JP2003200307A - Titanium carbide group ceramics tool and manufacturing method therefor - Google Patents
Titanium carbide group ceramics tool and manufacturing method thereforInfo
- Publication number
- JP2003200307A JP2003200307A JP2001397439A JP2001397439A JP2003200307A JP 2003200307 A JP2003200307 A JP 2003200307A JP 2001397439 A JP2001397439 A JP 2001397439A JP 2001397439 A JP2001397439 A JP 2001397439A JP 2003200307 A JP2003200307 A JP 2003200307A
- Authority
- JP
- Japan
- Prior art keywords
- titanium carbide
- titanium
- oxide
- based ceramics
- dispersed phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭化チタン焼結体
の結晶粒子内にアルミナ、希土類酸化物、ホウ化チタン
などの微細粒子を分散させた炭化チタン基セラミックス
工具に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium carbide based ceramics tool in which fine particles of alumina, rare earth oxide, titanium boride and the like are dispersed in crystal grains of a titanium carbide sintered body.
【0002】[0002]
【従来の技術】アルミナ系,アルミナ−炭化チタン系,
窒化ケイ素系に代表されるセラミックス工具は、高速切
削で威力を発揮するものの、強度・靱性が低いために欠
損し易くて信頼性に欠ける。硬さと靱性を同時に改善す
る一手法として、マトリックス粒子内に他成分の超微粒
子を分散させて強化したナノコンポジット材がある。分
散強化によって硬さが向上すると共に、マトリックス粒
子内への応力場付加によって破壊クラックの進展が抑制
されるために靱性が改善されるからである。2. Description of the Related Art Alumina type, alumina-titanium carbide type,
Ceramic tools typified by silicon nitride are effective in high-speed cutting, but are low in strength and toughness, so they are easily damaged and lack reliability. As one method for simultaneously improving hardness and toughness, there is a nanocomposite material in which ultrafine particles of another component are dispersed and strengthened in matrix particles. This is because the dispersion strengthening improves the hardness, and the addition of a stress field in the matrix particles suppresses the development of fracture cracks, thereby improving the toughness.
【0003】ナノコンポジット材に関する提案は多数あ
るが、切削工具に関わる先行技術の代表的なものに、ア
ルミナ系として特開平02−229756号公報、特開
平02−229757号公報が、ホウ化チタン系として
特開平07―89765号公報、特開平07―1091
74号公報などがある。また、分散粒子の形態について
は特開平07―82047号公報などがある。Although many proposals have been made regarding nanocomposite materials, as typical examples of prior art relating to cutting tools, JP-A-02-229756 and JP-A-02-229757 disclose titanium-based boride-based alumina-based materials. JP-A-07-89765 and JP-A-07-1091
No. 74 publication and the like. The form of dispersed particles is described in JP-A-07-82047.
【0004】[0004]
【発明が解決しようとする課題】アルミナ系に関する代
表例の内、特開平2−229757号公報には、0.5
〜100μmの結晶粒子を有するAl2O3マトリックス
の結晶粒内に粒子径20μm以下のTiN微粒子を分散
させたセラミックス複合材料が、また特開平2−229
757号公報には、0.5〜100μmの結晶粒子を有
するAl2O3マトリックスの結晶粒内に粒子径20μm
以下のTiC微粒子を分散させたセラミックス複合材料
について記載されている。Among typical examples of alumina-based materials, Japanese Unexamined Patent Publication No. 2-229757 discloses 0.5.
A ceramic composite material in which TiN fine particles having a particle diameter of 20 μm or less are dispersed in the crystal grains of an Al 2 O 3 matrix having crystal grains of ˜100 μm is also disclosed in JP-A-2-229.
No. 757, a grain size of 20 μm is contained in a grain of an Al 2 O 3 matrix having crystal grains of 0.5 to 100 μm.
The following describes a ceramic composite material in which TiC fine particles are dispersed.
【0005】これらの公報に記載されたセラミックス複
合材料は、TiNあるいはTiCがAl2O3マトリック
スの粒界相として存在している従来の酸化アルミニウム
基焼結体に比べて強度が改善されてはいるが、鋼の断続
切削,鋳物,耐熱合金などの高速切削に用いた場合、強
度,靱性が不十分なために欠損,チッピングや境界摩耗
を起こし易いと言う問題がある。特にダクタイル鋳鉄の
高速旋削では、ダクタイル鋳鉄の接種剤成分とAl2O3
マトリックスとの反応による逃げ面摩耗が顕著となる問
題がある。In the ceramic composite materials described in these publications, the strength is not improved as compared with the conventional aluminum oxide based sintered body in which TiN or TiC is present as the grain boundary phase of the Al 2 O 3 matrix. However, when used for intermittent cutting of steel, high speed cutting of castings, heat resistant alloys, etc., there is a problem that chipping, chipping and boundary wear easily occur due to insufficient strength and toughness. Especially in high-speed turning of ductile cast iron, inoculant components of ductile cast iron and Al 2 O 3
There is a problem that the flank wear due to the reaction with the matrix becomes remarkable.
【0006】ホウ化チタン系に関する代表例の内、特開
平07―089765号公報には、0.3〜5μmの結
晶粒子を有する第4a族のホウ化物の結晶粒内又は粒界
に、粒子径500nm以下のSiC微粒子を3〜30体
積%分散させた切削工具用セラミックス材料が、また同
様に特開平07―109174号公報には、粒子径50
0nm以下の第6a族の金属微粒子を3〜20体積%分
散させた硼化物系セラミックス複合材料が記載されてい
る。Among the typical examples of titanium boride-based materials, Japanese Unexamined Patent Publication (Kokai) No. 07-089765 discloses a boride of Group 4a having a crystal grain of 0.3 to 5 μm. A ceramic material for a cutting tool, in which 3 to 30% by volume of SiC fine particles of 500 nm or less are dispersed, and similarly, Japanese Patent Laid-Open No. 07-109174 discloses a particle size of 50.
A boride-based ceramic composite material in which 3 to 20% by volume of Group 6a metal fine particles having a size of 0 nm or less are dispersed is described.
【0007】これら公報記載のホウ化物系セラミックス
は、アルミニウムに対する耐溶着性や高温特性に優れて
いるためにアルミニウム合金切削では威力を発揮するも
のの、鉄系材料とは反応し易いために鋼,鋳物,耐熱合
金などの高速切削では摩耗が著しいと言う問題がある。The boride-based ceramics described in these publications are effective in cutting aluminum alloys because they are excellent in welding resistance to aluminum and high-temperature characteristics, but they easily react with iron-based materials, so steels and castings. However, there is a problem that wear is remarkable in high-speed cutting of heat-resistant alloys.
【0008】また、分散粒子の形態について特開平07
―82047号公報には、マトリックスの結晶粒子の粒
子内にマトリックスとは別種のナノメートルサイズの球
状粒子が、結晶粒界にはマトリックスとは別種の板状粒
子(径が5〜30μm、厚さが6μm以下)が全体の
0.5〜20体積%分散したセラミックス複合体が記載
されている。マトリックス,球状粒子,板状粒子は、A
l3O3,ZrO2,Si3N4,SiC,AlNの組み合
わせである。The morphology of dispersed particles is disclosed in Japanese Patent Application Laid-Open No. 07-107
-82047 discloses that spherical particles of a nanometer size different from the matrix are contained in the particles of the crystal particles of the matrix, and plate-like particles (having a diameter of 5 to 30 μm and a thickness of 5 to 30 μm, different from the matrix, at the crystal grain boundaries. Is 6 μm or less), and a ceramic composite in which 0.5 to 20% by volume of the whole is dispersed is described. Matrix, spherical particles, plate-shaped particles are A
l 3 O 3, ZrO 2, Si 3 N 4, SiC, a combination of AlN.
【0009】同公報記載のセラミックス複合体は、ナノ
粒子のマトリックス粒子内への分散と粒界への板状粒子
の分散によるシナジー効果によって靱性や高温特性を高
めたものであるが、切削工具に用いた場合は、いずれの
マトリックスでも耐摩耗性が不十分であると言う問題が
ある。The ceramic composite described in the publication has improved toughness and high temperature characteristics due to the synergistic effect of dispersion of nanoparticles in matrix particles and dispersion of plate-like particles at grain boundaries. When used, there is a problem that the abrasion resistance is insufficient in any matrix.
【0010】本発明は、上述のような問題点を解決した
もので、具体的には、アルミナよりも硬度,靱性とも優
れた炭化チタンを主成分とした焼結体において、炭化チ
タンの結晶粒子内および結晶粒界にアルミナ、希土類酸
化物、ホウ化チタンなどの分散相粒子を分散させること
により各種被削材の高速切削で長寿命を発揮する切削工
具用セラミックスの提供を目的とする。The present invention has solved the above-mentioned problems. Specifically, in a sintered body containing titanium carbide as a main component, which is superior in hardness and toughness to alumina, titanium carbide crystal particles are present. Disclosed are dispersed phase particles such as alumina, rare earth oxides, titanium boride and the like in and inside grain boundaries to provide a ceramic for a cutting tool that exhibits a long life in high speed cutting of various work materials.
【0011】[0011]
【課題を解決するための手段】本発明者は、炭化チタン
基セラミックスを切削工具として用いる場合における工
具の寿命および信頼性の向上について検討していたとこ
ろ、炭化チタンの結晶粒子内に微細な異種物質を分散さ
せると硬度,強度,靱性が向上すること、異種物質の種
類,含有量および粒径を調整することにより、切削工具
として用いた場合、耐クレータ摩耗性,耐フランク摩耗
性,靭性を高めることができること、特にダクタイル鋳
鉄の高速切削において性能向上効果が著しいと言う知見
を得て、本発明を完成するに至ったものである。The inventors of the present invention have studied the improvement of tool life and reliability when using titanium carbide based ceramics as a cutting tool. By dispersing the substance, the hardness, strength and toughness are improved, and by adjusting the type, content and particle size of different substances, when used as a cutting tool, crater wear resistance, flank wear resistance and toughness can be improved. The present invention has been completed based on the finding that it can be increased, and that the performance improving effect is remarkable particularly in high-speed cutting of ductile cast iron.
【0012】すなわち、本発明の炭化チタン基セラミッ
クス工具は、炭化チタンを主成分とした主要相とマグネ
シウム,アルミニウム,チタン,ジルコニウム,ハフニ
ウム,イットリウム,希土類金属元素の酸化物,ホウ化
物,チタンのホウ化物,鉄族金属,およびこれらの固溶
体の中から選ばれた少なくとも一種の分散相とで構成さ
れ、該分散相が、該主要相の結晶粒子内と結晶粒界に1
〜30体積%含有されていることを特徴とするものであ
る。That is, the titanium carbide based ceramics tool of the present invention comprises titanium carbide as a main phase and magnesium, aluminum, titanium, zirconium, hafnium, yttrium, oxides of rare earth metal elements, borides and titanium boron. Compound, an iron group metal, and at least one disperse phase selected from these solid solutions, and the disperse phase is present in the crystal grains of the main phase and at the crystal grain boundaries.
It is characterized by being contained in an amount of up to 30% by volume.
【0013】本発明のセラミックス工具における炭化チ
タンを主成分とした主要相は(Ti 1-AMA)(C1-x-y
NxOy)z[ただし、Mはチタンを除く周期律表の4
a,5a,6a族元素を表し、0≦A≦0.3,0≦X
≦0.3,0≦Y≦0.1,0.8≦Z≦1.1]で表
される。炭化チタンに対して、チタンの一部をMで置換
すると硬さや強度が向上して耐すきとり摩耗性や耐チッ
ピング性が改善されるので好ましく、炭素の一部を窒素
あるいは酸素で置換すると化学的安定性が増して耐クレ
ーター性が改善されるので好ましい。Carbonization in the ceramic tool of the present invention
The main phase whose main component is tongue is (Ti 1-AMA) (C1-xy
NxOy)z[However, M is 4 in the periodic table excluding titanium
a, 5a, 6a group element, 0 ≦ A ≦ 0.3, 0 ≦ X
≦ 0.3, 0 ≦ Y ≦ 0.1, 0.8 ≦ Z ≦ 1.1]
To be done. For titanium carbide, part of titanium is replaced with M
Then the hardness and strength are improved and the abrasion resistance and chip resistance are improved.
Pinging property is improved, which is preferable.
Alternatively, substituting with oxygen increases chemical stability and
It is preferable because it improves the starting property.
【0014】また、主要相の平均結晶粒子径は、1μm
未満では焼結時の粒成長によって分散相の結晶粒子が主
要相の結晶粒子内へ取り込まれ難くなるために分散効果
が少なく、10μmを超えて大きくなると焼結体の強度
が著しく低下する。The average crystal grain size of the main phase is 1 μm.
When it is less than 10, the crystal grains of the dispersed phase are less likely to be taken into the crystal grains of the main phase due to grain growth during sintering, so that the dispersion effect is small, and when it exceeds 10 μm, the strength of the sintered body remarkably decreases.
【0015】本発明のセラミックス工具における分散相
は、具体的には、MgO,Al2O3,ZrO2,Hf
O2,Y2O3,La2O3,CeO2,Yb2O3,Al
B12,TiB2,ZrB2,HfB2,LaB5などを挙げ
ることができ、これらの中でもMgO,Al2O3,Y2
O3,CeO2,TiB2,ZrB2,HfB2の中の少な
くとも1種からなる場合は、入手が容易でかつ高温安定
性と切削時の耐摩耗性に優れるので好ましい。The dispersed phase in the ceramic tool of the present invention is specifically MgO, Al 2 O 3 , ZrO 2 , Hf.
O 2, Y 2 O 3, La 2 O 3, CeO 2, Yb 2 O 3, Al
B 12 , TiB 2 , ZrB 2 , HfB 2 , LaB 5 and the like can be mentioned, and among these, MgO, Al 2 O 3 , Y 2
It is preferable to use at least one of O 3 , CeO 2 , TiB 2 , ZrB 2 , and HfB 2 because it is easily available and has high temperature stability and excellent wear resistance during cutting.
【0016】また、分散相粒子の平均結晶粒子径は、
0.01μm未満では焼結時に粒成長するために製造困
難であり、5μmを超えて大きくなると主要相の結晶粒
子内に取り込まれ難くなる。The average crystal grain size of the dispersed phase particles is
If it is less than 0.01 μm, it is difficult to manufacture because it grows during sintering, and if it exceeds 5 μm, it is difficult to be incorporated into the crystal grains of the main phase.
【0017】本発明のセラミックス工具における分散相
の添加量は、1体積%未満では主要相の結晶粒子内にす
べての粒子が分散しても、硬度,強度,靱性や耐クレー
タ摩耗性,耐フランク摩耗性,靭性などを向上させる効
果が少なく、30体積%を超えて多くなると相対的に主
要相の量が減少して鋼,ダクタイル鋳鉄切削での摩耗が
逆に増加する。When the added amount of the dispersed phase in the ceramics tool of the present invention is less than 1% by volume, hardness, strength, toughness, crater wear resistance, and flank resistance are obtained even if all the particles are dispersed in the crystal grains of the main phase. The effect of improving the wear resistance and toughness is small, and when it exceeds 30% by volume, the amount of the main phase relatively decreases and the wear in cutting steel and ductile cast iron increases conversely.
【0018】また、分散相の分散形態は、主要相の結晶
粒子内と結晶粒界の両方に分散して分布するもので、分
散相の微粒子が主要相の結晶粒子内に、分散相の比較的
粗大な粒子が主要相の結晶粒界に存在するものである。
分散相の10〜95体積%が主要相の結晶粒子内に均一
分散されていると、諸特性の改善効果が発揮できる。こ
こで、分散相の添加量がセラミック工具全体に対して5
〜10体積%であり、分散相の30〜95体積%が主要
相の結晶粒子内に分散していると最も好ましい。Further, the dispersed form of the dispersed phase is such that it is dispersed in both the crystal grains of the main phase and the crystal grain boundaries, and the fine particles of the dispersed phase are dispersed in the crystal grains of the main phase. Coarse grains exist in the grain boundaries of the main phase.
When 10 to 95% by volume of the dispersed phase is uniformly dispersed in the crystal grains of the main phase, the effect of improving various properties can be exhibited. Here, the added amount of the dispersed phase is 5 with respect to the entire ceramic tool.
10 to 10% by volume, and most preferably 30 to 95% by volume of the dispersed phase is dispersed in the crystal grains of the main phase.
【0019】本発明のセラミックス工具において、5体
積%以下の鉄族金属が主要相の結晶粒子内と結晶粒界に
分散相として存在すると、焼結体の靱性をさらに高めて
耐欠損性や耐チッピング性が向上するので好ましい。し
かし、5体積%を超えて鉄族金属が存在すると、高速切
削時に刃先の塑性変形や異常摩耗を起こす。なお、焼結
温度が低い場合には鉄族金属に主要相の固溶は少なく、
焼結温度が高い場合には鉄族金属に主要相の固溶は多く
なるが効果は同様である。In the ceramic tool of the present invention, if 5% by volume or less of the iron group metal exists as a dispersed phase in the crystal grains of the main phase and in the crystal grain boundaries, the toughness of the sintered body is further enhanced, and the fracture resistance and the resistance to fracture are improved. It is preferable because the chipping property is improved. However, when the iron group metal is present in an amount exceeding 5% by volume, plastic deformation and abnormal wear of the cutting edge occur during high speed cutting. In addition, when the sintering temperature is low, there is little solid solution of the main phase in the iron group metal,
When the sintering temperature is high, the solid solution of the main phase in the iron group metal increases, but the effect is the same.
【0020】本発明のセラミックス工具は、表面付近が
傾斜材料となっていると、切削条件によっては耐摩耗性
あるいは耐チッピング性が向上するので好ましい場合が
ある。具体的には、主要相の平均結晶粒子径が焼結体表
面から0.01〜1.0mmまでの内部に向かって漸次
増大あるいは減少している傾斜組織や、鉄族金属が焼結
体表面から0.01〜1.0mmまでの内部に向かって
漸次増加している傾斜組成が挙げられる。In the ceramic tool of the present invention, it is sometimes preferable that the material near the surface is a graded material because the wear resistance or the chipping resistance is improved depending on the cutting conditions. Specifically, the graded structure in which the average crystal grain size of the main phase gradually increases or decreases from the surface of the sintered body toward the inside of 0.01 to 1.0 mm, and the iron group metal is the surface of the sintered body From 0.01 to 1.0 mm, a graded composition gradually increasing toward the inside can be mentioned.
【0021】本発明のセラミックス工具の製造方法は、
通常のセラミックス焼結体と同様な方法である。すなわ
ち、各種の原料粉末を混合・粉砕し、加圧成形して得た
圧粉体を非酸化性雰囲気中で1400〜2000℃の温
度で焼結するものである。焼結性および分散性,分散効
果の点から使用する主要相の粉末の平均粒子径は2μm
以下、添加する分散相の粉末の平均粒子径は0.5μm
以下は好ましい。また、場合によって添加する4a,5
a,6a族元素の炭化物,窒化物,酸化物粉末あるいは
鉄族元素の金属,酸化物粉末も1μm以下が好ましい。
さらに、焼結雰囲気として、例えば、アルゴンを使用す
ると焼結性も良くて均一な焼結体が、窒素あるいは一酸
化炭素を使用すると表面が窒化あるいは浸炭されて傾斜
組織・組成の焼結体が得られる。The method of manufacturing a ceramics tool of the present invention comprises:
The method is the same as that for a normal ceramics sintered body. That is, various raw material powders are mixed and pulverized, and a green compact obtained by pressure molding is sintered at a temperature of 1400 to 2000 ° C. in a non-oxidizing atmosphere. The average particle diameter of the powder of the main phase used is 2 μm from the viewpoint of sinterability, dispersibility, and dispersion effect.
The average particle size of the dispersed phase powder to be added is 0.5 μm.
The following are preferred: Also, 4a, 5 added as the case may be
It is also preferable that the carbide, nitride and oxide powders of the a and 6a group elements or the metal and oxide powders of the iron group element are 1 μm or less.
Further, as the sintering atmosphere, for example, if argon is used, a sinterability is good and a uniform sintered body is used. If nitrogen or carbon monoxide is used, the surface is nitrided or carburized to obtain a sintered body having a gradient structure / composition. can get.
【0022】本発明のセラミックス工具の製造方法は、
一般的には、炭化チタン粉末に超微粒の分散粒子を均一
混合して焼結するものであるが、MgO,Al2O3,Y
2O3などの酸化物系の化合物粒子を分散させる場合に
は、TiO2とこれら酸化物からなる複合酸化物粉末を
用いると、炭化チタンの結晶粒子内に均一・微細な化合
物粒子が多量に取り込まれるので好ましい。具体的に
は、MgTiO3,Al2TiO5,Y2TiO5,CeT
i2O6,Nd2TiO5,NiTiO3などの複合酸化物
粉末と炭素粉末(TiO2の還元・炭化によりTiC変
換)とを用いるもので、加熱途中で超微粒酸化物の分散
相と炭化チタンが同時に生成するため、粒子成長するこ
となく炭化チタン結晶中に容易に取り込まれる。The method of manufacturing a ceramic tool according to the present invention comprises:
Generally, titanium carbide powder is mixed with ultrafine dispersed particles and sintered, but MgO, Al 2 O 3 , Y
When oxide-based compound particles such as 2 O 3 are dispersed, use of a composite oxide powder composed of TiO 2 and these oxides causes a large amount of uniform and fine compound particles in the titanium carbide crystal particles. It is preferable because it is incorporated. Specifically, MgTiO 3 , Al 2 TiO 5 , Y 2 TiO 5 , CeT
A composite oxide powder such as i 2 O 6 , Nd 2 TiO 5 , and NiTiO 3 and a carbon powder (TiC conversion by reduction / carbonization of TiO 2 ) are used. Since titanium is produced at the same time, it is easily incorporated into the titanium carbide crystal without grain growth.
【0023】[0023]
【実施例1】まず、平均粒径が0.05μmのAl
2O3,0.02μmのMgO,0.15μmのY2O3,
0.2μmのCeO2,0.12μmのNiO,0.0
2μmTiO2の各粉末を表1に示した組成に配合し、
エチルアルコールの溶媒、ウレタン内張りのポット、ア
ルミナ製の粉砕用ボールを用いて24時間の湿式混合を
行って乾燥した後、混合粉末をアルミナ製るつぼに入れ
て大気炉中で1000℃×30分の加熱処理を行った。
さらに、上記方法のボールで72時間の粉砕を行った。
得られた複合酸化物粉末のХ線回折による同定と走査型
電子顕微鏡による平均粒子径の測定結果を表1に併記し
た。Example 1 First, Al having an average particle size of 0.05 μm
2 O 3 , 0.02 μm MgO, 0.15 μm Y 2 O 3 ,
0.2 μm CeO 2 , 0.12 μm NiO, 0.0
Each powder of 2 μm TiO 2 was added to the composition shown in Table 1,
After wet mixing for 24 hours using an ethyl alcohol solvent, a urethane-lined pot, and an alumina crushing ball and drying, the mixed powder was put in an alumina crucible and heated at 1000 ° C. for 30 minutes in an atmospheric furnace. Heat treatment was performed.
Furthermore, crushing was performed for 72 hours with the balls of the above method.
Table 1 shows the results of identification of the obtained composite oxide powder by X-ray diffraction and the measurement results of the average particle diameter by a scanning electron microscope.
【0024】[0024]
【表1】 [Table 1]
【0025】次に、得られたAT,MT,YT,CT,
NTの各複合酸化物と、前述のAl 2O3,NiOと、平
均粒径が0.5μmのTiC,0.2μmのZrB2,
0.02μmカーボンブラック(以降Cと記す),1.
0μmのMo2C,0.5μmのTiN,0.5μmの
WC,1.0μmのNbC,1.1μmのVCの各粉末
を用いて、表2に示した組成に配合し、エチルアルコー
ルの溶媒、ウレタン内張りのポット、アルミナ製の粉砕
用ボールを用いて48時間の湿式混合を行った後、乾燥
しながら0.2重量%のパラフィンワックスを添加して
混合粉末を得た。これらの粉末を金型に充填し、196
MPaの圧力でもって約5.5×17×43mmの圧粉
成形体を作製し、窒化ホウ素製のセッター上に設置して
約50Paの真空中で1400℃まで昇温した後、表2
に併記した雰囲気中の所定温度に1時間、加熱保持する
ことによって本発明品1〜10及び比較品1〜7のセラ
ミックス焼結体を得た。尚、すべてのセラミックス焼結
体には、150MPaのアルゴン中で1650℃、1時
間のHIP処理を焼結後に施した。Next, the obtained AT, MT, YT, CT,
Each composite oxide of NT and the above Al 2O3, NiO and flat
TiC with an average particle size of 0.5 μm, ZrB of 0.2 μm2,
0.02 μm carbon black (hereinafter referred to as C), 1.
0 μm Mo2C, 0.5 μm TiN, 0.5 μm
Powder of WC, 1.0 μm NbC, 1.1 μm VC
Was added to the composition shown in Table 2 to obtain ethyl alcohol.
Solvent, urethane lined pot, alumina crush
Wet the mixture for 48 hours with a ball and dry it.
While adding 0.2 wt% paraffin wax
A mixed powder was obtained. The mold is filled with these powders, and 196
Powder compact of about 5.5 x 17 x 43 mm with a pressure of MPa
Create a compact and place it on a boron nitride setter
After heating up to 1400 ° C. in a vacuum of about 50 Pa, Table 2
Heated and maintained for 1 hour at the specified temperature in the atmosphere described in
As a result, the products of the present invention products 1 to 10 and comparative products 1 to 7
A mixed sintered body was obtained. In addition, all ceramics sintering
For the body, 1650 ° C in argon at 150 MPa for 1 hour
A HIP treatment in between was applied after sintering.
【0026】[0026]
【表2】 [Table 2]
【0027】こうして得たセラミックス焼結体をダイヤ
モンドカッターで棒状に切断し、#230のダイヤモン
ド砥石で湿式研削加工して3.0×4.0×35.0m
mのJIS試験片とした後、曲げ強度を測定した。その
結果を表3に示した。また、同試料の1面を0.3μm
のダイヤモンドペーストでラップ研磨した後、ビッカー
ス圧子を用いた荷重:9.8Nでの硬さおよび破壊靱性
値K1C(IM法)を測定し、その結果を表3に併記し
た。The ceramics sintered body thus obtained was cut into a rod shape with a diamond cutter, and wet-ground with a # 230 diamond grindstone to obtain 3.0 × 4.0 × 35.0 m.
After making the JIS test piece of m, the bending strength was measured. The results are shown in Table 3. In addition, one surface of the sample is 0.3 μm
After lapping with the diamond paste of No. 1, the hardness and fracture toughness value K1C (IM method) at a load of 9.8 N using a Vickers indenter were measured, and the results are also shown in Table 3.
【0028】[0028]
【表3】 [Table 3]
【0029】さらに、各試料のラップ面について電子顕
微鏡にて組織写真を撮り、画像処理装置を用いて、主要
相(TiC相と表記)の平均粒径を求め、その結果を表
3に併記した。また、主要相の結晶粒子内と結晶粒界と
に存在する分散相粒子の成分,平均粒子径,体積割合,
主要相の結晶粒子内に存在する分散相の比率を求めた。
これらの結果を表4に示す。Further, a photograph of the structure of the lapped surface of each sample was taken with an electron microscope, the average grain size of the main phase (denoted as TiC phase) was determined using an image processing apparatus, and the results are also shown in Table 3. . Further, the components of the dispersed phase particles existing in the crystal grains of the main phase and in the crystal grain boundaries, the average particle diameter, the volume ratio,
The ratio of the dispersed phase existing within the crystal grains of the main phase was determined.
The results are shown in Table 4.
【0030】[0030]
【表4】 ※表4中の粒子内の比率=A/(A+B)×100(%)[Table 4] * Proportion in particles in Table 4 = A / (A + B) x 100 (%)
【0031】[0031]
【実施例2】実施例1で得た、本発明1〜10および比
較1〜7の混合粉末を用いて、ISO規格に記載のSN
GN120408形状用の金型でもって、実施例1と同
様の方法、条件でプレス成形、加熱焼結、湿式研削加工
により、SNGN120408形状(0.1×−25°
のホーニング付)の切削工具用チップを作製した。[Example 2] Using the mixed powders of the present invention 1 to 10 and Comparatives 1 to 7 obtained in Example 1, SN described in the ISO standard
With a mold for GN120408 shape, SNGN120408 shape (0.1 × −25 °) was obtained by press molding, heat sintering and wet grinding under the same method and conditions as in Example 1.
Of the cutting tool) was produced.
【0032】そして、被削材:FCD600,切削速
度:300m/min,切込み:1.0mm,送り:
0.2mm/rev乾式による外周連続旋削試験を行
い、寿命になるまでの時間を求めて、その結果を表5に
示す。寿命の評価としては、平均フランク摩耗量(V
B)が0.3mm以上になるか、または欠損やチッピン
グが発生した時を寿命とした。Work material: FCD600, cutting speed: 300 m / min, depth of cut: 1.0 mm, feed:
A 0.2 mm / rev dry type outer circumference continuous turning test was performed, and the time until the end of the life was obtained, and the results are shown in Table 5. The average flank wear amount (V
The life was defined as when B) was 0.3 mm or more, or when chipping or chipping occurred.
【0033】次に、被削材:チルドロール(HRC=6
0),切削速度:100m/min,切込み:0.5m
m,送り:0.1mm/revの条件で乾式旋削試験を
行い、欠損又は平均逃げ面摩耗幅が0.25mmとなる
までの寿命時間を同様に求めた。その結果を表5に併記
した。Work Material: Chilled Roll (HRC = 6
0), cutting speed: 100m / min, depth of cut: 0.5m
m, feed: a dry turning test was conducted under the condition of 0.1 mm / rev, and the life time until the defect width or the average flank wear width became 0.25 mm was similarly obtained. The results are also shown in Table 5.
【0034】[0034]
【表5】 [Table 5]
【0035】[0035]
【発明の効果】本発明の炭化チタン基セラミックス工具
は、炭化チタンを主成分とした主要相が鋼,鋳物(特に
ダクタイル鋳鉄),耐熱合金などを高速切削する際の耐
摩耗性を向上させる作用をし、主要相の結晶粒内に均一
・微細に分散された酸化物,ホウ化物などの分散相の粒
子がナノ分散効果により硬度,強度,靱性を向上させる
作用をし、主要相の結晶粒界に分散された分散相の粒子
がセラミックス工具全体を分散強化する作用をする。こ
のような作用により、本発明の炭化チタン基セラミック
ス工具は、切削時の耐摩耗性および耐欠損性,耐チッピ
ング性の向上にすぐれた効果を発揮するものである。EFFECTS OF THE INVENTION The titanium carbide based ceramics tool of the present invention has an action of improving wear resistance during high speed cutting of titanium, cast iron (especially ductile cast iron), heat-resistant alloys, etc. whose main phase is titanium carbide. The particles of the dispersed phase, such as oxides and borides, which are uniformly and finely dispersed in the crystal grains of the main phase, act to improve hardness, strength, and toughness by the nano-dispersion effect. The particles of the dispersed phase dispersed in the boundary serve to disperse and strengthen the entire ceramic tool. Due to such an action, the titanium carbide based ceramics tool of the present invention exerts an excellent effect in improving wear resistance, chipping resistance and chipping resistance during cutting.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C046 FF33 FF42 FF49 FF51 4G001 BA01 BA03 BA06 BA14 BA24 BA25 BA41 BA44 BA53 BA60 BA61 BB03 BB05 BB08 BB14 BB24 BB25 BB41 BB44 BB53 BB61 BD12 BD13 BD18 BE22 BE26 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 3C046 FF33 FF42 FF49 FF51 4G001 BA01 BA03 BA06 BA14 BA24 BA25 BA41 BA44 BA53 BA60 BA61 BB03 BB05 BB08 BB14 BB24 BB25 BB41 BB44 BB53 BB61 BD12 BD13 BD18 BE22 BE26
Claims (6)
ム,ハフニウム,イットリウム,ランタン系希土類元素
の酸化物,ホウ化物、チタンのホウ化物,鉄族金属,お
よびこれらの固溶体の中から選ばれた少なくとも1種か
らなる分散相1〜30体積%と、残りが(Ti1-AMA)
(C1-x-yNxOy)z[ただし、Mはチタンを除く周期律
表の4a,5a,6a族元素、0≦A≦0.3,0≦X
≦0.3,0≦Y≦0.1,0.8≦Z≦1.1]で表
される主要相とから構成された焼結体において、該分散
相の粒子は、該主要相の結晶粒子内及び結晶粒界に存在
し、かつ結晶粒子内に存在する割合が分散相の10〜9
5%であることを特徴とする炭化チタン基セラミックス
工具。1. At least one selected from magnesium, aluminum, zirconium, hafnium, yttrium, lanthanum rare earth oxides, borides, titanium borides, iron group metals, and solid solutions thereof. 1 to 30% by volume of the dispersed phase and the balance (Ti 1-A M A )
(C 1-xy N x O y ) z [where M is a 4a, 5a, 6a group element of the periodic table excluding titanium, 0 ≦ A ≦ 0.3, 0 ≦ X
≦ 0.3, 0 ≦ Y ≦ 0.1, 0.8 ≦ Z ≦ 1.1] in the sintered body, the particles of the dispersed phase are It exists in the crystal grains and in the crystal grain boundaries, and the ratio of the existence in the crystal grains is 10 to 9 of the dispersed phase.
Titanium carbide based ceramics tool characterized by being 5%.
下であることを特徴とする請求項1に記載の炭化チタン
基セラミックス工具。2. The titanium carbide based ceramics tool according to claim 1, wherein the iron group metal is 5% by volume or less of the sintered body.
μmであることを特徴とする請求項1〜2のいずれかに
記載の炭化チタン基セラミックス工具。3. The average crystal grain size of the main phase is 1 to 10.
The titanium carbide based ceramics tool according to any one of claims 1 to 2, wherein the titanium carbide based ceramics tool has a thickness of µm.
〜5μmであることを特徴とする請求項1〜3のいずれ
かに記載の炭化チタン基セラミックス工具。4. The average crystal grain size of the dispersed phase is 0.01
The titanium carbide based ceramics tool according to any one of claims 1 to 3, characterized in that
ルミニウム,酸化イットリウム,酸化セリウム,ホウ化
チタン,ホウ化ジルコニウム,ホウ化ハフニウム,およ
びこれらの固溶体の中から選ばれた少なくとも1種でな
ることを特徴とする請求項1〜4のいずれかに記載の炭
化チタン基セラミックス工具。5. The dispersed phase comprises at least one selected from magnesium oxide, aluminum oxide, yttrium oxide, cerium oxide, titanium boride, zirconium boride, hafnium boride, and solid solutions thereof. The titanium carbide based ceramics tool according to any one of claims 1 to 4.
ニウム,ジルコニウム,ハフニウム,イットリウム,ラ
ンタン系希土類金属元素の中から選ばれた少なくとも一
種の酸化物と酸化チタンからなる複合酸化物粉末と、炭
素粉末と、場合によってはチタンを除く4a,5a,6
a族元素の炭化物,窒化物,酸化物,ホウ化物粉末ある
いは鉄族元素の金属,酸化物粉末、とを混合・粉砕し、
加圧成形して得た圧粉体を非酸化性雰囲気中で1400
〜2000℃の温度で焼結することを特徴とする炭化チ
タン基セラミックス工具の製造方法。6. A titanium carbide powder, a composite oxide powder consisting of titanium oxide and at least one oxide selected from magnesium, aluminum, zirconium, hafnium, yttrium and lanthanum rare earth metal elements, and a carbon powder. , 4a, 5a, 6 excluding titanium in some cases
Mixing and crushing carbide, nitride, oxide, boride powder of group a element or metal, oxide powder of group iron element,
1400 the green compact obtained by pressure molding in a non-oxidizing atmosphere
A method for manufacturing a titanium carbide based ceramics tool, which comprises sintering at a temperature of up to 2000 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001397439A JP4004024B2 (en) | 2001-12-27 | 2001-12-27 | Titanium carbide based ceramic tool and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001397439A JP4004024B2 (en) | 2001-12-27 | 2001-12-27 | Titanium carbide based ceramic tool and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003200307A true JP2003200307A (en) | 2003-07-15 |
JP4004024B2 JP4004024B2 (en) | 2007-11-07 |
Family
ID=27639580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001397439A Expired - Fee Related JP4004024B2 (en) | 2001-12-27 | 2001-12-27 | Titanium carbide based ceramic tool and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4004024B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8313842B2 (en) | 2007-02-26 | 2012-11-20 | Kyocera Corporation | Ti-based cermet |
CN104370550A (en) * | 2014-10-27 | 2015-02-25 | 合肥市东庐机械制造有限公司 | High-toughness ceramic knife material and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI457169B (en) * | 2008-01-11 | 2014-10-21 | Sumitomo Electric Industries | Separation film element, separation film module and method for manufacturing separation film element |
-
2001
- 2001-12-27 JP JP2001397439A patent/JP4004024B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8313842B2 (en) | 2007-02-26 | 2012-11-20 | Kyocera Corporation | Ti-based cermet |
CN104370550A (en) * | 2014-10-27 | 2015-02-25 | 合肥市东庐机械制造有限公司 | High-toughness ceramic knife material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4004024B2 (en) | 2007-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5100927B2 (en) | Method for producing cubic boron nitride sintered body | |
CA2785696C (en) | Cubic boron nitride sintered body and cubic boron nitride sintered body tool | |
JP2008537703A (en) | Alumina-boron carbide ceramic and its production and use | |
JP2005281084A (en) | Sintered compact and manufacturing method therefor | |
JP2004026555A (en) | Cubic boron nitride-containing sintered compact and method for producing the same | |
JP4004024B2 (en) | Titanium carbide based ceramic tool and manufacturing method thereof | |
JPH0816028B2 (en) | Highly tough ceramic sintered body, ceramic tool and method for manufacturing sintered body | |
JP3145470B2 (en) | Tungsten carbide-alumina sintered body and method for producing the same | |
JP2849055B2 (en) | Sialon-based sintered body and coated sintered body | |
US7375044B2 (en) | Process for making a ceramic body containing alumina and boron carbide | |
JP4887588B2 (en) | Dispersion strengthened CBN-based sintered body and method for producing the same | |
JPH0531514B2 (en) | ||
JPH0832584B2 (en) | Alumina-based ceramic cutting tool with high toughness | |
JP2004114163A (en) | Alumina group ceramic tool and production method for the same | |
JPH0797257A (en) | Composite sintered body | |
JP2003171172A (en) | Alumina sintered compact, blade edge exchange-type chip and cutting tool | |
JP2720093B2 (en) | Fiber reinforced ceramics | |
JPH0780708B2 (en) | High strength aluminum oxide based sintered body and method for producing the same | |
JP3715775B2 (en) | High speed cutting tool | |
JP2997334B2 (en) | Fiber reinforced ceramics | |
JP2006193353A (en) | Alumina sintered body, cutting insert, and cutting tool | |
WO2007038889A1 (en) | Ceramic matrix composite cutting blade for wood machining and the method of manufacturing the cutting blade | |
JPH0764640B2 (en) | Method of manufacturing silicon nitride sintered body for cutting tool | |
JPH0780706A (en) | Fiber-reinforced aluminum oxide group ceramics-made cutting tool | |
JP2007008776A (en) | Chromium-containing sintered compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4004024 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |