[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003219874A - Method for using peptide nucleic acid selectively binding to rna as antisense oligonucleotide, and method for producing the peptide nucleic acid - Google Patents

Method for using peptide nucleic acid selectively binding to rna as antisense oligonucleotide, and method for producing the peptide nucleic acid

Info

Publication number
JP2003219874A
JP2003219874A JP2002020646A JP2002020646A JP2003219874A JP 2003219874 A JP2003219874 A JP 2003219874A JP 2002020646 A JP2002020646 A JP 2002020646A JP 2002020646 A JP2002020646 A JP 2002020646A JP 2003219874 A JP2003219874 A JP 2003219874A
Authority
JP
Japan
Prior art keywords
nucleic acid
peptide nucleic
group
rna
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002020646A
Other languages
Japanese (ja)
Inventor
Abdel Aziz Mohammed Osman Mohammed
アブデル−アジズ モハメド オズマン モハメド
Tetsuro Yamazaki
哲朗 山崎
Masami Otsuka
雅巳 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002020646A priority Critical patent/JP2003219874A/en
Priority to US10/352,877 priority patent/US7268810B2/en
Publication of JP2003219874A publication Critical patent/JP2003219874A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for selectively linking an oligonucleotide analogue to an RNA rather than an DNA. <P>SOLUTION: This method for linking a peptide nucleic acid represented by formula I [wherein, R<SP>1</SP>is a hydrogen atom or a protective group of an amino acid; R<SP>2</SP>is a hydroxy group or a protective group of a carboxy group; R<SP>3</SP>is a direct bond, a methylene group or an ethylene group; B is a base or a derivative thereof, and may be the same or different; and m is an integer of 1-60] to an RNA having a sequence complementary to the peptide nucleic acid is provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、RNAに選択的に
結合するペプチド核酸をアンチセンスオリゴヌクレオチ
ドとして用いる方法、該ペプチド核酸の製造方法、及び
該ペプチド核酸を含む組成物に関する。
TECHNICAL FIELD The present invention relates to a method of using a peptide nucleic acid that selectively binds to RNA as an antisense oligonucleotide, a method of producing the peptide nucleic acid, and a composition containing the peptide nucleic acid.

【0002】[0002]

【従来の技術】アンチセンス及びアンチジーンオリゴヌ
クレオチドによって、遺伝情報の発現を改変する新規薬
物を設計するため、オリゴヌクレオチドの多様な構造的
改変について研究されている。Nielsenらによって開発
されたペプチド核酸(PNA)は、オリゴヌクレオチド
の糖リン酸骨格がペプチド鎖又は偽ペプチド鎖で置き換
わったオリゴヌクレオチド擬似体である(Nielsen, P.
E.; Egholm, M.; Berg, R. M. ; Buchardt, O. Science
1991, 254, 1497. ; Egholm, M.; Buchardt, O.; Nie
lsen, P. E. ; Berg, R. H. J. Am. Chem. Soc. 1992,
114, 1895. ; Egholm, M. ; Nielsen, P. E. ; Bucha
rdt, O. ; Berg, R. H. J. Am. Chem. Soc. 1992, 114,
9677. ; Egholm, M. ; Buchardt, O. ; Christensen,
L. ; Behrens, C. ; Freier, S. M. ; Driver, D. A.
; Berg, R. H. ; Kim, S. K. ; Norden, B. ; Nielse
n, P. E. Nature 1993, 365, 566. ; Hyrup, B. ; Egh
olm,M. ; Nielsen, P. E. ; Witlung, P. ; Norden, B.
; Buchardt, O. J. Am. Chem. Soc. 1994, 116, 7964.
; Hyrup, B. ; Nielsen, P. E. Bioorg. Med. Chem.
1996, 4, 5.)。PNAは、相補的なDNA、RNA又
はPNAに結合することができ、また場合によっては、
水素結合による3本鎖を形成することも知られている
(Nielsen, P.E.ら、Bioconjugate Chem., 1994, 5, 3-
7, 及びM. Egholmら、Nature, 365, 566−568, 199
3)。DNA2本鎖にPNAが結合すると転写が阻害さ
れ、RNAにPNAが結合すると翻訳が阻害される。
Various structural modifications of oligonucleotides have been studied in order to design new drugs that modify the expression of genetic information by antisense and antigene oligonucleotides. Peptide nucleic acid (PNA) developed by Nielsen et al. Is an oligonucleotide mimetic in which the sugar-phosphate backbone of the oligonucleotide is replaced by a peptide chain or a pseudopeptide chain (Nielsen, P.
E .; Egholm, M .; Berg, RM; Buchardt, O. Science
1991 , 254, 1497 .; Egholm, M .; Buchardt, O .; Nie
lsen, PE; Berg, RHJ Am. Chem. Soc. 1992 ,
114, 1895 .; Egholm, M.; Nielsen, PE; Bucha
rdt, O .; Berg, RHJ Am. Chem. Soc. 1992 , 114,
9677. ; Egholm, M.; Buchardt, O.; Christensen,
L.; Behrens, C.; Freier, SM; Driver, DA
; Berg, RH; Kim, SK; Norden, B.; Nielse
n, PE Nature 1993 , 365, 566 .; Hyrup, B.; Egh
olm, M.; Nielsen, PE; Witlung, P.; Norden, B.
Buchardt, OJ Am. Chem. Soc. 1994 , 116, 7964.
Hyrup, B .; Nielsen, PE Bioorg. Med. Chem.
1996 , 4, 5.). PNAs can bind to complementary DNA, RNA or PNAs, and in some cases,
It is also known to form triple chains by hydrogen bonding (Nielsen, PE et al., Bioconjugate Chem., 1994 , 5, 3-).
7, and M. Egholm et al., Nature, 365, 566-568, 199.
3 ). When PNA binds to the DNA double strand, transcription is inhibited, and when PNA binds to RNA, translation is inhibited.

【0003】一般に、PNA−DNA又はPNA−RN
Aの結合は、通常のDNA−DNAやDNA−RNAの
結合よりも強く、熱安定性に優れていると共に、塩基対
のいくつかがミスマッチであっても結合するという特性
がある。さらに、ペプチド核酸は、ヒト及び真核細胞の
抽出物を含む様々な生物学的液体中において生物学的に
も化学的にも安定であるとともに、DNaseやRNa
seによる分解を受けないため、生体内において安定に
存在する。また、PNAは、比較的に低コストで、大規
模製造することが可能である。以上のような特性から、
ペプチド核酸は、有効なアンセンスオリゴヌクレオチド
やプライマーとしての応用が期待される。
Generally, PNA-DNA or PNA-RN
The bond of A is stronger than the usual bond of DNA-DNA or DNA-RNA and is excellent in thermal stability, and has the property of bonding even if some base pairs are mismatched. Furthermore, peptide nucleic acids are biologically and chemically stable in various biological fluids, including extracts of human and eukaryotic cells, as well as DNase and RNa.
Since it is not decomposed by se, it exists stably in vivo. Also, PNAs can be manufactured on a large scale at a relatively low cost. From the above characteristics,
Peptide nucleic acids are expected to be applied as effective unsense oligonucleotides and primers.

【0004】これまでに、溶解度の低いペプチド核酸の
溶解度の向上、構造的柔軟性及び核酸認識能の改善を目
的として、多種のペプチド核酸が合成されている。この
ような試みとして、例えば、側鎖の導入(Stammers, T.
A. ; Burk, M. J. Tetrahedron Lett. 1999, 40, 332
5. ; Falkiewicz, B. ; Kowalska, K. ; Kolodziejczy
k, A. S. ; Winsniewski, K. ; Lankiewicz, L. Nucleo
sides Nucleotides, 1999, 18, 353. ; Sforza, S. ;
Corradini, R. ; Ghirardi, S. ; Dossena, A. ;Marche
lli, R. Eur. J. Org. Chem. 2000, 2905.)及び2重結
合の導入(Roberts, C. D. ; Schutz, R. ; Leumann,
C. J. Synlett, 1999, 819.)、カルボニル基のスルホ
ニル基への変換(Liu, Y. ; Hudson, R. H. E. Synlet
t, 2001, 1626.)、エーテル性ペプチド骨格及び/又は
環状ペプチド骨格の構築(Kuwahara,M. ; Arimitsu, M.
; Sisido, M. J. Am. Chem. Soc. 1999, 121, 256. ;
D'Costa, M. ; Kumar, V. ; Ganesh, K. N. Org. Let
t. 1999, 1, 1513. ; Altmann, K. ; Husken, D. ; Cu
enoud, B. ; Garcia−Echeverria, C. Bioorg. Med. Ch
em. Lett. 2000, 10, 929. ; Shigeyuki, M. ; Kuwaha
ra, M. ; Sisido, M. ;Ishikawa, T. Chem. Lett. 200
1, 634.)などが行われてきた。
Various peptide nucleic acids have been synthesized so far for the purpose of improving the solubility of peptide nucleic acids having low solubility, structural flexibility and nucleic acid recognition ability. As such an attempt, for example, introduction of a side chain (Stammers, T.
A.; Burk, MJ Tetrahedron Lett. 1999 , 40, 332
5.; Falkiewicz, B.; Kowalska, K.; Kolodziejczy
k, AS; Winsniewski, K .; Lankiewicz, L. Nucleo
sides Nucleotides, 1999 , 18, 353. ; Sforza, S.;
Corradini, R.; Ghirardi, S.; Dossena, A.; Marche
lli, R. Eur. J. Org. Chem. 2000 , 2905.) and introduction of double bond (Roberts, CD; Schutz, R .; Leumann,
CJ Synlett, 1999 , 819.), Conversion of carbonyl group to sulfonyl group (Liu, Y .; Hudson, RHE Synlet
t, 2001 , 1626.), construction of ethereal peptide skeleton and / or cyclic peptide skeleton (Kuwahara, M .; Arimitsu, M.
; Sisido, MJ Am. Chem. Soc. 1999, 121, 256.
D'Costa, M.; Kumar, V.; Ganesh, KN Org. Let
t. 1999 , 1, 1513 .; Altmann, K.; Husken, D.; Cu
enoud, B .; Garcia-Echeverria, C. Bioorg. Med. Ch
em. Lett. 2000 , 10, 929. ; Shigeyuki, M.; Kuwaha
ra, M.; Sisido, M.; Ishikawa, T. Chem. Lett. 200
1 , 634.) and so on.

【0005】しかし、従来合成されたペプチド核酸(P
NA)は、DNA又はRNAの擬似物質として合成され
たものであり、そのRNAに対する親和性は、DNAに
対する親和性よりも高いが、その親和性における差違は
わずかに過ぎず、高度な選択性をもってRNAに優先的
に結合するペプチド核酸は開発されていない。
However, conventionally synthesized peptide nucleic acid (P
NA) was synthesized as a substance mimicking DNA or RNA, and its affinity for RNA is higher than its affinity for DNA, but the difference in its affinity is only slight, and it has a high degree of selectivity. Peptide nucleic acids that bind preferentially to RNA have not been developed.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、オリ
ゴヌクレオチド擬似体を、これと相補的なRNAに対し
て選択的に結合させる方法を提供することである。
The object of the present invention is to provide a method for selectively binding an oligonucleotide mimetic to RNA complementary thereto.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題を
解決すべく鋭意検討を重ねた結果、非遺伝的な2’,
5’−連結オリゴヌクレオチド(2’,5’−イソDN
A)の骨格構造に類似した骨格構造を有するペプチド核
酸を用いることより、前記課題が解決できることを見出
し、本発明を完成させるに至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that non-genetic 2 ′,
5'-linked oligonucleotide (2 ', 5'-isoDN
By using a peptide nucleic acid having a skeleton structure similar to the skeleton structure of A), it was found that the above problems can be solved, and the present invention has been completed.

【0008】すなわち、本発明は、以下の発明を包含す
る。 (1) 2’,5’−イソDNAの骨格構造と類似した
骨格構造を有し、目的のRNAと相補的配列を有するペ
プチド核酸を、該RNAに結合させる方法。
That is, the present invention includes the following inventions. (1) A method of binding a peptide nucleic acid having a skeletal structure similar to that of 2 ', 5'-isoDNA and having a sequence complementary to the target RNA to the RNA.

【0009】(2) ペプチド核酸のペプチド部分の構
造が、グリシンとアラニン類:
(2) The structure of the peptide portion of the peptide nucleic acid is glycine and alanine:

【化7】 [式中、n=0、1又は2である]とが交互に結合して
なるものである、(1)に記載の方法。
[Chemical 7] The method according to (1), wherein [where n = 0, 1 or 2] are alternately bonded.

【0010】(3) ペプチド核酸が、式I:(3) The peptide nucleic acid has the formula I:

【化8】 [式中、R1は、水素原子又はアミノ基の保護基であ
り、R2は、水酸基又はカルボキシル基の保護基であ
り、R3は、直接結合、又はメチレン基若しくはエチレ
ン基であり、Bは、塩基又はその誘導体であり、それぞ
れ同一でも異なっていてもよく、mは、1〜60の整数
である]で表される構造を有する、(1)に記載の方
法。
[Chemical 8] [Wherein R 1 is a hydrogen atom or an amino group protecting group, R 2 is a hydroxyl group or a carboxyl group protecting group, R 3 is a direct bond, or a methylene group or an ethylene group, and B is Are bases or derivatives thereof, which may be the same or different, and m is an integer of 1 to 60], The method according to (1).

【0011】(4) ペプチド核酸が、相補的DNAに
対する親和性よりも相補的RNAに対する親和性が高い
ものである、(1)〜(3)のいずれかひとつに記載の
方法。
(4) The method according to any one of (1) to (3), wherein the peptide nucleic acid has a higher affinity for complementary RNA than that for complementary DNA.

【0012】(5) アスパラギン酸又はその誘導体
に、塩基又はその誘導体を導入し、式II:
(5) A base or a derivative thereof is introduced into aspartic acid or a derivative thereof to obtain a compound of the formula II:

【化9】 [式中、R1は、水素原子又はアミノ基の保護基であ
る]で表される化合物又はその誘導体と反応させること
により、式III:
[Chemical 9] [Wherein R 1 is a hydrogen atom or an amino group-protecting group] or a derivative thereof to give a compound of formula III:

【化10】 [式中、R1は、水素原子又はアミノ基の保護基であ
り、R2は、水酸基又はカルボキシル基の保護基であ
り、Bは、塩基又はその誘導体である]で表されるペプ
チド核酸モノマーを製造する方法。
[Chemical 10] [Wherein R 1 is a hydrogen atom or an amino group protecting group, R 2 is a hydroxyl group or a carboxyl group protecting group, and B is a base or a derivative thereof] A method of manufacturing.

【0013】(6) セリン又はその誘導体に、塩基又
はその誘導体を導入し、及び式II:
(6) Introducing a base or a derivative thereof into serine or a derivative thereof, and formula II:

【化11】 [式中、R1は、水素原子又はアミノ基の保護基であ
る]で表される化合物と反応させることにより、式IV:
[Chemical 11] [Wherein R 1 is a hydrogen atom or an amino group-protecting group] to give a compound of the formula IV:

【化12】 [式中、R1は、水素原子又はアミノ基の保護基であ
り、R2は、水酸基又はカルボキシル基の保護基であ
り、Bは、塩基又はその誘導体である]で表されるペプ
チド核酸モノマーを製造する方法。
[Chemical 12] [Wherein R 1 is a hydrogen atom or an amino group protecting group, R 2 is a hydroxyl group or a carboxyl group protecting group, and B is a base or a derivative thereof] A method of manufacturing.

【0014】(7) 塩基又はその誘導体を導入する工
程の前に、トシル化及び/又はハロゲン化を行うことを
特徴とする(6)に記載の方法。
(7) The method according to (6), wherein tosylation and / or halogenation is carried out before the step of introducing the base or its derivative.

【0015】(8) (1)〜(4)のいずれかひとつ
に記載のペプチド核酸を含む、生物の遺伝子の発現を調
節するための組成物。
(8) A composition for regulating the expression of a gene in an organism, which comprises the peptide nucleic acid according to any one of (1) to (4).

【0016】(9) (1)〜(4)のいずれかひとつ
に記載のペプチド核酸を含む、生物における望ましくな
い蛋白質産生に伴う状態を処置するための組成物。
(9) A composition for treating a condition associated with unwanted protein production in an organism, which comprises the peptide nucleic acid according to any one of (1) to (4).

【0017】(10) (1)〜(4)のいずれかひと
つに記載のペプチド核酸を含む、生物の細胞中における
RNAの分解を誘発するための組成物。
(10) A composition for inducing the degradation of RNA in cells of an organism, which comprises the peptide nucleic acid according to any one of (1) to (4).

【0018】(11) (1)〜(4)のいずれかひと
つに記載のペプチド核酸を含む、細胞またはウイルスを
死滅させるための組成物。
(11) A composition for killing a cell or a virus, which comprises the peptide nucleic acid according to any one of (1) to (4).

【0019】[0019]

【発明の実施の形態】本明細書において、ペプチド核酸
とは、DNAやRNAなどの核酸類のデオキシリボース
やリボースからなる骨格に代えてペプチド骨格又は偽ペ
プチド骨格、例えば、アミノエチルグリシン主鎖、並び
にポリアミド、ポリチオアミド、ポリスルフィンアミド
及びポリスルホンアミドを含む他の同様の主鎖を有する
核酸擬似体であって、該主鎖に結合した核酸塩基を有す
る化合物を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present specification, a peptide nucleic acid means a peptide skeleton or a pseudo peptide skeleton, for example, an aminoethylglycine main chain, instead of a skeleton composed of deoxyribose or ribose of nucleic acids such as DNA and RNA And other similar backbone nucleic acid mimetics, including polyamides, polythioamides, polysulfinamides and polysulfonamides, meaning compounds having a nucleobase attached to the backbone.

【0020】本明細書において、ペプチド核酸モノマー
とは、本発明のペプチド核酸を構成するペプチド核酸の
1単位を意味し、このペプチド核酸モノマーを、固相合
成など当技術分野において通常用いられる方法によって
順次結合させることにより、本発明のペプチド核酸を製
造することができる。
In the present specification, the peptide nucleic acid monomer means one unit of the peptide nucleic acid which constitutes the peptide nucleic acid of the present invention, and the peptide nucleic acid monomer is obtained by a method commonly used in the art, such as solid phase synthesis. By sequentially binding, the peptide nucleic acid of the present invention can be produced.

【0021】本明細書において、アラニン類とは、以下
の式:
In the present specification, alanines are represented by the following formula:

【化13】 [式中、n=0、1又は2である]で表される化合物を
意味する。上記式において、n=0のものをAla(天
然に存在するアラニン)、n=1のものをAla1、n
=2のものをAla2と称する。
[Chemical 13] It means a compound represented by the formula [wherein n = 0, 1 or 2]. In the above formula, n = 0 means Ala (naturally occurring alanine), and n = 1 means Ala1, n
= 2 is referred to as Ala2.

【0022】本明細書において、アスパラギン酸及びセ
リンの誘導体には、これらのアミノ酸のアミノ基及び/
又はカルボキシル基が保護されたものが含まれる。本明
細書において、2’,5’−イソDNAとは、天然のD
NAでは各ヌクレオシドが糖の3位と5位でリン酸を介
してエステル結合しているのに対し、糖の2位と5位で
エステル結合しているDNAの異性体を意味する。天然
のDNAと2’,5’−イソDNAとの構造的比較を図
1に示す。
In the present specification, aspartic acid and serine derivatives include amino groups of these amino acids and / or
Alternatively, those having a protected carboxyl group are included. In the present specification, 2 ', 5'-isoDNA means natural D
In NA, each nucleoside has an ester bond at the 3rd and 5th positions of the sugar via a phosphate, while it means an isomer of DNA having an ester bond at the 2nd and 5th positions of the sugar. A structural comparison of native DNA and 2 ', 5'-isoDNA is shown in Figure 1.

【0023】本明細書において、式I、III及びIVにおけ
る置換基Bは、塩基又はその誘導体を表す。塩基として
は、天然に存在するものとして、アデニン、グアニン、
シトシン、チミン若しくはウラシルなどの核酸の塩基、
又はヒポキサンチン若しくはキサンチンなどが挙げられ
るが、これらに限定されるものではなく、DNA又はR
NAなどと水素結合し、2本鎖又は3本鎖を形成し得る
塩基又はその誘導体であればよい。塩基の誘導体には、
修飾塩基及びアミノ基の保護された塩基も含まれる。典
型的な修飾塩基としては、6−メチルアミノプリン、7
−メチルグアニン及び5−メチルシトシンが挙げられ
る。
In the present specification, the substituent B in the formulas I, III and IV represents a base or a derivative thereof. As the base, as naturally occurring, adenine, guanine,
Nucleic acid bases such as cytosine, thymine or uracil,
Or hypoxanthine, xanthine and the like, but not limited thereto, DNA or R
Any base or a derivative thereof that can form a double chain or a triple chain by hydrogen bonding with NA or the like may be used. Derivatives of bases include
Also included are modified bases and amino-protected bases. Typical modified bases include 6-methylaminopurine, 7
-Methylguanine and 5-methylcytosine.

【0024】本明細書において、式I〜IVのR1における
アミノ基の保護基は、通常のペプチド合成において使用
される保護基であって、必要に応じて脱離させることが
でき、遊離のアミノ基を再生することができるものであ
れば特に制限はない。このような保護基としては、炭素
数1〜20、好ましく1〜15、より好ましくは1〜1
0の直鎖状又は分枝状のアルキル基、炭素数7〜20、
好ましくは7〜15の単環式、多環式又は縮合環式のア
ラルキル基、前記のアルキル基からなるアルキルカルボ
ニル基、炭素数6〜20、好ましくは6〜15の単環
式、多環式又は縮合環式のアリール基からなるアリール
カルボニル基、環中に1〜4個の窒素原子、酸素原子又
は硫黄原子を有する5〜7員の環を1〜5個、好ましく
は1〜3個有する単環式、多環式又は縮合環式の飽和又
は不飽和の複素環式基からなる複素環式カルボニル基、
複素環式スルフェニル基、前記のアルキル基からなるア
ルコキシカルボニル基、前記のアリール基からなるアリ
ールオキシカルボニル基、前記のアラルキル基からなる
アラルキルオキシカルボニル基、前記の複素環式基から
なる複素環式オキシカルボニル基などが挙げられる。
In the present specification, the protecting group for the amino group in R 1 of the formulas I to IV is a protecting group used in ordinary peptide synthesis, and can be eliminated if desired, and a free There is no particular limitation as long as the amino group can be regenerated. Such a protecting group has 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, and more preferably 1 to 1 carbon atoms.
A straight-chain or branched alkyl group having 0 to 7 carbon atoms,
Preferably 7 to 15 monocyclic, polycyclic or condensed ring aralkyl groups, alkylcarbonyl groups consisting of the above alkyl groups, 6 to 20 carbon atoms, preferably 6 to 15 monocyclic or polycyclic groups. Or an arylcarbonyl group consisting of a condensed cyclic aryl group, 1 to 5, preferably 1 to 5 5 to 7 membered rings having 1 to 4 nitrogen atoms, oxygen atoms or sulfur atoms in the ring A heterocyclic carbonyl group consisting of a monocyclic, polycyclic or condensed cyclic saturated or unsaturated heterocyclic group,
Heterocyclic sulfenyl group, alkoxycarbonyl group consisting of the above alkyl group, aryloxycarbonyl group consisting of the above aryl group, aralkyloxycarbonyl group consisting of the above aralkyl group, heterocyclic group consisting of the above heterocyclic group Examples thereof include an oxycarbonyl group.

【0025】好ましいR1としては、Fmoc(9−フ
ルオレニルメトキシカルボニル)基、Boc(t−ブト
キシカルボニル)基、Z(ベンジルオキシカルボニル)
基、Npys(3−ニトロ−2−ピリジルスルフェニ
ル)基及びZ(OMe)(p−メトキシベンジルオキシ
カルボニル)基などを挙げることができる。
Preferred R 1 is Fmoc (9-fluorenylmethoxycarbonyl) group, Boc (t-butoxycarbonyl) group, Z (benzyloxycarbonyl)
Group, Npys (3-nitro-2-pyridylsulfenyl) group, Z (OMe) (p-methoxybenzyloxycarbonyl) group and the like.

【0026】また、式I、III及びIVのR2におけるカル
ボキシル基の保護基としては、例えば、エステル、酸ハ
ロゲン化物、酸無水物などのカルボン酸誘導体を形成し
得る基が挙げられる。エステルを形成し得る基として
は、前記のアルキル基からなるアルコキシ基、前記のア
ラルキル基からなるアラルキルオキシ基、前記のアリー
ル基からなるアリールオキシ基などが挙げられる。好ま
しいR2としては、水酸基の他に、OBn(ベンジルオ
キシ)基、t−ブトキシ基などが挙げられる。式IVにお
けるR2としては、OBn基を用いるのが好ましい。
Examples of the protecting group for the carboxyl group represented by R 2 in the formulas I, III and IV include groups capable of forming carboxylic acid derivatives such as esters, acid halides and acid anhydrides. Examples of the group capable of forming an ester include an alkoxy group including the above alkyl group, an aralkyloxy group including the above aralkyl group, and an aryloxy group including the above aryl group. Examples of preferable R 2 include an OBn (benzyloxy) group and a t-butoxy group in addition to the hydroxyl group. As R 2 in formula IV, it is preferable to use an OBn group.

【0027】式IIで表される化合物の誘導体としては、
例えば、エステル、酸ハロゲン化物、酸無水物などのカ
ルボン酸誘導体が挙げられる。エステルを形成し得る基
としては、前記のアルキル基からなるアルコキシ基、前
記のアラルキル基からなるアラルキルオキシ基、前記の
アリール基からなるアリールオキシ基などが挙げられ
る。以下に本発明のペプチド核酸モノマーの合成方法を
説明する。
As the derivative of the compound represented by the formula II,
Examples thereof include carboxylic acid derivatives such as esters, acid halides and acid anhydrides. Examples of the group capable of forming an ester include an alkoxy group including the above alkyl group, an aralkyloxy group including the above aralkyl group, and an aryloxy group including the above aryl group. The method for synthesizing the peptide nucleic acid monomer of the present invention will be described below.

【0028】Gly−Ala1ペプチド核酸モノマーの
合成 本発明の式IIIで表されるR1−Gly−Ala1ペプチ
ド核酸モノマーは、種々の方法で製造することができ
る。例えば、D−アスパラギン酸又はL−アスパラギン
酸を出発原料として次式で示されるような合成ルートに
より製造することができる。ただし、以下の合成ルート
に限定されるものではない。
Of the Gly-Ala1 peptide nucleic acid monomer
Synthesis The R 1 -Gly-Ala1 peptide nucleic acid monomer represented by formula III of the present invention can be produced by various methods. For example, it can be produced by using D-aspartic acid or L-aspartic acid as a starting material by a synthetic route represented by the following formula. However, it is not limited to the following synthetic route.

【0029】[0029]

【化14】 [Chemical 14]

【0030】当技術分野で通常用いられる方法により、
D−アスパラギン酸又はL−アスパラギン酸のカルボキ
シル基をBn基などで保護し、アミノ基をBoc基など
で保護すると、アスパラギン酸誘導体(化合物3)が得
られる。これをクロロギ酸エチルで酸無水物とし、Na
BH4などの還元剤で還元すると、アミノ基及びカルボ
キシル基の保護されたヒドロキシメチル−β−アラニン
(化合物4)のD体及びL体がそれぞれ得られる。続い
て、目的の塩基又はその誘導体と反応させて、上記のヒ
ドロキシメチル−β−アラニン誘導体に塩基を導入す
る。塩基に副反応が生じるのを防止するため、そのアミ
ノ基をBz(ベンゾイル)基等で保護してから反応させ
るのが好ましい。塩基の保護基としては、特に制限され
ないが、Bz基、Z(ベンジルオキシカルボニル)基、
Bhoc(Ph2CHOC=O)基等を用いるのが好ま
しい。続いて、塩基を脱保護した後、ペプチド縮合試薬
の存在下でグリシンを結合させる。グリシンの結合にお
いては、副反応を防止するためにアミノ基を保護したグ
リシンを結合させるのが好ましい。ペプチド縮合試薬と
しては、特に制限されないが、例えば、TBTU(O−
(ベンゾトリアゾール−1−イル)−N,N,N’,
N’−テトラメチルウロニウムテトラフルオロボレー
ト)、HBTU(O−ベンゾトリアゾール−N,N,
N’,N’−テトラメチルウロニウム−ヘキサフルオロ
−ホスフェート)、HATU(O−(7−アザベンゾト
リアゾール−1−イル)−N,N,N’,N’−テトラ
メチルウロニウムヘキサフルオロホスフェート、DCC
等が挙げられ、HATUを用いるのが好ましい。続い
て、縮合生成物のカルボキシル基を脱保護すると、目的
の塩基又はその誘導体を有する、R1−Gly−Ala
1ペプチド核酸モノマーが得られる。
By methods commonly used in the art,
When the carboxyl group of D-aspartic acid or L-aspartic acid is protected with a Bn group or the like and the amino group is protected with a Boc group or the like, an aspartic acid derivative (Compound 3) is obtained. This was made into an acid anhydride with ethyl chloroformate, and Na was added.
When it is reduced with a reducing agent such as BH 4, a D-form and an L-form of hydroxymethyl-β-alanine (compound 4) having protected amino groups and carboxyl groups are obtained. Then, the base is introduced into the above hydroxymethyl-β-alanine derivative by reacting with the target base or its derivative. In order to prevent a side reaction from occurring in the base, it is preferable to protect the amino group with a Bz (benzoyl) group or the like before the reaction. The protecting group for the base is not particularly limited, but may be Bz group, Z (benzyloxycarbonyl) group,
It is preferable to use a Bhoc (Ph 2 CHOC═O) group or the like. Subsequently, after deprotecting the base, glycine is bound in the presence of the peptide condensation reagent. Regarding the binding of glycine, it is preferable to bind glycine having an amino group protected in order to prevent side reactions. The peptide condensation reagent is not particularly limited, but for example, TBTU (O-
(Benzotriazol-1-yl) -N, N, N ',
N'-tetramethyluronium tetrafluoroborate), HBTU (O-benzotriazole-N, N,
N ', N'-tetramethyluronium-hexafluoro-phosphate), HATU (O- (7-azabenzotriazol-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate , DCC
Etc., and it is preferable to use HATU. Subsequently, when the carboxyl group of the condensation product is deprotected, R 1 -Gly-Ala containing the target base or its derivative is obtained.
One peptide nucleic acid monomer is obtained.

【0031】上記のペプチド核酸モノマーの合成方法で
は、出発原料として、アスパラギン酸のD体を使用する
とペプチド核酸モノマーのD体が得られ、アスパラギン
酸のL体を使用するとペプチド核酸モノマーのL体が得
られる。ここで使用されるアミノ酸及びカルボキシル基
に対する各保護基は、当技術分野で通常用いられるもの
であれば、特に制限されない。アミノ基の保護基として
はBoc基、カルボキシル基の保護基としては、Bn基
を用いるのが好ましい。
In the above-mentioned method for synthesizing a peptide nucleic acid monomer, the D-form of a peptide nucleic acid monomer is obtained when the D-form of aspartic acid is used as a starting material, and the L-form of the peptide nucleic acid monomer is obtained when the L-form of aspartic acid is used. can get. The protecting groups for the amino acid and the carboxyl group used here are not particularly limited as long as they are commonly used in the art. It is preferable to use a Boc group as the amino-protecting group and a Bn group as the carboxyl-protecting group.

【0032】Gly−Alaペプチド核酸モノマーの合
本発明の式IVで表されるR1−Gly−Alaペプチド
核酸モノマーは、種々の方法で製造することができる。
例えば、D−セリン又はL−セリンを出発原料として次
式で示されるような合成ルートにより製造することがで
きる。ただし、以下の合成ルートに限定されるものでは
ない。
Combination of Gly-Ala Peptide Nucleic Acid Monomers
The R 1 -Gly-Ala peptide nucleic acid monomer represented by formula IV of the present invention can be produced by various methods.
For example, it can be produced using D-serine or L-serine as a starting material by a synthetic route represented by the following formula. However, it is not limited to the following synthetic route.

【0033】[0033]

【化15】 [Chemical 15]

【0034】当技術分野で通常用いられる方法により、
D−セリン又はL−セリンのアミノ基をBoc基などの
保護基で保護し、カルボキシル基をBn基などの保護基
で保護すると、セリン誘導体(化合物8)が得られる。
遊離の水酸基をトシル化などの方法により脱離容易な状
態とする(化合物9)。次いでトシル基を、ハロゲン化
試薬を用いてハロゲンで置換する(化合物10)。ハロ
ゲン化試薬としては、特に制限されないが、例えば、ヨ
ウ化ナトリウム、臭化ナトリウムなどが挙げられ、塩基
とのカップリングにおける反応性からヨウ化ナトリウム
を用いるのが好ましい。化合物8を、例えば、I2、P
3P及びイミダゾールの存在下で反応させることによ
り、直接ヨウ素化して化合物10を生成することもでき
る。続いて、目的の塩基又はその誘導体と反応させるこ
とにより、塩基を導入する。塩基に副反応が生じるのを
防止するため、塩基又はその誘導体をBz基等で保護し
てから反応させるのが好ましい。塩基の保護基として
は、上記と同様の保護基を用いることができる。反応生
成物をクロマトグラフィーにかけ、続いて再結晶化する
と、目的の塩基又はその誘導体を有する化合物11a及
び脱保護された塩基を有する化合物11bが得られる。
化合物11aを塩基性触媒の存在下で処理すると、高収
率で化合物11bに変換される。塩基性触媒としては、
特に制限されないが、例えば、K2CO3、Na2CO3
が挙げられ、K2CO3を用いるのが好ましい。化合物1
1bのアミノ基を脱保護した後、ペプチド縮合試薬の存
在下でグリシンを結合させる。グリシンの結合において
は、副反応を防止するためにアミノ基を保護したグリシ
ンを結合させるのが好ましい。続いて、縮合生成物のカ
ルボキシル基を脱保護すると、目的の塩基又はその誘導
体を有するR1−Gly−Alaペプチド核酸モノマー
が得られる。ここで使用できるアミノ酸及び塩基に対す
る各保護基としては、上記と同様のものが挙げられる。
By methods commonly used in the art,
When the amino group of D-serine or L-serine is protected with a protecting group such as Boc group and the carboxyl group is protected with a protecting group such as Bn group, a serine derivative (Compound 8) is obtained.
The free hydroxyl group is put into a state where it can be easily removed by a method such as tosylation (Compound 9). The tosyl group is then replaced with halogen using a halogenating reagent (compound 10). The halogenating reagent is not particularly limited, but examples thereof include sodium iodide, sodium bromide, and the like, and sodium iodide is preferably used because of its reactivity in coupling with a base. Compound 8 is converted to, for example, I 2 , P
Compound 10 can also be produced by direct iodination by reacting in the presence of h 3 P and imidazole. Then, the base is introduced by reacting with the target base or its derivative. In order to prevent the side reaction from occurring in the base, it is preferable to protect the base or its derivative with a Bz group or the like before the reaction. As the base protecting group, the same protecting groups as described above can be used. Chromatography of the reaction product followed by recrystallization gives compound 11a with the desired base or its derivative and compound 11b with the deprotected base.
When compound 11a is treated in the presence of a basic catalyst, it is converted to compound 11b in high yield. As a basic catalyst,
Is not particularly limited, for example, K 2 CO 3, Na 2 CO 3 and the like, preferably used K 2 CO 3. Compound 1
After deprotecting the amino group of 1b, glycine is attached in the presence of a peptide condensation reagent. Regarding the binding of glycine, it is preferable to bind glycine having an amino group protected in order to prevent side reactions. Subsequently, the carboxyl group of the condensation product is deprotected to obtain the R 1 -Gly-Ala peptide nucleic acid monomer having the target base or its derivative. Examples of the respective protecting groups for amino acid and base that can be used here include the same ones as described above.

【0035】上記のGly−Alaペプチド核酸モノマ
ーの合成において、化合物8のセリン誘導体に塩基又は
その誘導体を導入する場合、直接導入するよりも、あら
かじめ、遊離の水酸基をトシル化などの方法により脱離
容易な状態とするのが反応の進行の観点から好ましく、
さらに、トシル化された基をハロゲン化してから塩基又
はその誘導体を導入するのが好ましい。上記のペプチド
核酸モノマーの合成方法では、出発原料として、セリン
のD体を使用するとペプチド核酸モノマーのD体が得ら
れ、セリンのL体を使用するとペプチド核酸モノマーの
L体が得られる。
In the synthesis of the above-mentioned Gly-Ala peptide nucleic acid monomer, when a base or its derivative is introduced into the serine derivative of compound 8, the free hydroxyl group is eliminated by a method such as tosylation rather than direct introduction. From the viewpoint of the progress of the reaction is preferably in an easy state,
Furthermore, it is preferable to halogenate the tosylated group before introducing the base or its derivative. In the above method for synthesizing a peptide nucleic acid monomer, the D-form of serine is used as a starting material to obtain the D-form of the peptide nucleic acid monomer, and the L-form of serine is used to obtain the L-form of the peptide nucleic acid monomer.

【0036】本発明の式III又は式IVで表されるペプチ
ド核酸モノマーの合成に使用できる溶媒としては、当技
術分野で通常用いられるものであれば特に制限されない
が、緩衝液や水の他、メタノール、エタノール等のアル
コール系溶媒、エーテル、メチルブチルエーテル、TH
F、ジオキサン等のエーテル系溶媒、酢酸エチル等のエ
ステル系溶媒、アセトン、シクロヘキサノン等のケトン
系溶媒、DMF(N,N−ジメチルホルムアミド)、ジ
メチルアセトアミド、HMPT等のアミド系溶媒、ジク
ロロメタン、クロロホルムなどのハロゲン系溶媒、n−
ヘキサンなどの脂肪族炭化水素系溶媒、ベンゼン、トル
エンなどの芳香族炭化水素系溶媒などが挙げられる。
The solvent that can be used for synthesizing the peptide nucleic acid monomer represented by the formula III or formula IV of the present invention is not particularly limited as long as it is a solvent usually used in the art. Alcohol solvents such as methanol and ethanol, ether, methyl butyl ether, TH
Ether solvents such as F and dioxane, ester solvents such as ethyl acetate, ketone solvents such as acetone and cyclohexanone, amide solvents such as DMF (N, N-dimethylformamide), dimethylacetamide and HMPT, dichloromethane, chloroform and the like. Halogen-based solvent, n-
Examples thereof include aliphatic hydrocarbon solvents such as hexane and aromatic hydrocarbon solvents such as benzene and toluene.

【0037】前記の式III又はIVで表されるペプチド核
酸モノマーをペプチド合成において通常用いられる方法
などにより、順次酸アミド化させることにより、ペプチ
ド核酸モノマーが2個又はそれ以上酸アミド結合してな
るペプチド核酸を製造することができる。
The peptide nucleic acid monomer represented by the above formula III or IV is sequentially acid amidated by a method usually used in peptide synthesis or the like, whereby two or more peptide nucleic acid monomers have an acid amide bond. Peptide nucleic acids can be produced.

【0038】ここで使用しうるペプチド合成法として
は、固相法、液相法などが挙げられるが、固相法を用い
るのが好ましい。固相合成法を用いる場合のペプチド核
酸の合成法の概要を以下に説明する。まず、Fmoc基
等の保護基で保護された樹脂をDMF等の溶媒で洗浄
し、一晩膨潤させる。アミノ基を脱保護して遊離のアミ
ノ基とし、Fmoc−リシン(Boc)−OH等の第一
アミノ酸を遊離のアミノ基に結合させる。
Examples of the peptide synthesis method that can be used here include a solid phase method and a liquid phase method, but the solid phase method is preferably used. The outline of the method for synthesizing a peptide nucleic acid when the solid phase synthesis method is used will be described below. First, a resin protected by a protective group such as an Fmoc group is washed with a solvent such as DMF and swollen overnight. The amino group is deprotected to a free amino group and a primary amino acid such as Fmoc-lysine (Boc) -OH is attached to the free amino group.

【0039】第一アミノ酸を結合した後、所望のペプチ
ド核酸鎖を体系的に合成する。この合成は、脱保護と結
合を繰り返し行うことにより実施する。最後に結合され
たアミノ酸上のBoc又はFmocなどの一時的保護基
は、N末端アミノ基を遊離させるために、適当な処理に
よって、例えば、Bocの場合にはトリフルオロ酢酸を
用いるような酸加水分解によって、又はFmocの場合
にはピペリジンを用いるような塩基処理によって、定量
的に除去する。そして、次に望まれる式III又はIVのペ
プチド核酸モノマーを最後に結合されたモノマーのN末
端に対して結合する。最後に結合されたアミノ酸のN末
端とアミノ酸のC末端との結合は、いくつかの方法で行
うことができる。例えば、2,4,5−トリクロロフェ
ニルエステル(Pless ら,Helv.Chim.Acta, 1963, 46,1
609)、フタルイミドエステル(Nefkens ら,J.Am.Che
m.Soc., 1961, 83,1263)、ペンタクロロフェニルエス
テル(Kupryszewski,Rocz.Chem., 1961, 35,595)、ペ
ンタフルオロフェニルエステル(Kovacs ら,J.Am.Che
m.Soc., 1963, 85,183)、o−ニトロフェニルエステル
(Bodanzsky,Nature, 1955, 175,685)、イミダゾール
エステル(Li ら,J.Am.Chem.Soc., 1970, 92,7608)
及び3−ヒドロキシ−4−オキソ−3,4−ジヒドロキ
ナゾリン(Dhbt−OH)エステル(Koning ら,Che
m.Ber., 1973, 103,2024 及び2034)などの活性エステ
ル誘導体の初期形成、又は対称無水物(Wieland ら,An
gew.Chem.,Int.Ed.Engl., 1971, 10,336)などの無水物
の初期形成を含むいくつかの方法のいずれかにおいて、
活性化されたカルボキシル基を有するペプチド核酸モノ
マーを供給することによって行うことができる。あるい
は、供給されたペプチド核酸モノマーのカルボキシル基
は、例えば、ジシクロヘキシルカルボジイミド(Sheeha
n ら,J.Am.Chem.Soc., 1955, 77,1067)又はその誘導
体、HATU、TBTU、HBTUなどの縮合試薬によ
って、最後に結合されたペプチド核酸モノマーのN末端
と直接的に反応させることもできる。本発明におけるペ
プチド核酸の合成では、式IIIのモノマーのみ又は式IV
のモノマーのみを結合させるのが好ましい。
After coupling the first amino acid, the desired peptide nucleic acid chain is systematically synthesized. This synthesis is carried out by repeating deprotection and coupling. Temporary protecting groups such as Boc or Fmoc on the last attached amino acid may be treated with a suitable treatment to liberate the N-terminal amino group, eg acid hydrolysis such as using trifluoroacetic acid in the case of Boc. Quantitatively removed by degradation or by base treatment such as with piperidine in the case of Fmoc. The desired peptide nucleic acid monomer of formula III or IV is then attached to the N-terminus of the last attached monomer. The linking of the N-terminus of the last linked amino acid to the C-terminus of the amino acid can be done in several ways. For example, 2,4,5-trichlorophenyl ester (Pless et al., Helv. Chim. Acta, 1963 , 46,1
609), phthalimido ester (Nefkens et al., J. Am. Che
m.Soc., 1961 , 83,1263), pentachlorophenyl ester (Kupryszewski, Rocz.Chem., 1961 , 35,595), pentafluorophenyl ester (Kovacs et al., J. Am.Che.
m.Soc., 1963 , 85,183), o-nitrophenyl ester (Bodanzsky, Nature, 1955 , 175,685), imidazole ester (Li et al., J. Am. Chem. Soc., 1970 , 92,7608).
And 3-hydroxy-4-oxo-3,4-dihydroquinazoline (Dhbt-OH) ester (Koning et al., Che
m.Ber., 1973 , 103, 2024 and 2034) or the initial formation of active ester derivatives or symmetrical anhydrides (Wieland et al., An.
gew.Chem., Int.Ed.Engl., 1971 , 10,336), etc.
It can be carried out by supplying a peptide nucleic acid monomer having an activated carboxyl group. Alternatively, the carboxyl group of the supplied peptide nucleic acid monomer is, for example, dicyclohexylcarbodiimide (Sheeha
n et al., J. Am. Chem. Soc., 1955 , 77, 1067) or a derivative thereof, and a condensation reagent such as HATU, TBTU, HBTU directly reacts with the N-terminal of the peptide nucleic acid monomer finally bound. You can also In the synthesis of the peptide nucleic acid according to the present invention, only the monomer of formula III or formula IV
It is preferable to bond only the monomers of.

【0040】樹脂に結合しているペプチド核酸鎖とペプ
チド核酸モノマーとの縮合反応は、カイザーテストによ
って確認できる。カイザーテストは、樹脂を1〜5mg
試験管に取り、a)5%ニンヒドリンのエタノール溶
液、b)80%フェノールのエタノール溶液、c)0.
2mMシアン化カリのピリジン溶液を各々5滴ずつ加
え、沸騰水中で5分間加熱することによって実施する。
この操作で溶液が青色の場合は縮合反応を続行し、溶液
が黄色になればアミノ基を脱保護して次のペプチド核酸
モノマーとの縮合反応を行う。このサイクルを必要な回
数繰り返すことにより、目的とするRNAに相補的な配
列を有し、かつ所望の長さのペプチド核酸を得ることが
できる。
The condensation reaction between the peptide nucleic acid chain bound to the resin and the peptide nucleic acid monomer can be confirmed by the Kaiser test. Kaiser test, 1-5mg resin
Transfer to a test tube, a) 5% ninhydrin in ethanol, b) 80% phenol in ethanol, c) 0.
It is carried out by adding 5 drops of 2 mM potassium cyanide solution in pyridine and heating in boiling water for 5 minutes.
By this operation, the condensation reaction is continued when the solution is blue, and when the solution becomes yellow, the amino group is deprotected and the condensation reaction with the next peptide nucleic acid monomer is performed. By repeating this cycle as many times as necessary, a peptide nucleic acid having a sequence complementary to the target RNA and having a desired length can be obtained.

【0041】ペプチド核酸側鎖の最後の脱保護及び固体
支持体からのペプチド核酸分子の放出は、無水HF(Sa
kakibara ら,Bull.Chem.Soc.Jpn., 1965, 38,4921)な
どの強酸、トリフルオロ酢酸、トリス(トリフルオロ酢
酸)ホウ素(Pless ら,Helv.Chim.Acta, 1973 ,46,160
9)、トリフルオロメタンスルホン酸及びメタンスルホ
ン酸などのスルホン酸(Yajima ら,JChem.Soc.,Chem.
Comm., 1974, 107)、並びに前記化合物とクレゾールの
混合溶液を使用して行うことができる。
The final deprotection of the peptide nucleic acid side chain and release of the peptide nucleic acid molecule from the solid support is accomplished by using anhydrous HF (Sa
kakibara et, Bull.Chem.Soc.Jpn., 1965, strong acid such 38,4921), trifluoroacetic acid, boron tris (trifluoroacetate) (Pless, et al., Helv.Chim.Acta, 1973, 46,160
9), sulfonic acids such as trifluoromethanesulfonic acid and methanesulfonic acid (Yajima et al., J Chem. Soc., Chem.
Comm., 1974 , 107), and a mixed solution of the above compound and cresol.

【0042】本発明のペプチド核酸の長さは、目的のR
NA等に結合することができれば、特に制限はないが、
式Iにおいて、m=3〜24のものが好ましく、m=9
〜18のものがより好ましい。
The length of the peptide nucleic acid of the present invention depends on the desired R
There is no particular limitation as long as it can bind to NA or the like,
In the formula I, m = 3 to 24 is preferable, and m = 9
The thing of -18 is more preferable.

【0043】また、本発明の方法では、ペプチド核酸モ
ノマーのD体又はL体がそれぞれ合成されるので、D体
又はL体のみを結合させてペプチド核酸を合成すること
ができ、本発明においては、構造上の観点から、上記の
うちD−アスパラギン酸から誘導したペプチド核酸モノ
マー(式IIIで表されるペプチド核酸モノマーのD体)
のみ、又はL−セリンから誘導したペプチド核酸モノマ
ー(式IVで表されるペプチド核酸モノマーのL体)のみ
をそれぞれ結合させてペプチド核酸を合成するのが好ま
しい。
Further, in the method of the present invention, since the D-form or L-form of the peptide nucleic acid monomer is respectively synthesized, it is possible to synthesize the peptide nucleic acid by binding only the D-form or L-form. From the structural point of view, among the above, a peptide nucleic acid monomer derived from D-aspartic acid (D-form of the peptide nucleic acid monomer represented by formula III)
It is preferable to synthesize only the peptide nucleic acid monomer derived from L-serine (L-form of the peptide nucleic acid monomer represented by the formula IV) to synthesize the peptide nucleic acid.

【0044】PNAとこれに相補的な配列を有するDN
A又はRNAとの融解温度を測定することにより、本発
明のペプチド核酸とDNA又はRNAとの親和性を試験
した。融解温度は、PNAとDNAの混合液又はPNA
とRNAの混合液の温度を変化させながら260nmの
吸光度を観察することにより測定した。その結果、PN
AとRNAの融解温度は、PNAとDNAの融解温度よ
りも高いことが観察された。すなわち、本発明のペプチ
ド核酸は、相補的DNAよりも相補的RNAに対する親
和性が高く、RNAと選択的に結合することが明らかと
なった。
DN having PNA and a sequence complementary thereto
The affinity between the peptide nucleic acid of the present invention and DNA or RNA was tested by measuring the melting temperature with A or RNA. The melting temperature is a mixture of PNA and DNA or PNA.
It was measured by observing the absorbance at 260 nm while changing the temperature of the mixed solution of RNA with RNA. As a result, PN
It was observed that the melting temperatures of A and RNA were higher than the melting temperatures of PNA and DNA. That is, it was revealed that the peptide nucleic acid of the present invention has higher affinity for complementary RNA than complementary DNA and selectively binds to RNA.

【0045】2’,5’−イソDNAは、DNA相補鎖
よりもRNA相補鎖に対して高い親和性を持つこと、並
びに2’,5’−イソDNAとRNAとのA型二重螺旋
構造は、塩基間の距離の指標となるC2’−O5’間の
距離が天然型DNAのC3’−O5’間の距離に比べ近
接していることが報告されている(第9回アンチセンス
シンポジウム講演要旨集p.46)。RNAと結合した
際、本発明のペプチド核酸のペプチド骨格におけるこの
C2’及びO5’に相当する部位は、2’,5’−イソ
DNAのC2’−O5’間と同様の距離を保持する。そ
の結果、RNAに結合したときの本発明のペプチド核酸
における塩基間の距離と2’,5’−イソDNAにおけ
る塩基間の距離は、ほぼ等しいものとなる。すなわち、
本発明において、2’,5’−イソDNAの骨格構造と
類似した骨格構造とは、RNAに結合したときの塩基間
距離が、2’,5’−イソDNAとほぼ等しいような骨
格構造を意味する。
2 ', 5'-isoDNA has a higher affinity for the RNA complementary strand than the DNA complementary strand, and the A-type double helix structure of 2', 5'-isoDNA and RNA Have reported that the distance between C2′-O5 ′, which is an index of the distance between bases, is closer than the distance between C3′-O5 ′ of natural DNA (9th Antisense Symposium). Lecture summary p.46). When bound to RNA, the sites corresponding to C2 ′ and O5 ′ in the peptide backbone of the peptide nucleic acid of the present invention retain the same distance as between C2′-O5 ′ of 2 ′, 5′-isoDNA. As a result, the distance between the bases in the peptide nucleic acid of the present invention when bound to RNA and the distance between the bases in 2 ', 5'-isoDNA become almost equal. That is,
In the present invention, a skeleton structure similar to the skeleton structure of 2 ', 5'-isoDNA means a skeleton structure in which the distance between bases when bound to RNA is almost equal to that of 2', 5'-isoDNA. means.

【0046】従来の天然型DNAを模して開発されたペ
プチド核酸は、RNAとの二重鎖形成において2’,
5’−イソDNAと同様の立体構造を形成することがで
きないためにRNA結合選択性が低くなるのに対し、本
発明のペプチド核酸は、その骨格構造が2’,5’−イ
ソDNAの骨格構造に類似し、RNAに結合したときに
も2’,5’−イソDNAと同様の立体構造を形成でき
ることから、相補的RNAに選択的に結合するのものと
考えられる。
Peptide nucleic acid developed by imitating conventional natural type DNA has a 2 ',
RNA binding selectivity is low because it cannot form the same three-dimensional structure as 5'-isoDNA, whereas the peptide nucleic acid of the present invention has a backbone structure of 2 ', 5'-isoDNA. It is considered to bind selectively to complementary RNA because it has a similar structure and can form a three-dimensional structure similar to 2 ', 5'-isoDNA when bound to RNA.

【0047】上記のように本発明のペプチド核酸はRN
Aに対して選択的に結合するので、結果としてDNAに
結合する量は少なくなり、少量でもRNAに優先的に結
合し、RNAの翻訳を効率的に阻害することができる。
従って、アンチセンス法において有用であると期待され
る。現在、アンチセンス医薬として臨床試験中であるS
−オリゴ(ホスホロチオエート型)アンチセンス剤は、
天然型アンチセンス剤の核酸分解酵素に分解されやすい
という欠点を改良し、その酵素に対する安定性を向上さ
せたものである。しかしながら、天然型のものと比較し
てRNAとの結合親和性の面では劣っている。そこでR
NAに強く結合する本発明のペプチド核酸をS−オリゴ
のかわりに用いれば、より優れたアンチセンス効果が期
待される。それに、RNAのみに強い結合親和性をもつ
アンチセンスであれば、種々のRNA(mRNA、tR
NA、rRNA、snRNA等)の生体メカニズムを解
明するための有効なバイオロジカルツールとして大いに
役に立つものと考えられる。
As described above, the peptide nucleic acid of the present invention is RN
Since it selectively binds to A, the amount bound to DNA is reduced as a result, and even a small amount preferentially binds to RNA, and translation of RNA can be efficiently inhibited.
Therefore, it is expected to be useful in the antisense method. Currently in clinical trials as an antisense drug S
-Oligo (phosphorothioate type) antisense agents are
This is an improvement in the natural antisense agent's deficiency in that it is easily decomposed by a nucleolytic enzyme and improved stability against that enzyme. However, it is inferior in terms of binding affinity with RNA as compared with the natural type. So R
If the peptide nucleic acid of the present invention that strongly binds to NA is used instead of S-oligo, a better antisense effect is expected. In addition, if it is an antisense that has a strong binding affinity only for RNA, various RNA (mRNA, tR
It is considered to be very useful as an effective biological tool for elucidating the biological mechanism of NA, rRNA, snRNA, etc.).

【0048】本発明は、ペプチド核酸の治療または予防
における使用も目的とする。可能性のある治療または予
防の標的には、単純ヘルペスウイルス(HSV)、ヒト
乳頭腫ウイルス(HPV)、ヒト免疫不全ウイルス(H
IV)、カンジダ・アルビカンス、インフルエンザウイ
ルス、サイトメガロウイルス(CMV)、細胞内付着分
子(ICAM)、5−リポキシゲナーゼ(5−LO)、
ホスホリパーゼA2(PLA2)、プロテインキナーゼC
(PKC)、およびRANオンコジーンが含まれる。こ
のような標的法は以下のものに適用しうる。例えば、
眼、唇側、性器および全身性の単純ヘルペスIおよびII
感染症;性器ゆうぜい(疣贅、いぼ);子宮頚癌;尋常
性ゆうぜい;カポジ肉腫;エイズ;皮膚および全身性の
真菌感染症;インフルエンザ;肺炎;免疫抑制処置患者
における網膜炎および肺炎;単核症;眼、皮膚および全
身性の炎症;心臓血管疾患;癌;喘息;乾癬;心臓血管
虚脱;心筋梗塞;胃腸疾患;腎臓疾患;変形関節炎;骨
関節炎;急性膵臓炎;敗血症性ショック;ならびにクロ
ーン病である。
The present invention is also directed to the use of peptide nucleic acids in therapy or prophylaxis. Potential therapeutic or prophylactic targets include herpes simplex virus (HSV), human papilloma virus (HPV), human immunodeficiency virus (H
IV), Candida albicans, influenza virus, cytomegalovirus (CMV), intracellular adhesion molecule (ICAM), 5-lipoxygenase (5-LO),
Phospholipase A 2 (PLA 2 ), protein kinase C
(PKC), and the RAN oncogene. Such a targeting method can be applied to: For example,
Eye, labial, genital and generalized herpes simplex I and II
Infections; genital warts (warts, warts); cervical cancer; vulgaris vulgaris; Kaposi's sarcoma; AIDS; cutaneous and systemic fungal infections; influenza; pneumonia; retinitis and immunosuppressed patients Pneumonia; mononucleosis; eye, skin and systemic inflammation; cardiovascular disease; cancer; asthma; psoriasis; cardiovascular collapse; myocardial infarction; gastrointestinal disease; kidney disease; osteoarthritis; osteoarthritis; acute pancreatitis; septicemia Shock; and Crohn's disease.

【0049】治療または予防処置のために、本発明のペ
プチド核酸を薬剤組成物中に配合することができ、該組
成物には、キャリヤー、増粘剤、希釈剤、緩衝剤、防腐
剤、界面活性剤などを含有させてもよい。薬剤組成物は
1種または2種以上の有効成分、たとえば抗微生物薬、
抗炎症薬、麻酔薬などをペプチド核酸のほかに含有して
もよい。
For therapeutic or prophylactic treatment, the peptide nucleic acids of the invention can be incorporated into pharmaceutical compositions, which include carriers, thickeners, diluents, buffers, preservatives, interfaces. An activator or the like may be contained. The pharmaceutical composition comprises one or more active ingredients such as antimicrobial agents,
An anti-inflammatory drug, an anesthetic, etc. may be contained in addition to the peptide nucleic acid.

【0050】薬剤組成物は局所または全身適用のいずれ
を目的とするか、または処置すべき領域に応じて多数の
方法で投与することができる。投与は局所的に(眼、子
宮、直腸、鼻内を含む)、経口的に、吸入により、また
は非経口的に、たとえば静脈内点滴により、または皮
下、腹腔内もしくは筋肉内注射により実施することがで
きる。
The pharmaceutical composition may be intended for either local or systemic application or may be administered in a number of ways depending on the area to be treated. Administration should be local (including eye, uterus, rectum, intranasal), orally, by inhalation, or parenterally, for example by intravenous drip or by subcutaneous, intraperitoneal or intramuscular injection. You can

【0051】局所投与用配合物には軟膏、ローション、
クリーム、ゲル、滴剤、坐剤、スプレー、液剤および散
剤が含まれる。通常の薬剤用キャリヤー、水性、粉末ま
たは油性の基剤、増粘剤などが必要であり、または望ま
しい。コーティングしたコンドームも有用であろう。
Formulations for topical administration include ointments, lotions,
Includes creams, gels, drops, suppositories, sprays, solutions and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like are necessary or desirable. Coated condoms would also be useful.

【0052】経口投与用組成物には、散剤もしくは顆粒
剤、水もしくは非水性媒質中の懸濁剤もしくは液剤、カ
プセル剤、サシェ剤または錠剤が含まれる。増粘剤、芳
香剤、希釈剤、乳化剤、分散助剤または結合剤が望まし
い。非経口投与のための配合物には、無菌水溶液が含ま
れ、これは緩衝剤、希釈剤および他の適切な添加物をも
含有しうる。
Compositions for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, fragrances, diluents, emulsifiers, dispersion aids or binders are desirable. Formulations for parenteral administration include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.

【0053】投薬は処置すべき状態の程度および反応性
に依存するが、普通は1日1回または2回以上であり、
処置期間は数日から数カ月間、または治癒するまで、ま
たは疾病状態の軽減が達成されるまで継続される。当業
者は最適量、投与法および反復速度を容易に決定するこ
とができるであろう。
The dosage depends on the degree and responsiveness of the condition to be treated but is usually once or more than once daily,
The treatment period lasts from a few days to several months, or until a cure or reduction of the disease state is achieved. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates.

【0054】この種類の処置は、単細胞性の原核および
真核生物から多細胞性の真核生物に及ぶ多様な生物に適
用しうる。その遺伝、代謝または細胞性の制御の基本的
一部としてDNA−RNA転写またはRNA−蛋白質翻
訳を利用している生物はいずれも、本発明による治療お
よび/または予防処置を施すことができる。多様な生
物、たとえば細菌、酵母、原生動物、藻類、すべての植
物、および温血動物を含めたすべての高等動物形態を処
置することができると考えられる。さらに多細胞性真核
生物の各細胞はそれらの細胞活性の構成部分としてDN
A−RNA転写およびRNA−蛋白質翻訳の双方を含む
ので、それらを処置することができる。さらに、真核細
胞の多くの細胞小器官(たとえばミトコンドリアおよび
クロロプラスト)も転写および翻訳のメカニズムを含
む。従って単一細胞、細胞集団または細胞小器官も、治
療または診断用のペプチド核酸で処置することができ
る。本明細書において用いる治療とは、生物を死滅させ
ることにより、または誤った、もしくは有害な細胞増殖
もしくは発現を制御することにより、疾病状態を消失さ
せることを含む意味である。本発明を以下の実施例によ
り説明するが、本発明は実施例の範囲に限定されない。
This type of treatment is applicable to a wide variety of organisms, ranging from unicellular prokaryotes and eukaryotes to multicellular eukaryotes. Any organism that utilizes DNA-RNA transcription or RNA-protein translation as a fundamental part of its genetic, metabolic or cellular regulation can be subjected to therapeutic and / or prophylactic treatment according to the present invention. It is believed that a wide variety of organisms can be treated, including bacteria, yeasts, protozoa, algae, all plants, and all higher animal forms, including warm-blooded animals. Furthermore, each cell of multicellular eukaryotes has DN as a component of their cellular activity.
It includes both A-RNA transcription and RNA-protein translation so that they can be treated. In addition, many organelles of eukaryotic cells (eg mitochondria and chloroplasts) also contain transcription and translation mechanisms. Thus, single cells, cell populations or organelles can also be treated with therapeutic or diagnostic peptide nucleic acids. Treatment as used herein is meant to include eliminating the disease state by killing the organism or by controlling erroneous or harmful cell growth or expression. The present invention will be explained by the following examples, but the present invention is not limited to the scope of the examples.

【0055】[0055]

【実施例】実施例1.Fmoc−Gly−Ala1(チ
ミン)ペプチド核酸モノマー(D体)の合成 1.Boc−Ala1(ベンゾイルチミン)−OBn
(化合物5a;D体)の合成
EXAMPLES Example 1. Fmoc-Gly-Ala1
Min) Synthesis of peptide nucleic acid monomer (D-form) Boc-Ala1 (benzoylthymine) -OBn
Synthesis of (compound 5a; D form)

【化16】 [Chemical 16]

【0056】0.309g(1mmol)のBoc−ヒド
ロキシメチル−β−アラニン−OBn(化合物4a)と
0.230g(1mmol)の3−ベンゾイルチミンと
0.294g(1.1mmol)のトリフェニルフォス
フィンに、10mlの乾燥テトラヒドロフランを加え、
−15℃で攪拌しながら、0.182ml(1.1mm
ol)のDEADを滴下した。滴下終了後室温に戻して
攪拌を続け、24時間後、透明となった溶液を減圧下で
溶媒除去、乾燥した。残分をジクロロメタンとアセトン
の50:1混合溶液を溶離液としたシリカゲルカラムク
ロマトグラフィーで精製したところ0.225gのBo
c−Ala1(ベンゾイルチミン)−OBn(化合物5
a)を得た(収率:43%)。δH(300 MHz, CDCl3) :1.36 (9H, s, (CH3)3), 2.01 (3
H, s, CH3), 2.50-2.70(2H, m, CH2), 4.10-4.45 (3H,
m, CH and CH2), 5.10 (2H, s, CH2), 7.30 (5H, s,Ph
of benzyl), 7.50-7.70 (5H, m, Ph of benzoyl), 7.85
(1H, s, CH= ofthymine)
0.309 g (1 mmol) Boc-hydroxymethyl-β-alanine-OBn (compound 4a), 0.230 g (1 mmol) 3-benzoylthymine and 0.294 g (1.1 mmol) triphenylphosphine. To, add 10 ml of dry tetrahydrofuran,
0.182 ml (1.1 mm
ol) DEAD was added dropwise. After completion of the dropping, the temperature was returned to room temperature and stirring was continued. After 24 hours, the transparent solution was subjected to solvent removal under reduced pressure and dried. The residue was purified by silica gel column chromatography using a 50: 1 mixed solution of dichloromethane and acetone as an eluent to give 0.225 g of Bo.
c-Ala1 (benzoylthymine) -OBn (Compound 5
a) was obtained (yield: 43%). δ H (300 MHz, CDCl 3 ) : 1.36 (9H, s, (CH 3 ) 3 ), 2.01 (3
H, s, CH 3 ), 2.50-2.70 (2H, m, CH 2 ), 4.10-4.45 (3H,
m, CH and CH 2 ), 5.10 (2H, s, CH 2 ), 7.30 (5H, s, Ph
of benzyl), 7.50-7.70 (5H, m, Ph of benzoyl), 7.85
(1H, s, CH = ofthymine)

【0057】2.Fmoc−Gly−Ala1(チミ
ン)−OBn(化合物6a;D体)の合成
2. Synthesis of Fmoc-Gly-Ala1 (thymine) -OBn (Compound 6a; D-form)

【化17】 [Chemical 17]

【0058】3N塩酸酢酸エチル溶液3mlを0.10
4g(0.2mmol)の化合物5aに加え、室温で3
0〜45分攪拌した。反応はTLCで追跡し、原料消失
後、過剰の塩酸を減圧除去した所、油状の塩酸塩を得た
ので、水酸化カリのデシケーターで2時間減圧乾燥し
た。塩酸塩は5%炭酸水素ナトリウム水溶液でpH7と
し、酢酸エチルで抽出し、飽和食塩水及び蒸留水で洗浄
後、溶媒を減圧除去したところ化合物5aの脱Boc体
を0.05gの白色結晶として得た(収率79%)。
3N of 3N hydrochloric acid ethyl acetate solution was added to 0.10
Add 4 g (0.2 mmol) of compound 5a and add 3 at room temperature.
Stir for 0-45 minutes. The reaction was monitored by TLC, and after the disappearance of the raw materials, excess hydrochloric acid was removed under reduced pressure to obtain an oily hydrochloride, which was dried under reduced pressure in a potassium hydroxide desiccator for 2 hours. The hydrochloride was adjusted to pH 7 with a 5% aqueous sodium hydrogen carbonate solution, extracted with ethyl acetate, washed with saturated saline and distilled water, and the solvent was removed under reduced pressure to obtain a de-Boc form of compound 5a as 0.05 g of white crystals. (Yield 79%).

【0059】0.743g(2.5mmol)のFmo
cグリシンと0.825g(2.6mmol)の脱Bo
c体と0.275g(2.5mmol)のトリエチルア
ミンに、20mlのアセトニトリルを加え、これに0℃
で0.835g(2.6mmol)のTBTUを加え
た。混合物を0℃で1時間攪拌後、室温に戻して攪拌を
続け、6時間後、飽和食塩水を70ml加え、50ml
の酢酸エチルで3回抽出した。有機相は5mlの2N塩
酸、5mlの水、5mlの5%炭酸水素ナトリウム水溶
液で洗浄後、再び5mlの水で洗浄し、無水硫酸マグネ
シウムで乾燥し、溶媒を減圧除去の後、残った結晶をさ
らに酢酸エチル−ヘキサンの混合溶媒から再結晶したと
ころ、Fmoc−Gly−Ala1(チミン)−OBn
(化合物6a)の結晶を1g得た(収率64.5%)。
得られた生成物の物理化学的データを以下に示す:融点 :128-129℃νmax/cm-1 :3329 (NH)1724, 1645 (C=O)δH (300 MHz, DMSO-d6) :1.74 (3H, s, CH3), 2.56 (2
H, m, CH2), 3.5 (2H, m, CH2), 3.9 (2H, m, CH2), 4.
2 (3H, m, CH2,CH), 4.5 (1H, m, CH), 5 (2H, s, C
H2), 7.3 (5H, s, CH2 Ph), 7.2-7.5 (6H, m, Fmoc prot
on, thymine proton,NH), 7.33 (2H, d, J 7.7, Ar-H),
7.87 (2H, d, J 7.5, Ar-H), 10.85 (1H, br, NH of t
hymine)FAB-MAS : m/z 597 (m+1)
0.743 g (2.5 mmol) of Fmo
c-glycine and 0.825 g (2.6 mmol) de-Bo
20 ml of acetonitrile was added to the c-form and 0.275 g (2.5 mmol) of triethylamine, and this was added to 0 ° C.
At 0.835 g (2.6 mmol) of TBTU was added. After stirring the mixture at 0 ° C for 1 hour, the temperature was returned to room temperature and stirring was continued. After 6 hours, 70 ml of saturated saline was added to 50 ml.
It was extracted 3 times with ethyl acetate. The organic phase was washed with 5 ml of 2N hydrochloric acid, 5 ml of water, 5 ml of 5% aqueous solution of sodium hydrogen carbonate, washed again with 5 ml of water, dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure to remove the remaining crystals. Further, when recrystallized from a mixed solvent of ethyl acetate-hexane, Fmoc-Gly-Ala1 (thymine) -OBn
1 g of crystals of (compound 6a) was obtained (yield 64.5%).
The physicochemical data of the product obtained are shown below: Melting point : 128-129 ° C ν max / cm -1 : 3329 (NH) 1724, 1645 (C = O) δ H (300 MHz, DMSO-d 6 ) : 1.74 (3H, s, CH 3 ), 2.56 (2
H, m, CH 2 ), 3.5 (2H, m, CH 2 ), 3.9 (2H, m, CH 2 ), 4.
2 (3H, m, CH 2 , CH), 4.5 (1H, m, CH), 5 (2H, s, C
H 2 ), 7.3 (5H, s, CH 2 Ph ), 7.2-7.5 (6H, m, Fmoc prot
on, thymine proton, NH), 7.33 (2H, d, J 7.7, Ar-H),
7.87 (2H, d, J 7.5, Ar-H), 10.85 (1H, br, NH of t
hymine) FAB-MAS : m / z 597 (m + 1)

【0060】3.Fmoc−Gly−Ala1(チミ
ン)ペプチド核酸モノマー(化合物7a;D体)の合成
3. Synthesis of Fmoc-Gly-Ala1 (thymine) peptide nucleic acid monomer (compound 7a; D form)

【化18】 [Chemical 18]

【0061】0.5065g(0.85mmol)の化
合物6aに、1.013gの10%パラジウム炭素及び
10mlのエタノールを加え、アルゴン雰囲気下で撹拌
しながら、2.35ml(25mmol)の1,4−シ
クロヘキサジエンを加え、そのまま一晩攪拌を続けた。
翌日セライトを通して濾過し、さらにセライトを熱エタ
ノールで3回洗浄し、濾液と洗液を合わせて溶媒を減圧
除去した。残渣に10mlの5%炭酸水素ナトリウム水
溶液を加え、酢酸エチルと振り混ぜることにより副生物
を除去した。残った水溶液にpHが2〜3になるまで1
0%硫酸水素カリウム水溶液を加え、酢酸エチルで20
mlづつ3回抽出した。有機相を飽和食塩水と蒸留水で
洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧除
去し、残った結晶をエタノールから再結晶したところ
0.266gのFmoc−Gly−Ala1(チミン)
ペプチド核酸モノマー(化合物7a)を得た(収率6
1.8%)。得られた生成物の物理化学的データを以下
に示す:融点 :144℃実験値 :C, 61.21; H, 5.19; N, 10.94.理論値(C26H26N4O7 :C, 61.65; H, 5.17; N, 11.06νmax/cm-1 :1714, 1638 ( C=O)δH (300 MHz, DMSO-d6) :1.75 (3H, s, CH3), 2.35-2.
46 (2H, m, CH2), 3.30(1H, br, NH), 3.39-3.62 (2H,
m, CH2), 3.83-4.01 (2H, m, CH2), 4.21-4.27(3H, m,
CH and CH2), 4.40-4.56 (1H, m, CH), 7.23 (1H, s, C
H-6 of T), 7.32 (2H, dd, J 7.5 and 7.5, Ar-H), 7.4
0 (2H, dd, J 7.5 and 7.5, Ar-H), 7.71 (2H, d, J 7.
5, Ar-H), 7.87 (2H, d, J 7.5, Ar-H), 10.81(1H, br
s, NH), 12.14 (1H, br, COOH)δC (75 MHz, DMSO-d6) :12.48 (CH3), 37.03 (CH2), 4
2.72 (CH2), 43.39 (CH2), 44.55 (CH), 46.63 (CH), 6
5.74 (CH2), 107.13 (C ), 120.06 (CH), 125.27(CH),
127.06 (CH), 127.60 (CH), 136.28 (CH), 140.69 (C),
143.85 (C), 151.54 (C), 156.30 (C), 164.14 (C), 1
68.48 (C), 171.94 (C)FAB-MAS :m/z 507 (M+1).
To 0.5065 g (0.85 mmol) of compound 6a was added 1.013 g of 10% palladium on carbon and 10 ml of ethanol, and 2.35 ml (25 mmol) of 1,4-while stirring under an argon atmosphere. Cyclohexadiene was added and the stirring was continued overnight.
Next day, the mixture was filtered through Celite, and Celite was washed with hot ethanol three times. The filtrate and the washing solution were combined and the solvent was removed under reduced pressure. To the residue was added 10 ml of 5% aqueous sodium hydrogen carbonate solution, and the mixture was shaken with ethyl acetate to remove by-products. 1 until the pH of the remaining aqueous solution becomes 2-3
A 0% aqueous solution of potassium hydrogen sulfate was added, and the mixture was diluted with ethyl acetate to 20%.
It was extracted 3 times by ml. The organic phase was washed with saturated brine and distilled water, dried over anhydrous magnesium sulfate, the solvent was removed under reduced pressure, and the remaining crystals were recrystallized from ethanol. 0.266 g of Fmoc-Gly-Ala1 (thymine)
A peptide nucleic acid monomer (compound 7a) was obtained (yield 6
1.8%). The physicochemical data of the obtained product are shown below: Melting point : 144 ° C Experimental value : C, 61.21; H, 5.19; N, 10.94. Theoretical value (C 26 H 26 N 4 O 7 ) : C, 61.65 H, 5.17; N, 11.06 ν max / cm -1 : 1714, 1638 (C = O) δ H (300 MHz, DMSO-d 6 ) : 1.75 (3H, s, CH 3 ), 2.35-2.
46 (2H, m, CH 2 ), 3.30 (1H, br, NH), 3.39-3.62 (2H,
m, CH 2 ), 3.83-4.01 (2H, m, CH 2 ), 4.21-4.27 (3H, m,
CH and CH 2 ), 4.40-4.56 (1H, m, CH), 7.23 (1H, s, C
H-6 of T), 7.32 (2H, dd, J 7.5 and 7.5, Ar-H), 7.4
0 (2H, dd, J 7.5 and 7.5, Ar-H), 7.71 (2H, d, J 7.
5, Ar-H), 7.87 (2H, d, J 7.5, Ar-H), 10.81 (1H, br
s, NH), 12.14 (1H, br, COOH) δ C (75 MHz, DMSO-d 6 ) : 12.48 (CH 3 ), 37.03 (CH 2 ), 4
2.72 (CH 2 ), 43.39 (CH 2 ), 44.55 (CH), 46.63 (CH), 6
5.74 (CH 2 ), 107.13 (C), 120.06 (CH), 125.27 (CH),
127.06 (CH), 127.60 (CH), 136.28 (CH), 140.69 (C),
143.85 (C), 151.54 (C), 156.30 (C), 164.14 (C), 1
68.48 (C), 171.94 (C) FAB-MAS : m / z 507 (M + 1).

【0062】実施例2.Fmoc−Gly−Ala1
(チミン)ペプチド核酸モノマー(L体)の合成 1.Boc−Ala1(ベンゾイルチミン)−OBn
(化合物5b;L体)の合成
Example 2. Fmoc-Gly-Ala1
Synthesis of (thymine) peptide nucleic acid monomer (L-form) Boc-Ala1 (benzoylthymine) -OBn
Synthesis of (Compound 5b; L-form)

【化19】 [Chemical 19]

【0063】0.309gの化合物4b(1mmol)
に、10mlの乾燥テトラヒドロフランを加え、さら
に、0.23g(1mmol)の3−ベンゾイルチミン
と0.294g(1.1mmol)のトリフェニルホス
フィンを加え、−15℃で攪拌しながら、182μl
(1.1mmol)のDEADを滴下した。その後室温
に戻してさらに24時間攪拌後、透明となった溶液を減
圧下で溶媒除去、乾燥した。残分をジクロロメタンとア
セトンの50:1混合溶液を溶離液としたシリカゲルカ
ラムクロマトグラフィーで精製したところ0.21gの
化合物5bを得た(収率40%)。得られた生成物の物
理化学的データを以下に示す:δH (300 MHz, CDCl3-d6) :1.4 (9H, s, (CH3)3), 2.02
(3H, s, CH3), 2.5-2.7(2H, m, CH2), 4.1-4.45 (3H,
m, CH and CH2), 5.1 (2H, s, CH2), 7.3 (5H,s, Ph),
7.5-7.7 (5H, m, benzoyl protons), 7.85 (1H, m,CH=
of thymine).
0.309 g of compound 4b (1 mmol)
To this, 10 ml of dry tetrahydrofuran was added, 0.23 g (1 mmol) of 3-benzoylthymine and 0.294 g (1.1 mmol) of triphenylphosphine were further added, and 182 μl was added while stirring at −15 ° C.
(1.1 mmol) DEAD was added dropwise. Then, after returning to room temperature and stirring for another 24 hours, the transparent solution was subjected to solvent removal under reduced pressure and dried. The residue was purified by silica gel column chromatography using a 50: 1 mixed solution of dichloromethane and acetone as an eluent to obtain 0.21 g of compound 5b (yield 40%). The physicochemical data of the product obtained are shown below: δ H (300 MHz, CDCl 3 -d 6 ) : 1.4 (9H, s, (CH 3 ) 3 ), 2.02
(3H, s, CH 3 ), 2.5-2.7 (2H, m, CH 2 ), 4.1-4.45 (3H,
m, CH and CH 2 ), 5.1 (2H, s, CH 2 ), 7.3 (5H, s, Ph),
7.5-7.7 (5H, m, benzoyl protons), 7.85 (1H, m, CH =
of thymine).

【0064】2.Fmoc−Gly−Ala1(チミ
ン)−OBn(化合物6b;L体)の合成
2. Synthesis of Fmoc-Gly-Ala1 (thymine) -OBn (Compound 6b; L-form)

【化20】 [Chemical 20]

【0065】3N塩酸酢酸エチル溶液3mlを0.10
4g(0.2mmol)の化合物5bに加え、室温で3
0〜45分攪拌した。反応はTLCで追跡し、原料消失
後、過剰の塩酸を減圧除去した所、油状の塩酸塩を得た
ので、水酸化カリのデシケーターで2時間減圧乾燥し
た。塩酸塩は5%炭酸水素ナトリウム水溶液でpH7と
し、酢酸エチルで抽出し、飽和食塩水及び蒸留水で洗浄
後、溶媒を減圧除去したところ化合物5bの脱Boc体
を0.0475gの白色結晶として得た(収率75
%)。
3 ml of 3N hydrochloric acid ethyl acetate solution was added to 0.10
Add 4 g (0.2 mmol) of compound 5b and add 3 at room temperature.
Stir for 0-45 minutes. The reaction was monitored by TLC, and after the disappearance of the raw materials, excess hydrochloric acid was removed under reduced pressure to obtain an oily hydrochloride, which was dried under reduced pressure in a potassium hydroxide desiccator for 2 hours. The hydrochloride was adjusted to pH 7 with a 5% aqueous sodium hydrogen carbonate solution, extracted with ethyl acetate, washed with saturated brine and distilled water, and the solvent was removed under reduced pressure to obtain the de-Boc form of compound 5b as white crystals (0.0475 g). (Yield 75
%).

【0066】0.743g(2.5mmol)のFmo
cグリシンと0.825g(2.6mmol)の脱Bo
c体に20mlのアセトニトリルを加え、さらに、0.
275g(2.5mmol)のトリエチルアミンを加え
た。これに、0℃で0.835g(2.6mmol)の
TBTUを加えた。混合物を0℃で1時間攪拌後、室温
に戻してさらに攪拌を続け、6時間後飽和食塩水を70
ml加え、50mlの酢酸エチルで3回抽出した。有機
相は5mlの2N塩酸、5mlの水、5mlの5%炭酸
水素ナトリウム水溶液で洗浄後、再び5mlの水で洗浄
し、無水硫酸マグネシウムで乾燥し、溶媒を減圧除去の
後、残った結晶をさらに酢酸エチル−ヘキサンの混合溶
媒から再結晶したところ、白色結晶としてFmoc−G
ly−Ala1(チミン)−OBn(化合物6b)を
1.01g得た(収率65%)。得られた生成物の物理
化学的データを以下に示す:融点 :130-131oC実験値 :C, 66.15; H, 5.54; N, 9.51.理論値(C33H32N4O7 :C, 66.43; H, 5.41; N, 9.39)νmax/cm-1 :3330 (NH); 1668 (C=O),δH (300MHz, DMSO-d6) :1.73 (3H, s, CH3), 2.53 (2
H, m, CH2), 3.49 (2H, m, CH2), 3.9 (2H, m, CH2),
4.2 (3H, m, CH2,CH), 4.5 (1H, m, CH), 5.0 (2H,s, C
H2), 7.2 (5H, s, CH2 Ph), 7.2-7.5 (6H, m, arom of F
moc, CH= of thymine and NH), 7.698 (2H, d, J 7.14
6, arom of Fmoc), 7.875 (2H, d, J 7.3, arom of Fmo
c), 10.8 (1H, br, NH of thymine).FAB-MAS : m/z 597 (m+1). 3.Fmoc−Gly−Ala1(チミン)ペプチド核
酸モノマー(化合物7b;L体)の合成
0.743 g (2.5 mmol) of Fmo
c-glycine and 0.825 g (2.6 mmol) de-Bo
To the c-form, 20 ml of acetonitrile was added, and further 0.
275 g (2.5 mmol) triethylamine was added. To this was added 0.835 g (2.6 mmol) TBTU at 0 ° C. The mixture was stirred at 0 ° C. for 1 hour, then returned to room temperature and further stirred, and after 6 hours, saturated saline solution was added to 70%.
ml was added, and the mixture was extracted 3 times with 50 ml of ethyl acetate. The organic phase was washed with 5 ml of 2N hydrochloric acid, 5 ml of water, 5 ml of 5% aqueous solution of sodium hydrogen carbonate, washed again with 5 ml of water, dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure to remove the remaining crystals. Further, when recrystallized from a mixed solvent of ethyl acetate-hexane, Fmoc-G was obtained as white crystals.
1.01 g of ly-Ala1 (thymine) -OBn (compound 6b) was obtained (yield 65%). The physicochemical data of the product obtained are shown below: Melting point : 130-131 ° C Experimental value : C, 66.15; H, 5.54; N, 9.51. Theoretical value (C 33 H 32 N 4 O 7 ) : C, 66.43; H, 5.41; N, 9.39) ν max / cm -1 : 3330 (NH); 1668 (C = O), δ H (300MHz, DMSO-d 6 ) : 1.73 (3H, s, CH 3 ), 2.53 (2
H, m, CH 2 ), 3.49 (2H, m, CH 2 ), 3.9 (2H, m, CH 2 ),
4.2 (3H, m, CH 2 , CH), 4.5 (1H, m, CH), 5.0 (2H, s, C
H 2 ), 7.2 (5H, s, CH 2 Ph ), 7.2-7.5 (6H, m, arom of F
moc, CH = of thymine and NH), 7.698 (2H, d, J 7.14
6, arom of Fmoc), 7.875 (2H, d, J 7.3, arom of Fmo
c), 10.8 (1H, br, NH of thymine). FAB-MAS : m / z 597 (m + 1). Synthesis of Fmoc-Gly-Ala1 (thymine) peptide nucleic acid monomer (Compound 7b; L-form)

【0067】[0067]

【化21】 [Chemical 21]

【0068】0.5065g(0.85mmol)の化
合物6bに1.013gの10%パラジウム炭素及び1
0mlのエタノールを加え、攪拌しながらアルゴン雰囲
気下で2.35ml(25mmol)の1,4−シクロ
ヘキサジエンを加え、そのまま一晩攪拌を続けた。翌日
セライトを通して濾過し、セライトを熱エタノールで3
回洗浄し、濾液と洗液を合わせて減圧下で溶媒除去、乾
燥した。残渣に10mlの5%炭酸水素ナトリウム水溶
液を加え、酢酸エチルと振り混ぜることにより副生物を
除去した。残った水溶液にpHが2〜3になるまで10
%硫酸水素カリウム水溶液を加え、酢酸エチルで20m
lづつ3回抽出した。有機相は飽和食塩水と蒸留水で洗
浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧除去
し、得られた沈殿をエタノールから再結晶したところ
0.266gのFmoc−Gly−Ala1(チミン)
ペプチド核酸モノマー(化合物7b;L体)を得た(収
率60%)。得られた生成物の物理化学的データを以下
に示す:融点 :144℃実験値 :C, 61.29; H, 5.01; N, 11.28理論値(C26H26N4O7 :C, 61.65; H, 5.17; N, 11.06νmax/cm-1 :1714, 1638 ( C=O)δH (300 MHz, DMSO-d6) :1.75 (3H, s, CH3), 2.35-2.
46 (2H, m, CH2), 3.30(1H, br, NH), 3.39-3.62 (2H,
m, CH2), 3.83-4.01 (2H, m, CH2), 4.21-4.27(3H, m,
H and CH2), 4.40-4.56 (1H, m, CH), 7.23 (1H, s, CH
-6 of T), 7.32(2H, dd, J 7.5 and 7.5, Ar-H), 7.40
(2H, dd, J 7.5 and 7.5, Ar-H), 7.71(2H, d, J 7.5,
Ar-H), 7.87 (2H, d, J 7.5, Ar-H), 10.81(1H, brs, N
H), 12.14 (1H, br, COOH)δC (75 MHz, DMSO-d6) :12.48 (CH3), 37.03 (CH2), 4
2.72 (CH2), 43.39 (CH2), 44.55 (CH), 46.63 (CH), 6
5.74 (CH2), 107.13 (C ), 120.06 (CH), 125.27(CH),
127.06 (CH), 127.60 (CH), 136.28 (CH), 140.69 (C),
143.85 (C), 151.54 (C), 156.30 (C), 164.14 (C), 1
68.48 (C), 171.94 (C);FAB-MAS : m/z 507 (M+1).
To 0.5065 g (0.85 mmol) of compound 6b 1.013 g of 10% palladium on carbon and 1
0 ml of ethanol was added, 2.35 ml (25 mmol) of 1,4-cyclohexadiene was added with stirring under an argon atmosphere, and stirring was continued overnight. The next day, filter through Celite and the Celite is washed with hot ethanol.
After washing twice, the filtrate and the washing solution were combined and the solvent was removed under reduced pressure and dried. To the residue was added 10 ml of 5% aqueous sodium hydrogen carbonate solution, and the mixture was shaken with ethyl acetate to remove by-products. 10 until the pH of the remaining aqueous solution becomes 2-3
% Potassium hydrogensulfate aqueous solution, 20m with ethyl acetate
It was extracted 3 times, l times. The organic phase was washed with saturated saline and distilled water, dried over anhydrous magnesium sulfate, the solvent was removed under reduced pressure, and the obtained precipitate was recrystallized from ethanol. 0.266 g of Fmoc-Gly-Ala1 (thymine)
A peptide nucleic acid monomer (compound 7b; L-form) was obtained (yield 60%). The physicochemical data of the obtained product are shown below: Melting point : 144 ° C Experimental value : C, 61.29; H, 5.01; N, 11.28 Theoretical value (C 26 H 26 N 4 O 7 ) : C, 61.65; H, 5.17; N, 11.06 ν max / cm -1 : 1714, 1638 (C = O) δ H (300 MHz, DMSO-d 6 ) : 1.75 (3H, s, CH 3 ), 2.35-2.
46 (2H, m, CH 2 ), 3.30 (1H, br, NH), 3.39-3.62 (2H,
m, CH 2 ), 3.83-4.01 (2H, m, CH 2 ), 4.21-4.27 (3H, m,
H and CH 2 ), 4.40-4.56 (1H, m, CH), 7.23 (1H, s, CH
-6 of T), 7.32 (2H, dd, J 7.5 and 7.5, Ar-H), 7.40
(2H, dd, J 7.5 and 7.5, Ar-H), 7.71 (2H, d, J 7.5,
Ar-H), 7.87 (2H, d, J 7.5, Ar-H), 10.81 (1H, brs, N
H), 12.14 (1H, br, COOH) δ C (75 MHz, DMSO-d 6 ) : 12.48 (CH 3 ), 37.03 (CH 2 ), 4
2.72 (CH 2 ), 43.39 (CH 2 ), 44.55 (CH), 46.63 (CH), 6
5.74 (CH 2 ), 107.13 (C), 120.06 (CH), 125.27 (CH),
127.06 (CH), 127.60 (CH), 136.28 (CH), 140.69 (C),
143.85 (C), 151.54 (C), 156.30 (C), 164.14 (C), 1
68.48 (C), 171.94 (C); FAB-MAS : m / z 507 (M + 1).

【0069】実施例3.Fmoc−Gly−Ala1
(アデニン)ペプチド核酸モノマーの合成 1.Boc−Ala1(ベンゾイルアデニン)−OBn
(化合物5c;D体)の合成
Example 3. Fmoc-Gly-Ala1
Synthesis of (adenine) peptide nucleic acid monomer Boc-Ala1 (benzoyladenine) -OBn
Synthesis of (compound 5c; D form)

【化22】 [Chemical formula 22]

【0070】5.57g(18.0mmol)の化合物
4aと5.19g(19.8mmol)のトリフェニル
ホスフィンと8.6g(36mmol)の6−ベンゾイ
ルアデニンに150mlの乾燥テトラヒドロフランを加
え、0℃で攪拌しながら2.83ml(18mmol)
のDEADを滴下した。滴下終了後さらに0℃で2時
間、さらに室温で24時間攪拌を続け、その後濾過し、
不溶物を除いた。減圧下、溶媒を留去した残分を、最初
はジクロロメタンとアセトンの4:1混合溶液、後に
1:1混合溶液を溶離液としたシリカゲルカラムクロマ
トグラフィーで精製したところ白色結晶として、Boc
−Ala1(ベンゾイルアデニン)−OBn(化合物5
c)を4.3g得た(収率:45%)。得られた生成物
の物理化学的データを以下に示す:融点 :127-129oC実験値 :C, 63.05; H, 5.71; N, 15.36.理論値(C26H30N6O5 :C, 63.38; H, 5.70; N, 15.84νmax/cm-1 :3386 (NH), 1680 (C=O),δH (300 MHz, DMSO-d6) :1.22(9H, s, C(CH3)3), 2.5
( 2H, m, CH2), 4.25-4.40 (3H, m, CH2 and CH), 5.06
(2H, s, CH2), 7.02 (1H, d, J 7.8 , NH), 7.34 (5H,
s, CH2 Ph ), 7.53-7.62 (3H, m, benzoyl), 8.00-8.03
(2H, m, benzoyl), 8.27 (1H, s, CH=), 8.60 (1H, s,
CH=), 11.09 (1H, s, NH).FAB-MAS :m/z 531 (M+1)
150 ml of dry tetrahydrofuran was added to 5.57 g (18.0 mmol) of compound 4a, 5.19 g (19.8 mmol) of triphenylphosphine and 8.6 g (36 mmol) of 6-benzoyladenine, and the mixture was added at 0 ° C. 2.83 ml (18 mmol) with stirring
Of DEAD was dropped. After completion of the dropping, the mixture was further stirred at 0 ° C. for 2 hours and further at room temperature for 24 hours, and then filtered,
The insoluble matter was removed. The residue obtained by distilling off the solvent under reduced pressure was purified by silica gel column chromatography using a 4: 1 mixed solution of dichloromethane and acetone and later a 1: 1 mixed solution as an eluent to give Boc crystals as Boc crystals.
-Ala1 (benzoyl adenine) -OBn (compound 5
4.3 g of c) was obtained (yield: 45%). The physicochemical data of the obtained product are shown below: Melting point : 127-129 o C Experimental value : C, 63.05; H, 5.71; N, 15.36. Theoretical value (C 26 H 30 N 6 O 5 ) : C, 63.38; H, 5.70; N, 15.84 ν max / cm -1 : 3386 (NH), 1680 (C = O), δ H (300 MHz, DMSO-d 6 ) : 1.22 (9H, s, C ( CH 3 ) 3 ), 2.5
(2H, m, CH 2 ), 4.25-4.40 (3H, m, CH 2 and CH), 5.06
(2H, s, CH 2 ), 7.02 (1H, d, J 7.8, NH), 7.34 (5H,
s, CH 2 Ph ), 7.53-7.62 (3H, m, benzoyl), 8.00-8.03
(2H, m, benzoyl), 8.27 (1H, s, CH =), 8.60 (1H, s,
CH =), 11.09 (1H, s, NH). FAB-MAS : m / z 531 (M + 1)

【0071】2.Fmoc−Gly−Ala1(アデニ
ン)−OBn(化合物6c;D体)の合成
2. Synthesis of Fmoc-Gly-Ala1 (adenine) -OBn (Compound 6c; D-form)

【化23】 [Chemical formula 23]

【0072】ジクロロメタン(8ml)とトリフルオロ
酢酸(8ml)の混合液に1.06gの化合物5c(2
mmol)を加え、TLC上で原料が消失するまで室温
で攪拌した。溶媒を減圧留去し、得られた残渣に4%炭
酸水素ナトリウム水溶液(100ml)を加え、100
mlの酢酸エチルで3回抽出した。有機相を減圧濃縮し
て得られた残渣を乾燥後そのまま次の反応に用いた。D
MF(30ml)に、得られた残渣、0.59gのFm
ocグリシン(2mmol)、0.31gのHOBt(2
mmol)、0.64gのTBTU(2mmol)、0.
697mlのDIEA(ジイソプロピルエチルアミン)
(4mmol)を順次加え、室温下24時間攪拌した。
溶媒を減圧留去後、残渣に酢酸エチル(200ml)を
加え、精製水(100ml)、5%硫酸水素カリウム水溶
液(100ml×3)、4%炭酸水素ナトリウム水溶液
(100ml×3)、精製水(100ml)で洗った。
有機相を硫酸マグネシウムで乾燥した後、減圧留去し
た。得られた粗結晶を酢酸エチルとメタノールの混合溶
媒で再結晶することによりFmoc−Gly−Ala1
(アデニン)−OBn(化合物6c)を1.05g得た
(収率73%)。得られた生成物の物理化学的データを
以下に示す:融点 :133-135℃実験値 :C, 67.11; H, 5.14; N, 13.49.理論値(C40H35N7O6 :C, 67.69; H, 4.97; N, 13.81νmax/cm-1 :3296 (NH), 1726 (C=O),δH (300 MHz, DMSO-d6) :2.55-2.78 ( 2H, m, CH2),
3.50 (2H, d, J 5.9, CH2) 4.2-4.3 (3H, m, CH2CH),
4.36-4.50 (2H, m, CH2), 4.50-4.62(1H, m, CH),5.06
(2H, s, CH2), 7.25-7.35 (4H, m, arom of Fmoc), 7.5
5-7.70 (3H, m, benzoyl), 7.70 (2H, d, J 7.5, arom
of Fmoc), 7.86 (2H, d, J 7.509, arom ofFmoc) 8.02
-8.04 (2H, m, benzoyl), 8.33 (1H, s, CH=), 8.69 (1
H, s, CH=), 11.12 (1H, s, NH).FAB-MAS :710 (M+1) 3.Fmoc−Gly−Ala1(アデニン)ペプチド
核酸モノマー(化合物7c;D体)の合成
A mixture of dichloromethane (8 ml) and trifluoroacetic acid (8 ml) was added with 1.06 g of compound 5c (2
mmol) was added, and the mixture was stirred at room temperature until the raw material disappeared on TLC. The solvent was evaporated under reduced pressure, 4% aqueous sodium hydrogen carbonate solution (100 ml) was added to the obtained residue,
It was extracted 3 times with ml of ethyl acetate. The residue obtained by concentrating the organic phase under reduced pressure was dried and used as it was in the next reaction. D
Obtained residue, 0.59 g of Fm in MF (30 ml)
oc glycine (2 mmol), 0.31 g HOBt (2
mmol), 0.64 g of TBTU (2 mmol), 0.
697 ml DIEA (diisopropylethylamine)
(4 mmol) was sequentially added, and the mixture was stirred at room temperature for 24 hours.
After distilling off the solvent under reduced pressure, ethyl acetate (200 ml) was added to the residue, purified water (100 ml), 5% potassium hydrogen sulfate aqueous solution (100 ml × 3), 4% sodium hydrogen carbonate aqueous solution (100 ml × 3), purified water ( It was washed with 100 ml).
The organic phase was dried over magnesium sulfate and then evaporated under reduced pressure. Fmoc-Gly-Ala1 was obtained by recrystallizing the obtained crude crystal in a mixed solvent of ethyl acetate and methanol.
1.05 g of (adenine) -OBn (compound 6c) was obtained (yield 73%). The physicochemical data of the obtained product are shown below: Melting point : 133-135 ° C Experimental value : C, 67.11; H, 5.14; N, 13.49. Theoretical value (C 40 H 35 N 7 O 6 ) : C , 67.69; H, 4.97; N, 13.81 ν max / cm -1 : 3296 (NH), 1726 (C = O), δ H (300 MHz, DMSO-d 6 ) : 2.55-2.78 (2H, m, CH 2 ),
3.50 (2H, d, J 5.9, CH 2 ) 4.2-4.3 (3H, m, CH 2 CH),
4.36-4.50 (2H, m, CH 2 ), 4.50-4.62 (1H, m, CH), 5.06
(2H, s, CH 2 ), 7.25-7.35 (4H, m, arom of Fmoc), 7.5
5-7.70 (3H, m, benzoyl), 7.70 (2H, d, J 7.5, arom
of Fmoc), 7.86 (2H, d, J 7.509, arom ofFmoc) 8.02
-8.04 (2H, m, benzoyl), 8.33 (1H, s, CH =), 8.69 (1
H, s, CH =), 11.12 (1H, s, NH). FAB-MAS : 710 (M + 1) 3. Synthesis of Fmoc-Gly-Ala1 (adenine) peptide nucleic acid monomer (compound 7c; D form)

【0073】[0073]

【化24】 [Chemical formula 24]

【0074】0.19gの化合物6c(0.27mmo
l)をメタノール(100ml)に溶かした後、10%
パラジウム炭素(200mg)を加え、水素ガス雰囲気
下TLC上で原料が消失するまで室温で攪拌した。パラ
ジウム炭素を留去後、溶媒を濃縮して得られた残渣をメ
タノールで再結晶することによりFmoc−Gly−A
la1(アデニン)ペプチド核酸モノマー(化合物7
c)を0.10g得た(収率60%)。得られた生成物
の物理化学的データを以下に示す:融点 :213-215℃実験値 :C, 63.87; H, 4.81; N, 15.61.理論値(C33H29N7O6 :C, 63.97; H, 4.72; N, 15.82νmax/cm-1 :1697, 1646 ( C=O)δH (300 MHz, DMSO-d6) :2.32-2.78 (2H, m, CH2), 3.
49 (2H, d, J 5.2, CH2), 4.13-4.56 (6H, m, CH2 x 2
and CH x 2), 7.10 (1H, brs, NH), 7.30 (2H, dd, J
7.5 and 7.5, Ar-H), 7.39 (2H, dd, J 7.5 and 7.5, A
r-H), 7.53-7.63 (3H, m, Ph), 7.70 (2H, d, J 7.5, A
r-H), 7.87 (2H, d, J 7.5, Ar-H), 7.95-8.10 (2H,
m, Ph), 8.32 (1H, s, Ar-H), 8.71 (1H, s, Ar-H), 1
1.13 (1H, brs, NH)δC (75 MHz, DMSO-d6) :36.45 (CH2), 43.4 (CH2), 4
5.81 (CH2), 46.13 (CH),46.58 (CH), 65.73 (CH), 12
0.02 (CH), 125.05 (C), 125.21 (CH), 127.01 (CH), 1
27.56 (CH), 128.37 (CH), 132.28 (C), 133.52 (CH),
140.66 (C), 143.80 (C), 144.96 (CH), 149.94 (C), 1
51.24 (CH), 152.77 (C), 156.40 (C), 165.58 (C), 16
8.89 (C), 171.73 (C)FAB-MAS :m/z 620 (M+1).
0.19 g of compound 6c (0.27 mmo
10% after dissolving l) in methanol (100 ml)
Palladium carbon (200 mg) was added, and the mixture was stirred at room temperature in a hydrogen gas atmosphere until the raw material disappeared on TLC. After the palladium carbon was distilled off, the solvent was concentrated and the resulting residue was recrystallized from methanol to obtain Fmoc-Gly-A.
la1 (adenine) peptide nucleic acid monomer (compound 7
0.10 g of c) was obtained (60% yield). The physicochemical data of the obtained product are shown below: Melting point : 213-215 ° C Experimental value : C, 63.87; H, 4.81; N, 15.61. Theoretical value (C 33 H 29 N 7 O 6 ) : C , 63.97; H, 4.72; N, 15.82 ν max / cm -1 : 1697, 1646 (C = O) δ H (300 MHz, DMSO-d 6 ) : 2.32-2.78 (2H, m, CH 2 ), 3 .
49 (2H, d, J 5.2, CH 2 ), 4.13-4.56 (6H, m, CH 2 x 2
and CH x 2), 7.10 (1H, brs, NH), 7.30 (2H, dd, J
7.5 and 7.5, Ar-H), 7.39 (2H, dd, J 7.5 and 7.5, A
rH), 7.53-7.63 (3H, m, Ph), 7.70 (2H, d, J 7.5, A
rH), 7.87 (2H, d, J 7.5, Ar-H), 7.95-8.10 (2H,
m, Ph), 8.32 (1H, s, Ar-H), 8.71 (1H, s, Ar-H), 1
1.13 (1H, brs, NH) δ C (75 MHz, DMSO-d 6 ) : 36.45 (CH 2 ), 43.4 (CH 2 ), 4
5.81 (CH 2 ), 46.13 (CH), 46.58 (CH), 65.73 (CH), 12
0.02 (CH), 125.05 (C), 125.21 (CH), 127.01 (CH), 1
27.56 (CH), 128.37 (CH), 132.28 (C), 133.52 (CH),
140.66 (C), 143.80 (C), 144.96 (CH), 149.94 (C), 1
51.24 (CH), 152.77 (C), 156.40 (C), 165.58 (C), 16
8.89 (C), 171.73 (C) FAB-MAS : m / z 620 (M + 1).

【0075】実施例4 Fmoc−Gly−Ala(チ
ミン)ペプチド核酸モノマーの合成(化合物13) 1.Boc−L−セリン−OBn(化合物8)のトシル
Example 4 Fmoc-Gly-Ala
Min) Synthesis of peptide nucleic acid monomer (Compound 13) Tosylation of Boc-L-serine-OBn (Compound 8)

【化25】 [Chemical 25]

【0076】Boc−L−セリン−OBn(18.0
g、0.061mol)の乾燥ピリジン溶液(120m
l)を−10℃まで冷却し、攪拌しながらTosCl
(13.92g、0.073mol)を加え、−10〜
−15℃で24時間攪拌した。氷水(300ml)に反
応液を注ぎ、析出結晶を濾別した。得られた粗結晶をエ
タノールで再結晶し、トシル化体(化合物9)を17.
1g得た(収率62%)。得られた生成物の物理化学的
データを以下に示す:δH (300 MHz, CDCl3) : 1.41 (9H, s, CH3 x 3), 2.43
(3H, s, CH3), 4.30 (1H, dd, J 10.0 and 4.0, CHH),
4.42 (1H, dd, J 10.0 and 3.0, CHH ), 4.50 (1H, br
s, CH), 5.08 (1H,d, J 11.8, CHHPh), 5.17 (1H, d,
J 11.8, CHHPh),5.30 (1H, br, NH), 7.27 (2H, d, J
9, arom), 7.34 (5H, s, Ph), 7.71 (2H,d, J 9, arom) 2.Boc−L−セリン(OTos)−OBn(化合物
9)のヨウ素化
Boc-L-serine-OBn (18.0
g, 0.061 mol) in dry pyridine solution (120 m
l) was cooled to -10 ° C and stirred with TosCl
(13.92 g, 0.073 mol) was added, and -10
The mixture was stirred at -15 ° C for 24 hours. The reaction solution was poured into ice water (300 ml), and the precipitated crystals were separated by filtration. The obtained crude crystals were recrystallized from ethanol to give a tosylated product (Compound 9).
1 g was obtained (yield 62%). The physicochemical data of the product obtained are shown below: δ H (300 MHz, CDCl 3 ) : 1.41 (9H, s, CH 3 x 3), 2.43
(3H, s, CH 3 ), 4.30 (1H, dd, J 10.0 and 4.0, CHH),
4.42 (1H, dd, J 10.0 and 3.0, CHH), 4.50 (1H, br
s, CH), 5.08 (1H, d, J 11.8, CHHPh), 5.17 (1H, d,
J 11.8, CHHPh), 5.30 (1H, br, NH), 7.27 (2H, d, J
9, arom), 7.34 (5H, s, Ph), 7.71 (2H, d, J 9, arom) 2. Iodination of Boc-L-serine (OTos) -OBn (Compound 9)

【0077】[0077]

【化26】 [Chemical formula 26]

【0078】Boc−L−セリン(OTos)−OBn
(12.6g、0.028mol)の乾燥アセトン(4
0ml)溶液に室温下、攪拌しながらヨウ化ナトリウム
(6.28g、0.042mol)の乾燥アセトン(4
0ml)溶液を滴下した。24時間攪拌後、反応溶媒を
減圧下で留去し、残渣にジクロロメタン(250ml)
を加え精製水(150ml×3)、1Mのチオ硫酸ナト
リウム(200ml)、精製水(150ml×3)で洗
浄した。ジクロロメタン相を無水硫酸マグネシウムで乾
燥後、減圧留去し、得られた粗結晶をエタノールで再結
晶し、ヨウ素化体(化合物10)8.17gを得た(収
率72%)。得られた生成物の物理化学的データを以下
に示す:δH (300 MHz, CDCl3) : 1.45 (9H, s, CH3 x 3), 3.52
-3.60 (2H, m, CH2), 4.50-4.61 (1H, m, CH), 5.18 (1
H, d, J 11.8, CHHPh), 5.23 (1H, br, NH), 5.37 (1
H, br, NH), 7.38 (5H, s, Ph).
Boc-L-serine (OTos) -OBn
(12.6 g, 0.028 mol) of dry acetone (4
0 ml) solution at room temperature under stirring with sodium iodide (6.28 g, 0.042 mol) in dry acetone (4
0 ml) solution was added dropwise. After stirring for 24 hours, the reaction solvent was evaporated under reduced pressure, and the residue was diluted with dichloromethane (250 ml).
And washed with purified water (150 ml × 3), 1M sodium thiosulfate (200 ml), and purified water (150 ml × 3). The dichloromethane phase was dried over anhydrous magnesium sulfate and evaporated under reduced pressure, and the obtained crude crystals were recrystallized from ethanol to obtain 8.17 g of an iodinated compound (Compound 10) (yield 72%). The physicochemical data of the product obtained are shown below: δ H (300 MHz, CDCl 3 ) : 1.45 (9H, s, CH 3 x 3), 3.52
-3.60 (2H, m, CH 2 ), 4.50-4.61 (1H, m, CH), 5.18 (1
H, d, J 11.8, CHHPh), 5.23 (1H, br, NH), 5.37 (1
H, br, NH), 7.38 (5H, s, Ph).

【0079】3.Boc−Ala(チミン)−OBn
(化合物11b)の合成
3. Boc-Ala (thymine) -OBn
Synthesis of (Compound 11b)

【化27】 [Chemical 27]

【0080】DMF(20ml)に1.76gの化合物
10(4.34mmol)、3.00gの3−ベンゾイ
ルチミン(13.2mmol)及び1.80gの無水炭
酸カリウム(13.03mmol)を加え、アルゴン気
流下室温で2日間攪拌した。反応溶媒を減圧留去後、シ
リカゲルカラムクロマトグラフィー(酢酸エチル:n−
ヘキサン 7:3)により0.75gの化合物11a
(収率34%)および0.52gの化合物11b(収率
30%)を得た。化合物11a(0.203g、0.4
mmol)のジオキサン溶液(5ml)に0.25M炭酸
カリウム水溶液(5ml)を加えTLC上で化合物11
aが消失するまで室温で攪拌した。反応溶媒を減圧留去
後、残渣に精製水(10ml)を加え析出結晶をろ取し
た。得られた粗結晶をエタノール−n−ヘキサンの混合
溶媒で再結晶することにより化合物11bを得た(収量
0.129g、80%)。得られた生成物の物理化学的
データを以下に示す:化合物11a 融点 :133-134℃実験値 :C, 63.98; H, 5.73; N, 8.30.理論値(C27H29N3O7 :C, 63.89; H, 5.76; N, 8.28νmax/cm-1 :1752, 1712, 1658, 1640 ( C=O)δH (300 MHz, CDCl3) :1.43 (9H, s, CH3 x 3), 1.90
(3H, s, CH3), 3.70-3.85 (1H, m, CHH), 4.34-4.42 (1
H, m, CHH), 4.59-4.70 (1H, m, CH), 5.07 (1H,d, J 1
2.0, PhCHH), 5.19 (1H, d, J 12.0, PhCHH), 5.47 (1
H, d, J 6.6, NH), 7.02 (1H, s, CH-6 of T), 7.33 (5
H, s, Ph), 7.48 (2H, dd, J 7.8 and 7.8, PhC=O), 7.
63 (1H, dd, J 7.8 and 7.8, PhC=O), 8.04 (2H, d, J
7.8, PhC=O)δC (75 MHz, CDCl3) :12.30 (CH3), 28.21 (CH3), 50.
47 (CH2), 52.26 (CH),68.06 (CH2), 80.68 (C), 110.4
1 (C), 128.53 (CH), 128.63 (CH), 129.01 (CH), 130.
68 (CH), 131.59 (C), 134.68 (C), 134.89 (CH), 140.
46 (CH), 150.06(C), 155.22 (C), 163.04 (C), 168.86
(C), 169.39 (C)FAB-MAS :m/z 508 (M+1).化合物11b 融点 :191-192℃実験値 :C, 59.65; H, 5.95; N, 10.23.理論値(C27H29N3O7 :C, 59.54; H, 6.25; N, 10.42)νmax/cm-1 :1748, 1715, 1683 ( C=O);δH (300 MHz, CDCl3) :1.41 (9H, s, CH3 x 3), 1.85
(3H, s, CH3), 4.02 (1H, dd, J 14.2 and 6.8, CHH),
4.20 (1H, dd, J 14.2 and 5.6, CHH), 4.52 (1H, dd,
J 6.8 and 5.6, CH), 5.16 (1H, d, J 12.0, PhCHH),
5.22 (1H, d, J 12.0, PhCHH), 5.46 (1H, br, NH), 6.
92 (1H, s, CH-6 of T), 7.34 (5H, s, Ph), 8.25 (1H,
brs, NH)δC (75 MHz, DMSO-d6) :11.95 (CH3), 27.98 (CH3), 4
8.12 (CH2), 51.70 (CH), 66.38 (CH2), 78.72 (C), 10
8.03 (C), 127.89 (CH), 128.11 (CH), 128.39 (CH), 1
35.58 (C), 141.80 (CH), 150.87 (C), 155.26 (C), 16
4.20 (C), 169.76(C)FAB-MAS :m/z 404 (M+1).
To DMF (20 ml) was added 1.76 g of compound 10 (4.34 mmol), 3.00 g of 3-benzoylthymine (13.2 mmol) and 1.80 g of anhydrous potassium carbonate (13.03 mmol) and argon. The mixture was stirred under a stream of air at room temperature for 2 days. After distilling off the reaction solvent under reduced pressure, silica gel column chromatography (ethyl acetate: n-
0.75 g of compound 11a with hexane 7: 3)
(Yield 34%) and 0.52 g of compound 11b (Yield 30%) were obtained. Compound 11a (0.203 g, 0.4
0.25 M potassium carbonate aqueous solution (5 ml) was added to a dioxane solution (5 ml) of (mmol) and compound 11 was analyzed by TLC.
Stir at room temperature until a disappears. The reaction solvent was evaporated under reduced pressure, purified water (10 ml) was added to the residue, and the precipitated crystals were collected by filtration. Compound 11b was obtained by recrystallizing the obtained crude crystal in a mixed solvent of ethanol-n-hexane (yield 0.129 g, 80%). The physicochemical data of the obtained product are shown below: Compound 11a Melting point : 133-134 ° C Experimental value : C, 63.98; H, 5.73; N, 8.30. Theoretical value (C 27 H 29 N 3 O 7 ). : C, 63.89; H, 5.76; N, 8.28 ν max / cm -1 : 1752, 1712, 1658, 1640 (C = O) δ H (300 MHz, CDCl 3 ) : 1.43 (9H, s, CH 3 x 3), 1.90
(3H, s, CH 3 ), 3.70-3.85 (1H, m, C H H), 4.34-4.42 (1
H, m, CH H ), 4.59-4.70 (1H, m, CH), 5.07 (1H, d, J 1
2.0, PhC H H), 5.19 (1H, d, J 12.0, PhCH H ), 5.47 (1
H, d, J 6.6, NH), 7.02 (1H, s, CH-6 of T), 7.33 (5
H, s, Ph), 7.48 (2H, dd, J 7.8 and 7.8, PhC = O), 7.
63 (1H, dd, J 7.8 and 7.8, PhC = O), 8.04 (2H, d, J
7.8, PhC = O) δ C (75 MHz, CDCl 3 ) : 12.30 (CH 3 ), 28.21 (CH 3 ), 50.
47 (CH 2 ), 52.26 (CH), 68.06 (CH 2 ), 80.68 (C), 110.4
1 (C), 128.53 (CH), 128.63 (CH), 129.01 (CH), 130.
68 (CH), 131.59 (C), 134.68 (C), 134.89 (CH), 140.
46 (CH), 150.06 (C), 155.22 (C), 163.04 (C), 168.86
(C), 169.39 (C) FAB-MAS : m / z 508 (M + 1). Compound 11b Melting point : 191-192 ° C Experimental value : C, 59.65; H, 5.95; N, 10.23. Theoretical value (C 27 H 29 N 3 O 7 ) : C, 59.54; H, 6.25; N, 10.42) ν max / cm -1 : 1748, 1715, 1683 (C = O); δ H (300 MHz, CDCl 3 ) : 1.41 ( 9H, s, CH 3 x 3), 1.85
(3H, s, CH 3 ), 4.02 (1H, dd, J 14.2 and 6.8, C H H),
4.20 (1H, dd, J 14.2 and 5.6, CH H ), 4.52 (1H, dd,
J 6.8 and 5.6, CH), 5.16 (1H, d, J 12.0, PhC H H),
5.22 (1H, d, J 12.0, PhCH H ), 5.46 (1H, br, NH), 6.
92 (1H, s, CH-6 of T), 7.34 (5H, s, Ph), 8.25 (1H,
brs, NH) δ C (75 MHz, DMSO-d 6 ) : 11.95 (CH 3 ), 27.98 (CH 3 ), 4
8.12 (CH 2 ), 51.70 (CH), 66.38 (CH 2 ), 78.72 (C), 10
8.03 (C), 127.89 (CH), 128.11 (CH), 128.39 (CH), 1
35.58 (C), 141.80 (CH), 150.87 (C), 155.26 (C), 16
4.20 (C), 169.76 (C) FAB-MAS : m / z 404 (M + 1).

【0081】4.Fmoc−Gly−Ala(チミン)
−OBn(化合物12)の合成
4. Fmoc-Gly-Ala (thymine)
Synthesis of -OBn (Compound 12)

【化28】 [Chemical 28]

【0082】0.55gの化合物11b(1.36mm
ol)をジクロロメタン(5ml)とトリフルオロ酢酸
(5ml)の混合溶媒に加え0℃で2時間攪拌した。反
応溶媒を減圧留去後、残渣に4%炭酸水素ナトリウム水
溶液(100ml)を加え、ジクロロメタン(70ml
×3)で抽出した。ジクロロメタン相を硫酸マグネシウ
ムで乾燥後、減圧留去することにより化合物11bの脱
Boc体の粗結晶を得た。これを乾燥後、DMF(10
ml)に加え、その溶液に0.45gのFmocグリシ
ン(1.36mmol)、0.29gのHOBt(1.
36mmol)、0.438gのTBTU(1.36m
mol)、0.475mlのDIEA(2.73mmo
l)を順次加え、室温で3時間攪拌した。反応溶媒を減
圧留去後、残渣に酢酸エチル(100ml)を加え、精
製水(100ml)、5%硫酸水素カリウム水溶液(1
00ml×3)、4%炭酸水素ナトリウム水溶液(10
0ml×3)、精製水(100ml)で洗った。有機相
を硫酸マグネシウムで乾燥した後、減圧留去した。得ら
れた粗結晶を酢酸エチルとメタノールの混合溶媒で再結
晶することにより570mgのFmoc−Gly−Al
a(チミン)−OBn(化合物12)を得た(収率72
%)。得られた生成物の物理化学的データを以下に示
す:融点 :194-195℃νmax/cm-1 :1681 and 1735 ( C=O)δH (300 MHz, DMSO-d6) :1.69 (3H, s, CH3), 3.56-3.
65 (2H, m, CH2), 3.77(1H, dd , J 13.8 and 8.7, CH
H), 4.14-4.29 (2H, m, CH and CHH), 4.27 (2H,s, C
H2), 4.60-4.66 (1H, m, CH), 5.11 (2H, d, J 2.1, CH
2Ph), 7.27-7.43 (5H, m, arom and CH= of T), 7.38
(5H, s, Ph), 7.58 (1H, t, J 7.3, NH), 7.70 (2H, d,
J 7.2, arom), 7.88 (2H, d, J 7.2, arom), 8.46 (1
H, d, J 8.1,NH), 11.25 (1H, br, NH)δC (75 MHz, DMSO-d6) :11.83 (CH3), 40.33 (CH2), 4
6.60 (CH), 47.82 (CH2), 50.62 (CH), 65.73 (CH2), 6
6.51 (CH2), 108.42 (C), 120.01 (CH), 125.21(CH), 1
27.01 (CH), 127.61 (CH), 127.86 (CH), 128.08 (CH),
128.40(CH), 135.50 (C), 140.69 (C), 141.63 (CH),
143.81 (C), 150.94 (C), 156.43 (C), 164.23 (C), 16
9.36 (C), 169.64 (C)FAB-MS :m/z 583 (M+ 1).
0.55 g of compound 11b (1.36 mm
ol) with dichloromethane (5 ml) and trifluoroacetic acid
It was added to the mixed solvent of (5 ml) and stirred at 0 ° C. for 2 hours. Anti
After evaporating the solvent under reduced pressure, the residue was washed with 4% aqueous sodium hydrogen carbonate.
Add the solution (100 ml) and add dichloromethane (70 ml).
It was extracted in × 3). Dichloromethane phase is magnesium sulfate
Compound 11b was removed by evaporation under reduced pressure.
Crude crystals of Boc body were obtained. After drying this, DMF (10
ml) and 0.45 g of Fmoc glycy in the solution.
(1.36 mmol), 0.29 g of HOBt (1.
36 mmol), 0.438 g TBTU (1.36 m
mol), 0.475 ml DIEA (2.73 mmo
1) were sequentially added, and the mixture was stirred at room temperature for 3 hours. Reduce reaction solvent
After distilling off under pressure, ethyl acetate (100 ml) was added to the residue and purified.
Water (100 ml), 5% potassium hydrogen sulfate aqueous solution (1
00 ml × 3), 4% aqueous sodium hydrogen carbonate solution (10
It was washed with 0 ml × 3) and purified water (100 ml). Organic phase
Was dried over magnesium sulfate and evaporated under reduced pressure. Got
The crude crystals were recrystallized with a mixed solvent of ethyl acetate and methanol.
570 mg of Fmoc-Gly-Al by crystallization
a (thymine) -OBn (compound 12) was obtained (yield 72
%). The physicochemical data of the obtained product are shown below.
You:Melting point : 194-195 ℃ν max / cm -1 : 1681 and 1735 (C = O)δ H (300 MHz, DMSO-d 6 ) : 1.69 (3H, s, CH3), 3.56-3.
65 (2H, m, CH2), 3.77 (1H, dd, J 13.8 and 8.7, CH
H), 4.14-4.29 (2H, m, CH and CHH), 4.27 (2H, s, C
H2), 4.60-4.66 (1H, m, CH), 5.11 (2H, d, J 2.1, CH
2Ph), 7.27-7.43 (5H, m, arom and CH = of T), 7.38
(5H, s, Ph), 7.58 (1H, t, J 7.3, NH), 7.70 (2H, d,
 J 7.2, arom), 7.88 (2H, d, J 7.2, arom), 8.46 (1
H, d, J 8.1, NH), 11.25 (1H, br, NH)δ C (75 MHz, DMSO-d 6 ) : 11.83 (CH3), 40.33 (CH2), Four
6.60 (CH), 47.82 (CH2), 50.62 (CH), 65.73 (CH2), 6
6.51 (CH2), 108.42 (C), 120.01 (CH), 125.21 (CH), 1
27.01 (CH), 127.61 (CH), 127.86 (CH), 128.08 (CH),
 128.40 (CH), 135.50 (C), 140.69 (C), 141.63 (CH),
143.81 (C), 150.94 (C), 156.43 (C), 164.23 (C), 16
9.36 (C), 169.64 (C)FAB-MS : M / z 583 (M + 1).

【0083】5.Fmoc−Gly−Ala(チミン)
ペプチド核酸モノマー(化合物13)の合成
5. Fmoc-Gly-Ala (thymine)
Synthesis of peptide nucleic acid monomer (compound 13)

【化29】 [Chemical 29]

【0084】0.30gの化合物12(0.51mmo
l)をメタノール(180ml)とジクロロメタン(5
0ml)の混合溶媒に溶かした後、10%パラジウム炭
素(0.30g)を加え水素ガス雰囲気下、TLC上で
化合物12のスポットが消失するまで攪拌した。パラジ
ウム炭素をろ別したのち反応溶媒を減圧留去し、得られ
た残渣を精製水で再結晶することにより0.188gの
Fmoc−Gly−Ala(チミン)ペプチド核酸モノ
マー(化合物13)を得た(収率74%)。得られた生
成物の物理化学的データを以下に示す:融点 :260-262℃νmax/cm-1 :1684 ( C=O)δH (300 MHz, DMSO-d6) :1.65 (3H, s, CH3), 3.33-3.
56 (3H, m, CH2 and CHH), 4.17-4.28 (5H, m, CH x 2a
nd CH2 and CHH), 7.25 (1H, s, CH-6 of T), 7.27 (2
H, dd, J 7.5 and 7.5, Ar-H), 7.36 (2H, dd, J 7.5 a
nd 7.5, Ar-H), 7.58 (1H, br, NH), 7.66 (2H, d, J
7.5, Ar-H), 7.83 (2H, d, J 7.5, Ar-H), 10.85 (1H,
br, NH)δC (75 MHz, DMSO-d6) :11.86 (CH3), 43.54 (CH2), 4
6.61 (CH), 49.29 (CH2), 51.87 (CH), 65.77 (CH2), 1
07.75 (C), 120.09 (CH), 125.27 (CH), 127.10(CH), 1
27.62 (CH), 140.69 (C), 141.93 (CH), 143.81 (C), 1
50.96 (C), 156.41 (C), 164.41 (C), 168.91 (C), 17
1.22 (C)FAB-MS :m/z 493 (M+1).
0.30 g of compound 12 (0.51 mmo
l) was added to methanol (180 ml) and dichloromethane (5
After dissolving it in a mixed solvent (0 ml), 10% palladium carbon (0.30 g) was added, and the mixture was stirred under a hydrogen gas atmosphere until the spot of compound 12 disappeared on TLC. After the palladium carbon was filtered off, the reaction solvent was distilled off under reduced pressure, and the resulting residue was recrystallized with purified water to obtain 0.188 g of Fmoc-Gly-Ala (thymine) peptide nucleic acid monomer (Compound 13). (Yield 74%). The physicochemical data of the obtained product are shown below: Melting point : 260-262 ° C ν max / cm -1 : 1684 (C = O) δ H (300 MHz, DMSO-d 6 ) : 1.65 (3H, s, CH 3 ), 3.33-3.
56 (3H, m, CH 2 and C H H), 4.17-4.28 (5H, m, CH x 2a
nd CH 2 and CH H ), 7.25 (1H, s, CH-6 of T), 7.27 (2
H, dd, J 7.5 and 7.5, Ar-H), 7.36 (2H, dd, J 7.5 a
nd 7.5, Ar-H), 7.58 (1H, br, NH), 7.66 (2H, d, J
7.5, Ar-H), 7.83 (2H, d, J 7.5, Ar-H), 10.85 (1H,
br, NH) δ C (75 MHz, DMSO-d 6 ) : 11.86 (CH 3 ), 43.54 (CH 2 ), 4
6.61 (CH), 49.29 (CH 2 ), 51.87 (CH), 65.77 (CH 2 ), 1
07.75 (C), 120.09 (CH), 125.27 (CH), 127.10 (CH), 1
27.62 (CH), 140.69 (C), 141.93 (CH), 143.81 (C), 1
50.96 (C), 156.41 (C), 164.41 (C), 168.91 (C), 17
1.22 (C) FAB-MS : m / z 493 (M + 1).

【0085】実施例5 固相合成によるペプチド核酸の
合成 13.75mg(2.2μmol)のFmoc−PAL
―PEG樹脂(アプライドバイオシステム社製)を30
0〜400μlのペプチド合成用DMFで3回洗浄した
(以下DMFは全てペプチド合成用)。同じDMF40
0μlに一晩つけて膨潤させた。翌日DMFを除きピ
ペリジンの20%DMF溶液400μlを加えゆっくり
と攪拌した。30分後溶液を除き、400μlのDM
Fで5回洗浄した。カイザー試験が陽性を示すまでと
を繰り返した。カイザー試験が陽性を示した所でア
ミノ基をFmocで保護し水酸基をBocで保護したリ
シンを10等量加え、10等量のHATU、10等量
のHOBt及び31等量のDIEAをn−メチルピロリ
ドン(NMP)とDMFの等量混合物300〜400μ
lに溶かした溶液を加えてゆっくり攪拌した。4〜5
時間後400μlのDMFで5回洗浄した。カイザー試
験で陰性を示すまで〜を繰り返した。ピペリジン
の20%DMF溶液400μlを加えてゆっくりと攪拌
した。30分後溶液を除き、400μlのDMFで5
回洗浄した。カイザー試験が陽性を示すまでとを繰
り返した。5等量のペプチド核酸モノマー、4.5等
量のHATU、5等量のDIEA及び7.5等量のルチ
ジンをNMPとDMFの等量混合物300〜400μl
に溶かしの溶液に加えてゆっくりと攪拌した。4〜
5時間後400μlのDMFで5回洗浄した。カイザー
試験で陰性を示すまでとを繰り返した。カイザー試
験が陰性を示した所でに戻りまでを12回繰り返し
た。
Example 5 Synthesis of peptide nucleic acid by solid phase synthesis
Synthesis 13.75 mg (2.2 μmol) Fmoc-PAL
-30% PEG resin (Applied Biosystems)
It was washed 3 times with 0 to 400 μl of DMF for peptide synthesis (hereinafter, all DMF is for peptide synthesis). Same DMF40
Swelled in 0 μl overnight. The next day, DMF was removed and 400 μl of a 20% piperidine DMF solution was added, and the mixture was slowly stirred. After 30 minutes, the solution was removed and 400 μl of DM
Wash 5 times with F. The procedure was repeated until the Kaiser test was positive. When the Kaiser test showed positive, 10 equivalents of lysine with amino group protected by Fmoc and hydroxyl group protected by Boc was added, and 10 equivalents of HATU, 10 equivalents of HOBt and 31 equivalents of DIEA were n-methylated. Equivalent mixture of pyrrolidone (NMP) and DMF 300-400μ
The solution dissolved in 1 was added and stirred slowly. 4-5
After the time, the plate was washed 5 times with 400 μl of DMF. ~ Was repeated until the Kaiser test was negative. 400 μl of 20% DMF solution of piperidine was added and stirred slowly. After 30 minutes, remove the solution and add 5 μl of 400 μl DMF.
Washed twice. The procedure was repeated until the Kaiser test was positive. Equivalent mixture of NMP and DMF 300-400 μl of 5 equivalents of peptide nucleic acid monomer, 4.5 equivalents of HATU, 5 equivalents of DIEA and 7.5 equivalents of lutidine.
It was added to the solution dissolved in and stirred slowly. 4-
After 5 hours, the plate was washed 5 times with 400 μl of DMF. The procedure was repeated until the Kaiser test was negative. When the Kaiser test showed a negative result, the procedure was repeated 12 times until returning to.

【0086】樹脂を塩化メチレンにてミリポアウルトラ
フリーMCに移し、トリフルオロ酢酸とm−クレゾール
の9:1の溶液200μlを加えて室温で90分放置
後、遠心分離を200rpmで5分間行った。濾液を氷
冷しながらエーテル800μl加えよくまぜた後、別の
ミリポアウルトラフリーMCに移して200rpmで5
分間遠心分離する事で上澄みを除去してペプチド核酸の
粗結晶を得た。粗結晶は、HPLCで目的のピーク部分
をとり、凍結乾燥させた。 HPLC精製条件: カラム:Wakopak Navi C18−5、4.
6mmφ×150mm、 フロー速度:1.5ml/分、35℃ 検出:260nm インジェクション:10μl 溶離液:A:精製水(0.1%トリフルオロ酢酸含
有)、B:アセトニトリル(0.1%トリフルオロ酢酸
含有)。最初A 90%、B 10%の組成を5分間流
した後、30分後にA 65%、B 35%となるよう
に勾配をつけた。
The resin was transferred to Millipore Ultra Free MC with methylene chloride, 200 μl of a 9: 1 solution of trifluoroacetic acid and m-cresol was added, the mixture was allowed to stand at room temperature for 90 minutes, and then centrifuged at 200 rpm for 5 minutes. After 800 μl of ether was added to the filtrate while cooling with ice and mixed well, the mixture was transferred to another Millipore Ultra Free MC and the speed was increased to 5 at 200 rpm.
The supernatant was removed by centrifuging for minutes to obtain crude crystals of peptide nucleic acid. The crude crystal was freeze-dried by taking the target peak portion by HPLC. HPLC purification conditions: Column: Wakopak Navi C18-5, 4.
6 mmφ × 150 mm, flow rate: 1.5 ml / min, 35 ° C. Detection: 260 nm Injection: 10 μl Eluent: A: Purified water (containing 0.1% trifluoroacetic acid), B: Acetonitrile (0.1% trifluoroacetic acid) Included). A composition of A 90% and B 10% was first flowed for 5 minutes, and then a gradient was applied to A 65% and B 35% after 30 minutes.

【0087】実施例6 融解温度の測定 (1)測定装置:日本分光(JASCO)製V−530
型 紫外可視分光光度計、日本分光(JASCO)製E
TC−505型 ペルチェ式恒温角形セルホルダ、分光
光度計用 二面透明セル 10×2×45mm(光路幅
2mm) PTFEキャップ付き
Example 6 Measurement of melting temperature (1) Measuring apparatus: V-530 manufactured by JASCO Corporation
Type UV-visible spectrophotometer, E manufactured by JASCO
TC-505 type Peltier constant temperature prismatic cell holder, double-sided transparent cell for spectrophotometer 10 x 2 x 45 mm (optical path width 2 mm) with PTFE cap

【0088】(2)PNA及びDNA水溶液の調製:P
NA及びDNA溶液の吸光度が0.25となるようにS
SC水溶液(0.15M塩化ナトリウム−0.015M
クエン酸ナトリウム)で濃度を調整した。
(2) Preparation of PNA and DNA aqueous solution: P
S so that the absorbance of NA and DNA solutions is 0.25
SC aqueous solution (0.15M sodium chloride-0.015M
The concentration was adjusted with sodium citrate).

【0089】(3)測定 測定セルに測定試料700μlを入れ、90℃で20
分間保持し、吸光度がほぼ一定であることを確認した
後、90℃から1℃まで0.5℃/分で温度を下げた。
1℃となったところで測定を終了しそのまま1℃を保
持した。吸光度の変化を測定し10分後温度を1℃か
ら90℃へ0.5℃/分で温度を上げて測定した。
(3) Measurement 700 μl of the measurement sample was put in the measurement cell, and the sample was kept at 90 ° C. for 20 minutes.
After holding for a minute and confirming that the absorbance was almost constant, the temperature was lowered from 90 ° C to 1 ° C at 0.5 ° C / min.
When the temperature reached 1 ° C, the measurement was terminated and the temperature was kept at 1 ° C. The change in absorbance was measured, and after 10 minutes, the temperature was increased from 1 ° C. to 90 ° C. at 0.5 ° C./min and the temperature was measured.

【0090】(4)解析:降温、昇温それぞれの融解曲
線から融解温度(Tm)を求めた。融解曲線からTmを
算出するのにはスペクトル解析ソフトとしてSpect
raManagerfor Windows 95/NT
(Version 1.52.00[Build4])
を用いた。
(4) Analysis: The melting temperature (Tm) was determined from the melting curves of the temperature decrease and the temperature increase respectively. To calculate Tm from melting curve, Spect as spectrum analysis software
raManagerfor Windows 95 / NT
(Version 1.52.00 [Build4])
Was used.

【0091】(5)塩基が全てチミンである従来のDN
Aを模したペプチド核酸をPNA1。同じく塩基が全て
チミンである本発明のGly−Ala型ペプチド核酸を
PNA2。従来のDNAを模したペプチド核酸8mer
とGly−Ala型ペプチド核酸4merの混合ペプチ
ド核酸をPNA3。従来のDNAを模したペプチド核酸
4merとGly−Ala型ペプチド核酸8merの混
合ペプチド核酸をPNA4とする。それぞれ塩基が全て
アデニンの12merのDNA及びRNAとペプチド核
酸PNA1〜4とのTmを測定した。結果を表1に示
す。
(5) Conventional DN whose bases are all thymine
The peptide nucleic acid imitating A is PNA1. Similarly, PNA2 is the Gly-Ala type peptide nucleic acid of the present invention whose bases are all thymine. Peptide nucleic acid 8mer simulating conventional DNA
And a mixed peptide nucleic acid of Gly-Ala type peptide nucleic acid 4mer as PNA3. A conventional mixed peptide nucleic acid consisting of a peptide nucleic acid 4mer simulating DNA and a Gly-Ala type peptide nucleic acid 8mer is designated as PNA4. The Tm of 12-mer DNA and RNA having all adenine bases and the peptide nucleic acids PNA1 to 4 were measured. The results are shown in Table 1.

【0092】[0092]

【表1】 以上の結果から、本発明のペプチド核酸は、従来のペプ
チド核酸に比べ、RNAに対する結合選択性が非常に高
いことがわかる。
[Table 1] From the above results, it can be seen that the peptide nucleic acid of the present invention has a very high binding selectivity for RNA as compared with conventional peptide nucleic acids.

【0093】[0093]

【発明の効果】本発明のペプチド核酸は、RNAに高度
の選択性をもって結合することから、少量でもRNAに
効率的に結合させることができ、さらに、生物学的及び
化学的に安定なことから、非常に有用なアンチセンスオ
リゴヌクレオチド擬似体として利用することができる。
INDUSTRIAL APPLICABILITY The peptide nucleic acid of the present invention binds to RNA with a high degree of selectivity, can bind efficiently to RNA even in a small amount, and is biologically and chemically stable. , Can be used as a very useful antisense oligonucleotide mimetic.

【図面の簡単な説明】[Brief description of drawings]

【図1】2’,5’−イソDNAと3’,5’−DNA
の構造を表した図である。
FIG. 1 2 ′, 5′-isoDNA and 3 ′, 5′-DNA
It is a figure showing the structure of.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61P 1/04 A61P 9/00 1/18 9/10 9/00 103 9/10 11/00 103 11/06 11/00 13/12 11/06 15/00 13/12 17/00 15/00 19/02 17/00 27/02 19/02 29/00 27/02 31/04 29/00 31/10 31/04 31/16 31/10 31/18 31/16 31/20 31/18 31/22 31/20 33/14 31/22 35/00 33/14 37/04 35/00 C07K 1/06 37/04 5/023 C07K 1/06 5/027 5/023 5/062 5/027 C12N 15/00 A 5/062 A61K 37/02 (72)発明者 大塚 雅巳 熊本県熊本市湖東1−4 湖東住宅3− 303 Fターム(参考) 4B024 AA01 CA05 CA10 HA17 4C084 AA01 AA02 AA07 AA13 BA09 BA10 BA14 BA15 BA16 BA17 BA18 BA19 BA20 BA23 BA35 CA59 MA01 NA01 NA14 ZA331 ZA361 ZA401 ZA591 ZA661 ZA811 ZA891 ZA961 ZB091 ZB111 ZB261 ZB331 ZB351 ZB371 ZC551 4H011 AA04 BA01 BB09 4H045 AA10 AA20 AA30 BA11 BA54 EA22 EA28 FA34 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) A61P 1/04 A61P 9/00 1/18 9/10 9/00 103 9/10 11/00 103 11 / 06 11/00 13/12 11/06 15/00 13/12 17/00 15/00 19/02 17/00 27/02 19/02 29/00 27/02 31/04 29/00 31/10 31 / 04 31/16 31/10 31/18 31/16 31/20 31/18 31/22 31/20 33/14 31/22 35/00 33/14 37/04 35/00 C07K 1/06 37 / 04 5/023 C07K 1/06 5/027 5/023 5/062 5/027 C12N 15/00 A 5/062 A61K 37/02 (72) Inventor Masami Otsuka 1-4 Koto, Kumamoto City, Kumamoto Prefecture 3 Koto Housing 3 -303 F term (reference) 4B024 AA01 CA05 CA10 HA17 4C084 AA01 AA02 AA07 AA13 BA09 BA10 BA14 BA15 BA16 BA17 BA18 BA19 BA20 BA23 BA35 CA59 MA01 NA01 NA14 ZA331 ZA361 ZA401 ZA961 ZB111ZB011B011B011B011ZB1 ZB1 ZB1 ZB091 ZB091 ZB091 ZB091 BB09 4H04 5 AA10 AA20 AA30 BA11 BA54 EA22 EA28 FA34

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 2’,5’−イソDNAの骨格構造と類
似した骨格構造を有し、目的のRNAと相補的配列を有
するペプチド核酸を、該RNAに結合させる方法。
1. A method of binding a peptide nucleic acid having a skeletal structure similar to that of 2 ′, 5′-isoDNA and having a sequence complementary to the RNA of interest to the RNA.
【請求項2】 ペプチド核酸のペプチド部分の構造が、
グリシンとアラニン類: 【化1】 [式中、n=0、1又は2である]とが交互に結合して
なるものである、請求項1に記載の方法。
2. The structure of a peptide portion of a peptide nucleic acid is
Glycine and alanines: The method according to claim 1, wherein [where n = 0, 1 or 2] are alternately combined.
【請求項3】 ペプチド核酸が、式I: 【化2】 [式中、 R1は、水素原子又はアミノ基の保護基であり、 R2は、水酸基又はカルボキシル基の保護基であり、 R3は、直接結合、又はメチレン基若しくはエチレン基
であり、 Bは、塩基又はその誘導体であり、それぞれ同一でも異
なっていてもよく、 mは、1〜60の整数である]で表される構造を有す
る、請求項1に記載の方法。
3. The peptide nucleic acid has the formula I: [In the formula, R 1 is a hydrogen atom or an amino group protecting group, R 2 is a hydroxyl group or a carboxyl group protecting group, R 3 is a direct bond, or a methylene group or an ethylene group, and B is Is a base or a derivative thereof, which may be the same or different, and m is an integer of 1 to 60].
【請求項4】 ペプチド核酸が、相補的DNAに対する
親和性よりも相補的RNAに対する親和性が高いもので
ある、請求項1〜3のいずれか1項に記載の方法。
4. The method according to claim 1, wherein the peptide nucleic acid has a higher affinity for complementary RNA than that for complementary DNA.
【請求項5】 アスパラギン酸又はその誘導体に、塩基
又はその誘導体を導入し、式II: 【化3】 [式中、R1は、水素原子又はアミノ基の保護基であ
る]で表される化合物又はその誘導体と反応させること
により、式III: 【化4】 [式中、 R1は、水素原子又はアミノ基の保護基であり、 R2は、水酸基又はカルボキシル基の保護基であり、 Bは、塩基又はその誘導体である]で表されるペプチド
核酸モノマーを製造する方法。
5. A base or a derivative thereof is introduced into aspartic acid or a derivative thereof to obtain a compound represented by the formula II: [Wherein R 1 is a hydrogen atom or an amino group-protecting group] or a derivative thereof to give a compound of formula III: [Wherein R 1 is a hydrogen atom or an amino group protecting group, R 2 is a hydroxyl group or a carboxyl group protecting group, and B is a base or a derivative thereof] A method of manufacturing.
【請求項6】 セリン又はその誘導体に、塩基又はその
誘導体を導入し、式II: 【化5】 [式中、R1は、水素原子又はアミノ基の保護基であ
る]で表される化合物と反応させることにより、式IV: 【化6】 [式中、 R1は、水素原子又はアミノ基の保護基であり、 R2は、水酸基又はカルボキシル基の保護基であり、 Bは、塩基又はその誘導体である]で表されるペプチド
核酸モノマーを製造する方法。
6. A base or a derivative thereof is introduced into serine or a derivative thereof to obtain a compound of formula II: [Wherein R 1 is a hydrogen atom or an amino-group-protecting group] to give a compound of the formula IV: [Wherein R 1 is a hydrogen atom or an amino group protecting group, R 2 is a hydroxyl group or a carboxyl group protecting group, and B is a base or a derivative thereof] A method of manufacturing.
【請求項7】 塩基又はその誘導体を導入する工程の前
に、トシル化及び/又はハロゲン化を行うことを特徴と
する請求項6に記載の方法。
7. The method according to claim 6, wherein tosylation and / or halogenation is carried out before the step of introducing the base or its derivative.
【請求項8】 請求項1〜4のいずれか1項に記載のペ
プチド核酸を含む、生物の遺伝子の発現を調節するため
の組成物。
8. A composition for regulating the expression of a gene in an organism, which comprises the peptide nucleic acid according to any one of claims 1 to 4.
【請求項9】 請求項1〜4のいずれか1項に記載のペ
プチド核酸を含む、生物における望ましくない蛋白質産
生に伴う状態を処置するための組成物。
9. A composition for treating a condition associated with undesired protein production in an organism, comprising the peptide nucleic acid according to any one of claims 1 to 4.
【請求項10】 請求項1〜4のいずれか1項に記載の
ペプチド核酸を含む、生物の細胞中におけるRNAの分
解を誘発するための組成物。
10. A composition for inducing degradation of RNA in cells of an organism, which comprises the peptide nucleic acid according to any one of claims 1 to 4.
【請求項11】 請求項1〜4のいずれか1項に記載の
ペプチド核酸を含む、細胞またはウイルスを死滅させる
ための組成物。
11. A composition for killing a cell or virus, which comprises the peptide nucleic acid according to any one of claims 1 to 4.
JP2002020646A 2002-01-29 2002-01-29 Method for using peptide nucleic acid selectively binding to rna as antisense oligonucleotide, and method for producing the peptide nucleic acid Pending JP2003219874A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002020646A JP2003219874A (en) 2002-01-29 2002-01-29 Method for using peptide nucleic acid selectively binding to rna as antisense oligonucleotide, and method for producing the peptide nucleic acid
US10/352,877 US7268810B2 (en) 2002-01-29 2003-01-29 Digital camera for changing a recording size to a high-sensitivity compatible recording size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002020646A JP2003219874A (en) 2002-01-29 2002-01-29 Method for using peptide nucleic acid selectively binding to rna as antisense oligonucleotide, and method for producing the peptide nucleic acid

Publications (1)

Publication Number Publication Date
JP2003219874A true JP2003219874A (en) 2003-08-05

Family

ID=27744093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002020646A Pending JP2003219874A (en) 2002-01-29 2002-01-29 Method for using peptide nucleic acid selectively binding to rna as antisense oligonucleotide, and method for producing the peptide nucleic acid

Country Status (1)

Country Link
JP (1) JP2003219874A (en)

Similar Documents

Publication Publication Date Title
JP3326181B2 (en) Linked peptide nucleic acid
JP2758988B2 (en) Peptide nucleic acid
US5539082A (en) Peptide nucleic acids
US6441130B1 (en) Linked peptide nucleic acids
US20030207804A1 (en) Modified peptide nucleic acids
DE69734783T2 (en) PEPTID NUCLEIC ACIDS WITH INCREASED BINDING SAFFINITY, SEQUENCE SPECIFICITY AND SOLUBILITY
JPH07118243A (en) Nucleic-acid-combinable oligomer with n-branch for treatment and diagnosis
US5849893A (en) Nucleic acid-binding oligomers possessing C-branching for therapy and diagnostics
JP2000511205A (en) Chiral peptide nucleic acid and method for producing the same
Jain Cγ-Aminopropylene peptide nucleic acid (amp-PNA): Chiral cationic PNAs with superior PNA: DNA/RNA duplex stability and cellular uptake
KR102515760B1 (en) Peptide nucleic acid monomers and oligomers
JP2001500387A (en) Monomers and oligomers of peptide nucleic acids
US6713602B1 (en) Synthetic procedures for peptide nucleic acids
JP5363327B2 (en) A method for selective localization of active agents on the surface and inside of mitochondria and the corresponding active agents
JP2003219874A (en) Method for using peptide nucleic acid selectively binding to rna as antisense oligonucleotide, and method for producing the peptide nucleic acid
EP4083054A1 (en) Method for producing pna oligomer in solution process
US20030105286A1 (en) Linked peptide nucleic acids
US6872809B2 (en) Nucleoside derivatives
US7479536B1 (en) Chiral, charged peptide nucleic acid oligomers from cyclic monomers
Abdel-Aziz et al. Synthesis and Biological Investigation of New Compounds Aiming at Immunomodulators: Development of Novel Peptide Nucleic Acids and New Topoisomerases Inhibitors
JPH01226899A (en) Novel peptide