JP2003291883A - Ship - Google Patents
ShipInfo
- Publication number
- JP2003291883A JP2003291883A JP2002097833A JP2002097833A JP2003291883A JP 2003291883 A JP2003291883 A JP 2003291883A JP 2002097833 A JP2002097833 A JP 2002097833A JP 2002097833 A JP2002097833 A JP 2002097833A JP 2003291883 A JP2003291883 A JP 2003291883A
- Authority
- JP
- Japan
- Prior art keywords
- ship
- degrees
- hull
- bow
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Landscapes
- Vibration Prevention Devices (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
(57)【要約】
【課題】 船舶が受ける風圧抵抗を軽減する。
【解決手段】 船体11の上甲板14−1と両舷側部1
6a,16bとを結ぶ両角部17a,17bに、それぞ
れ船首12から船尾13のほぼ全長に、あるいは船首1
2からほぼ船体中央部にわたって切欠段部17a,17
bを設ける。
(57) [Summary] [Problem] To reduce wind pressure resistance on a ship. SOLUTION: Upper deck 14-1 of hull 11 and both sides 1
6a and 16b, the two corners 17a and 17b, respectively, from the bow 12 to almost the entire length of the stern 13 or the bow 1
2 to the notch steps 17a, 17
b is provided.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車専用船,コ
ンテナ船等の貨物船、タンカー、客船等の船舶に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cargo ship such as a car carrier and a container ship, a tanker, a passenger ship and the like.
【0002】[0002]
【従来の技術】図8に示すように、船舶1が航走時に受
ける抵抗は、水中抵抗と風圧抵抗に分けることができ
る。水中抵抗には、造波抵抗と摩擦抵抗とがあり、全抵
抗のうち多くを占めている。このため、水中抵抗に関し
ては従来から研究され、その解析結果が現在の船舶の形
状に反映されている。ところが、風圧抵抗に関しては軽
視されており、風圧抵抗を軽減するような形状の改良が
なされていないのが実情であった。2. Description of the Related Art As shown in FIG. 8, the resistance received by a ship 1 while traveling can be divided into underwater resistance and wind pressure resistance. Underwater resistance includes wave-making resistance and frictional resistance, which account for the majority of the total resistance. For this reason, underwater resistance has been studied in the past, and the results of its analysis have been reflected in the current shape of ships. However, wind pressure resistance has been neglected, and the reality is that the shape has not been improved to reduce wind resistance.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、船舶
1、特に風圧を受け易い水面上形状を有する自動車専用
船,コンテナ船,タンカー等は、前方から風を受ける
と、その風の直接的な影響によって船速が低下するばか
りでなく、風に起因する船体の姿勢変化(斜航)により
水中抵抗が増加して、運行性能に影響を及ぼすことがあ
った。However, when the ship 1 receives a wind from the front, the ship 1, especially a car carrier, a container ship, a tanker, etc., which has a shape above the water surface that is easily subjected to wind pressure, is directly affected by the wind. Not only the vessel speed decreased, but also the underwater resistance increased due to the attitude change (oblique navigation) of the hull caused by the wind, which sometimes affected the operation performance.
【0004】例えば、図9に示すように、船舶1は、針
路3に対して左斜め前から風2を受けた場合、左舷から
右舷方向に横力が生じ、船体に時計方向のヨーモーメン
ト(回転力)が発生する。このヨーモーメントに対抗し
て船首方位を針路3の方向に維持しようとすると当て舵
を取る必要がある。このときに舵に働く水の力が抵抗と
なる。また船舶1は、横力を受けているため斜め(矢印
4の方向)に進むことになる。このように斜航すること
によって船体に働く水中抵抗は増大する。このときの斜
航角度αが大きいほど当て舵量も大きく、また、船体が
水から受ける抵抗も大きくなる。For example, as shown in FIG. 9, when the boat 1 receives a wind 2 obliquely to the left from a course 3, a lateral force is generated from the port side to the starboard direction, and a clockwise yaw moment ( Rotational force) is generated. In order to keep the heading of the boat in the direction of the course 3 against the yaw moment, it is necessary to steer the steering wheel. At this time, the force of water acting on the rudder becomes resistance. Further, since the ship 1 receives a lateral force, it will travel diagonally (in the direction of arrow 4). By performing such an oblique cruise, the underwater resistance acting on the hull increases. At this time, the larger the diagonal angle α, the larger the amount of rudder steering, and the greater the resistance of the hull from water.
【0005】本発明はこのような事情に基づいてなされ
たもので、その目的とするところは、風圧による抵抗,
横力,ヨーモーメントを軽減できる船体構造を有するこ
とで、斜航角度を小さく、また船体に働く水中抵抗を小
さくできる船舶を提供しようとするものである。The present invention has been made under these circumstances, and its purpose is to provide resistance to wind pressure,
An object of the present invention is to provide a ship that has a hull structure that can reduce lateral force and yaw moment, thereby making it possible to reduce the angle of oblique navigation and the underwater resistance acting on the hull.
【0006】[0006]
【課題を解決するための手段】請求項1に係る発明は、
上記課題を解決し、目的を達成するために、船体の上甲
板と両舷側部とを結ぶ両角部に、それぞれ船首から船尾
のほぼ全長にわたって切欠段部を設けた船舶にある。The invention according to claim 1 is
In order to solve the above problems and achieve the object, there is provided a ship in which notched step portions are provided at both corners that connect the upper deck of the hull and both port side portions over substantially the entire length from the bow to the stern.
【0007】また、請求項2に係る発明は、同様な切欠
段部を船首からほぼ船体中央部までの範囲にわたって設
けた船舶にある。The invention according to claim 2 resides in a ship provided with a similar notch step portion over a range from the bow to almost the center of the hull.
【0008】この請求項1または2記載の船舶におい
て、請求項3に係る発明のように、切欠段部の上甲板か
らの深さを、バラスト積載時の乾舷に対して5〜20%
に設定することが望ましい。In the vessel according to claim 1 or 2, as in the invention according to claim 3, the depth from the upper deck of the notched step portion is 5 to 20% with respect to the freeboard when the ballast is loaded.
It is desirable to set to.
【0009】また、請求項4に係る発明のように、船首
部に、船首前縁上端から上甲板に向かって水平面に対し
て上向きの傾斜面を形成すると、より効果的である。Further, as in the invention according to claim 4, it is more effective to form an inclined surface on the bow portion upward from the upper end of the front edge of the bow toward the upper deck with respect to the horizontal plane.
【0010】この請求項4記載の船舶において、請求項
5に係る発明のように、傾斜面の水平面に対する上向き
角度を20〜60度に設定するとよい。In the ship according to the fourth aspect, as in the invention according to the fifth aspect, the upward angle of the inclined surface with respect to the horizontal plane may be set to 20 to 60 degrees.
【0011】また、好ましくは、請求項6に係る発明の
ように、傾斜面の水平面に対する上向き角度をほぼ38
度に設定する。Further, preferably, as in the invention according to claim 6, the upward angle of the inclined surface with respect to the horizontal plane is approximately 38.
Set to every.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0013】この実施の形態は、本発明のうち全長にわ
たる切欠段部を自動車専用船に適用した場合であり、自
動車専用船の船体概略図を図1に示し、船体の切欠段部
を設けた部位を幅方向に切断したときの断面模式図を図
2に示し、船首部の側面図及び上面図を図3に示す。This embodiment is a case in which the notched step portion over the entire length of the present invention is applied to an automobile carrier, and a schematic view of the hull of the automobile carrier is shown in FIG. 1, in which the notched step portion of the hull is provided. FIG. 2 shows a schematic cross-sectional view when the portion is cut in the width direction, and FIG. 3 shows a side view and a top view of the bow portion.
【0014】この自動車専用船は、船体11の船首12
から船尾13に亙って水平面にほぼ平行の複数の甲板1
4−1,14−2,14−3,…,14−nで仕切られ
た階層構造を有している。最上部の甲板,いわゆる上甲
板14−1には、船首側に船楼15が設けられている。This car carrier is provided with a bow 12 of a hull 11.
A plurality of decks 1 that are almost parallel to the horizontal plane over the stern 13
It has a hierarchical structure partitioned by 4-1, 14-2, 14-3, ..., 14-n. A tower 15 is provided on the bow side of the uppermost deck, so-called upper deck 14-1.
【0015】上甲板14−1と両舷側部16a,16b
とを結ぶ両角部17a,17bに、それぞれ船首12か
ら船尾13のほぼ全長にわたって切欠段部18a,18
bが形成されている。船体の上甲板14−1からキール
19までの深さをDとし、バラスト航海状態,つまり積
荷が無く適当量のバラストを搭載して航海するときの喫
水をd,乾舷をf(f=D−d)としたとき、両切欠段
部18a,18bの上甲板14−1からの深さgは、上
記乾舷fに対して5〜20%に設定されている。また、
両切欠段部18a,18bの幅hは、深さgとほぼ等し
くなるように設定されている。Upper deck 14-1 and port side portions 16a, 16b
At both corners 17a and 17b that connect to and, the notch steps 18a and 18 are provided over substantially the entire length from the bow 12 to the stern 13, respectively.
b is formed. The depth from the upper deck 14-1 of the hull to the keel 19 is D, and the ballast sailing condition, that is, the draft when the ship is sailing with an appropriate amount of ballast without cargo, is f (f = D). -D), the depth g from the upper deck 14-1 of both notch steps 18a and 18b is set to 5 to 20% with respect to the freeboard f. Also,
The width h of both notch steps 18a and 18b is set to be substantially equal to the depth g.
【0016】因みに、この実施の形態では、両切欠段部
18a,18bは、上甲板14−1から第2甲板14−
2に亙って、積荷となる自動車1台分の幅で、方形状に
切り欠くことによって形成されている。Incidentally, in this embodiment, both notch steps 18a and 18b are formed by the upper deck 14-1 to the second deck 14-.
It is formed by cutting out in a rectangular shape with a width of one automobile as a cargo over the width 2.
【0017】船体11の船首12には、船首前縁上端1
2aから上甲板14−1に向かって上向きの傾斜面20
が形成されている。この傾斜面20は、水平面に対する
上向き角度が20〜60度(deg.)の幅で設定されてい
る。好ましくは、積荷積載量等を考慮すると、ほぼ38
度(deg.)がよい。The bow 12 of the hull 11 has a front end 1 at the front edge of the bow.
An inclined surface 20 that faces upward from 2a toward the upper deck 14-1
Are formed. The inclined surface 20 is set such that the upward angle with respect to the horizontal plane is 20 to 60 degrees (deg.). Preferably, considering the load capacity and the like, it is almost 38
Good degree (deg.).
【0018】この他の船体構造は、従来周知の自動車専
用船と同じであり、ここでの詳細な説明は省略する。The other structure of the hull is the same as that of a conventionally known car carrier, and therefore detailed description thereof will be omitted.
【0019】次に、本実施の形態の船体構造を有する自
動車専用船が風圧抵抗の軽減に効果があることを、風洞
実験の結果と、CFD(Computational Fluid Dynamic
s)ソルバーを用いた数値解析の結果から説明する。Next, it is shown that the car carrier having the hull structure of the present embodiment is effective in reducing wind pressure resistance, as a result of wind tunnel experiments, and CFD (Computational Fluid Dynamic).
s) Explain from the results of numerical analysis using the solver.
【0020】因みに、風洞実験は、上流と下流に開口部
を有する風路(高さ110m,幅480m,長さ600
m)を造り、その内部に実験対象となる自動車専用船を
船首が風路の上流側を向くように設置して、風路上流側
から風向きが異なる風(相対風向=β)を適宜流すこと
により、船体に生じる流体力を実測するというものであ
る。By the way, in the wind tunnel experiment, an air passage having an opening in the upstream and the downstream (height 110 m, width 480 m, length 600)
m) is built, and a car carrier to be tested is installed in the interior so that the bow faces the upstream side of the air passage, and wind with different wind direction (relative wind direction = β) is appropriately flown from the upstream side of the air passage. Is to measure the fluid force generated on the hull.
【0021】一方、CFDソルバーを用いた数値解析,
いわゆるCFD解析は、風洞実験と同様の風路を計算機
内の仮想空間内に形成し、その内部に実験対象となる自
動車専用船を船首が風路の上流側を向くように設置して
風路上流側から風向きが異なる風を流すというシミュレ
ーションにより、船体に生ずる流体力を解析するという
ものである。このとき、風路壁面の摩擦はないものと
し、また、風路入口からは完全な一様流が流入すること
にした。On the other hand, numerical analysis using a CFD solver,
In so-called CFD analysis, an air path similar to that in a wind tunnel experiment is formed in a virtual space in a computer, and a car carrier to be tested is installed inside the air path so that the bow faces the upstream side of the air path. The fluid force generated in the hull is analyzed by a simulation in which winds with different wind directions flow from the flow side. At this time, it is assumed that there is no friction on the air passage wall surface, and that a complete uniform flow will flow in from the air passage inlet.
【0022】実験対象となる自動車専用船の主要寸法を
[表1]に示す。この[表1]は、実験対象となる自動
車専用船の垂線長Lpp、船幅B(mld.)、深さD(mld.)、
バラスト積載時の喫水d、バラスト積載時の乾舷f、代
表面積(=B×f)及び代表長さ(=Lpp)を示すもの
である。The main dimensions of the car carrier to be tested are shown in [Table 1]. This [Table 1] shows the vertical line length Lpp, ship width B (mld.), Depth D (mld.)
It shows the draft d when the ballast is loaded, the freeboard f when the ballast is loaded, the representative area (= B × f) and the representative length (= Lpp).
【0023】[0023]
【表1】 [Table 1]
【0024】風洞実験においては、上記主要寸法を有す
る従来構造の自動車専用船(以下、原型船と称する)
と、この原型船に対して、深さgが2.2m(乾舷fに
対して約8.6%)で幅が1.8mの各切欠段部18
a,18bと、水平面に対する角度が38度(deg.)の傾
斜面20を形成した本実施の形態の自動車専用船(以
下、最終型船と称する)を用いた。In the wind tunnel experiment, an automobile carrier of the conventional structure having the above main dimensions (hereinafter referred to as a prototype ship)
With respect to this prototype ship, each notch step portion 18 has a depth g of 2.2 m (about 8.6% of the freeboard f) and a width of 1.8 m.
A car carrier (hereinafter referred to as a final type ship) of the present embodiment in which a and 18b and an inclined surface 20 having an angle of 38 degrees (deg.) with respect to the horizontal plane are formed was used.
【0025】CFD解析においては、上記原型船及び最
終型船に加えて、最終型船に対して傾斜面20の角度の
みそれぞれ20度(deg.),45度(deg.),60度(deg.)
及び90度(deg.)に設定した自動車専用船を用いた。In the CFD analysis, in addition to the prototype ship and the final ship, only the angle of the inclined surface 20 with respect to the final ship is 20 degrees (deg.), 45 degrees (deg.), And 60 degrees (deg.), Respectively. .)
And a car carrier set at 90 degrees (deg.) Was used.
【0026】風洞実験及びCFD解析において得られる
流体力は、実験対象となる自動車専用船の船体水線面の
中央を原点とし、船体固定座標系における流体力として
まとめた。その座標系を図4に示す。得られた流体力
は、次に示す無次元化係数によりまとめた。The hydrodynamic forces obtained in the wind tunnel experiment and the CFD analysis are summarized as hydrodynamic forces in a fixed hull coordinate system, with the center of the waterline of the hull of the automobile carrier being the experiment as the origin. The coordinate system is shown in FIG. The obtained fluid force was summarized by the dimensionless coefficient shown below.
【0027】抵抗係数:CFx=Fx/q・A 横力係数:CFy=Fy/q・A ヨーモーメント係数:CMz=Mz/q・A・L ここで、 q:動圧(=ρV2/2) ρ:空気密度 V:船に対する相対風速 A:代表面積(=船幅B×乾舷f) L:代表長さ(=垂線長Lpp)である。The resistance coefficient: CFx = Fx / q · A lateral force coefficient: CFy = Fy / q · A yaw moment coefficient: CMz = Mz / q · A · L where, q: dynamic pressure (= ρV 2/2 ) Ρ: Air density V: Relative wind speed to the ship A: Representative area (= ship width B × freeboard f) L: Representative length (= perpendicular length Lpp).
【0028】最終型船に対する風洞実験の結果を[表
2]に、原型船に対する風洞実験の結果を[表3]に、
最終型船に対するCFD解析結果を[表4]に、原型船
に対するCFD解析結果を[表5]にそれぞれ示す。
[表2]〜[表5]は、各種の相対風向β度に対する抵
抗係数CFx、横力係数CFy及びヨーモーメント係数CMz
を示すものである。The results of the wind tunnel experiment for the final type ship are shown in [Table 2], and the results of the wind tunnel experiment for the prototype ship are shown in [Table 3].
The CFD analysis results for the final type ship are shown in [Table 4], and the CFD analysis results for the prototype ship are shown in [Table 5].
[Table 2] to [Table 5] show resistance coefficient CFx, lateral force coefficient CFy, and yaw moment coefficient CMz for various relative wind direction β degrees.
Is shown.
【0029】[0029]
【表2】 [Table 2]
【0030】[0030]
【表3】 [Table 3]
【0031】[0031]
【表4】 [Table 4]
【0032】[0032]
【表5】 [Table 5]
【0033】以下、これらの結果に基づいて、原型船と
最終型船との各流体力係数について分析する。The fluid force coefficients of the prototype ship and the final ship will be analyzed below based on these results.
【0034】(1)抵抗係数CFx
原型船に対する風洞実験結果及びCFD解析結果と、最
終型船に対する風洞実験結果及びCFD解析結果の、相
対風向βに対する抵抗係数CFxの関係を、図5に示す。(1) Resistance Coefficient CFx The relationship between the resistance coefficient CFx with respect to the relative wind direction β of the wind tunnel test result and the CFD analysis result for the prototype ship and the wind tunnel test result and the CFD analysis result for the final ship is shown in FIG.
【0035】風洞実験及びCFD解析によって得られた
結果によると、解析を行なった全ての相対風向で、最終
型船は原型船に対して抵抗係数CFxが小さな値を示し
た。CFD解析において、それぞれの相対風向での最終
型船の原型船に対する抵抗係数CFxの軽減率は、相対風
向0度(deg.)において約18%、相対風向20度(deg.)
において約21%、相対風向30度(deg.)において約1
9%であった。また、風洞実験においても、相対風向0
度(deg.)における軽減率は約20%、相対風向20度(d
eg.)おける軽減率は約20%、相対風向30度(deg.)に
おける軽減率は約22%で、最終型船の方が原型船より
も抵抗係数CFxが軽減された。According to the results obtained by the wind tunnel experiment and the CFD analysis, the resistance coefficient CFx of the final type ship was smaller than that of the prototype ship in all the relative wind directions analyzed. In the CFD analysis, the reduction rate of the resistance coefficient CFx of the final type ship to the prototype ship in each relative wind direction is about 18% in the relative wind direction 0 degree (deg.), And the relative wind direction 20 degree (deg.).
About 21% in relative wind direction about 30 degrees (deg.) About 1%
It was 9%. In the wind tunnel experiment, the relative wind direction was 0.
The degree of reduction in degrees (deg.) Is about 20%, and the relative wind direction is 20 degrees (d
eg.), the reduction rate was about 20%, and the reduction rate at a relative wind direction of 30 degrees (deg.) was about 22%, and the resistance coefficient CFx of the final type ship was smaller than that of the prototype ship.
【0036】CFD解析結果と風洞実験結果とを対比す
ると、CFD解析結果は風洞実験結果に比べて抵抗係数
CFxが大きな値を示しているが、相対風向に対する軽減
率は、定性的には比較的良好な一致を示した。When the CFD analysis result and the wind tunnel test result are compared, the CFD analysis result shows that the resistance coefficient CFx is larger than that of the wind tunnel test result, but the reduction rate for the relative wind direction is relatively qualitatively. It showed a good agreement.
【0037】(2)横力係数CFy
原型船に対する風洞実験結果及びCFD解析結果と、最
終型船に対する風洞実験結果及びCFD解析結果の、相
対風向βに対する横力係数CFyの関係を、図6に示す。(2) Lateral Force Coefficient CFy The relationship between the lateral force coefficient CFy and the relative wind direction β of the wind tunnel test result and CFD analysis result for the prototype ship and the wind tunnel test result and CFD analysis result for the final ship is shown in FIG. Show.
【0038】風洞実験及びCFD解析によって得られた
結果によると、解析を行なった全ての相対風向で、最終
型船は原型船に対して横力係数CFyが小さな値を示し
た。CFD解析において、それぞれの相対風向での最終
型船の原型船に対する横力係数CFyの軽減率は、相対風
向20度(deg.)において約13%、相対風向30度(de
g.)において約19%であった。また、風洞実験におい
ても、相対風向20度(deg.)おける軽減率は約19%、
相対風向30度(deg.)における軽減率は約21%で、軽
減率に若干の違いはあるものの、最終型船の方が原型船
よりも横力係数CFyが軽減された。According to the results obtained by the wind tunnel experiment and the CFD analysis, the lateral force coefficient CFy of the final type ship was smaller than that of the original type ship in all the relative wind directions analyzed. In the CFD analysis, the reduction rate of the lateral force coefficient CFy of the final type ship with respect to the prototype ship in each relative wind direction is about 13% in the relative wind direction 20 degrees (deg.), And the relative wind direction 30 degrees (de
g.) was about 19%. Also, in the wind tunnel experiment, the reduction rate at a relative wind direction of 20 degrees (deg.) Was about 19%,
The reduction rate at a relative wind direction of 30 degrees (deg.) Was about 21%, and although there was some difference in the reduction rate, the lateral force coefficient CFy was reduced in the final type ship than in the prototype ship.
【0039】(3)ヨーモーメント係数CMz
原型船に対する風洞実験結果及びCFD解析結果と、最
終型船に対する風洞実験結果及びCFD解析結果の、相
対風向βに対するヨーモーメント係数CMzの関係を、図
7に示す。(3) Yaw moment coefficient CMz The relationship between the yaw moment coefficient CMz and the relative wind direction β of the wind tunnel test result and CFD analysis result for the prototype ship and the wind tunnel test result and CFD analysis result for the final ship is shown in FIG. Show.
【0040】風洞実験及びCFD解析によって得られた
結果によると、相対風向20度(deg.)以上で最終型船は
原型船に対してヨーモーメント係数CMzが小さな値を示
した。CFD解析において、それぞれの相対風向での最
終型船の原型船に対するヨーモーメント係数CMzの軽減
率は、相対風向20度(deg.)において約21%、相対風
向30度(deg.)において約21%であった。また、風洞
実験においても、相対風向20度(deg.)における軽減率
は約12%、相対風向30度(deg.)における軽減率は約
12%で、CFD解析結果の方が風洞実験結果よりも船
型変更による違いを大きく評価しているが、いずれにし
ても、相対風向や形状の違いによるヨーモーメント係数
CMzの大小関係はおよそ捉えることができている。According to the results obtained by the wind tunnel experiment and the CFD analysis, the yaw moment coefficient CMz of the final type ship was smaller than that of the original type ship at a relative wind direction of 20 degrees (deg.) Or more. In the CFD analysis, the reduction rate of the yaw moment coefficient CMz with respect to the prototype ship of the final type ship in each relative wind direction is about 21% in the relative wind direction 20 degrees (deg.) And about 21% in the relative wind direction 30 degrees (deg.). %Met. Also, in the wind tunnel experiment, the reduction rate at a relative wind direction of 20 degrees (deg.) Was about 12%, the reduction rate at a relative wind direction of 30 degrees (deg.) Was about 12%, and the CFD analysis result was better than the wind tunnel experiment result. Although the difference due to the change in hull form is also highly evaluated, the size relationship of the yaw moment coefficient CMz due to the difference in relative wind direction and shape can be roughly grasped in any case.
【0041】次に、原型船及び最終型船について、CF
D解析によって得られた風の流場情報を検討する。図4
に示すように、針路をX方向に向けた原型船及び最終型
船に対して左斜め前方(相対風向β=20度)より風を
流すと、原型船と最終型船とは、船体右舷下流側に生じ
る、流速が遅くなる領域の広さに大きな違いがある。原
型船では、船体によって作られた渦や剥離によって流速
が遅くなる領域が船体右舷下流側に広がる。一般に、流
速が遅くなる領域が広くなるほど風圧抵抗は大きくな
る。最終型船は、船側部に形成された切欠段部18a,
18bや船首部に形成された傾斜面20によって、この
流速が遅くなる領域が小さくなっており、抵抗改善の効
果を覗うことができる。Next, regarding the prototype ship and the final model ship, CF
Consider the wind flow field information obtained by D analysis. Figure 4
As shown in, when wind is blown to the prototype ship and the final model ship with the course in the X direction from the left diagonal forward (relative wind direction β = 20 degrees), the prototype ship and the final model ship are on the starboard downstream side of the hull. There is a large difference in the size of the region where the flow velocity becomes slower on the side. In the prototype ship, the region where the flow velocity slows down due to eddies and separation created by the hull extends to the downstream side of the starboard side of the hull. Generally, the larger the area where the flow velocity becomes slower, the larger the wind pressure resistance becomes. The final type ship has a notch step 18a formed on the side of the ship,
Due to the inclined surface 20 formed on the bow portion 18b and the bow portion, the region where the flow velocity becomes slow is small, and the effect of improving the resistance can be seen.
【0042】また、同じく左斜め前方(相対風向β=2
0度)から風を流したときの船首部の流速分布を見る
と、原型船と最終型船とは、船首部上甲板面の流速に大
きな違いがある。船首部上甲板面の流速を比較すると、
原型船は最終型船に比べて非常に流速が遅い。原型船
は、船首部のエッジ部分で流れが剥離したために流速が
遅くなったと思われ、抵抗悪化の原因と認めることがで
きる。最終型船は、船首部に水平面に対して上向きの傾
斜面20を形成しているので、この部分において流速が
十分に速く剥離が発生し難いため、風圧抵抗を小さくで
きる。Similarly, to the left diagonally forward (relative wind direction β = 2
Looking at the flow velocity distribution on the bow when a wind is blown from 0 degree), there is a large difference in the flow velocity on the upper deck surface of the bow between the prototype ship and the final ship. Comparing the flow velocity on the upper deck surface of the bow,
The prototype ship has a much slower flow velocity than the final model ship. In the prototype ship, the flow velocity seems to have slowed down due to the separation of the flow at the edge of the bow, which can be considered to be the cause of the deterioration in resistance. Since the final type ship has the inclined surface 20 that is upward with respect to the horizontal plane at the bow portion, the flow velocity is sufficiently high in this part and separation is unlikely to occur, so wind pressure resistance can be reduced.
【0043】さらに、同じく左斜め前方(相対風向β=
20度)から風を流したときの船側部の流速分布を見る
と、原型船と最終型船とは、上甲板14−1上で発生す
る渦の有無に大きな違いがある。渦が発生した場合は、
渦が発生しない場合と比べて、渦による2次流れによる
損失が発生し、風圧抵抗増加の原因となる。原型船で
は、大きな渦が発生しているが、最終型船では大きな渦
は発生していない。この効果は、最終型船が、船体の上
甲板と両舷側部とを結ぶ両角部を切り欠いたことにより
達成されていると思われる。Similarly, diagonally to the left front (relative wind direction β =
Looking at the flow velocity distribution on the side of the ship when the wind is blown from 20 degrees), there is a large difference between the prototype ship and the final ship in the presence or absence of vortices generated on the upper deck 14-1. If a vortex occurs,
As compared with the case where no vortex is generated, a loss due to the secondary flow due to the vortex occurs, which causes an increase in wind pressure resistance. A large vortex is generated on the prototype ship, but no large vortex is generated on the final model ship. This effect is considered to be achieved by the final type ship having notches at both corners connecting the upper deck of the hull and the starboard sides.
【0044】最後に、最終型船の船首部傾斜面20の水
平線に対する角度をそれぞれ20度(deg.),45度(de
g.),60度(deg.)及び90度(deg.)に設定した自動車
専用船を用いてCFD解析を行なった結果を[表6]に
示す。[表6]は、各種の傾斜面角度(船首傾斜角)毎
に、相対風向20度(deg.)における抵抗係数CFx、横力
係数CFy及びヨーモーメント係数CMzを示すものであ
る。Finally, the angles of the bow slope 20 of the final type ship with respect to the horizon are 20 degrees (deg.) And 45 degrees (de), respectively.
g.), 60 degrees (deg.) and 90 degrees (deg.) are used to carry out the CFD analysis using a car carrier, and Table 6 shows the results. [Table 6] shows the resistance coefficient CFx, the lateral force coefficient CFy, and the yaw moment coefficient CMz at a relative wind direction of 20 degrees (deg.) For each of various inclined surface angles (bow inclination angle).
【0045】[0045]
【表6】 [Table 6]
【0046】CFD解析によって得られた結果による
と、抵抗係数CFxは、傾斜面20の水平線に対する角度
の増加とともに増加するが、角度が45度(deg.)以上に
なると抵抗係数CFxの増加が大きくなり、特に60度(d
eg.)を超え90度(deg.)の範囲ではその増加が顕著とな
る。一方、45度(deg.)以下の角度では大きな差はない
ことが確認できる。一方、横力係数CFy及びヨーモーメ
ント係数CMzは、傾斜面20の水平線に対する角度が異
なっても、大きな差はないことが確認できる。According to the result obtained by the CFD analysis, the resistance coefficient CFx increases as the angle of the inclined surface 20 with respect to the horizontal line increases, but when the angle becomes 45 degrees (deg.) Or more, the resistance coefficient CFx increases greatly. Especially 60 degrees (d
The increase is remarkable in the range of 90 degrees (deg.) over eg.). On the other hand, it can be confirmed that there is no significant difference at an angle of 45 degrees (deg.) Or less. On the other hand, it can be confirmed that the lateral force coefficient CFy and the yaw moment coefficient CMz are not significantly different even if the angle of the inclined surface 20 with respect to the horizontal line is different.
【0047】さらに、傾斜面20の角度が異なる各自動
車専用船について、CFD解析によって得られた風の流
場情報を検討する。傾斜面20の水平面に対する角度が
90度(deg.)の自動車専用船においては、前述の原型船
と同様に、上甲板14−1上で流れが剥離している領域
を確認することができる。傾斜面20の角度が60度(d
eg.)の船においても若干の剥離の兆候を認めることがで
きるが、傾斜面20の角度が45度(deg.)以下では、剥
離の兆候はほとんど見られない。すなわち、傾斜面20
の角度が45度(deg.)以下であれば、抵抗係数CFxに大
きな違いはない。Further, the wind flow field information obtained by the CFD analysis will be examined for each car carrier having different angles of the inclined surface 20. In an automobile carrier with the angle of the sloping surface 20 with respect to the horizontal plane being 90 degrees (deg.), The region where the flow is separated on the upper deck 14-1 can be confirmed as in the case of the prototype ship described above. The angle of the inclined surface 20 is 60 degrees (d
Even in the case of eg.), some signs of peeling can be recognized, but when the angle of the inclined surface 20 is 45 degrees (deg.) or less, almost no sign of peeling is seen. That is, the inclined surface 20
If the angle is less than 45 degrees (deg.), There is no big difference in the resistance coefficient CFx.
【0048】以上説明した風洞実験及びCFD解析の結
果から、次のような事項を確認することができる。From the results of the wind tunnel experiment and CFD analysis described above, the following matters can be confirmed.
【0049】 最終型船は、原型船に対して抵抗係数
CFxの軽減を達成できる。その軽減率は、相対風向β=
0,20,30度(deg.)において、約20%程度であ
る。The final type ship can achieve reduction of the resistance coefficient CFx with respect to the original type ship. The reduction rate is relative wind direction β =
It is about 20% at 0, 20, and 30 degrees (deg.).
【0050】 最終型船は、原型船に対して横力係数
CFyの軽減を達成できる。その軽減率は、相対風向β=
20,30度(deg.)において、約20%程度である。The final type ship can achieve reduction of the lateral force coefficient CFy with respect to the original type ship. The reduction rate is relative wind direction β =
At 20 and 30 degrees (deg.), It is about 20%.
【0051】 最終型船は、原型船に対してヨーモー
メント係数CMzの軽減を達成できる。その軽減率は、相
対風向β=20,30度(deg.)において、約10〜20
%程度である。The final type ship can achieve reduction of the yaw moment coefficient CMz with respect to the original type ship. The reduction rate is about 10-20 at relative wind direction β = 20, 30 degrees (deg.).
%.
【0052】 船首部に形成した傾斜面20の水平面
に対する角度と抵抗係数CFxとの関係は、角度の増加と
ともに増加し、角度が45度(deg.)以上になると抵抗係
数CFxの増加が大きくなり、特に60度(deg.)を超え9
0(deg.)度の範囲ではその増加が顕著となるが、45度
(deg.)以下の角度では大きな差はない。一方、横力係数
CFyとヨーモーメント係数CMzとは、傾斜面20の水平
面に対する角度が異なっても大きな差がない。The relationship between the angle of the inclined surface 20 formed on the bow portion with respect to the horizontal plane and the resistance coefficient CFx increases with an increase in the angle, and when the angle becomes 45 degrees (deg.) Or more, the increase in the resistance coefficient CFx increases. , Especially over 60 degrees (deg.) 9
The increase is remarkable in the range of 0 (deg.) Degrees, but 45 degrees
There is no big difference at angles less than (deg.). On the other hand, the lateral force coefficient CFy and the yaw moment coefficient CMz are not significantly different even if the angle of the inclined surface 20 with respect to the horizontal plane is different.
【0053】なお、本発明は、自動車専用船に限らず、
コンテナ船などの貨物船や、タンカー,客船等にも適用
することによって、風圧による抵抗,横力,ヨーモーメ
ントの軽減を図ることができる。横力,ヨーモーメント
を軽減することにより、斜航及び必要な当て舵量を小さ
くすることができ、それらによる水中抵抗も軽減でき
る。The present invention is not limited to a car carrier,
By applying it to cargo ships such as container ships, tankers, passenger ships, etc., it is possible to reduce resistance due to wind pressure, lateral force, and yaw moment. By reducing the lateral force and yaw moment, it is possible to reduce the amount of rudder and the required rudder amount, and also to reduce the underwater resistance.
【0054】また、前記実施の形態では、船体11の上
甲板14−1と両舷側部16a,16bとを結ぶ両角部
17a,17bに、それぞれ船首12から船尾13のほ
ぼ全長にわたって切欠段部18a,18bを設けたが、
同様な切欠段部を船首からほぼ船体中央部までの範囲に
わたって設けるだけでもほぼ同様な作用効果を奏し得
る。すなわち風圧下の斜航を減らすには、前述したよう
に横力とヨーモーメントの少なくとも一方を減らすこと
ができればよい。横力は、風を斜め前方から受けた場合
には船体中央よりも前方(船首側)に作用する。横力の
作用位置は、ヨーモーメントMzを横力Fyで除するこ
とによって求まる。例えば[表2]に示した最終型船に
対する風洞実験結果から相対風向20度(deg.)の場合に
は、ヨーモーメント係数CMzが0.398であり、横力
係数CFyが1.920であるので、横力作用位置(CMz
/CFy)は0.21となる。すなわち、このとき横力
は、船体中央より前方0.21Lの位置に働いているこ
とになる。そこで、船体前半部に働く横力を軽減させれ
ば、これによるヨーモーメントをより軽減できる可能性
がある。このため、船体前半部だけに切欠段部を設置す
ることも有効である。Further, in the above-mentioned embodiment, the notch step portion 18a is formed on both corner portions 17a and 17b connecting the upper deck 14-1 of the hull 11 and the starboard side portions 16a and 16b, respectively, over substantially the entire length from the bow 12 to the stern 13. , 18b are provided,
Even if a similar notch step portion is provided over the range from the bow to almost the center of the hull, substantially the same operational effect can be obtained. That is, in order to reduce the oblique navigation under wind pressure, it is sufficient to reduce at least one of the lateral force and the yaw moment as described above. Lateral force acts forward (on the bow side) of the center of the hull when wind is received from diagonally forward. The acting position of the lateral force is obtained by dividing the yaw moment Mz by the lateral force Fy. For example, from the wind tunnel test results for the final type ship shown in [Table 2], when the relative wind direction is 20 degrees (deg.), The yaw moment coefficient CMz is 0.398 and the lateral force coefficient CFy is 1.920. Therefore, the lateral force acting position (CMz
/ CFy) becomes 0.21. That is, at this time, the lateral force acts on the position 0.21 L ahead of the center of the hull. Therefore, if the lateral force acting on the first half of the hull is reduced, the yaw moment due to this may be further reduced. For this reason, it is also effective to install the notch step only in the first half of the hull.
【0055】[0055]
【発明の効果】以上詳述したように本発明によれば、風
圧による抵抗,横力,ヨーモーメントを軽減できる船体
構造を有し、斜航角度が小さく、また船体に働く水中抵
抗が小さい船舶を提供できる。As described in detail above, according to the present invention, a ship having a hull structure capable of reducing resistance due to wind pressure, lateral force, and yaw moment, a small diagonal angle, and a small underwater resistance acting on the hull. Can be provided.
【図1】 本発明の一実施の形態である自動車専用船の
船型概略図。FIG. 1 is a schematic view of a ship form of an automobile carrier according to an embodiment of the present invention.
【図2】 同自動車専用船の船体の切欠段部を設けた部
位を幅方向に切断したときの縦断面模式図。FIG. 2 is a schematic vertical cross-sectional view of a portion of the hull of the vehicle carrier that is provided with a notch step portion, taken along the width direction.
【図3】 同自動車専用船の船首部における側面図及び
上面図。FIG. 3 is a side view and a top view of a bow portion of the automobile carrier.
【図4】 風洞実験及びCFD解析の説明に用いる座標
系を示す図。FIG. 4 is a diagram showing a coordinate system used for explaining a wind tunnel experiment and a CFD analysis.
【図5】 原型船に対する風洞実験結果及びCFD解析
結果と、最終型船に対する風洞実験結果及びCFD解析
結果の、相対風向βに対する抵抗係数CFxの関係を示す
図。FIG. 5 is a diagram showing the relationship between the resistance coefficient CFx with respect to the relative wind direction β in the wind tunnel test result and the CFD analysis result for the prototype ship and the wind tunnel test result and the CFD analysis result for the final ship.
【図6】 原型船に対する風洞実験結果及びCFD解析
結果と、最終型船に対する風洞実験結果及びCFD解析
結果の、相対風向βに対する横力係数CFyの関係を示す
図。FIG. 6 is a diagram showing the relationship between the lateral force coefficient CFy and the relative wind direction β of the wind tunnel test result and the CFD analysis result for the prototype ship, and the wind tunnel test result and the CFD analysis result for the final ship.
【図7】 原型船に対する風洞実験結果及びCFD解析
結果と、最終型船に対する風洞実験結果及びCFD解析
結果の、相対風向βに対するヨーモーメント係数CMzの
関係を示す図。FIG. 7 is a diagram showing the relationship between the yaw moment coefficient CMz and the relative wind direction β of the wind tunnel test result and the CFD analysis result for the prototype ship and the wind tunnel test result and the CFD analysis result for the final ship.
【図8】 船舶に作用する抵抗の説明図。FIG. 8 is an explanatory diagram of resistance acting on a ship.
【図9】 風向きと船舶との関係を示す図。FIG. 9 is a diagram showing a relationship between wind direction and a ship.
11…船体 12…船首 13…船尾 14−1…上甲板 15…船楼 16a,16b…舷側 17a,17b…角部 18a,18b…切欠段部 20…傾斜面 11 ... Hull 12 ... Bow 13 ... Stern 14-1 ... Upper deck 15 ... Ship 16a, 16b ... port side 17a, 17b ... Corners 18a, 18b ... Notch step 20 ... Inclined surface
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 良和 東京都港区虎ノ門二丁目1番1号 株式会 社商船三井内 (72)発明者 松本 光一郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Yoshikazu Tanaka 2-1-1 Toranomon, Minato-ku, Tokyo Stock market Company Merchant Ship Mitsui (72) Inventor Koichiro Matsumoto 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Main Steel Pipe Co., Ltd.
Claims (6)
に、それぞれ船首から船尾のほぼ全長にわたって切欠段
部を設けたことを特徴とする船舶。1. A ship characterized by being provided with notched steps over substantially the entire length from the bow to the stern, at both corners connecting the upper deck of the hull and the starboard sides.
に、それぞれ船首からほぼ船体中央部までの範囲にわた
って切欠段部を設けたことを特徴とする船舶。2. A ship characterized in that notched step portions are provided at both corners connecting the upper deck of the hull and the starboard side parts, respectively, over a range from the bow to approximately the center of the hull.
ラスト積載時の乾舷に対して5〜20%に設定したこと
を特徴とする請求項1または2記載の船舶。3. The ship according to claim 1, wherein the depth from the upper deck of the notched step portion is set to 5 to 20% of the freeboard when the ballast is loaded.
かって水平面に対して上向きの傾斜面を形成したことを
特徴とする請求項1〜3のうちいずれか1項記載の船
舶。4. The ship according to claim 1, wherein the bow portion is formed with an inclined surface which is upward with respect to a horizontal plane from the upper end of the front edge of the bow toward the upper deck.
を20〜60度に設定したことを特徴とする請求項4記
載の船舶。5. The ship according to claim 4, wherein the upward angle of the inclined surface with respect to the horizontal plane is set to 20 to 60 degrees.
をほぼ38度に設定したことを特徴とする請求項4記載
の船舶。6. The ship according to claim 4, wherein the upward angle of the inclined surface with respect to the horizontal plane is set to approximately 38 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002097833A JP3841712B2 (en) | 2002-03-29 | 2002-03-29 | Ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002097833A JP3841712B2 (en) | 2002-03-29 | 2002-03-29 | Ship |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003291883A true JP2003291883A (en) | 2003-10-15 |
JP3841712B2 JP3841712B2 (en) | 2006-11-01 |
Family
ID=29240150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002097833A Expired - Lifetime JP3841712B2 (en) | 2002-03-29 | 2002-03-29 | Ship |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3841712B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014042127A1 (en) * | 2012-09-11 | 2014-03-20 | 三井造船株式会社 | Commercial cargo ship |
JP2014080095A (en) * | 2012-10-16 | 2014-05-08 | Shin Kurushima Dockyard Co Ltd | Bow shape of chip ship |
JP2015074297A (en) * | 2013-10-08 | 2015-04-20 | 株式会社大内海洋コンサルタント | Stowage method on container ship |
-
2002
- 2002-03-29 JP JP2002097833A patent/JP3841712B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014042127A1 (en) * | 2012-09-11 | 2014-03-20 | 三井造船株式会社 | Commercial cargo ship |
JP2014054878A (en) * | 2012-09-11 | 2014-03-27 | Mitsui Eng & Shipbuild Co Ltd | Commercial cargo ship |
CN104619582A (en) * | 2012-09-11 | 2015-05-13 | 三井造船株式会社 | Commercial cargo ship |
KR20150054713A (en) * | 2012-09-11 | 2015-05-20 | 미쯔이 죠센 가부시키가이샤 | Commercial cargo ship |
KR102114711B1 (en) * | 2012-09-11 | 2020-05-26 | 미쯔이 이앤에스 쉽빌딩 씨오., 엘티디. | Commercial cargo ship |
JP2014080095A (en) * | 2012-10-16 | 2014-05-08 | Shin Kurushima Dockyard Co Ltd | Bow shape of chip ship |
JP2015074297A (en) * | 2013-10-08 | 2015-04-20 | 株式会社大内海洋コンサルタント | Stowage method on container ship |
Also Published As
Publication number | Publication date |
---|---|
JP3841712B2 (en) | 2006-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112272637B (en) | Small wind resistance ship | |
KR20080092850A (en) | Ship | |
EP1718518B1 (en) | Transonic hull and hydrofield (part iii-a) | |
JP2003160090A (en) | Ship bow shape | |
JP5638215B2 (en) | Ship with low wind pressure resistance and its design method | |
JP4401891B2 (en) | Ship | |
JP2003291883A (en) | Ship | |
Hasegawa et al. | Study on the maneuverability of a large vessel installed with a mariner type Super VecTwin rudder | |
JP4009643B2 (en) | Ship bow shape | |
US4920909A (en) | Boat with rotatable wheel keel for resistance to leeward movement in water and for sand transport | |
JP4938056B2 (en) | Stern wave interference fin | |
JP5268999B2 (en) | Ship | |
AU2004317357A1 (en) | Transonic hull and hydrofield III | |
TWI772675B (en) | A hull in particular for a container ship, a bulk carrier or a tanker | |
JP7473622B1 (en) | Ships | |
WO2023223617A1 (en) | Ship | |
JPH03159865A (en) | Air cushion boat | |
JP5028000B2 (en) | Ship | |
JP2025020992A (en) | Vessel | |
JP3356006B2 (en) | Ship bow shape | |
JPH1129090A (en) | Living area shape of ship | |
Dong et al. | Planing Craft Stability, Maneuverability, and Seakeeping | |
JP2023130867A (en) | Vessel | |
JP2000142553A (en) | Large ship | |
JP2000025682A (en) | Super shallow draft carrying vessel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060718 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3841712 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090818 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110818 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120818 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |