JP2003297394A - Electrolyte membrane for solid high polymer fuel cell and its manufacturing method - Google Patents
Electrolyte membrane for solid high polymer fuel cell and its manufacturing methodInfo
- Publication number
- JP2003297394A JP2003297394A JP2002096854A JP2002096854A JP2003297394A JP 2003297394 A JP2003297394 A JP 2003297394A JP 2002096854 A JP2002096854 A JP 2002096854A JP 2002096854 A JP2002096854 A JP 2002096854A JP 2003297394 A JP2003297394 A JP 2003297394A
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- fluorofiber
- electrolyte membrane
- membrane
- ion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Paper (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体高分子形燃料
電池用電解質膜及びその製造方法に関する。TECHNICAL FIELD The present invention relates to an electrolyte membrane for polymer electrolyte fuel cells and a method for producing the same.
【0002】[0002]
【従来の技術】水素・酸素燃料電池は、反応生成物が水
のみであるため、地球環境保全に貢献する発電システム
として注目されている。燃料電池の中でも、陽イオン交
換膜を電解質として用いる固体高分子形燃料電池は、作
動温度が低く、小型化が可能であるという特徴を有し、
家庭用据置型電源、車載用電源、移動体用携帯電源等の
用途に対して有望視されており、研究開発が進んでい
る。固体高分子形燃料電池電解質膜の高分子膜として
は、通常、厚さ100μm〜200μmのプロトン伝導
性陽イオン交換膜が用いられており、さらに、プロトン
伝導性陽イオン交換膜としては、スルホン酸基を有する
パーフルオロカーボン重合体の陽イオン交換膜が代表例
として挙げられる。しかしながら、従来の陽イオン交換
膜を用いた固体高分子形燃料電池では、実用上十分満足
する程度の出力密度が得られなかった。2. Description of the Related Art Hydrogen / oxygen fuel cells are attracting attention as a power generation system that contributes to global environmental protection because the reaction products are only water. Among the fuel cells, a polymer electrolyte fuel cell using a cation exchange membrane as an electrolyte has a feature that it has a low operating temperature and can be miniaturized.
It is promising for applications such as home-use stationary power supplies, in-vehicle power supplies, mobile power supplies for mobiles, and research and development is proceeding. A proton conductive cation exchange membrane having a thickness of 100 μm to 200 μm is usually used as the polymer membrane of the polymer electrolyte fuel cell electrolyte membrane. Further, as the proton conductive cation exchange membrane, sulfonic acid is used. A typical example is a cation exchange membrane of a perfluorocarbon polymer having a group. However, in the polymer electrolyte fuel cell using the conventional cation exchange membrane, the power density sufficient for practical use cannot be obtained.
【0003】固体高分子形燃料電池の出力密度をより高
くする方法としては、例えば、イオン交換膜の電気抵抗
を低下させる方法が挙げられ、さらに、陽イオン交換膜
の電気抵抗を低下させる方法としては、例えば、膜厚を
薄くする方法が挙げられる。ところで、スルホン酸基を
有するパーフルオロカーボン系イオン交換膜はイオン交
換のために水の存在が不可欠であり、膜厚が厚いと(例
えば、従来の厚さ100μm〜200μm)、プロトン
伝導性陽イオン交換膜では膜内の水分管理が難しいとい
う問題点がある。したがって、上述した膜厚を薄くする
方法によれば、電気抵抗を低下させることが可能である
こと以外にも、膜中水分管理を容易にすることができる
という利点を有している。As a method for further increasing the power density of the polymer electrolyte fuel cell, for example, there is a method of lowering the electric resistance of the ion exchange membrane, and further as a method of lowering the electric resistance of the cation exchange membrane. For example, there is a method of reducing the film thickness. By the way, in a perfluorocarbon-based ion exchange membrane having a sulfonic acid group, the presence of water is indispensable for ion exchange, and when the membrane thickness is large (for example, the conventional thickness of 100 μm to 200 μm), the proton conductive cation exchange membrane is used. There is a problem that it is difficult to control the water content in the membrane. Therefore, the above-described method of reducing the film thickness has an advantage that the water content in the film can be easily managed in addition to the fact that the electric resistance can be reduced.
【0004】その一方で、膜厚を薄くすることは、膜の
機械的強度(引張強さ、破裂強さ、引裂強さ等)を低下
させる上に、湿潤時の寸法安定性を低下させるなどの問
題があった。したがって、乾燥状態では機械的強度が激
減してクラックが発生しやすくなり、湿潤状態では極端
に膨張する。さらに、膜をガス拡散電極と接合させる加
工の際の加工性及び取り扱い性が低い等の問題があっ
た。また、燃料電池に装着して発電する際に導入される
水素や空気による外力に耐えられず、変形などを起こ
し、発電能力が低下するという問題もあった。On the other hand, reducing the film thickness not only lowers the mechanical strength (tensile strength, burst strength, tear strength, etc.) of the film, but also reduces the dimensional stability when wet. There was a problem. Therefore, the mechanical strength is drastically reduced in the dry state to easily cause cracks, and the wet state is extremely expanded. Further, there is a problem that workability and handleability are low when the film is joined to the gas diffusion electrode. In addition, there is a problem that it cannot withstand external force due to hydrogen or air introduced when it is mounted on a fuel cell to generate power, and it is deformed to lower the power generation capacity.
【0005】[0005]
【発明が解決しようとする課題】そこで、上記の問題を
解決する方法として、ポリテトラフルオロエチレン(以
下、PTFEという)多孔フィルムにスルホン酸基を有
するパーフルオロカーボン系イオン交換樹脂を含浸する
方法が提案されている(特公平5−75835号公
報)。この方法では、膜厚を薄くして機械的強度を高め
ることができるものの、多孔フィルムの空隙率が低いの
で、イオン交換樹脂の含有量が不足し、陽イオン交換膜
の電気抵抗が十分に低下しないという問題があった。Therefore, as a method for solving the above problems, a method of impregnating a perfluorocarbon-based ion exchange resin having a sulfonic acid group into a polytetrafluoroethylene (hereinafter referred to as PTFE) porous film is proposed. (Japanese Patent Publication No. 5-75835). With this method, although the film thickness can be reduced to increase the mechanical strength, the porosity of the porous film is low, so the content of the ion exchange resin is insufficient, and the electrical resistance of the cation exchange membrane is sufficiently reduced. There was a problem not to do.
【0006】また、陽イオン交換膜がフィブリル状、織
布状、または不織布状のパーフルオロカーボン重合体で
補強された陽イオン交換膜が提案されている(特開平6
−231779号公報)。しかしながら、この陽イオン
交換膜は、厚さが100μm〜200μmであり十分に
薄いものではなく、電気抵抗を十分に低下させることが
できなかった。Further, there has been proposed a cation exchange membrane in which the cation exchange membrane is reinforced with a fibril-like, woven cloth-like, or non-woven cloth-like perfluorocarbon polymer (Japanese Patent Laid-Open No. 6-58242).
No. 231779). However, this cation exchange membrane has a thickness of 100 μm to 200 μm and is not sufficiently thin, and the electric resistance cannot be sufficiently reduced.
【0007】そこで、膜厚を薄くする方法として、フィ
ブリル繊維径が1μm以下のフィブリル数が全フィブリ
ル数の70%以上を占めることを特徴とするフルオロカ
ーボン重合体のフィブリル繊維で補強された、スルホン
酸基を有するパーフルオロカーボン系陽イオン交換膜が
提案されている(特開2001−345111号公
報)。この陽イオン交換膜は、従来のパーフルオロカー
ボン系陽イオン交換膜と比較して、含水率、イオン交換
容量が同等であり、引張破壊応力は高い。しかしなが
ら、この発明においても、なお問題点を有している。す
なわち、永久ひずみを伴わない引張降伏応力は、シート
状に押出成形する際の流れ方向(MD:縦方向)及びM
Dに垂直な方向(TD:横方向)ともに小さく、外力に
より容易に変形し復元しないという問題があった。これ
は、このフィブリル繊維補強陽イオン交換膜は、フィブ
リル繊維とイオン交換樹脂とを混練後、製膜及び加熱処
理を行っているので、フィブリル繊維同士が固着してい
ないためと考えられる。本発明の目的は、機械的強度及
び発電特性が共に優れた固体高分子形燃料電池用電解質
膜及びその製造方法を提供することにある。Therefore, as a method of reducing the film thickness, sulfonic acid reinforced with fluorocarbon polymer fibril fibers characterized in that the number of fibrils having a fibril fiber diameter of 1 μm or less accounts for 70% or more of the total fibril number. A perfluorocarbon-based cation exchange membrane having a group has been proposed (JP 2001-345111 A). This cation exchange membrane has the same water content and ion exchange capacity as compared with the conventional perfluorocarbon-based cation exchange membrane, and has a high tensile fracture stress. However, this invention still has a problem. That is, the tensile yield stress without permanent set is the flow direction (MD: machine direction) and M when extruded into a sheet.
There was a problem that both the direction perpendicular to D (TD: lateral direction) was small, and it was easily deformed and not restored by an external force. This is presumably because the fibril fiber-reinforced cation exchange membrane is formed by kneading the fibril fibers and the ion exchange resin, and then subjected to film formation and heat treatment, so that the fibril fibers are not fixed to each other. An object of the present invention is to provide an electrolyte membrane for a polymer electrolyte fuel cell having excellent mechanical strength and power generation characteristics, and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】本発明の固体高分子形燃
料電池用電解質膜は、フッ素繊維同士間が結合されたフ
ッ素繊維シートより補強され、スルホン酸基を有するパ
ーフルオロカーボン系イオン交換樹脂からなる厚さが5
〜95μmの陽イオン交換膜であることを特徴としてい
る。また、本発明の固体高分子形燃料電地用電解質膜の
製造方法は、フッ素繊維を湿式抄造してフッ素繊維抄紙
シートを得る抄紙工程と、前記フッ素繊維抄紙シートを
加熱してフッ素繊維シートを得る加熱工程と、前記フッ
素繊維シートに、スルホン酸基を有するパーフルオロカ
ーボン系イオン交換樹脂を一体化する一体化工程とを有
することを特徴としている。The electrolyte membrane for polymer electrolyte fuel cells of the present invention is made of a perfluorocarbon-based ion exchange resin having a sulfonic acid group, which is reinforced by a fluorofiber sheet in which fluorofibers are bonded to each other. Thickness is 5
It is characterized in that it is a cation exchange membrane having a thickness of ˜95 μm. Further, the method for producing an electrolyte membrane for a solid polymer electrolyte fuel cell according to the present invention comprises a papermaking step of wet-making a fluorofiber to obtain a fluorofiber paper sheet, and heating the fluorofiber paper sheet to produce a fluorofiber sheet. The present invention is characterized by including a heating step for obtaining and a step of integrating the fluorofiber sheet with a perfluorocarbon-based ion exchange resin having a sulfonic acid group.
【0009】[0009]
【発明の実施の形態】本発明の固体高分子形燃料電池用
電解質膜(以下、電解質膜と略す)の一例について説明
する。この電解質膜は、フッ素繊維シートより補強さ
れ、スルホン酸基を有するパーフルオロカーボン系イオ
ン交換樹脂からなる陽イオン交換膜である。BEST MODE FOR CARRYING OUT THE INVENTION An example of the electrolyte membrane for a polymer electrolyte fuel cell of the present invention (hereinafter abbreviated as electrolyte membrane) will be described. This electrolyte membrane is a cation exchange membrane reinforced by a fluorofiber sheet and made of a perfluorocarbon-based ion exchange resin having a sulfonic acid group.
【0010】フッ素繊維シートは、フッ素繊維同士間が
結合されたものであり、例えば、乾式不織布、湿式不織
布、湿式抄造紙などを熱処理したものが挙げられる。中
でも、通常、フッ素繊維シートとしては、フッ素繊維同
士が熱融着により結合されたものが使用され、特に、結
着剤を含有するフッ素繊維短繊維が湿式抄紙法によりシ
ート化されたフッ素繊維抄紙シートを熱融着させるとと
もに、結着剤を熱分解により除去して得られたフッ素繊
維シートが好ましい。なお、熱融着の方法としては、例
えば、電気炉などの加熱炉による方法、熱カレンダーに
よる方法、ホットプレスによる方法が挙げられる。この
ようなフッ素繊維シートは、フッ素繊維抄紙シートは不
規則方向に配向した短繊維状のフッ素繊維により構成さ
れ、繊維同士間が熱融着により結合されている構造を有
しているため、引張降伏応力が大きく、繊維の配向性が
より小さいため、補強電解質膜の方向性を小さくでき
る。そして、電解質膜の機械的強度を高めることができ
る。The fluorofiber sheet is one in which fluorofibers are bonded to each other, and examples thereof include those obtained by heat-treating dry non-woven fabric, wet non-woven fabric, and wet papermaking paper. Among them, usually, as the fluorofiber sheet, those in which fluorofibers are bonded by heat fusion are used, and in particular, fluorofiber short fibers containing a binder are formed into a sheet by a wet papermaking method. A fluorofiber sheet obtained by heat-sealing the sheet and removing the binder by thermal decomposition is preferable. Examples of the heat fusion method include a method using a heating furnace such as an electric furnace, a method using a thermal calendar, and a method using hot pressing. Such a fluorofiber sheet, the fluorofiber paper sheet is composed of short fibrous fluorofibers oriented in irregular directions, and has a structure in which the fibers are bonded by heat fusion, Since the yield stress is large and the fiber orientation is small, the directionality of the reinforcing electrolyte membrane can be reduced. Then, the mechanical strength of the electrolyte membrane can be increased.
【0011】フッ素繊維シートに使用されるフッ素繊維
としては、例えば、ポリテトラフルオロエチレン(PT
FE)、テトラフルオロエチレン/パーフルオロアルキ
ルビニルエーテル共重合体(PFA)、テトラフルオロ
エチレン/ヘキサフルオロプロピレン/パーフルオロア
ルキルビニルエーテル共重合体、テトラフルオロエチレ
ン/ヘキサフルオロプロピレン共重合体(FEP)、ポ
リクロロトリフルオロエチレン(PCTFE)、エチレ
ン/テトラフルオロエチレン共重合体(ETFE)及び
エチレン/クロロトリフルオロエチレン共重合体(EC
TFE)などが挙げられる。上記の含フッ素繊維は1種
類であるいは複数種類混合して使用することができる。
このようなフッ素繊維は、耐薬品性、耐酸性が高く、電
解質膜の補強材として用いた時、イオン交換樹脂中への
不純物イオンの浸出が少ない。上述したフッ素繊維の中
でも、燃料電池運転時における長期安定性および耐熱性
に優れるPTFE繊維を用いるのが好ましい。Examples of the fluorine fiber used in the fluorine fiber sheet include polytetrafluoroethylene (PT).
FE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer (FEP), polychloro Trifluoroethylene (PCTFE), ethylene / tetrafluoroethylene copolymer (ETFE) and ethylene / chlorotrifluoroethylene copolymer (EC
TFE) and the like. The above-mentioned fluorine-containing fibers may be used alone or in combination of two or more.
Such a fluorine fiber has high chemical resistance and acid resistance, and when it is used as a reinforcing material for an electrolyte membrane, leaching of impurity ions into the ion exchange resin is small. Among the above-mentioned fluorine fibers, it is preferable to use the PTFE fiber which is excellent in long-term stability and heat resistance during fuel cell operation.
【0012】さらに、PTFE繊維としては、延伸また
は未延伸のPTFE微粒子をビスコース、カルボキシメ
チルセルロース、ポリビニルアルコールなどの結着剤中
に分散させ、この分散液を細孔から凝固浴に紡糸させて
得られたものが好ましい。このような結着剤を含有する
PTFE繊維では、PTFE繊維のシート化の際に、結
着剤によって繊維間をより強固に結着できる。ここで、
結着剤とは、自己接着機能を有する物質のことである。
上記延伸または未延伸のPTFE繊維を、適度な長さ、
例えば、3〜15mmの長さに切断し、これを必要に応
じてポリアクリルアミドなどの分散剤とともに水に分散
してフッ素繊維抄紙シートの原料として用いることがで
きる。Further, as the PTFE fibers, stretched or unstretched PTFE fine particles are dispersed in a binder such as viscose, carboxymethyl cellulose, polyvinyl alcohol, etc., and this dispersion is spun through a pore into a coagulation bath. Those listed are preferred. In the PTFE fiber containing such a binder, the fibers can be more firmly bound by the binder when the PTFE fiber is formed into a sheet. here,
The binder is a substance having a self-adhesive function.
The above stretched or unstretched PTFE fiber has an appropriate length,
For example, it can be cut into a length of 3 to 15 mm and dispersed in water together with a dispersant such as polyacrylamide, if necessary, to be used as a raw material for a fluorofiber paper sheet.
【0013】また、使用されるフッ素繊維としては、フ
ッ素繊維シートに要求される特性、具体的には、平均孔
径、最大孔径やシート強度などによって、フィブリル化
されている繊維、フィブリル化されていない繊維あるい
はそれらの混合物を選択することができる。例えば、よ
り強いシート強度を必要とする場合には、フィブリル化
の程度を進めた繊維を使用することが好ましい。また、
フィブリル化されている繊維を用いる場合、そのフィブ
リル化の度合いは、フッ素繊維シートの平均孔径、最大
孔径やシート強度などの関係で決定することが好まし
い。繊維をフィブリル化する手段としては、例えば、一
般的な叩解機であるボールミル、ビーター、ランペンミ
ル、PFIミル、SDR(シングルディスクリファイナ
ー)、DDR(ダブルディスクリファイナー)、その他
のリファイナーなどを使用することができる。The fluorofibers used are fibrillated fibers or non-fibrillated fibers depending on the characteristics required for the fluorofiber sheet, specifically, the average pore diameter, the maximum pore diameter, the sheet strength, and the like. Fibers or mixtures thereof can be selected. For example, when stronger sheet strength is required, it is preferable to use fibers having an advanced degree of fibrillation. Also,
When using fibrillated fibers, the degree of fibrillation is preferably determined by the relationship between the average pore diameter, the maximum pore diameter and the sheet strength of the fluorofiber sheet. As a means for fibrillating fibers, for example, a general beating machine such as a ball mill, beater, lampen mill, PFI mill, SDR (single disc refiner), DDR (double disc refiner), and other refiners can be used. .
【0014】また、使用されるフッ素繊維の長さ、径な
どは、フッ素繊維シートにした際に、厚さが約100μ
m以下で均一であり、かつ、繊維が均一に分散し配向性
が小さくなるように選択することが好ましい。The length, diameter, etc. of the fluorofiber used are about 100 μm when the fluorofiber sheet is used.
It is preferable to select it so that it is uniform at m or less, and the fibers are uniformly dispersed and the orientation becomes small.
【0015】フッ素繊維シートの空隙率は55〜90%
であることが好ましい。空隙率が55〜90%であれ
ば、より空隙の多い多孔質シートとなり、イオン交換樹
脂をより多く含浸させることができ、プロトン伝導性を
より高めることができる。例えば、空隙率が70%以上
のフッ素繊維シートに、イオン交換容量が約1.0モル
/kg乾燥重量程度のスルホン酸基を有するパーフルオ
ロカーボン系イオン交換樹脂液を含浸させれば、0.7
モル/kg乾燥重量以上のイオン交換容量を持つ陽イオ
ン交換膜を得ることができる。なお、空隙率が55%未
満であると、イオン交換樹脂が不足し、イオン交換容量
が不足することがある。また、空隙率が90%を超える
と陽イオン交換膜の機械的強度が不十分となることがあ
る。ここで、空隙率とは、フッ素繊維シート中の空間部
の体積比率である。The porosity of the fluorine fiber sheet is 55 to 90%
Is preferred. When the porosity is 55 to 90%, a porous sheet with more voids can be obtained, more ion-exchange resin can be impregnated, and proton conductivity can be further enhanced. For example, if a fluorofiber sheet having a porosity of 70% or more is impregnated with a perfluorocarbon-based ion exchange resin liquid having a sulfonic acid group having an ion exchange capacity of about 1.0 mol / kg dry weight, 0.7
A cation exchange membrane having an ion exchange capacity of at least mol / kg dry weight can be obtained. If the porosity is less than 55%, the ion exchange resin may be insufficient and the ion exchange capacity may be insufficient. If the porosity exceeds 90%, the cation exchange membrane may have insufficient mechanical strength. Here, the porosity is the volume ratio of the space portion in the fluorofiber sheet.
【0016】陽イオン交換膜は、そのイオン交換容量が
0.7モル/kg乾燥重量〜1.3モル/kg乾燥重量
であることが好ましい。イオン交換容量が0.7モル/
kg乾燥重量より低い場合には、得られる陽イオン交換
膜の電気抵抗が大きくなることがあり、1.3モル/k
g乾燥重量より高い場合には、陽イオン交換膜の機械的
強度が不十分となることがある。The ion exchange capacity of the cation exchange membrane is preferably 0.7 mol / kg dry weight to 1.3 mol / kg dry weight. Ion exchange capacity is 0.7 mol /
If it is lower than the dry weight of kg, the electric resistance of the obtained cation exchange membrane may increase, and it may be 1.3 mol / k.
If it is higher than g dry weight, the cation exchange membrane may have insufficient mechanical strength.
【0017】さらに、陽イオン交換膜において、スルホ
ン酸基を有するパーフルオロカーボン系イオン交換樹脂
は、そのスルホン酸基濃度、すなわちイオン交換容量が
0.7モル/kg乾燥重量〜2.0モル/kg乾燥重量
であることが好ましい。イオン交換容量が、0.7モル
/kg乾燥重量より低い場合には得られる陽イオン交換
膜の抵抗が大きくなることがあり、2.0モル/kg乾
燥重量より高い場合には陽イオン交換膜の機械的強度が
不十分となることがある。なお、スルホン酸基を有する
パーフルオロカーボン系イオン交換樹脂は、イオン伝導
性が高いため、発電効率を高くできる。Further, in the cation exchange membrane, the perfluorocarbon type ion exchange resin having a sulfonic acid group has a sulfonic acid group concentration, that is, an ion exchange capacity of 0.7 mol / kg dry weight to 2.0 mol / kg. It is preferably dry weight. When the ion exchange capacity is lower than 0.7 mol / kg dry weight, the resistance of the obtained cation exchange membrane may increase, and when it is higher than 2.0 mol / kg dry weight, the cation exchange membrane may be increased. May have insufficient mechanical strength. Since the perfluorocarbon-based ion exchange resin having a sulfonic acid group has high ionic conductivity, the power generation efficiency can be increased.
【0018】また、陽イオン交換膜の縦方向及び横方向
の引張降伏応力が、ともに12MPa以上であり、か
つ、縦方向の引張降伏応力と横方向の引張降伏応力との
比(縦方向の引張降伏応力/横方向の引張降伏応力)
が、2.0以下であることが好ましい。さらに好ましく
は、縦方向の引張降伏応力/横方向の引張降伏応力の比
が限りなく1.0に近いことである。ここで、縦方向と
は、シート状に成形した際の長尺方向(MD)のことで
あり、横方向とは、シート状に成形した際の幅方向、す
なわち、長尺方向に対する垂直方向(TD)のことであ
る。なお、引張降伏応力が12MPa未満であると、加
工時に傷みやすい上に、燃料電池に装着して発電する際
に変形し、復元しにくい。また、縦方向の引張降伏応力
/横方向の引張降伏応力の比が2.0を超えると、外力
を受けた時、MDとTDの寸法変化が異なるため、膜が
変形することがある。Further, the tensile yield stress in the longitudinal and transverse directions of the cation exchange membrane is both 12 MPa or more, and the ratio of the tensile yield stress in the longitudinal direction to the tensile yield stress in the transverse direction (longitudinal tensile stress). (Yield stress / Tensile yield stress in transverse direction)
Is preferably 2.0 or less. More preferably, the ratio of the tensile yield stress in the longitudinal direction / the tensile yield stress in the transverse direction is as close to 1.0 as possible. Here, the vertical direction is the longitudinal direction (MD) when formed into a sheet, and the lateral direction is the width direction when formed into a sheet, that is, the direction perpendicular to the longitudinal direction ( TD). When the tensile yield stress is less than 12 MPa, the tensile yield stress is easily damaged at the time of processing, and further, it is deformed when mounted in a fuel cell to generate electricity, and is difficult to restore. Further, when the ratio of the tensile yield stress in the longitudinal direction / the tensile yield stress in the lateral direction exceeds 2.0, when an external force is applied, the dimensional changes of MD and TD are different, so that the film may be deformed.
【0019】また、陽イオン交換膜は、厚さが5〜95
μmであり、好ましくは10〜75μmであり、より好
ましくは15〜65μmである。厚さが5μm未満の場
合は、電解質膜の機械的強度が不十分となり、95μm
を超えると、得られる電解質膜の電気抵抗が大きくな
る。The cation exchange membrane has a thickness of 5 to 95.
μm, preferably 10 to 75 μm, and more preferably 15 to 65 μm. If the thickness is less than 5 μm, the mechanical strength of the electrolyte membrane will be insufficient and 95 μm
When it exceeds, the electric resistance of the obtained electrolyte membrane increases.
【0020】次に、本発明の電解質膜の製造方法の一例
について説明する。この製造方法では、まず、抄紙工程
において、結着剤を含有する規定量のフッ素繊維を水中
で攪拌、混合し、好ましくは固形分濃度が0.5%以下
になるように濃度調整したスラリーを、長網式、円網
式、短網式などの湿式抄造機に供給する。そして、連続
したワイヤメッシュを有する脱水パートで脱水し、加圧
して搾水する。次いで、加熱して乾燥し、紙状で多孔性
のフッ素繊維抄紙シートを得る。ここで、フッ素繊維抄
紙シートには、通常の製紙で用いられる各種の紙力増強
剤、分散剤などの添加剤を必要に応じて適宜配合するこ
とができる。このような湿式抄造法で得られたフッ素繊
維抄紙シートは、乾式法で製造された不織布と比較し
て、繊維の分散が均一で良好な地合を有するという優れ
た特徴を有している。Next, an example of the method for producing the electrolyte membrane of the present invention will be described. In this manufacturing method, first, in a papermaking step, a prescribed amount of a fluorine fiber containing a binder is stirred and mixed in water, and a slurry whose concentration is preferably adjusted to a solid content concentration of 0.5% or less is prepared. Supply to wet paper making machines such as long-net type, cylinder type and short-net type. Then, it is dehydrated in a dehydration part having a continuous wire mesh, pressurized and squeezed. Then, it is heated and dried to obtain a paper-like porous fluorofiber paper sheet. Here, various additives such as a paper-strengthening agent and a dispersant used in ordinary papermaking can be appropriately added to the fluorofiber paper sheet, if necessary. The fluorofiber papermaking sheet obtained by such a wet papermaking method has an excellent feature that the fibers are dispersed uniformly and have a good formation as compared with the nonwoven fabric produced by the dry method.
【0021】次いで、加熱工程において、得られたフッ
素繊維抄紙シートを電気炉で焼成する。焼成してフッ素
繊維同士間を熱融着させるとともに、フッ素繊維中の結
着剤を熱分解し、除去してフッ素繊維シートを作製す
る。さらに、加熱工程と、後述する一体化工程との間
に、不純物の混入量をより低減するためにフッ素繊維シ
ートを洗浄し、乾燥する洗浄工程を有することが好まし
い。Next, in the heating step, the obtained fluorofiber paper sheet is fired in an electric furnace. Firing is performed to thermally bond the fluorofibers together, and the binder in the fluorofibers is thermally decomposed and removed to produce a fluorofiber sheet. Further, it is preferable to have a cleaning step of cleaning and drying the fluorofiber sheet between the heating step and the integration step described later in order to further reduce the amount of impurities mixed.
【0022】次いで、一体化工程において、上述のよう
にして得られたフッ素繊維シートにイオン交換樹脂を一
体化して電解質膜を得る。一体化する方法としては、フ
ッ素繊維シートにイオン交換樹脂液を含浸する方法、フ
ッ素繊維シートとイオン交換樹脂膜とを重ね、加圧して
接着させる方法などが挙げられるが、密着性の点で含浸
する方法が好ましい。Next, in the integration step, the ion exchange resin is integrated with the fluorine fiber sheet obtained as described above to obtain an electrolyte membrane. Examples of the method of integration include a method of impregnating a fluorine fiber sheet with an ion exchange resin solution, a method of laminating a fluorine fiber sheet and an ion exchange resin membrane, and adhering by pressure, but impregnation in terms of adhesion. Is preferred.
【0023】フッ素繊維シートにイオン交換樹脂液を含
浸する方法では、まず、フッ素繊維シートをメタノール
に浸して真空脱気し、このフッ素繊維シートに、スルホ
ン酸基を有するパーフルオロカーボン系イオン交換樹脂
液を均一状態に含浸させて含浸シートを作製する。次い
で、この含浸シートを25℃で二日間放置して溶媒を蒸
発除去し、一体化して電解質膜を得る。さらに、均一な
所定厚さの電解質膜とするには、含浸シートを真空脱気
しつつ、ホットプレス機で加熱加圧処理して成型するこ
とが好ましい。この方法では、真空脱気により膜中に存
在する気泡が除去されるので、電気抵抗がより低くな
り、強度がより向上する。また、加熱加圧処理により、
膜の厚さが均一になるとともに、フッ素繊維シートとイ
オン交換樹脂との密着性がさらに向上する。In the method of impregnating a fluorine fiber sheet with an ion exchange resin liquid, first, the fluorine fiber sheet is immersed in methanol and degassed in a vacuum, and the perfluorocarbon-based ion exchange resin liquid having a sulfonic acid group is added to the fluorine fiber sheet. Is uniformly impregnated to prepare an impregnated sheet. Then, this impregnated sheet is left at 25 ° C. for 2 days to evaporate and remove the solvent, and integrated to obtain an electrolyte membrane. Further, in order to obtain an electrolyte membrane having a uniform predetermined thickness, it is preferable to heat and pressurize the impregnated sheet with a hot press machine while vacuum degassing to mold the sheet. In this method, air bubbles existing in the film are removed by vacuum degassing, so that the electric resistance becomes lower and the strength further improves. Also, by heat and pressure treatment,
The thickness of the membrane becomes uniform, and the adhesion between the fluorofiber sheet and the ion exchange resin is further improved.
【0024】所望の膜厚、イオン交換容量、強度等の特
性を持った陽イオン交換膜を得るためには、フッ素繊維
シートの種類(厚さ、空隙率、フィブリル化の程度
等)、パーフルオロカーボン系イオン交換樹脂溶液の濃
度、含浸量や加熱処理条件等を適宜制御することによっ
て達成することができる。In order to obtain a cation exchange membrane having desired properties such as film thickness, ion exchange capacity and strength, the type of fluorofiber sheet (thickness, porosity, degree of fibrillation, etc.), perfluorocarbon This can be achieved by appropriately controlling the concentration, impregnation amount, heat treatment conditions, etc. of the system ion exchange resin solution.
【0025】なお、上述した製造方法では、抄紙工程に
おいて、結着剤を含有するフッ素繊維を湿式抄造法によ
り抄造してフッ素繊維抄紙シートを得たが、本発明はこ
れに限定されず、例えば、乾式法などによりフッ素繊維
シートを得てもよい。In the above-mentioned manufacturing method, in the paper making step, the fluorine fiber containing the binder is made by the wet paper making method to obtain the fluorine fiber paper making sheet. However, the present invention is not limited to this. Alternatively, the fluorofiber sheet may be obtained by a dry method or the like.
【0026】[0026]
【実施例】以下、実施例及び比較例に基づいて本発明を
さらに詳細に説明する。ただし、本発明はこれら実施例
に限定されるものではない。
<実施例1>まず、抄紙工程において、ビスコースを結
着剤マトリックスとしたPTFE粉末の分散体から得ら
れた未延伸のPTFE繊維(東レ・ファインケミカル社
製商品名;トヨフロン、繊維径15μm)を6mmの長
さに切断した。次いで、この6mmのPTFE繊維を水
に分散して得た抄紙原料を、円網抄紙機に供給し、湿式
抄造してフッ素繊維抄紙シートを作製した。次いで、加
熱工程において、このフッ素繊維抄紙シートを400℃
で4分間加熱処理して焼成させ、繊維同士間を結合させ
るとともに、ビスコースを熱分解させ、さらに325℃
で24時間熱処理して重量が40g/m2、厚さが50
μmの焼成フッ素繊維シートを得た(空隙率63.6
%)。次いで、一体化工程において、メタノール溶液中
で10分間真空脱気された、スルホン酸基を有するパー
フルオロカーボン系イオン交換樹脂液(デュポン社製、
商品名ナフィオン、5重量%液)を、焼成フッ素繊維シ
ート中に含浸させ、25℃で二日間放置して溶媒を蒸発
除去した。次いで、溶媒除去後のシートを、真空脱気し
ながらホットプレス機で温度140℃、圧力5MPaの
条件下で20分間(昇温10分、保持10分)、加熱処理
して厚さ50μmの陽イオン交換膜を作製した。EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples. <Example 1> First, in a papermaking step, unstretched PTFE fibers (trade name: Toray Fine Chemical Co., Ltd .; Toyofuron, fiber diameter 15 μm) obtained from a dispersion of PTFE powder using viscose as a binder matrix were prepared. It was cut to a length of 6 mm. Then, the papermaking raw material obtained by dispersing the 6 mm PTFE fiber in water was supplied to a cylinder paper machine and wet-processed to produce a fluorofiber papermaking sheet. Next, in a heating step, this fluorofiber paper sheet is heated to 400 ° C.
And heat it for 4 minutes to sinter and bond the fibers to each other, pyrolyze the viscose, and 325 ℃
Heat treated for 24 hours at a weight of 40 g / m 2 and a thickness of 50
A fired fluorocarbon fiber sheet of μm was obtained (porosity 63.6).
%). Next, in the integration step, a perfluorocarbon-based ion exchange resin liquid having a sulfonic acid group that was vacuum degassed in a methanol solution for 10 minutes (manufactured by DuPont,
Nafion (trade name, 5% by weight liquid) was impregnated into a calcined fluorofiber sheet and left at 25 ° C. for 2 days to evaporate and remove the solvent. Next, the solvent-removed sheet is heat-treated under vacuum degassing with a hot press machine under the conditions of a temperature of 140 ° C. and a pressure of 5 MPa for 20 minutes (heating for 10 minutes, holding for 10 minutes), and a thickness of 50 μm. An ion exchange membrane was prepared.
【0027】<実施例2>実施例1と同じPTFE繊維
(未叩解繊維)と、このPTFE繊維を叩解して、ろ水
度(JIS P 8121に準拠して測定)が300m
lにフィブリル化したもの(叩解繊維)とを用意した。
次いで、未叩解繊維50重量%及び叩解繊維50重量%
を水に分散させて得た抄紙原料を、円網抄紙機に供給
し、湿式抄紙してフッ素繊維抄紙シートを作製した。こ
の後の加熱工程はすべて実施例1と同様に行って、重量
が20g/m2、厚さが22μmの焼成フッ素繊維シー
トを得た(空隙率58.7%)。次いで、一体化工程を
実施例1と同様にして行って、厚さが20μmの陽イオ
ン交換膜を作製した。<Example 2> The same PTFE fiber (unbeaten fiber) as in Example 1 and this PTFE fiber were beaten to obtain a freeness (measured according to JIS P 8121) of 300 m.
A fibrillated product (beaten fiber) was prepared in l.
Next, 50% by weight of unbeaten fiber and 50% by weight of beaten fiber
The papermaking raw material obtained by dispersing the above in water was supplied to a cylinder paper machine and wet papermaking was carried out to produce a fluorofiber papermaking sheet. All the subsequent heating steps were performed in the same manner as in Example 1 to obtain a fired fluorofiber sheet having a weight of 20 g / m 2 and a thickness of 22 μm (porosity 58.7%). Then, the integration step was performed in the same manner as in Example 1 to produce a cation exchange membrane having a thickness of 20 μm.
【0028】<実施例3>実施例1と同様にして得た焼
成フッ素繊維シートを、縦方向に一軸延伸処理したシー
トに、実施例1の一体化工程と同様の手順でスルホン酸
基を有するパーフルオロカーボン系イオン交換樹脂溶液
を含浸させ、厚さ50μmの陽イオン交換膜を作製し
た。<Example 3> A calcined fluorofiber sheet obtained in the same manner as in Example 1 was uniaxially stretched in the machine direction, and the sheet had a sulfonic acid group in the same procedure as in the integration step of Example 1. A perfluorocarbon-based ion exchange resin solution was impregnated into a cation exchange membrane having a thickness of 50 μm.
【0029】<比較例1>フッ素繊維シートを用いず、
実施例1で用いたスルホン酸基を有するパーフルオロカ
ーボン系イオン交換樹脂溶液のみをキャストし、25℃
で二日間放置して溶媒を蒸発除去した後、ホットプレス
機で実施例1と同様の加熱処理を施して厚さ50μmの
陽イオン交換膜を作製した。
<比較例2>比較例1と同様の手順により厚さ20μm
の陽イオン交換膜を作製した。
<比較例3>市販の陽イオン交換膜(旭硝子社製、商品
名:フレミオン、スルホン酸型パーフルオロカーボン重
合体をPEFEフィブリルで補強したもの)である。<Comparative Example 1> Without using a fluorine fiber sheet,
Only the perfluorocarbon-based ion exchange resin solution having a sulfonic acid group used in Example 1 was cast at 25 ° C.
After being left for 2 days to remove the solvent by evaporation, the same heat treatment as in Example 1 was performed using a hot press machine to prepare a cation exchange membrane having a thickness of 50 μm. <Comparative Example 2> The thickness is 20 μm by the same procedure as in Comparative Example 1.
The cation exchange membrane of was prepared. Comparative Example 3 A commercially available cation exchange membrane (manufactured by Asahi Glass Co., Ltd., trade name: Flemion, a sulfonic acid type perfluorocarbon polymer reinforced with PEFE fibrils).
【0030】<評価結果>実施例、比較例の陽イオン交
換膜を後述する評価方法により評価した結果を表1に示
す。<Evaluation Results> Table 1 shows the results of evaluation of the cation exchange membranes of Examples and Comparative Examples by the evaluation method described later.
【0031】[0031]
【表1】 [Table 1]
【0032】<評価方法>
(1)引張降伏応力:実施例、比較例の陽イオン交換膜
についてJIS K7161に準拠し引張降伏応力を測
定した。測定環境:25℃、65%RH。測定機:島津
製作所製AG5000D。試料チャック間スパン:10
mm。引張速度:50mm/min。
(2)イオン交換容量: 実施例、比較例の陽イオン交
換膜を1Nの水酸化ナトリウム水溶液に12時間浸漬さ
せた後、1Nの塩酸水溶液に24時間浸漬させた。次い
で、水洗いした後、1Nの水酸化ナトリウム水溶液に1
2時間浸漬させ、水素イオンを溶液中に浸出させた。こ
の溶液を水酸化ナトリウム水溶液にて中和滴定してイオ
ン交換容量を算出した。<Evaluation Method> (1) Tensile Yield Stress: Tensile yield stress was measured for the cation exchange membranes of Examples and Comparative Examples according to JIS K7161. Measurement environment: 25 ° C., 65% RH. Measuring instrument: Shimadzu AG5000D. Span between sample chucks: 10
mm. Tensile speed: 50 mm / min. (2) Ion exchange capacity: The cation exchange membranes of Examples and Comparative Examples were immersed in a 1N sodium hydroxide aqueous solution for 12 hours and then immersed in a 1N hydrochloric acid aqueous solution for 24 hours. Then, after washing with water, add 1N sodium hydroxide solution to 1
It was immersed for 2 hours, and hydrogen ions were leached into the solution. This solution was neutralized and titrated with an aqueous sodium hydroxide solution to calculate the ion exchange capacity.
【0033】表1に示すように、実施例1及び実施例2
の陽イオン交換膜では、繊維同士が結合されたフッ素繊
維シートで補強されているので、縦方向、横方向のいず
れにおいても12MPa以上の引張降伏応力を有してい
た。実施例3の陽イオン交換膜では、1軸延伸方向であ
る縦方向の引張降伏応力は極めて優れており、縦方向と
横方向の平均としては、実施例1及び実施例2と同等で
あった。一方、比較例1及び比較例2の陽イオン交換膜
では、フッ素繊維シートで補強していないので、引張降
伏応力が低かった。また、比較例3の陽イオン交換膜で
は、フッ素繊維同士が結合されていないので補強効果が
弱く、引張降伏応力が低かった。As shown in Table 1, Example 1 and Example 2
Since the cation exchange membrane of (1) was reinforced by the fluorine fiber sheet in which the fibers were bonded to each other, it had a tensile yield stress of 12 MPa or more in both the longitudinal and transverse directions. In the cation exchange membrane of Example 3, the tensile yield stress in the longitudinal direction, which is the uniaxial stretching direction, was extremely excellent, and the average in the longitudinal direction and the transverse direction was the same as in Examples 1 and 2. . On the other hand, in the cation exchange membranes of Comparative Example 1 and Comparative Example 2, the tensile yield stress was low because they were not reinforced with the fluorine fiber sheet. Moreover, in the cation exchange membrane of Comparative Example 3, since the fluorine fibers were not bonded to each other, the reinforcing effect was weak and the tensile yield stress was low.
【0034】また、実施例1〜3の陽イオン交換膜で
は、フッ素繊維シートを補強材として内包しているにも
かかわらず、パーフルオロカーボン系イオン交換樹脂の
みで構成される比較例1及び比較例2の陽イオン交換膜
並びにPTFEフィブリルで補強した比較例3の陽イオ
ン交換膜と略同等のイオン交換容量を保持していた。こ
れら実施例1〜3の陽イオン交換膜のイオン交換容量
は、好ましい範囲である0.7モル/kg乾燥重量〜
1.3モル/kg乾燥重量の間にあり、十分なイオン交
換容量を有していた。In addition, in the cation exchange membranes of Examples 1 to 3, Comparative Example 1 and Comparative Example which were composed only of perfluorocarbon type ion exchange resin, though the fluorine fiber sheet was included as a reinforcing material. The cation exchange membrane of Example 2 and the cation exchange membrane of Comparative Example 3 reinforced with PTFE fibrils had substantially the same ion exchange capacity. The ion exchange capacity of the cation exchange membranes of Examples 1 to 3 is 0.7 mol / kg dry weight, which is a preferable range.
It was between 1.3 mol / kg dry weight and had a sufficient ion exchange capacity.
【0035】[0035]
【発明の効果】本発明の固体高分子形燃料電池用電解質
膜では、フッ素繊維同士間が結合されたフッ素繊維シー
トより補強され、スルホン酸基を有するパーフルオロカ
ーボン系イオン交換樹脂からなる陽イオン交換膜である
ため、厚さが5〜95μmと薄いにもかかわらず、機械
的強度に優れており、外力による変形を防止できる。そ
れとともに、厚さが5〜95μmと薄いため、電気抵抗
が小さく、発電効率が高い。また、本発明の固体高分子
形燃料電池用電解質膜の製造方法では、抄紙工程で得ら
れたフッ素繊維抄紙シートの繊維が、加熱工程において
熱融着するので、繊維同士間が結合されたフッ素繊維シ
ートを得ることができる。さらに、一体化工程におい
て、フッ素繊維シートに、スルホン酸基を有するパーフ
ルオロカーボン系イオン交換樹脂を一体化するので、上
述した固体高分子形燃料電池用電解質膜を得ることがで
きる。INDUSTRIAL APPLICABILITY In the electrolyte membrane for polymer electrolyte fuel cells of the present invention, a cation exchange made of a perfluorocarbon-based ion exchange resin having a sulfonic acid group, which is reinforced by a fluorine fiber sheet in which fluorine fibers are bonded to each other. Since it is a film, it is excellent in mechanical strength even though it is as thin as 5 to 95 μm, and can be prevented from being deformed by an external force. At the same time, since the thickness is as thin as 5 to 95 μm, the electric resistance is small and the power generation efficiency is high. Further, in the method for producing an electrolyte membrane for a polymer electrolyte fuel cell of the present invention, the fibers of the fluorofiber papermaking sheet obtained in the papermaking step are heat-sealed in the heating step, so that the fibers are bonded to each other. A fiber sheet can be obtained. Furthermore, in the integration step, since the perfluorocarbon-based ion exchange resin having a sulfonic acid group is integrated with the fluorofiber sheet, the above-mentioned electrolyte membrane for polymer electrolyte fuel cells can be obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 27:12 C08L 27:12 (72)発明者 大崎 一平 岡山県岡山市丸の内2丁目5番21号 (72)発明者 鈴木 孝典 静岡県静岡市用宗巴町3番1号 株式会社 巴川製紙所技術研究所内 (72)発明者 津田 統 静岡県静岡市用宗巴町3番1号 株式会社 巴川製紙所技術研究所内 Fターム(参考) 4F071 AA26 AA26C AA27C AD03C AF01 AF13 AH12 AH15 BB13 BC02 BC12 5G301 CA30 CD01 5H026 AA06 BB01 BB02 BB03 BB08 CX02 CX04 CX05 EE19 HH03 HH04 HH05 HH09 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C08L 27:12 C08L 27:12 (72) Inventor Ippei Osaki 2-5-21 Marunouchi, Okayama City, Okayama Prefecture No. (72) Inventor Takanori Suzuki No. 3 Munehamacho for Shizuoka City, Shizuoka Prefecture Tomagawa Paper Mill Technical Research Institute Co., Ltd. (72) Nozomi Tsuda No. 3 Munezawa Town for Shizuoka City, Shizuoka Prefecture F-term in paper mill technical laboratory (reference) 4F071 AA26 AA26C AA27C AD03C AF01 AF13 AH12 AH15 BB13 BC02 BC12 5G301 CA30 CD01 5H026 AA06 BB01 BB02 BB03 BB08 CX02 CX04 CX05 EE19 HH03 HH04 HH05 H09
Claims (10)
維シートより補強され、スルホン酸基を有するパーフル
オロカーボン系イオン交換樹脂からなる厚さが5〜95
μmの陽イオン交換膜であることを特徴とする固体高分
子形燃料電池用電解質膜。1. A thickness of 5 to 95 made of a perfluorocarbon-based ion exchange resin having a sulfonic acid group, which is reinforced by a fluorofiber sheet in which fluorofibers are bonded to each other.
An electrolyte membrane for polymer electrolyte fuel cells, which is a cation exchange membrane having a thickness of μm.
〜90%であることを特徴とする請求項1に記載の固体
高分子形燃料電池用電解質膜。2. The porosity of the fluorofiber sheet is 55.
% To 90%, The electrolyte membrane for polymer electrolyte fuel cells according to claim 1.
繊維が湿式抄造法によりシート化されたものであること
を特徴とする請求項1または2に記載の固体高分子形燃
料電池用電解質膜。3. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the fluorofiber sheet is made of fluorofiber short fibers by a wet papermaking method.
0.7〜1.3モル/kg乾燥重量であることを特徴と
する請求項1〜3のいずれかに記載の固体高分子形燃料
電池用電解質膜。4. The ion exchange capacity of the cation exchange membrane is
The electrolyte membrane for polymer electrolyte fuel cells according to any one of claims 1 to 3, which has a dry weight of 0.7 to 1.3 mol / kg.
引張降伏応力が、ともに12MPa以上であり、かつ、
縦方向の引張降伏応力と横方向の引張降伏応力との比
(縦方向の引張降伏応力/横方向の引張降伏応力)が、
2.0以下であることを特徴とする請求項1〜4のいず
れかに記載の固体高分子形燃料電池用電解質膜。5. The cation exchange membrane has a tensile yield stress in the longitudinal direction and in the transverse direction of 12 MPa or more, and
The ratio of the longitudinal tensile yield stress to the transverse tensile yield stress (longitudinal tensile yield stress / transverse tensile yield stress) is
It is 2.0 or less, The electrolyte membrane for polymer electrolyte fuel cells in any one of Claims 1-4 characterized by the above-mentioned.
トに、スルホン酸基を有するパーフルオロカーボン系イ
オン交換樹脂を含浸することにより、該イオン交換樹脂
がフッ素繊維シートにより補強されていることを特徴と
する請求項1〜5のいずれかに記載の固体高分子形燃料
電池用電解質膜。6. The cation exchange membrane is characterized in that a fluorine fiber sheet is impregnated with a perfluorocarbon-based ion exchange resin having a sulfonic acid group, whereby the ion exchange resin is reinforced by the fluorine fiber sheet. The electrolyte membrane for polymer electrolyte fuel cells according to any one of claims 1 to 5.
紙シートを得る抄紙工程と、 前記フッ素繊維抄紙シートを加熱して繊維同士間が熱融
着したフッ素繊維シートを得る加熱工程と、 前記フッ素繊維シートに、スルホン酸基を有するパーフ
ルオロカーボン系イオン交換樹脂を一体化する一体化工
程とを有することを特徴とする固体高分子形燃料電池用
電解質膜の製造方法。7. A papermaking step of wet-making fluorocarbon fiber to obtain a fluorofiber paper sheet; a heating step of heating the fluorofiber paper sheet to obtain a fluorofiber sheet in which fibers are thermally fused to each other; A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising an integration step of integrating a perfluorocarbon-based ion exchange resin having a sulfonic acid group with a fiber sheet.
ッ素繊維を湿式抄造法により抄造することを特徴とする
請求項7に記載の固体高分子形燃料電池用電解質膜の製
造方法。8. The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 7, wherein in the paper making step, the fluorine fiber containing a binder is made by a wet paper making method.
に、フッ素繊維シートを洗浄する洗浄工程を有すること
を特徴とする請求項7または8に記載の固体高分子形燃
料電池用電解質膜の製造方法。9. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 7, further comprising a cleaning step of cleaning the fluorine fiber sheet between the heating step and the integrating step. Manufacturing method.
トに、スルホン酸基を有するパーフルオロカーボン系イ
オン交換樹脂液を含浸させた含浸シートを作製し、この
含浸シートを真空脱気しつつ加熱加圧して厚さ5〜95
μmに成型することを特徴とする請求項7〜9のいずれ
かに記載の固体高分子形燃料電池用電解質膜の製造方
法。10. In the integration step, an impregnated sheet is prepared by impregnating a fluorofiber sheet with a perfluorocarbon-based ion exchange resin liquid having a sulfonic acid group, and the impregnated sheet is heated and pressed while being deaerated in vacuum. Thickness of 5 to 95
The method for producing an electrolyte membrane for polymer electrolyte fuel cells according to any one of claims 7 to 9, wherein the electrolyte membrane is molded to have a thickness of µm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002096854A JP3922954B2 (en) | 2002-03-29 | 2002-03-29 | ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002096854A JP3922954B2 (en) | 2002-03-29 | 2002-03-29 | ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003297394A true JP2003297394A (en) | 2003-10-17 |
JP3922954B2 JP3922954B2 (en) | 2007-05-30 |
Family
ID=29387538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002096854A Expired - Fee Related JP3922954B2 (en) | 2002-03-29 | 2002-03-29 | ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3922954B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005285757A (en) * | 2004-03-04 | 2005-10-13 | Matsushita Electric Ind Co Ltd | Composite electrolyte membrane, catalyst layer membrane joining body, membrane electrode joining body, and polymer electrolyte type fuel cell |
EP1674508A1 (en) | 2004-12-22 | 2006-06-28 | Asahi Glass Company, Limited | Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells |
JP2007018995A (en) * | 2004-12-22 | 2007-01-25 | Asahi Glass Co Ltd | Electrolyte membrane, its production process, and membrane-electrode assembly for solid polymer type fuel cell |
WO2008072673A1 (en) | 2006-12-14 | 2008-06-19 | Asahi Glass Company, Limited | Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly |
JP2008311233A (en) * | 2008-07-14 | 2008-12-25 | Nec Corp | Solid polymer electrolyte membrane, fuel cell using this, and method of manufacturing the solid polymer electrolyte membrane |
WO2010044436A1 (en) * | 2008-10-17 | 2010-04-22 | トヨタ自動車株式会社 | Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and solid polymer fuel cell comprising same |
US8349523B2 (en) | 2008-03-21 | 2013-01-08 | Asahi Glass Company, Limited | Electrolyte membrane for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells |
JP5320522B2 (en) * | 2011-08-09 | 2013-10-23 | パナソニック株式会社 | ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL |
US8795923B2 (en) | 2007-04-19 | 2014-08-05 | Toyota Jidosha Kabushiki Kaisha | Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly |
WO2015083546A1 (en) * | 2013-12-03 | 2015-06-11 | 日本バルカー工業株式会社 | Composite film for electrochemical element |
JP2016058152A (en) * | 2014-09-05 | 2016-04-21 | 日本バイリーン株式会社 | Method for manufacturing resin reinforced material, resin reinforced material, polymer electrolyte reinforced membrane, membrane-electrode assembly, and solid polymer fuel cell |
-
2002
- 2002-03-29 JP JP2002096854A patent/JP3922954B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005285757A (en) * | 2004-03-04 | 2005-10-13 | Matsushita Electric Ind Co Ltd | Composite electrolyte membrane, catalyst layer membrane joining body, membrane electrode joining body, and polymer electrolyte type fuel cell |
EP1674508A1 (en) | 2004-12-22 | 2006-06-28 | Asahi Glass Company, Limited | Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells |
JP2007018995A (en) * | 2004-12-22 | 2007-01-25 | Asahi Glass Co Ltd | Electrolyte membrane, its production process, and membrane-electrode assembly for solid polymer type fuel cell |
US7569616B2 (en) | 2004-12-22 | 2009-08-04 | Asahi Glass Company, Limited | Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells |
US8268900B2 (en) | 2004-12-22 | 2012-09-18 | Asahi Glass Company, Limited | Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells |
US8673517B2 (en) | 2006-12-14 | 2014-03-18 | Asahi Glass Company, Limited | Polymer electrolyte membrane composed of a fluorinated proton conductive polymer and a fluorinated reinforcing material |
WO2008072673A1 (en) | 2006-12-14 | 2008-06-19 | Asahi Glass Company, Limited | Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly |
US8795923B2 (en) | 2007-04-19 | 2014-08-05 | Toyota Jidosha Kabushiki Kaisha | Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly |
US8349523B2 (en) | 2008-03-21 | 2013-01-08 | Asahi Glass Company, Limited | Electrolyte membrane for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells |
JP2008311233A (en) * | 2008-07-14 | 2008-12-25 | Nec Corp | Solid polymer electrolyte membrane, fuel cell using this, and method of manufacturing the solid polymer electrolyte membrane |
WO2010044436A1 (en) * | 2008-10-17 | 2010-04-22 | トヨタ自動車株式会社 | Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and solid polymer fuel cell comprising same |
US8802314B2 (en) | 2008-10-17 | 2014-08-12 | Toyota Jidosha Kabushiki Kaisha | Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same |
JP5320522B2 (en) * | 2011-08-09 | 2013-10-23 | パナソニック株式会社 | ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL |
WO2015083546A1 (en) * | 2013-12-03 | 2015-06-11 | 日本バルカー工業株式会社 | Composite film for electrochemical element |
JP2016058152A (en) * | 2014-09-05 | 2016-04-21 | 日本バイリーン株式会社 | Method for manufacturing resin reinforced material, resin reinforced material, polymer electrolyte reinforced membrane, membrane-electrode assembly, and solid polymer fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP3922954B2 (en) | 2007-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Giancola et al. | Composite short side chain PFSA membranes for PEM water electrolysis | |
KR102112648B1 (en) | Polymer electrolyte membrane | |
US6692858B2 (en) | Electrolyte membrane for polymer electrolyte fuel cell and producing method thereof | |
JP3555999B2 (en) | Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell | |
KR20130114187A (en) | Porous nano-fiber mats to reinforce proton conducting membranes for pem applications | |
JP6707519B2 (en) | film | |
JP3922954B2 (en) | ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME | |
JP2001035510A (en) | Solid high polymer electrolyte fuel cell | |
JP4198009B2 (en) | Solid polymer electrolyte membrane and fuel cell | |
WO2018186386A1 (en) | Composite polymer electrolyte membrane | |
JP2003077494A (en) | Solid polymer electrolyte reinforcing material and solid polymer electrolyte reinforcement using the same | |
JP6481330B2 (en) | Base material for alkaline water electrolysis diaphragm | |
JP2005050561A (en) | Compound ion exchange membrane | |
JP2004178995A (en) | Electrolyte film for solid polymer fuel cell and its manufacturing method | |
JP2004288495A (en) | Electrolyte film for polymer electrolyte fuel cell and manufacturing method of the same | |
JP4868711B2 (en) | Gas diffusion electrode precursor, gas diffusion electrode, fuel cell, and method for producing gas diffusion electrode precursor | |
JP4269211B2 (en) | Composite ion exchange membrane and method for producing the same | |
JP5599029B2 (en) | Gas diffusion layer for fuel cells | |
JP2000260443A (en) | Solid high polymer electrolyte fuel cell | |
JP3791685B2 (en) | Composite ion exchange membrane and method for producing the same | |
JP2003055568A (en) | Ion exchanger resin dispersion and method for producing the same | |
JP2008238134A (en) | Ion-exchangeable filter and its manufacturing method | |
KR20180003006A (en) | Non-woven Fabric Support for Ion Exchange Membrane and Method for Manufacturing The Same | |
JP2002343380A (en) | Electrolyte film for solid polymer fuel cell, and manufacturing method of the same | |
JP3978668B2 (en) | Ion exchange membrane and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120302 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120302 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140302 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |