuits is the deflection plate Y1 of the signal voltages applied to the eight-pole deflection plate.
To Y4 as a basic part of the deflection voltage.
【0020】これら加算回路707Y1から707Y4
の出力信号に、上述した、非点補正信号Xs,Ysが、
(1)式に対応する極性で、加算回路708Y1から7
08Y4によって加算される。加算回路708Y1から
708Y4の出力信号は、増幅回路709Y1から70
9Y4によって増幅され、主偏向器214および副偏向
器216を構成する偏向板Y1からY4に加えられる。These adders 707Y1 to 707Y4
The above-mentioned astigmatism correction signals Xs and Ys are
With the polarity corresponding to equation (1), the addition circuits 708Y1 to 7
08Y4. The output signals of the adders 708Y1 to 708Y4 are
9Y4, and is added to the deflection plates Y1 to Y4 constituting the main deflector 214 and the sub deflector 216.
【0021】706は演算回路であり、偏向信号X、Y
および高さ信号Hを入力としてX,Yの焦点補正信号を
演算する。ここで高さ信号Hは9ビットのデジタルデー
タ出与えられる。演算回路706は10ビットのデジタ
ルデータで出力する。このデジタルデータがDA変換器
707によりアナログ信号に変換される。DA変換器7
07から出力された信号は、増幅回路708により増幅
され、焦点補正信号Dfとして出力される。この焦点補
正信号Dfは焦点補正器218に加えられる。Reference numeral 706 denotes an arithmetic circuit, which comprises deflection signals X and Y.
The X and Y focus correction signals are calculated using the input signal and the height signal H as inputs. Here, the height signal H is given as 9-bit digital data. The arithmetic circuit 706 outputs 10-bit digital data. This digital data is converted into an analog signal by the DA converter 707. DA converter 7
The signal output from 07 is amplified by the amplifier circuit 708 and output as a focus correction signal Df. This focus correction signal Df is applied to the focus corrector 218.
【0022】このように、主偏向制御装置213の構成
はアナログ回路を主体として構成するものであった。ま
た、焦点補正器218および焦点補正制御装置217は
独立に設置されていた。As described above, the configuration of the main deflection control device 213 mainly includes an analog circuit. In addition, the focus corrector 218 and the focus correction control device 217 are provided independently.
【0023】[0023]
【発明が解決しようとする課題】上記のように、静電偏
向器の各極に等しい電圧を印加してレンズ作用を持たせ
焦点補正を行うことは、電子光学要素の数を減少させ、
機械誤差による収差低減の観点から有効な手段である。
さらに、8極以上の偏向器であれば、各極に与える電圧
を制御すれば、非点収差も補正することが可能となる。
従って、1つの8極以上の偏向器で、偏向作用、非点補
正作用、焦点補正作用を同時に実現することは有用であ
る。As described above, applying the same voltage to each pole of the electrostatic deflector to provide a lens function and perform focus correction reduces the number of electron optical elements.
This is an effective means from the viewpoint of reducing aberrations due to mechanical errors.
Further, if the deflector has eight or more poles, astigmatism can be corrected by controlling the voltage applied to each pole.
Therefore, it is useful to simultaneously realize the deflecting action, the astigmatism correcting action, and the focus correcting action with one deflector having eight or more poles.
【0024】通常、しかしながら、電子光学系の特性と
描画システム構成とから決まる必要な偏向量、非点補正
量、焦点補正量と偏向板形状から決まる偏向感度、非点
補正感度および焦点補正感度とは一致しない。このた
め、電子ビーム偏向に必要な最大電圧および電圧分解能
と、非点補正および焦点補正に必要な最大電圧および電
圧分解能(最小単位)は異なる。この相異を解消するた
めに、従来は、偏向信号用のDA(ディジタルアナロ
グ)変換器、非点補正用のDA変換器および焦点補正用
DA変換器をそれぞれ持ち、必要な感度から決まる値に
調整した後電圧加算などのアナログ演算にて偏向器に出
力していた。Usually, however, the necessary deflection amount, astigmatism correction amount determined from the characteristics of the electron optical system and the drawing system configuration, the deflection sensitivity determined from the focus correction amount and the shape of the deflection plate, the astigmatism correction sensitivity, and the focus correction sensitivity. Does not match. For this reason, the maximum voltage and voltage resolution required for electron beam deflection and the maximum voltage and voltage resolution (minimum unit) required for astigmatism correction and focus correction are different. Conventionally, in order to resolve this difference, a DA (digital-analog) converter for deflection signals, a DA converter for astigmatism correction, and a DA converter for focus correction have been provided, each of which has a value determined by the required sensitivity. After adjustment, the voltage was output to the deflector by analog calculation such as voltage addition.
【0025】しかし、近年の半導体素子の微細化に伴い
描画位置精度を決定する偏向分解能が20〜21ビット
(1×106以上)ときわめて高い精度が必要となって
きた。この精度を、偏向信号用DA変換器、非点補正用
DA変換器および焦点補正用DA変換器でそれぞれ達成
し、さらにアナログ演算による加算後においても維持す
ることは、測定、調整の問題およびDA変換器の数の多
さを考慮すると非常に困難である。[0025] However, in recent years deflection resolution for determining the drawing position accuracy with miniaturization of semiconductor elements 20 to 21 bits (1 × 10 6 or higher) and very high accuracy has become necessary. Achieving this accuracy with the DA converter for deflection signal, the DA converter for astigmatism correction, and the DA converter for focus correction, and maintaining the same even after addition by analog arithmetic are problems of measurement, adjustment, and DA. It is very difficult considering the large number of converters.
【0026】電磁レンズ中に円筒型電極を配置して静電
型レンズの焦点補正器を用いることは、特公平4−47
944号公報に開示されている。これは、低電圧で高速
に焦点補正を行う、すなわち高感度化を課題としてい
る。また、特許3138005号公報では、磁場レンズ
中で静電型の焦点補正を行う場合には、2段の電磁レン
ズを用いると焦点補正による倍率変化を減少させること
が可能であると開示されている。また、特開2000−
173522号公報では、偏向器駆動電源を静電レンズ
用の高電圧に浮かすことにより重畳し、偏向器に静電レ
ンズの収束作用を同時に持たせている。しかしながら、
焦点補正のような描画領域に応じて動的に制御すること
については言及していない。Using a focus corrector for an electrostatic lens by disposing a cylindrical electrode in an electromagnetic lens is disclosed in Japanese Patent Publication No. 4-47.
No. 944. This aims at performing high-speed focus correction at a low voltage, that is, increasing sensitivity. Further, Japanese Patent No. 3138005 discloses that when performing electrostatic focus correction in a magnetic lens, it is possible to reduce the change in magnification due to focus correction by using a two-stage electromagnetic lens. . Also, Japanese Patent Laid-Open No. 2000-
In Japanese Patent Publication No. 173522, the deflector driving power supply is floated to a high voltage for an electrostatic lens so that the power is superimposed and the deflector has the function of converging the electrostatic lens at the same time. However,
No mention is made of dynamically controlling according to the drawing area, such as focus correction.
【0027】高精度かつ高速な電子ビーム描画装置の対
物偏向レンズ設計上の主たる課題は、レンズ収差特に偏
向収差の低減と描画試料の高さ変動や偏向に伴う焦点補
正時の倍率変化や回転変化の低減を両立させることであ
る。磁場レンズ中にて、静電型の焦点補正機能と偏向機
能を1つの偏向器で実現する場合には、偏向収差から決
まる電磁レンズ中の光軸上での偏向器の最適位置と、焦
点補正による像倍率変化や像回転が最小になる焦点補正
器の位置は異なる。このため、偏向器と焦点補正器を同
一電極とすると、それぞれの最適位置からずれてしまう
ことになり、高精度な描画を実現できないという問題が
あった。本発明では、焦点補正の最適位置で、偏向収差
も低減することを課題とする。これは、上記3例にはな
い新しい課題である。The main problems in designing an objective deflecting lens of a high-accuracy and high-speed electron beam lithography system are reduction of lens aberrations, particularly deflection aberrations, and magnification change and rotation change at the time of focus correction due to height fluctuation and deflection of a drawing sample. Is to make the reduction of both compatible. When the electrostatic focus correction function and the deflection function are realized by a single deflector in the magnetic lens, the optimal position of the deflector on the optical axis in the electromagnetic lens determined by the deflection aberration and the focus correction The position of the focus corrector that minimizes the change in image magnification and the image rotation due to the difference is different. For this reason, if the deflector and the focus corrector are the same electrode, they will deviate from their optimal positions, and there has been a problem that high-precision drawing cannot be realized. SUMMARY OF THE INVENTION It is an object of the present invention to reduce deflection aberration at an optimum position for focus correction. This is a new problem not found in the above three examples.
【0028】[0028]
【課題を解決するための手段】上記の問題に対して、本
発明では1つの偏向器に、偏向信号、非点補正信号、焦
点補正信号を重畳して供給する。このため、各信号デー
タの演算をディジタルで行う演算装置を具備する。さら
に、1つの偏向器に、偏向作用と焦点補正作用の両者を
持たせる際に発生する偏向収差を低減する最適設計の偏
向器の条件を、具体的に提案する。According to the present invention, a deflection signal, an astigmatism correction signal, and a focus correction signal are supplied to one deflector in a superimposed manner. For this purpose, an arithmetic unit for digitally calculating each signal data is provided. Furthermore, conditions for an optimally designed deflector that reduces the deflection aberration that occurs when a single deflector has both a deflection action and a focus correction action will be specifically proposed.
【0029】[0029]
【発明の実施の形態】以下、本発明の実施例を詳細に説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.
【0030】図4は本発明を適用した電子ビーム描画装
置の例を断面図の形で具体的に示す。図1に示すものと
同じ物または同じ機能のものには図1と同じ参照符号を
付した。図4と図1とを対比して分かるように、本発明
では、焦点補正制御装置217およびこれを介して補正
制御信号が与えられている焦点補正器218がなくなっ
ている。その他の構成は同じである。FIG. 4 specifically shows an example of an electron beam writing apparatus to which the present invention is applied in the form of a sectional view. Items having the same functions or the same functions as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. As can be seen by comparing FIG. 4 with FIG. 1, in the present invention, the focus correction control device 217 and the focus corrector 218 to which the correction control signal is supplied via the focus correction control device 217 are eliminated. Other configurations are the same.
【0031】先にも述べたように、静電偏向器の各極に
等しい電圧を印加してレンズ作用を持たせ焦点補正を行
うことは、電子光学要素の数を減少させ、機械誤差によ
る収差低減の観点から有効な手段である。さらに、8極
以上の偏向器であれば、各極に与える電圧を制御すれ
ば、非点収差も補正することが可能となることに着目し
て、ディジタル演算により高い精度を確保するととも
に、偏向収差から決まる光軸上での偏向器の最適位置
と、焦点補正による像倍率変化や像回転が最小になる焦
点補正器の位置についての厳密な解析により偏向器と焦
点補正器を同一偏向板とすることを実現した。As described above, applying the same voltage to each pole of the electrostatic deflector to provide a lens function and perform focus correction reduces the number of electron optical elements and causes aberrations due to mechanical errors. This is an effective means from the viewpoint of reduction. Furthermore, if the deflector has eight or more poles, it is possible to correct astigmatism by controlling the voltage applied to each pole. Strict analysis of the optimal position of the deflector on the optical axis determined by aberrations and the position of the focus corrector that minimizes image magnification change and image rotation due to focus correction make the deflector and focus corrector the same deflector. I realized that.
【0032】本発明の電子ビーム描画装置の特徴は、主
偏向器に焦点補正と非点補正器能を重畳させていること
にある。試料209の高さ変動や偏向による像面湾曲に
よる焦点位置の変化および偏向非点を偏向位置に応じて
主偏向器214のみで補正を行っている。この焦点およ
び非点補正信号は、描画制御装置211から出力される
偏向信号に基づいて、主偏向制御装置213内でディジ
タル演算にて重畳され、DA変換、増幅器を経て主偏向
器214に送られる。A feature of the electron beam writing apparatus of the present invention is that the focus correction and the astigmatism correction function are superimposed on the main deflector. The change of the focal position and the deflection astigmatism due to the height fluctuation of the sample 209 and the field curvature due to the deflection are corrected only by the main deflector 214 in accordance with the deflection position. The focus and astigmatism correction signal is superimposed by digital operation in the main deflection control device 213 based on the deflection signal output from the drawing control device 211, and is sent to the main deflector 214 via DA conversion and an amplifier. .
【0033】次に、主偏向制御装置213の構成を図5
を用いて説明する。本実施例においても、主偏向器21
4は図2に示す8極偏向器であり、各偏向器に加える電
圧は前述した(1)式と同じである。なお、図5におい
てデータの流れを示す線上の数字はビット数を示してい
る。Next, the configuration of the main deflection control device 213 is shown in FIG.
This will be described with reference to FIG. Also in this embodiment, the main deflector 21
Reference numeral 4 denotes an 8-pole deflector shown in FIG. 2, and the voltage applied to each deflector is the same as in the above-described equation (1). In FIG. 5, the number on the line indicating the data flow indicates the number of bits.
【0034】描画制御装置212から出力された偏向信
号Xは、X1からX4までの偏向板に対しては、与えら
れる20ビットのディジタル信号のまま加算回路406
X1から406X4に加えられる。描画制御装置212
から出力された偏向信号Yは、X1からX4までの偏向
板に対しては、与えられる20ビットのディジタル信号
が定数倍演算回路401Yに入力され、定数r倍の演算
が行われる。定数倍された偏向信号YのデータrYは加
算回路406X1から406X4に加えられる。ここ
で、各加算回路各信号の入力位置に付された符号+及び
−に応じて演算される。The deflection signal X output from the drawing control device 212 is applied to the deflection plates X1 to X4 as an added 20-bit digital signal as an addition circuit 406.
X1 to 406X4. Drawing control device 212
A 20-bit digital signal is input to the constant multiplication circuit 401Y for the deflection plates X1 to X4, and the deflection signal Y output from X1 to X4 is calculated by a constant r. The data rY of the deflection signal Y multiplied by the constant is applied to the adders 406X1 to 406X4. Here, calculation is performed in accordance with the signs + and-assigned to the input positions of the signals of the respective adders.
【0035】402Xおよび402Yは非点補正量演算
回路であり、偏向信号XおよびYを入力としてX,Yの
非点補正信号をデジタル演算し、12ビットのデータで
出力する。これは、偏向信号(ビーム偏向位置)に応じ
た2方向の非点補正量を演算するものである。このデジ
タルデータは非点感度補正演算回路403X、403Y
にて定数倍演算を行い非点補正信号のデータXs、Ys
を出力する。出力データXs、Ysは20ビットのデジ
タルデータである。この定数倍率値は後述する。この出
力された非点補正信号のデータXsとYsも、4つの加
算器406X1からX4に、図に示す極性で入力され
る。Reference numerals 402X and 402Y denote astigmatism correction amount operation circuits, which take the deflection signals X and Y as inputs, digitally operate the X and Y astigmatism correction signals, and output them as 12-bit data. This is to calculate the amount of astigmatism correction in two directions according to the deflection signal (beam deflection position). This digital data is supplied to the astigmatism correction operation circuits 403X and 403Y.
Performs a constant multiplication operation on data Xs and Ys of the astigmatism correction signal.
Is output. The output data Xs and Ys are 20-bit digital data. This constant magnification value will be described later. The output data Xs and Ys of the astigmatism correction signal are also input to the four adders 406X1 to X4 with the polarities shown in FIG.
【0036】さらに、404は焦点補正量演算回路であ
り、偏向信号X、偏向信号Yおよび高さ信号Hのデータ
が入力される。焦点補正量演算回路404では、偏向信
号(ビーム偏向位置)と試料高さに応じた焦点補正量を
出力する。この焦点補正量のデータは、焦点感度補正演
算回路405にて定数倍演算を行い、焦点補正信号Df
を出力する。この定数倍率値は後述する。この出力され
た焦点補正信号DfのデータDfも4つの加算器406
X1からX4に、図に示す極性で入力される。Reference numeral 404 denotes a focus correction amount calculation circuit to which data of the deflection signal X, the deflection signal Y and the height signal H are inputted. The focus correction amount calculation circuit 404 outputs a focus correction amount according to the deflection signal (beam deflection position) and the sample height. The data of the focus correction amount is subjected to a constant multiplication operation by the focus sensitivity correction operation circuit 405 to obtain a focus correction signal Df
Is output. This constant magnification value will be described later. The data Df of the outputted focus correction signal Df is also added to the four adders 406.
X1 to X4 are input with the polarities shown in the figure.
【0037】4つの加算器406X1からX4では、各
信号を20ビットのデジタルデータで与えられて、高精
度を維持した演算結果を出力する。4つの加算器406
X1からX4の出力データは、それぞれ独立のDA変換
器407X1からX4に入力され、アナログ信号に変換
される。このアナログ信号が増幅器408X1からX4
にて増幅され、偏向板X1、X2、X3およびX4に供
給される。この構成にて(1)式の演算が実現される。Each of the four adders 406X1 to 406X receives each signal as 20-bit digital data and outputs a calculation result maintaining high accuracy. Four adders 406
The output data of X1 to X4 are input to independent DA converters 407X1 to X4, respectively, and are converted into analog signals. This analog signal is output from the amplifiers 408X1 to X4
And supplied to the deflection plates X1, X2, X3 and X4. With this configuration, the operation of Expression (1) is realized.
【0038】偏向板Y1、Y2、Y3およびY4に対し
ては、偏向信号Xを偏向信号Yに、偏向信号Yを偏向信
号Xと置換した形で定数r倍の演算が行われるととも
に、非点補正信号のデータXs、Ysおよび焦点補正信
号Dfの演算が加算器406Y1からY4によって行わ
れ、4つの加算器406Y1からY4の出力データは、
それぞれ独立のDA変換器407Y1からY4に入力さ
れ、アナログ信号に変換される。このアナログ信号が増
幅器408Y1からY4にて増幅され、偏向板Y1、Y
2、Y3およびY4に供給される。この構成にても
(1)式の演算が実現される。For the deflecting plates Y1, Y2, Y3 and Y4, an operation of a constant r times is performed by replacing the deflecting signal X with the deflecting signal Y and the deflecting signal Y with the deflecting signal X. Calculations of the correction signal data Xs and Ys and the focus correction signal Df are performed by the adders 406Y1 to Y4, and the output data of the four adders 406Y1 to Y4 is
The signals are input to independent DA converters 407Y1 to Y4, respectively, and are converted into analog signals. This analog signal is amplified by the amplifiers 408Y1 to Y4, and the deflection plates Y1, Y4
2, Y3 and Y4. Even in this configuration, the operation of Expression (1) is realized.
【0039】このように、本実施例では1つの偏向器2
14に、偏向信号X,Y、非点補正信号Xs,Ysおよ
び焦点補正信号Dfを重畳させている。通常、この場合
には、必要な偏向量、非点補正量、焦点補正量と偏向板
形状から決まる偏向感度、非点補正感度、焦点補正感度
とは一致しない。また、偏向、非点補正、焦点補正に必
要な分解能も異なる。従って、非点補正と焦点補正に必
要な感度を偏向信号の分解能に合わせる必要がある。As described above, in this embodiment, one deflector 2
14, the deflection signals X and Y, the astigmatism correction signals Xs and Ys, and the focus correction signal Df are superimposed. Usually, in this case, the necessary deflection amount, astigmatism correction amount, focus correction amount and the deflection sensitivity, astigmatism correction sensitivity, and focus correction sensitivity determined from the shape of the deflection plate do not match. Also, the resolution required for deflection, astigmatism correction, and focus correction is different. Therefore, it is necessary to adjust the sensitivity required for astigmatism correction and focus correction to the resolution of the deflection signal.
【0040】本実施例の電子光学系では、偏向幅(最大
1mm)と最小描画単位(1nm)から偏向信号の分解
能として20ビットが必要である。また、描画精度から
決まる非点補正と焦点補正にはそれぞれ12ビット、1
0ビットの分解能が必要である。本実施例では、電子光
学系の計算から、偏向幅1mmに必要な最大電圧は±3
20V、非点補正に必要な最大電圧は±10V、焦点補
正に必要な最大電圧は±80Vであった。最大電圧と分
解能から偏向、非点補正、焦点補正それぞれの最小単位
(1ビット当り)の電圧、すなわち単位電圧が計算され
る。非点補正信号の単位電圧と偏向信号の単位電圧の比
が、非点補正の定数倍率となる。この定数倍率が前述し
た非点感度補正演算回路403X、403Yの定数倍率
値となる。また、焦点補正信号の単位電圧と偏向信号の
単位電圧の比が、焦点補正の定数倍率となる。この定数
倍率が前述した焦点感度補正演算回路405の定数倍率
値となる。In the electron optical system of this embodiment, 20 bits are required as the resolution of the deflection signal from the deflection width (1 mm at the maximum) and the minimum drawing unit (1 nm). The astigmatism correction and the focus correction determined by the drawing accuracy are each 12 bits,
A resolution of 0 bits is required. In this embodiment, from the calculation of the electron optical system, the maximum voltage required for a deflection width of 1 mm is ± 3.
The maximum voltage required for astigmatism correction was ± 10 V, and the maximum voltage required for focus correction was ± 80 V. From the maximum voltage and the resolution, the minimum unit voltage (per bit) of deflection, astigmatism correction, and focus correction, that is, a unit voltage, is calculated. The ratio between the unit voltage of the astigmatism correction signal and the unit voltage of the deflection signal is the constant magnification of the astigmatism correction. This constant magnification is the constant magnification value of the astigmatism sensitivity correction calculation circuits 403X and 403Y described above. The ratio between the unit voltage of the focus correction signal and the unit voltage of the deflection signal is a constant magnification of the focus correction. This constant magnification is the constant magnification value of the focus sensitivity correction operation circuit 405 described above.
【0041】図6は、非点補正と焦点補正に必要な感度
を偏向信号の分解能に合わせるための具体例を示すもの
である。図6(A)はこれらの値の関係を数値で示し、
図6(B)は、本実施例での非点補正の定数倍率8、焦
点補正の定数倍率が256をディジタル処理で実行する
例として、それぞれの定数倍演算が3ビットシフト、8
ビットシフトの簡略な演算で可能となることを示す。す
なわち、非点感度補正演算回路403X、403Yでは
入力の12ビットを3ビットシフトし、上位ビットに0
を加えて20ビットの出力としている。また、焦点感度
補正演算回路405では入力の10ビットを8ビットシ
フトし、上位に0を加えて20ビットの出力としてい
る。FIG. 6 shows a specific example for adjusting the sensitivity required for astigmatism correction and focus correction to the resolution of the deflection signal. FIG. 6A shows the relationship between these values by numerical values.
FIG. 6B shows an example in which the constant magnification of astigmatism correction is 8 and the constant magnification of focus correction is 256 in this embodiment by digital processing.
This shows that it is possible with a simple operation of bit shift. That is, in the astigmatism sensitivity correction operation circuits 403X and 403Y, the input 12 bits are shifted by 3 bits, and 0 is added to the upper bits.
Is added to make a 20-bit output. Further, the focus sensitivity correction operation circuit 405 shifts the input 10 bits by 8 bits and adds 0 to the higher order to output 20 bits.
【0042】本発明では、全ての信号の演算処理をディ
ジタルデータで行い、偏向板X1からX4,Y1からY
4に電圧を与える段階で、それぞれ独立のDA変換器4
07X1からX4、407Y1からY4に入力され、ア
ナログ信号に変換される。このアナログ信号が増幅器4
08X1からX4、Y1からY4にて増幅され、偏向板
X1、X2、X3、X4およびY1、Y2、Y3、X4
に供給される。したがって、必要な精度を十分に保持し
て演算処理がなされるとともに、アナログ加算器にあり
がちな特性のばらつきが問題になることもない。In the present invention, arithmetic processing of all signals is performed by digital data, and the deflection plates X1 to X4 and Y1 to Y
At the stage of applying a voltage to the D / A converter 4
07X1 to X4 and 407Y1 to Y4 are input and converted to analog signals. This analog signal is output to the amplifier 4
08X1 to X4 and amplified by Y1 to Y4, and deflection plates X1, X2, X3, X4 and Y1, Y2, Y3, X4
Supplied to Therefore, the arithmetic processing is performed while the required accuracy is sufficiently maintained, and there is no problem of variation in characteristics that is common in analog adders.
【0043】なお、本実施例では、ビットシフト演算を
行ったが、通常の乗算演算でも可能である。さらに、本
実施例では加算器406X,406Yは、専用ハードウ
ェアを用いたが、偏向速度に対して演算速度が速ければ
汎用CPU、DSP、FPGA等のソフトウェア手段を
用いてもよい。勿論、定数倍演算回路401X、401
Y、非点補正量演算回路402X、402Y、非点感度
補正演算回路403X、403Y、焦点補正量演算回路
404および焦点感度補正演算回路405についても同
様であり、これらディジタル演算部をすべてソフトウェ
アでの計算としてもよい。In the present embodiment, the bit shift operation is performed, but a normal multiplication operation can also be performed. Further, in this embodiment, the adders 406X and 406Y use dedicated hardware, but software means such as a general-purpose CPU, DSP, and FPGA may be used as long as the calculation speed is higher than the deflection speed. Of course, the constant multiplication circuits 401X, 401
The same applies to the Y, astigmatism correction amount calculation circuits 402X and 402Y, the astigmatism correction calculation circuits 403X and 403Y, the focus correction amount calculation circuit 404, and the focus sensitivity correction calculation circuit 405. It may be calculated.
【0044】先にも述べたように、偏向収差から決まる
偏向器の最適位置と、焦点補正による像倍率変化や像回
転が最小になる焦点補正器の位置は通常異なる。このた
め、偏向器を焦点補正による像倍率変化や像回転が最小
になる光軸上の点に配置し、この位置で偏向収差が最小
になるように最適化することについてさらに具体的に説
明する。As described above, the optimum position of the deflector determined by the deflection aberration is usually different from the position of the focus corrector which minimizes the change in image magnification and the image rotation due to the focus correction. For this reason, a more specific explanation will be given of arranging the deflector at a point on the optical axis where the image magnification change and image rotation due to focus correction are minimized, and optimizing the deflection aberration at this position to be minimized. .
【0045】図7は、本発明に実施例を示す図4におけ
る第1対物レンズ207と第2対物レンズ208および
主偏向器214に着目した図を示している。したがっ
て、副偏向器216は図示されていない。物面801か
らの電子ビーム802は、第1対物レンズ207、第2
対物レンズ208により収束され、像面805上(試料
面上)に結像する。第1対物レンズ207と第2対物レ
ンズ208は収差低減の為、互いに逆向の励磁としてい
る。ビームの位置は偏向器214により決定される。偏
向器214の偏向板の長さの中心位置から物面までの距
離を偏向器の位置とする。本実施例の対物レンズでは、
物面と像面の間は300mmであり、偏向器214の内
径32mm、長さ44mmとした。FIG. 7 is a view focusing on the first objective lens 207, the second objective lens 208 and the main deflector 214 in FIG. 4 showing an embodiment of the present invention. Therefore, the sub deflector 216 is not shown. The electron beam 802 from the object surface 801 is
It is converged by the objective lens 208 and forms an image on the image plane 805 (on the sample plane). The first objective lens 207 and the second objective lens 208 are excited in mutually opposite directions to reduce aberration. The position of the beam is determined by the deflector 214. The distance from the center of the length of the deflector plate of the deflector 214 to the object surface is defined as the position of the deflector. In the objective lens of the present embodiment,
The distance between the object surface and the image surface was 300 mm, the inner diameter of the deflector 214 was 32 mm, and the length was 44 mm.
【0046】図8は偏向器214の各極に同電圧を印加
して焦点補正器として用いた場合の、焦点補正を行うた
めに必要な電圧(黒丸で表示、左目盛)および焦点補正
時の像倍率の変化(黒四角で表示、右目盛)と偏向器の
物面からの距離の関係を測定した結果を示している。こ
れから分かるように、対物レンズ207、208では焦
点補正感度が高い(必要な電圧が低い)点と、焦点補正
を行っても倍率が変化しない点がほぼ一致し、物面から
150mmの位置であった。焦点補正感度が高い点と倍
率変化が一致しない場合には、倍率変化を優先してもよ
い。また、例示はしないが焦点補正時の像回転が最小に
なる点に偏向器を設置してもよい。このように焦点補正
器の位置(物面からの距離)は1点に決まってしまい、
他の位置に配置することはできない。FIG. 8 shows the voltages (indicated by black circles, left scale) necessary for performing focus correction when the same voltage is applied to each pole of the deflector 214 and used as a focus corrector, and the focus correction time. The result of measuring the relationship between the change in the image magnification (displayed with a black square, the right scale) and the distance from the object surface of the deflector is shown. As can be seen, in the objective lenses 207 and 208, the point at which the focus correction sensitivity is high (the required voltage is low) almost coincides with the point at which the magnification does not change even when the focus correction is performed. Was. If the change in magnification does not match the point where the focus correction sensitivity is high, the change in magnification may be prioritized. Although not illustrated, a deflector may be provided at a point where image rotation during focus correction is minimized. In this way, the position of the focus corrector (the distance from the object surface) is determined to be one point,
It cannot be placed elsewhere.
【0047】本発明では、図7に示すように第1対物レ
ンズ207と第2対物レンズ208の2段の電磁レンズ
を用いている。1段の電磁レンズでは、上記のような倍
率変化の少ない位置と、実用的な偏向収差を得ることが
できる位置が両立しないためである。図9に1段の電磁
レンズを用いた場合の、1mm角偏向領域隅での偏向収
差(白丸で表示、左目盛)および焦点補正時の像倍率の
変化(黒四角で表示、右目盛)と偏向器の物面からの距
離の関係を示す。ここでは、物面と像面の距離、偏向器
の形状、対物レンズとしての倍率は全て図7に示したも
のと同一条件である。図9に示すように、像倍率変化が
小さくなる(ほぼ0になる)位置は像面から約70mm
である。しかし、焦点補正器として用いる偏向器を像面
から70mmの位置に設置した場合には、偏向収差は4
00nmを超えてしまう。この偏向収差の大部分は、補
正の不可能な偏向コマ収差と偏向色収差である。偏向器
の形状により収差の低減を行っても、本発明の電子ビー
ム描画装置の目的である100nmノード以降の描画に
は適用できない。In the present invention, as shown in FIG. 7, a two-stage electromagnetic lens of a first objective lens 207 and a second objective lens 208 is used. This is because, in a single-stage electromagnetic lens, a position where the change in magnification is small as described above and a position where practical deflection aberration can be obtained are incompatible. FIG. 9 shows the deflection aberration at the corner of the 1 mm square deflection area (displayed as a white circle, left scale) and the change in image magnification at the time of focus correction (displayed as a black square, right scale) when a single-stage electromagnetic lens is used. 4 shows a relationship between a deflector and an object surface. Here, the distance between the object surface and the image surface, the shape of the deflector, and the magnification as the objective lens are all the same as those shown in FIG. As shown in FIG. 9, the position where the change in image magnification is small (substantially zero) is about 70 mm from the image plane.
It is. However, when the deflector used as the focus corrector is installed at a position 70 mm from the image plane, the deflection aberration is 4
It exceeds 00 nm. Most of these deflection aberrations are deflection coma and chromatic aberration that cannot be corrected. Even if the aberration is reduced by the shape of the deflector, it cannot be applied to the electron beam lithography system of the present invention, which is the object of 100 nm node and beyond.
【0048】これに対して、2段の電磁レンズを用い
て、2段レンズを複合したレンズ主面(2個のレンズの
間にある)より物面側に焦点補正器を設置することによ
り、高感度化と倍率の変化を小さくする方法がある。本
発明では、図8に示すように2段電磁レンズによる焦点
補正の最適位置(物面から150mm)を、偏向収差の
小さい位置と同じくすることができることを見出した。
さらに、図8に偏向収差(白丸で表示、左目盛)と偏向
器の物面からの距離の関係を合わせて示す。偏向収差に
ついてもほぼ最小の値にすることができた。これは、2
つの電磁レンズの強度調整と偏向器形状の最適化により
焦点補正の最適位置と偏向収差の最適位置をバランス良
く調整できることで可能となった。具体的には、第1対
物レンズ207のほぼ中心であり、2段レンズを複合し
たレンズ主面よりも物面側にある。この結果、倍率変化
がほぼ0であり、かつ、焦点補正感度も高い位置に焦点
補正を行うための偏向器を設置することができた。On the other hand, by using a two-stage electromagnetic lens and installing a focus corrector closer to the object surface than the lens main surface (between the two lenses) in which the two-stage lens is combined, There are methods for increasing the sensitivity and reducing the change in magnification. In the present invention, as shown in FIG. 8, it has been found that the optimum position (150 mm from the object plane) of focus correction by the two-stage electromagnetic lens can be made the same as the position where the deflection aberration is small.
FIG. 8 also shows the relationship between the deflection aberration (indicated by a white circle, left scale) and the distance from the object surface of the deflector. The deflection aberration could be reduced to almost the minimum value. This is 2
By adjusting the strength of the two electromagnetic lenses and optimizing the shape of the deflector, the optimal position of focus correction and the optimal position of deflection aberration can be adjusted in a well-balanced manner. Specifically, it is substantially at the center of the first objective lens 207, and is closer to the object surface than the lens main surface in which the two-stage lens is combined. As a result, it was possible to install a deflector for performing focus correction at a position where the change in magnification is almost 0 and the focus correction sensitivity is high.
【0049】また、図4に示す第1対物レンズ207と
第2対物レンズ208からなる対物レンズより上流(電
子銃に近い側)の縮小レンズ206の内部に偏向器を設
置して焦点補正および偏向を行うことも可能である。し
かし、縮小レンズ206は通常対物レンズよりも倍率が
低く設定され、焦点距離が短い。従って、同じ焦点補正
作用を得るには大きい電圧が必要となる。また、偏向作
用についても同じ理由で偏向感度が低くなり実用的な光
学設計は困難である。Also, a deflector is installed inside the reduction lens 206 upstream (closer to the electron gun) of the objective lens composed of the first objective lens 207 and the second objective lens 208 shown in FIG. It is also possible to do. However, the magnification of the reduction lens 206 is usually set lower than that of the objective lens, and the focal length is short. Therefore, a large voltage is required to obtain the same focus correction effect. In addition, the deflection sensitivity is lowered for the same reason, and practical optical design is difficult.
【0050】上記の様に本発明では、焦点補正の最適位
置に偏向器を設置し、かつ、偏向収差を最小にすること
ができ、1つの偏向器において最適な焦点補正機能と最
適な偏向機能を同時に実現可能である。この構成を用い
れば、偏向信号に焦点補正信号と非点補正信号を重畳し
て偏向器に供給する本発明の制御装置の特長を最大限に
発揮できる。As described above, according to the present invention, the deflector is installed at the optimum position for the focus correction, and the deflection aberration can be minimized. Can be simultaneously realized. With this configuration, it is possible to maximize the features of the control device of the present invention in which the focus correction signal and the astigmatism correction signal are superimposed on the deflection signal and supplied to the deflector.
【0051】[0051]
【発明の効果】本発明によれば、電子ビーム描画装置に
おいて8極静電偏向器に非点補正と焦点補正信号をディ
ジタル演算により重畳することにより、電子光学系内の
光学要素の数を減らすことが可能となるため、機械的誤
差要因を減少させ、簡略な回路構成で高精度な描画を行
うことが出来る。According to the present invention, the number of optical elements in the electron optical system is reduced by superimposing astigmatism correction and focus correction signals on an octupole electrostatic deflector by digital operation in an electron beam writing apparatus. This makes it possible to reduce mechanical error factors and perform highly accurate drawing with a simple circuit configuration.
【図1】磁場レンズ中に円筒型偏向板を配置して高速な
静電レンズの焦点補正器を用いている従来の例を断面図
の形で示す図。FIG. 1 is a cross-sectional view showing a conventional example in which a cylindrical deflection plate is disposed in a magnetic lens and a high-speed electrostatic lens focus corrector is used.
【図2】主偏向器214、副偏向器216および焦点補
正器218を構成する8極偏向板の配置例を示す図。FIG. 2 is a diagram showing an example of an arrangement of an 8-pole deflecting plate constituting a main deflector 214, a sub deflector 216, and a focus corrector 218.
【図3】従来の主偏向制御装置213の構成を示す図。FIG. 3 is a diagram showing a configuration of a conventional main deflection control device 213.
【図4】本発明を適用した電子ビーム描画装置の例を断
面図の形で具体的に示す図。FIG. 4 is a diagram specifically showing an example of an electron beam writing apparatus to which the present invention is applied in the form of a cross-sectional view.
【図5】本発明の主偏向制御装置213の構成を示す
図。FIG. 5 is a diagram showing a configuration of a main deflection control device 213 of the present invention.
【図6】非点補正と焦点補正に必要な感度を偏向信号の
分解能に合わせるための具体例を示すもので(A)はこ
れらの値の関係を数値で示し、(B)は、本実施例での
非点補正の定数倍率8、焦点補正の定数倍率が256を
ディジタル処理で実行する例として、それぞれの定数倍
演算が3ビットシフト、8ビットシフトの簡略な演算で
可能となることを示す図。6A and 6B show specific examples for adjusting the sensitivity required for astigmatism correction and focus correction to the resolution of a deflection signal, wherein FIG. 6A shows the relationship between these values by numerical values, and FIG. As an example in which the constant magnification of astigmatism correction is 8 and the constant magnification of focus correction is 256 in digital processing, the constant multiplication operation can be performed by a simple operation of 3-bit shift and 8-bit shift. FIG.
【図7】図4における第1対物レンズ207と第2対物
レンズ208および主偏向器214に着目した構成を示
す図。7 is a diagram illustrating a configuration focusing on a first objective lens 207, a second objective lens 208, and a main deflector 214 in FIG. 4;
【図8】偏向器214の各極に同電圧を印加して焦点補
正器として用いた場合の焦点補正を行うために必要な電
圧および焦点補正時の像倍率の変化および偏向収差と偏
向器の物面からの距離の関係を示す図。FIG. 8 shows a voltage necessary for performing focus correction when the same voltage is applied to each pole of the deflector 214 and used as a focus corrector, changes in image magnification during focus correction, deflection aberrations, The figure which shows the relationship of the distance from an object surface.
【図9】電磁レンズが1段の場合の偏向収差(1mm偏
向領域の隅での値)および焦点補正時の像倍率の変化と
偏向器の物面からの距離の関係を示す図。FIG. 9 is a diagram illustrating a relationship between a deflection aberration (a value at a corner of a 1 mm deflection area), a change in image magnification during focus correction, and a distance from an object surface of a deflector when the number of electromagnetic lenses is one.
101:8極偏向演算回路、102:非点補正演算回
路、103:焦点補正演算回路、104:ディジタル加
算回路、105:DA変換器、106:増幅器、10
7:8極偏向器、201:電子銃、202:電子ビー
ム、203:第1マスク、204:選択偏向器、20
5:第2マスク、206:縮小レンズ、207:第1対
物レンズ、208:第2対物レンズ、209:試料、2
10:XYステージ、211:描画制御装置、212:
XYステージ制御装置、213:主偏向制御装置、21
4:主偏向器、215:副偏向制御装置、216:副偏
向器、217:焦点補正制御装置、218:焦点補正
器、220:試料高さ計測装置、401:定数倍演算回
路、402:非点補正量演算回路、403:非点感度補
正演算回路、404:焦点補正量演算回路、405:焦
点感度補正演算回路、406:加算器、407:DA変
換器、408:増幅器、701:DA変換器、702:
DA変換器、703:非点補正量演算回路、704:D
A変換器、705:DA変換器、706:感度補正増幅
器、707:アナログ加算器、708:アナログ加算
器、709:増幅器、801:物面、802:電子ビー
ム、805:像面。101: 8-pole deflection calculation circuit, 102: Astigmatism correction calculation circuit, 103: Focus correction calculation circuit, 104: Digital addition circuit, 105: DA converter, 106: Amplifier, 10
7: 8-pole deflector, 201: electron gun, 202: electron beam, 203: first mask, 204: selective deflector, 20
5: second mask, 206: reduction lens, 207: first objective lens, 208: second objective lens, 209: sample, 2
10: XY stage, 211: drawing control device, 212:
XY stage controller, 213: main deflection controller, 21
4: Main deflector, 215: Sub-deflection control device, 216: Sub-deflection device, 217: Focus correction control device, 218: Focus correction device, 220: Sample height measurement device, 401: Constant multiplication circuit, 402: Non-constant Point correction amount calculation circuit, 403: Astigmatism correction calculation circuit, 404: Focus correction amount calculation circuit, 405: Focus sensitivity correction calculation circuit, 406: Adder, 407: DA converter, 408: Amplifier, 701: DA conversion Vessel, 702:
DA converter, 703: astigmatism correction amount calculation circuit, 704: D
A converter, 705: DA converter, 706: sensitivity correction amplifier, 707: analog adder, 708: analog adder, 709: amplifier, 801: object plane, 802: electron beam, 805: image plane.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 公明 茨城県ひたちなか市大字市毛882番地 株 式会社日立ハイテクノロジーズ設計・製造 統括本部那珂事業所内 Fターム(参考) 2H097 CA16 LA10 5C033 GG02 GG05 5C034 BB04 BB08 5F056 CB16 CB29 CB34 EA06 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kimiaki Ando Ibaraki Prefecture Hitachinaka City Oaza Ichimo 882 shares Design and manufacture of Hitachi High-Technologies Corporation In the headquarters Naka office F-term (reference) 2H097 CA16 LA10 5C033 GG02 GG05 5C034 BB04 BB08 5F056 CB16 CB29 CB34 EA06
Claims (3)
ムを試料上に投影する1つ以上の電磁レンズと前記電子
ビームを偏向する8極以上の静電偏向器とを用いて描画
を行う電子ビーム描画装置において、前記偏向器に非点
補正と焦点補正の機能を共用させ前記電子ビームを偏向
する偏向信号に前記電子ビームの非点を補正する非点補
正信号と前記電子ビームの焦点を補正する焦点補正信号
とを重畳して前記偏向器に供給して描画を行うととも
に、各信号はディジタル信号で演算処理された後アナロ
グ信号に変換されて増幅され前記偏向器に与えられるこ
とを特徴とする電子ビーム描画装置。An electron which performs drawing using a means for generating an electron beam, one or more electromagnetic lenses for projecting the electron beam onto a sample, and an electrostatic deflector having eight or more poles for deflecting the electron beam. In the beam writing apparatus, the deflector shares the functions of astigmatism correction and focus correction, and corrects the astigmatism correction signal for correcting the astigmatism of the electron beam to the deflection signal for deflecting the electron beam and the focus of the electron beam. A focus correction signal to be superimposed is supplied to the deflector to perform drawing, and each signal is processed by a digital signal, converted to an analog signal, amplified, and provided to the deflector. Electron beam drawing equipment.
号とを加算する前段に、必要な非点補正感度および必要
な焦点補正感度から決定される前記非点補正信号と焦点
補正信号それぞれの最小単位と前記偏向信号の最小単位
を一致させるための独立した定数倍演算装置が備えられ
るとともに、ディジタル信号で処理されるものである請
求項1記載の電子ビーム描画装置。2. Prior to adding the deflection signal, the astigmatism correction signal, and the focus correction signal, the astigmatism correction signal and the focus correction signal, which are determined from the required astigmatism correction sensitivity and the required focus correction sensitivity, respectively. 2. An electron beam writing apparatus according to claim 1, further comprising an independent constant multiplication unit for matching the minimum unit of the deflection signal with the minimum unit of the deflection signal, and processing the digital signal.
ムを試料上に投影する2つ以上の電磁レンズと前記電子
ビームを偏向する8極以上の静電偏向器とを用いて描画
を行う電子ビーム描画装置において、前記偏向器に焦点
補正器の機能を共用させ、かつ、前記焦点補正器の感度
が最大になる位置または焦点補正作用により前記電磁レ
ンズの倍率変化が最小になる位置、または、焦点補正作
用により前記電磁レンズの回転量変化が最小になる位置
に前記偏向器を配置するものである請求項1記載の電子
ビーム描画装置。3. An electron beam drawing device using a means for generating an electron beam, two or more electromagnetic lenses for projecting the electron beam onto a sample, and an electrostatic deflector having eight or more poles for deflecting the electron beam. In the beam writing apparatus, the deflector shares the function of a focus corrector, and the position where the sensitivity of the focus corrector is maximized or the position where the change in magnification of the electromagnetic lens is minimized by the focus correction action, or 2. The electron beam writing apparatus according to claim 1, wherein the deflector is arranged at a position where a change in the amount of rotation of the electromagnetic lens is minimized by a focus correction operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002150290A JP3577487B2 (en) | 2002-05-24 | 2002-05-24 | Electron beam lithography system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002150290A JP3577487B2 (en) | 2002-05-24 | 2002-05-24 | Electron beam lithography system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003347188A true JP2003347188A (en) | 2003-12-05 |
JP3577487B2 JP3577487B2 (en) | 2004-10-13 |
Family
ID=29768179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002150290A Expired - Fee Related JP3577487B2 (en) | 2002-05-24 | 2002-05-24 | Electron beam lithography system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3577487B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7476881B2 (en) | 2005-11-17 | 2009-01-13 | Nuflare Technology, Inc. | Charged beam drawing apparatus and charged beam drawing method |
JP2009070945A (en) * | 2007-09-12 | 2009-04-02 | Jeol Ltd | Beam position correcting method and apparatus for electron-beam plotting apparatus |
JP2013077778A (en) * | 2011-09-30 | 2013-04-25 | Nuflare Technology Inc | Charged particle beam lithography apparatus and charged particle beam lithography method |
-
2002
- 2002-05-24 JP JP2002150290A patent/JP3577487B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7476881B2 (en) | 2005-11-17 | 2009-01-13 | Nuflare Technology, Inc. | Charged beam drawing apparatus and charged beam drawing method |
JP2009070945A (en) * | 2007-09-12 | 2009-04-02 | Jeol Ltd | Beam position correcting method and apparatus for electron-beam plotting apparatus |
JP2013077778A (en) * | 2011-09-30 | 2013-04-25 | Nuflare Technology Inc | Charged particle beam lithography apparatus and charged particle beam lithography method |
Also Published As
Publication number | Publication date |
---|---|
JP3577487B2 (en) | 2004-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4410871B2 (en) | Charged particle beam exposure apparatus and device manufacturing method using the apparatus | |
JP2000058450A (en) | Method of optimizing corrector of charged particle beam and charged particle beam exposure system | |
JP4299195B2 (en) | Charged particle beam apparatus and optical axis adjustment method thereof | |
JPH06103946A (en) | Variable-shaft stigmator | |
US6642675B2 (en) | Charged particle beam exposing apparatus | |
JP2872420B2 (en) | Method and apparatus for charged particle beam exposure | |
JPS6321301B2 (en) | ||
JP2008153131A (en) | Charged particle beam apparatus | |
JP3577487B2 (en) | Electron beam lithography system | |
JP4157410B2 (en) | Electron beam drawing device | |
JP2002198294A (en) | Electron beam drawing apparatus and semiconductor device manufactured by it | |
JP2006294962A (en) | Electron beam lithography system and method therefor | |
JP5107629B2 (en) | Deflection control circuit and electron beam scanning device | |
JP3969463B2 (en) | Charged particle beam exposure method and apparatus | |
JP3372356B2 (en) | Electron beam deflection method and electron beam writing apparatus | |
JP2000243337A (en) | Charged particle beam exposure device, and manufacture of device using this device | |
JP3394233B2 (en) | Charged particle beam drawing method and apparatus | |
JP5462569B2 (en) | Electron beam exposure system | |
JPH07262953A (en) | Exposing apparatus by charged particle beam and exposing method | |
JPS6265419A (en) | Electron beam exposure method | |
JPH07220993A (en) | Charged particle beam exposure apparatus | |
JP2004153245A (en) | Method of determining correction sensitivity or generation sensitivity of astigmatic blur in charged particle beam exposure device, and method of exposure | |
JPH01258347A (en) | Focusing charged particle beam device | |
JP3818726B2 (en) | Charged particle beam exposure method and apparatus | |
US9384939B2 (en) | Electron beam writing apparatus and output control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040712 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070716 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |