JP2003294662A - Method for measuring degree of wettability of soil and optical fiber bragg grating wettability sensor - Google Patents
Method for measuring degree of wettability of soil and optical fiber bragg grating wettability sensorInfo
- Publication number
- JP2003294662A JP2003294662A JP2002100283A JP2002100283A JP2003294662A JP 2003294662 A JP2003294662 A JP 2003294662A JP 2002100283 A JP2002100283 A JP 2002100283A JP 2002100283 A JP2002100283 A JP 2002100283A JP 2003294662 A JP2003294662 A JP 2003294662A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- optical fiber
- wetness
- heat
- sensitive member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、土壌の湿潤度を測
定する土壌湿潤度測定方法及びそのための湿潤センサに
係り、特に、短時間で精度の高い測定ができる土壌湿潤
度測定方法及びその方法に好適で構成が簡素な光ファイ
バブラッググレーティング(FiberBragg G
rating;以下FBGという)湿潤センサに関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soil wetness measuring method for measuring soil wetness and a wetness sensor therefor, and particularly to a soil wetness measuring method and method capable of highly accurate measurement in a short time. Fiber Bragg Grating (Fiber Bragg G
rating; hereinafter referred to as FBG) wetness sensor.
【0002】[0002]
【従来の技術】土壌の湿潤度を測定する従来技術とし
て、ヒータと熱電対とを組み合わせた土壌熱抵抗計を用
いた測定方法がある。この方法は、ヒータ及び熱電対を
土壌中に埋設しておき、ヒータによって土壌を加熱し、
その土壌の温度上昇を熱電対にて測定するものである。
土壌の温度上昇幅が土壌に含まれている水分量に依存す
ることから、熱電対にて測定される温度上昇幅から湿潤
度(一定量の土壌に含まれている水分量)を導くことが
できる。2. Description of the Related Art As a conventional technique for measuring soil wetness, there is a measuring method using a soil thermal resistance meter in which a heater and a thermocouple are combined. In this method, the heater and thermocouple are buried in the soil, and the soil is heated by the heater,
The temperature rise of the soil is measured with a thermocouple.
Since the temperature rise of soil depends on the amount of water contained in the soil, it is possible to derive the degree of wetness (the amount of water contained in a certain amount of soil) from the temperature rise measured by a thermocouple. it can.
【0003】また、光ファイバを利用した湿潤度分布測
定方法(特開平11−304739号公報)が知られて
いる。この方法は、ヒータとなるSUS管に光ファイバ
を収容し、このSUS管を円筒に巻き付けることによっ
て、光ファイバの長手方向の温度分布測定における距離
分解能を土壌深さ方向の距離分解能に変換したものであ
る。この方法においては、SUS管に通電して周囲の土
壌に熱を提供し、そのときのSUS管内の温度上昇の程
度を光ファイバ温度分布測定装置によって円筒に巻き付
けられた光ファイバの長手方向の温度分布変化として測
定し、その温度分布変化から土壌深さ方向の湿潤度分布
を求める。光ファイバ温度分布測定装置は、光ファイバ
の後方ラマン散乱光強度の温度依存性を利用したもので
ある。Further, a method of measuring a wetness distribution using an optical fiber (Japanese Patent Laid-Open No. 11-304739) is known. In this method, an optical fiber is housed in a SUS tube that serves as a heater, and this SUS tube is wound around a cylinder to convert the distance resolution in the temperature distribution measurement in the longitudinal direction of the optical fiber into the distance resolution in the soil depth direction. Is. In this method, the SUS tube is energized to provide heat to the surrounding soil, and the degree of temperature rise in the SUS tube at that time is measured by measuring the temperature in the longitudinal direction of the optical fiber wound around the cylinder by the optical fiber temperature distribution measuring device. The change in distribution is measured, and the wetness distribution in the soil depth direction is obtained from the change in temperature distribution. The optical fiber temperature distribution measuring device utilizes the temperature dependence of the backward Raman scattered light intensity of the optical fiber.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、土壌熱
抵抗計を用いた測定方法では、ヒータに電力を供給し、
かつ熱電対の電圧を検出するために測定現地(埋設箇
所)に商用電源を引き込むことが必要であるという欠点
がある。また、土壌熱抵抗計からのデータ収集および処
理のための装置(計測機器)が必要となり、複数地点で
の土壌湿潤度測定を行う場合、各々の土壌熱抵抗計に接
続された複数の装置を収納する局舎の建設が不可欠であ
るため、経済的でない。また、計測機器は耐雷性が弱
く、比較的壊れやすい。土壌湿潤度測定を必要とする悪
天候時は、雷雨になる場合が多く、そのとき雷により壊
れてしまうのでは信頼性に劣り、実用的でない。However, in the measuring method using the soil thermal resistance meter, electric power is supplied to the heater,
In addition, there is a drawback that it is necessary to draw a commercial power supply to the measurement site (embedded place) in order to detect the voltage of the thermocouple. In addition, a device (measuring device) for collecting and processing data from the soil thermal resistance meter is required, and when performing soil wetness measurement at multiple points, use multiple devices connected to each soil thermal resistance meter. It is not economical because it is essential to build a station building to house it. Also, the measuring instruments have weak lightning resistance and are relatively fragile. In bad weather that requires soil wetness measurement, it is often a thunderstorm, and if it is broken by lightning at that time, it is unreliable and impractical.
【0005】前述の公報による測定方法では、温度測定
のための電源(熱電対電源)は測定現地に引き込まなく
てよい。しかし、光ファイバを円筒に巻き付けているの
で、光ファイバ長が長くなり、光ファイバ温度分布測定
装置で測定を行う距離が長くなる。また、光ファイバ温
度分布測定装置のS/Nは、後方散乱光の加算平均化処
理回数によって決まっているので、設置するセンサ数を
あまり多くすることができない。設置するセンサ数が多
くなるにつれ、光ファイバ長が長くなり、測定温度精度
を維持するために加算平均化処理回数を増やさなければ
ならず、測定周期が長くなる。即ち、湿潤度を算出する
ための測定周期が長くなり(現状では1〜2時間程
度)、実用的でない。さらに、光ファイバ長を長くする
と、ヒータ長も長くなるため、ヒータ用電源の容量を大
きくしなければならない。また、光ファイバを曲がりに
よる伝送損失が生じないよう円筒に巻き付ける必要があ
るため、センサ径が大きくなる(現状では20cmφ程
度)。In the measuring method according to the above-mentioned publication, the power supply for temperature measurement (thermocouple power supply) does not have to be drawn into the measurement site. However, since the optical fiber is wound around the cylinder, the length of the optical fiber becomes long, and the distance for measuring with the optical fiber temperature distribution measuring device becomes long. Further, since the S / N of the optical fiber temperature distribution measuring device is determined by the number of times of averaging processing of backscattered light, the number of sensors to be installed cannot be increased so much. As the number of sensors installed increases, the length of the optical fiber becomes longer, and the number of averaging processes must be increased in order to maintain the measurement temperature accuracy, and the measurement cycle becomes longer. That is, the measurement cycle for calculating the wetness is long (currently about 1 to 2 hours), which is not practical. Further, if the length of the optical fiber is increased, the length of the heater is also increased, so that the capacity of the heater power source must be increased. Further, since the optical fiber needs to be wound around a cylinder so that transmission loss due to bending does not occur, the sensor diameter becomes large (currently about 20 cmφ).
【0006】そこで、本発明の目的は、上記課題を解決
し、短時間で精度の高い測定ができる土壌湿潤度測定方
法及びその方法に好適で構成が簡素なFBG湿潤センサ
を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems and provide a soil wetness measuring method capable of performing highly accurate measurement in a short time, and an FBG wetness sensor suitable for the method and having a simple structure. .
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に本発明の土壌湿潤度測定方法は、FBGを感熱部材に
固定した状態で土壌中に埋設し、このFBGの反射波長
から前記感熱部材の温度を検出し、その温度から土壌の
湿潤度を求めるものである。In order to achieve the above object, the soil wetness measuring method of the present invention is to embed FBG fixed in a heat sensitive member in the soil and to measure the heat sensitive member from the reflection wavelength of the FBG. The temperature of the soil is detected, and the wetness of the soil is calculated from the temperature.
【0008】土壌中に埋設した前記感熱部材の近傍に電
力による熱源を埋設し、この熱源に電力を供給したとき
の前記感熱部材の温度変化から土壌の湿潤度を求めても
よい。It is also possible to embed a heat source by electric power in the vicinity of the heat-sensitive member embedded in the soil and obtain the degree of wetness of the soil from the temperature change of the heat-sensitive member when power is supplied to the heat source.
【0009】前記熱源の電力を定期的に入り切りして前
記感熱部材の温度を上昇・下降させてもよい。The temperature of the heat-sensitive member may be raised or lowered by periodically turning on and off the power of the heat source.
【0010】前記感熱部材の温度の上昇幅或いは下降幅
から湿潤度を求めてもよい。The wettability may be obtained from the rising or falling width of the temperature of the heat sensitive member.
【0011】前記感熱部材の温度の過渡応答特性から湿
潤度を求めてもよい。The wetness may be obtained from the transient response characteristic of the temperature of the heat sensitive member.
【0012】また、本発明のFBG湿潤センサは、感熱
部材にFBGが固定されており、この感熱部材が埋設さ
れた土壌の湿潤度に応じて前記FBGの反射波長が変化
するものである。Further, in the FBG wetness sensor of the present invention, the FBG is fixed to the heat sensitive member, and the reflection wavelength of the FBG changes according to the wetness of the soil in which the heat sensitive member is buried.
【0013】前記FBGに金属材料からなる被覆が施さ
れており、前記感熱部材が金属で構成されており、この
金属感熱部材に前記被覆が溶接固定されていてもよい。The FBG may be coated with a metal material, the heat-sensitive member may be made of metal, and the coating may be welded and fixed to the metal heat-sensitive member.
【0014】前記FBGに金属材料からなる被覆が施さ
れており、前記感熱部材が金属で構成されており、この
金属感熱部材に前記被覆がハンダ固定されていてもよ
い。The FBG may be coated with a metal material, the heat sensitive member may be made of metal, and the metal heat sensitive member may be solder-fixed to the coating.
【0015】前記感熱部材に熱源が取り付けられていて
もよい。A heat source may be attached to the heat-sensitive member.
【0016】[0016]
【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて詳述する。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
【0017】図1に示されるように、本発明に係るFB
G湿潤センサは、金属或いは高分子系プラスチック材料
などの熱伝導率の高い材料からなる感熱部材1にFBG
2が固定されたものである。感熱部材1は、比較的面積
の大きい上下面と比較的厚みが薄い側面及び端面とを有
する直方体に形成されており、外観が板状を呈するの
で、感熱板1とも呼ぶ。この感熱板1は、厚み内部に上
面に臨む凹状の空間が形成されており、この凹状空間に
FBG2を収容した後、樹脂モールド(図示せず)で前
記凹状空間を満たしたものである。感熱板1の両端面に
は前記凹状空間に連通する光ファイバ保護管4が設けら
れている。FBG2は、光ファイバ3の長手方向の一部
に形成されており、この光ファイバ3が光ファイバ保護
管4に通され、FBG2が前記凹状空間の底部に固定さ
れている。As shown in FIG. 1, the FB according to the present invention.
The G-wetness sensor uses the FBG on the heat-sensitive member 1 made of a material having a high thermal conductivity such as a metal or a polymer plastic material.
2 is fixed. The heat-sensitive member 1 is formed as a rectangular parallelepiped having upper and lower surfaces having a relatively large area, side surfaces and end surfaces having a relatively small thickness, and has a plate-like appearance. This heat sensitive plate 1 has a concave space facing the upper surface formed inside the thickness thereof, and after accommodating the FBG 2 in this concave space, the concave space is filled with a resin mold (not shown). Optical fiber protection tubes 4 communicating with the concave space are provided on both end surfaces of the heat sensitive plate 1. The FBG 2 is formed in a part of the optical fiber 3 in the longitudinal direction, the optical fiber 3 is passed through the optical fiber protection tube 4, and the FBG 2 is fixed to the bottom of the concave space.
【0018】FBG湿潤センサは、土壌中に埋設したと
き、感熱板1の下面が測定対象である土壌に接するよう
になっている。即ち、感熱板1の下面が測定面である。
FBG2は、測定面のすぐ裏側に配置されていることに
なる。When the FBG wetness sensor is embedded in soil, the lower surface of the heat sensitive plate 1 is in contact with the soil to be measured. That is, the lower surface of the heat sensitive plate 1 is the measurement surface.
The FBG 2 is arranged immediately behind the measurement surface.
【0019】FBG2を感熱板1に固定する方法は、接
着であってもよい。例えば、ポリイミド被覆のFBG2
をエポキシ樹脂にて接着固定するとよい。また、FBG
2を感熱板1に固定するために、光ファイバ3に金属材
料からなる被覆を施し、一方、感熱板1を金属で構成し
てもよい。この金属製感熱板1に光ファイバ3の被覆を
ハンダ溶接等の溶接によって固定することになる。The method of fixing the FBG 2 to the heat sensitive plate 1 may be adhesion. For example, polyimide-coated FBG2
It is advisable to bond and fix with epoxy resin. Also, FBG
In order to fix 2 to the heat sensitive plate 1, the optical fiber 3 may be coated with a metal material, while the heat sensitive plate 1 may be made of metal. The coating of the optical fiber 3 is fixed to the metal heat sensitive plate 1 by welding such as solder welding.
【0020】このようにFBG湿潤センサは、FBG2
を感熱板1に一体化したものである。感熱板1は、土壌
との熱交換を行うことにより土壌湿潤度に応じた温度に
なる感熱部材、或いは自ら熱膨張することによってFB
G2に温度情報を伝える感熱部材である。また、感熱板
1は、FBG2を外力による衝撃や曲がりから保護する
ためのケースも兼ねている。FBG2は、感熱板1の熱
線膨張(収縮も含む)によってひずみを受けて反射波長
が変化するか、或いは感熱板1の温度によって反射波長
が変化する。Thus, the FBG wetness sensor is
Is integrated with the heat sensitive plate 1. The heat-sensitive plate 1 is a heat-sensitive member having a temperature corresponding to the degree of soil wetness by exchanging heat with the soil, or FB by thermally expanding itself.
It is a heat-sensitive member that transmits temperature information to G2. Further, the heat sensitive plate 1 also serves as a case for protecting the FBG 2 from an impact or bending due to an external force. The FBG 2 is distorted by the thermal linear expansion (including contraction) of the heat sensitive plate 1 to change its reflection wavelength, or the temperature of the heat sensitive plate 1 changes its reflection wavelength.
【0021】図示しないが、光ファイバ3の一端には、
この光ファイバ3へ光源光を導入すると共にFBG2か
らの反射光を取り出して受光する湿潤度測定器が設置さ
れているものとする。光学量から湿潤度を求める具体的
手法は後述する。Although not shown, at one end of the optical fiber 3,
It is assumed that a wetting degree measuring device for introducing the light source light into the optical fiber 3 and taking out and receiving the reflected light from the FBG 2 is installed. A specific method for obtaining the wettability from the optical quantity will be described later.
【0022】図1のFBG湿潤センサを用いた土壌湿潤
度測定方法を説明する。A method for measuring soil wetness using the FBG wetness sensor shown in FIG. 1 will be described.
【0023】FBG湿潤センサを土壌中に埋設してお
く。感熱板1の下面にあたる測定面が測定対象である土
壌に接することになる。感熱板1と土壌との間で熱交換
が起こり、感熱板1の測定面の温度と土壌の温度とが平
衡する。測定面のすぐ裏側にあるFBG2で感熱板1の
温度そのもの或いは感熱板1の熱線膨張によるひずみを
測定する。The FBG wetness sensor is buried in the soil. The measurement surface corresponding to the lower surface of the heat sensitive plate 1 comes into contact with the soil to be measured. Heat exchange occurs between the heat-sensitive plate 1 and the soil, and the temperature of the measurement surface of the heat-sensitive plate 1 and the temperature of the soil are in equilibrium. The temperature itself of the heat sensitive plate 1 or the strain due to the linear thermal expansion of the heat sensitive plate 1 is measured by the FBG 2 immediately behind the measurement surface.
【0024】温度或いはひずみは、FBG反射スペクト
ラムの中心波長の遷移量(波長シフト量)から測定する
ことができる。FBG反射スペクトラムは、温度1℃あ
たり10pm(ピコ・メートル)程度変化するので、こ
の波長シフト量を計測することにより、感熱板1の温度
を正確に測定することができる。波長シフト量と感熱板
1の温度との関係は、センサ製作完了時(初期設定時)
に較正することにより、個々のセンサで誤差±0.1℃
程度の精度で測定することができる。The temperature or strain can be measured from the transition amount (wavelength shift amount) of the central wavelength of the FBG reflection spectrum. Since the FBG reflection spectrum changes by about 10 pm (pico meter) per 1 ° C. of temperature, the temperature of the heat sensitive plate 1 can be accurately measured by measuring the wavelength shift amount. The relationship between the wavelength shift amount and the temperature of the heat sensitive plate 1 is as follows when the sensor is manufactured (initial setting)
The error is ± 0.1 ° C for each sensor by calibrating to
It can be measured with a degree of accuracy.
【0025】土壌に含まれている水分量(湿潤度)によ
って、その土壌中に埋設されている感熱板1の温度は異
なる。FBG2の反射波長を測定することは、感熱板1
の温度を測定することにほかならない。従って、湿潤度
によって、測定されるFBG2の反射波長が異なる。F
BG2の反射波長を常時測定することにより、湿潤度の
リアルタイムモニタリングが可能となる。The temperature of the heat sensitive plate 1 buried in the soil varies depending on the amount of water (wetness) contained in the soil. Measuring the reflection wavelength of the FBG 2 is performed by the heat sensitive plate 1
It is nothing but measuring the temperature of. Therefore, the measured reflection wavelength of the FBG 2 differs depending on the wetness. F
By constantly measuring the reflection wavelength of BG2, it is possible to monitor the wetness in real time.
【0026】図2には、別の実施形態によるFBG湿潤
センサを示す。このFBG湿潤センサは、図1のFBG
湿潤センサに熱源5を付加したものである。感熱部材1
は、ここでは発熱板1と呼ぶ。図示のように光ファイバ
保護管4には、光ファイバ3と共にヒータ5が挿通され
ている。ヒータ5は、発熱板1の前記凹状空間の底部に
固定されている。FIG. 2 shows an FBG wetness sensor according to another embodiment. This FBG wetness sensor is based on the FBG of FIG.
A heat source 5 is added to the wetness sensor. Heat sensitive member 1
Is referred to as the heating plate 1 here. As shown in the figure, a heater 5 is inserted through the optical fiber protection tube 4 together with the optical fiber 3. The heater 5 is fixed to the bottom of the concave space of the heat generating plate 1.
【0027】図示しないがヒータ5の一端には、電源が
設置されているものとする。この電源は、ヒータ5への
電力を所望の時間間隔で定期的に入り切りする間欠電源
であってもよい。Although not shown, a power source is installed at one end of the heater 5. This power source may be an intermittent power source that periodically turns on and off the power to the heater 5 at desired time intervals.
【0028】さて、この実施形態では、発熱板1にヒー
タ5を張り付け、ヒータ5にて発熱板1を加熱し、発熱
板1の線膨張によるひずみ或いは発熱板1の温度そのも
のをFBG2にて測定してもよい。電力によってヒータ
5に与えられる熱量が同じでも、土壌湿潤度により発熱
板1の温度上昇幅が異なる。この温度上昇幅をFBG2
の反射波長のシフト量によってモニタすることにより、
明確に土壌湿潤度を把握することができる。In this embodiment, the heater 5 is attached to the heating plate 1, the heating plate 1 is heated by the heater 5, and the strain due to the linear expansion of the heating plate 1 or the temperature itself of the heating plate 1 is measured by the FBG 2. You may. Even if the amount of heat given to the heater 5 by the electric power is the same, the temperature rise width of the heating plate 1 differs depending on the soil wetness. This temperature rise width is FBG2
By monitoring the shift amount of the reflected wavelength of
The soil wetness can be clearly understood.
【0029】ヒータ5に供給する電力を定期的に入り切
りして、断続的に加熱と自然冷却を行い、これによる発
熱板1の温度の上昇幅或いは下降幅から湿潤度を求めて
もよい。The electric power supplied to the heater 5 may be turned on and off periodically to intermittently perform heating and natural cooling, and the degree of wetness may be determined from the rise or fall width of the temperature of the heat generating plate 1 due to this.
【0030】また、温度上昇時或いは下降時の過渡応答
特性、例えば、温度変化の時定数から湿潤度を求めても
よい。The wettability may be obtained from the transient response characteristic when the temperature rises or falls, for example, the time constant of temperature change.
【0031】以上説明したように、本発明は、温度或い
は温度に起因するひずみをFBGの反射波長から読み取
るようにしたので、リアルタイムで温度測定を行うこと
ができる。また、FBGは光ファイバの途中に随意に形
成することができ、そのFBGを感熱部材に固定するだ
けなので、湿潤センサの構成が簡素である。As described above, according to the present invention, the temperature or the strain caused by the temperature is read from the reflection wavelength of the FBG, so that the temperature can be measured in real time. Further, the FBG can be arbitrarily formed in the middle of the optical fiber, and since the FBG is only fixed to the heat sensitive member, the structure of the wetness sensor is simple.
【0032】土壌熱抵抗計を用いた従来技術との比較で
言うと、本発明は、光ファイバを用いているので、測定
現地に商用電源を引き込まなくてよく、耐雷性が高い。
また、湿潤度測定器に接続した1本の光ファイバに複数
のFBGを形成すれば、複数地点での土壌湿潤度測定が
できるので、経済的である。Compared with the conventional technique using a soil thermal resistance meter, since the present invention uses an optical fiber, it is not necessary to pull in a commercial power source to the measurement site and the lightning resistance is high.
Further, if a plurality of FBGs are formed in one optical fiber connected to the wetness measuring device, soil wetness can be measured at a plurality of points, which is economical.
【0033】後方散乱光を利用した従来技術との比較で
言うと、本発明は、光ファイバを円筒に巻き付けないの
で、光ファイバ長が短くなり、センサの寸法が小さくな
る。また、測定周期をとる必要がなく、リアルタイムで
湿潤度が測定できる。Compared with the prior art utilizing backscattered light, the present invention does not wind an optical fiber around a cylinder, so the optical fiber length is shortened and the size of the sensor is reduced. In addition, the wettability can be measured in real time without having to take a measurement cycle.
【0034】[0034]
【発明の効果】本発明は次の如き優れた効果を発揮す
る。The present invention exhibits the following excellent effects.
【0035】(1)温度或いは温度に起因するひずみを
FBGの反射波長から読み取るようにしたので、リアル
タイムで温度測定を行うことができる。(1) Since the temperature or the strain caused by the temperature is read from the reflection wavelength of the FBG, the temperature can be measured in real time.
【0036】(2)FBGを感熱部材に固定するだけな
ので、湿潤センサの構成が簡素である。(2) Since the FBG is only fixed to the heat sensitive member, the structure of the wetness sensor is simple.
【図1】本発明の一実施形態を示すFBG湿潤センサの
透視斜視図である。FIG. 1 is a perspective view of an FBG wetness sensor according to an embodiment of the present invention.
【図2】本発明の一実施形態を示すFBG湿潤センサの
透視斜視図である。FIG. 2 is a perspective view of an FBG wetness sensor according to an embodiment of the present invention.
1 感熱部材(感熱板、発熱板) 2 FBG 3 光ファイバ 4 光ファイバ保護管 5 熱源(ヒータ) 1 Heat-sensitive member (heat-sensitive plate, heat-generating plate) 2 FBG 3 optical fiber 4 Optical fiber protection tube 5 Heat source (heater)
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F056 VF02 2G040 AB08 BA03 BB04 CA02 CA12 CA23 CB04 DA10 DA12 EA02 EB02 EC03 EC04 FA01 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 2F056 VF02 2G040 AB08 BA03 BB04 CA02 CA12 CA23 CB04 DA10 DA12 EA02 EB02 EC03 EC04 FA01
Claims (9)
熱部材に固定した状態で土壌中に埋設し、この光ファイ
バブラッググレーティングの反射波長から前記感熱部材
の温度を検出し、その温度から土壌の湿潤度を求めるこ
とを特徴とする土壌湿潤度測定方法。1. An optical fiber Bragg grating is fixed to a heat-sensitive member and embedded in soil, the temperature of the heat-sensitive member is detected from the reflection wavelength of the optical fiber Bragg grating, and the degree of wetness of the soil is determined from the temperature. A method for measuring soil wetness, comprising:
電力による熱源を埋設し、この熱源に電力を供給したと
きの前記感熱部材の温度変化から土壌の湿潤度を求める
ことを特徴とする請求項1記載の土壌湿潤度測定方法。2. A heat source by electric power is buried in the vicinity of the heat sensitive member buried in the soil, and the degree of wetness of the soil is obtained from the temperature change of the heat sensitive member when power is supplied to the heat source. The soil wetness measuring method according to claim 1.
前記感熱部材の温度を上昇・下降させることを特徴とす
る請求項2記載の土壌湿潤度測定方法。3. The soil wetness measuring method according to claim 2, wherein the electric power of the heat source is turned on and off periodically to raise and lower the temperature of the heat sensitive member.
幅から湿潤度を求めることを特徴とする請求項3記載の
土壌湿潤度測定方法。4. The soil wetness measuring method according to claim 3, wherein the wettability is obtained from an increase width or a decrease width of the temperature of the heat sensitive member.
湿潤度を求めることを特徴とする請求項3記載の土壌湿
潤度測定方法。5. The soil wetness measuring method according to claim 3, wherein the wetness is obtained from the transient response characteristic of the temperature of the heat sensitive member.
ィングが固定されており、この感熱部材が埋設された土
壌の湿潤度に応じて前記光ファイバブラッググレーティ
ングの反射波長が変化することを特徴とする光ファイバ
ブラッググレーティング湿潤センサ。6. An optical fiber in which an optical fiber Bragg grating is fixed to a heat sensitive member, and the reflection wavelength of the optical fiber Bragg grating changes according to the degree of wetness of the soil in which the heat sensitive member is buried. Bragg grating wetness sensor.
に金属材料からなる被覆が施されており、前記感熱部材
が金属で構成されており、この金属感熱部材に前記被覆
が溶接固定されていることを特徴とする請求項6記載の
光ファイバブラッググレーティング湿潤センサ。7. The optical fiber Bragg grating is coated with a metal material, the heat sensitive member is made of metal, and the metal heat sensitive member is welded and fixed to the coating. The optical fiber Bragg grating wetness sensor according to claim 6.
に金属材料からなる被覆が施されており、前記感熱部材
が金属で構成されており、この金属感熱部材に前記被覆
がハンダ固定されていることを特徴とする請求項6又は
7記載の光ファイバブラッググレーティング湿潤セン
サ。8. The optical fiber Bragg grating is coated with a metal material, the heat-sensitive member is made of metal, and the coating is soldered to the metal heat-sensitive member. The optical fiber Bragg grating wetness sensor according to claim 6 or 7.
ることを特徴とする請求項6〜8いずれか記載の光ファ
イバブラッググレーティング湿潤センサ。9. The optical fiber Bragg grating wetting sensor according to claim 6, wherein a heat source is attached to the heat sensitive member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002100283A JP2003294662A (en) | 2002-04-02 | 2002-04-02 | Method for measuring degree of wettability of soil and optical fiber bragg grating wettability sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002100283A JP2003294662A (en) | 2002-04-02 | 2002-04-02 | Method for measuring degree of wettability of soil and optical fiber bragg grating wettability sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003294662A true JP2003294662A (en) | 2003-10-15 |
Family
ID=29241312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002100283A Pending JP2003294662A (en) | 2002-04-02 | 2002-04-02 | Method for measuring degree of wettability of soil and optical fiber bragg grating wettability sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003294662A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104483341A (en) * | 2014-12-12 | 2015-04-01 | 广西科技大学 | Test method of temperature sensing performance of intelligent carbon fiber plate |
CN107064011A (en) * | 2017-02-09 | 2017-08-18 | 北京航天控制仪器研究所 | A kind of fiber bragg grating temperature sensor |
CN108225603A (en) * | 2017-12-29 | 2018-06-29 | 北京信息科技大学 | Based on LPFG and the cascade two-parameter fibre optical sensors of FBG and preparation method thereof |
WO2018192344A1 (en) * | 2017-04-20 | 2018-10-25 | 苏州南智传感科技有限公司 | System and method for monitoring seepage rate and moisture content of rock-soil body based on ihat-fbg |
CN109828097A (en) * | 2019-01-09 | 2019-05-31 | 湖南大学 | A kind of soil water meauring device and method based on fiber bragg grating |
-
2002
- 2002-04-02 JP JP2002100283A patent/JP2003294662A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104483341A (en) * | 2014-12-12 | 2015-04-01 | 广西科技大学 | Test method of temperature sensing performance of intelligent carbon fiber plate |
CN107064011A (en) * | 2017-02-09 | 2017-08-18 | 北京航天控制仪器研究所 | A kind of fiber bragg grating temperature sensor |
CN107064011B (en) * | 2017-02-09 | 2020-06-09 | 北京航天控制仪器研究所 | Fiber grating humidity sensor |
WO2018192344A1 (en) * | 2017-04-20 | 2018-10-25 | 苏州南智传感科技有限公司 | System and method for monitoring seepage rate and moisture content of rock-soil body based on ihat-fbg |
CN108225603A (en) * | 2017-12-29 | 2018-06-29 | 北京信息科技大学 | Based on LPFG and the cascade two-parameter fibre optical sensors of FBG and preparation method thereof |
CN109828097A (en) * | 2019-01-09 | 2019-05-31 | 湖南大学 | A kind of soil water meauring device and method based on fiber bragg grating |
CN109828097B (en) * | 2019-01-09 | 2020-04-07 | 湖南大学 | Device and method for measuring soil moisture content based on fiber Bragg grating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103080711B (en) | Infrared thermography and stabilization thereof | |
GB2416394B (en) | Method and apparatus for measuring fluid properties | |
CN100397055C (en) | Calibrating temperature sensors of weathering devices by means of contactless temperature measurement | |
US8534912B2 (en) | Apparatus for determining and/or monitoring a measured variable | |
CN204422102U (en) | Fiber optic temperature Real-Time Monitoring and dynamic calibration apparatus | |
JPH10227703A (en) | Heat flux meter | |
CN108414036B (en) | Quasi-distributed flow velocity monitoring system | |
CN103115694B (en) | Fiber Bragg grating (FBG) high-sensitivity temperature sensor based on low-melting-point glass welding | |
CN107505477B (en) | Three-dimensional fiber Bragg grating wind speed and direction sensor and system | |
US8583385B2 (en) | Thermal, flow measuring device | |
CN105424972A (en) | Near wall surface flow velocity measuring method and apparatus | |
JP2003294662A (en) | Method for measuring degree of wettability of soil and optical fiber bragg grating wettability sensor | |
CN110398610B (en) | Flow velocity detection method and probe of optical fiber hot wire flow velocity sensor | |
KR101261627B1 (en) | Apparutus and system for measuring heat flux | |
JP5157821B2 (en) | Attachment detection apparatus and detection method | |
RU98240U1 (en) | TEMPERATURE STICK-UP SENSOR | |
Diller et al. | Heat flux measurement | |
CN104048767A (en) | Strip-shaped foil type transient radiation heat flow meter | |
JPS61296229A (en) | Thermocouple and method for mounting the same | |
JP3063793B2 (en) | Liquid level measurement method | |
CN211178802U (en) | Calibration device applied to distributed optical fiber temperature measurement system | |
CN108088580B (en) | Temperature measuring element capable of realizing small insertion depth precision measurement | |
JP2006194821A (en) | Method for measuring moisture content in soil | |
FR2959814A1 (en) | CALIBRATION METHOD OF ELECTRONIC CHIP, ELECTRONIC CHIP AND THERMAL PATTERN DETECTOR FOR THIS METHOD | |
JPS60146118A (en) | Method and apparatus for measuring level of interface |