[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003282520A - Cleaning method of vessel and method for manufacturing solar battery - Google Patents

Cleaning method of vessel and method for manufacturing solar battery

Info

Publication number
JP2003282520A
JP2003282520A JP2002081908A JP2002081908A JP2003282520A JP 2003282520 A JP2003282520 A JP 2003282520A JP 2002081908 A JP2002081908 A JP 2002081908A JP 2002081908 A JP2002081908 A JP 2002081908A JP 2003282520 A JP2003282520 A JP 2003282520A
Authority
JP
Japan
Prior art keywords
cleaning
container
vessel
silicon substrate
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002081908A
Other languages
Japanese (ja)
Inventor
Takuo Nakai
拓夫 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002081908A priority Critical patent/JP2003282520A/en
Publication of JP2003282520A publication Critical patent/JP2003282520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device wherein the sufficient cleaning effect of a semiconductor is obtained and stable high characteristics are obtained. <P>SOLUTION: By using the mixture of a solution of NaOH and a surfactant, a vessel is cleaned in which vessel anisotropic etching and cleaning which are used for forming unevenness on a silicon substrate for a solar battery are performed repeatedly. The mixture solution of NaOH and the surfactant which has been used in preceding treatment is discharged (S1), and the vessel is cleaned once by using pure water (S2). After that, the vessel is filled with pure water in a state with pH set as at most 7 (S3), an ozone gas is injected, and an ozone concentration is maintained at almost 5 ppm, and the vessel is left as it is for about three hours (S4). Due to cleaning by ozone water, a cleaning inhibitor stuck on the wall surface of the vessel is oxidized, decomposed and removed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池などの半
導体装置の製造方法に関し、特に、界面活性剤を使用し
て半導体の洗浄を行う容器を洗浄する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device such as a solar cell, and more particularly to a method for cleaning a container for cleaning a semiconductor using a surfactant.

【0002】[0002]

【従来の技術】太陽電池などの半導体装置を製造する工
程にあって、界面活性剤を使用して容器内で半導体を洗
浄する際に、洗浄によって発生する洗浄阻害物質が容器
の壁面に付着する。この付着した洗浄阻害物質により洗
浄能力が低下してエッチング処理などの半導体装置の製
造時の処理に悪影響が及ぶので、容器の壁面に付着され
た洗浄阻害物質を除去する必要がある。
2. Description of the Related Art In the process of manufacturing a semiconductor device such as a solar cell, when a semiconductor is cleaned in a container using a surfactant, a cleaning inhibitor generated by cleaning adheres to the wall surface of the container. . The cleaning inhibitor attached to the wall surface of the container needs to be removed because the cleaning inhibitor reduces the cleaning ability and adversely affects the processing such as the etching process during manufacturing of the semiconductor device.

【0003】そこで、従来では、半導体の洗浄処理で使
用するものと同じ組成の洗浄液、高濃度のアルカリ溶
液、または水を用いて容器を洗浄し、洗浄阻害物質を除
去するようにしている。
Therefore, conventionally, the cleaning inhibitor is removed by cleaning the container with a cleaning liquid having the same composition as that used in the semiconductor cleaning process, a high-concentration alkaline solution, or water.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たような従来の容器の洗浄方法では、長期にわたって半
導体の洗浄処理を続けた場合に、容器の壁面に付着され
た洗浄阻害物質を十分に除去することができなくなって
半導体の十分な洗浄効果が得られず、不十分な洗浄に伴
う特性劣化を有した半導体装置が製造されてしまうとい
う問題がある。
However, in the conventional container cleaning method described above, when the semiconductor cleaning process is continued for a long period of time, the cleaning inhibitor adhered to the wall surface of the container is sufficiently removed. However, there is a problem in that a sufficient cleaning effect on the semiconductor cannot be obtained, and a semiconductor device having characteristic deterioration due to insufficient cleaning is manufactured.

【0005】本発明は斯かる事情に鑑みてなされたもの
であり、オゾンを利用して容器を洗浄することにより、
洗浄阻害物質を十分に除去できて、安定した洗浄効果が
得られて、特性劣化がない半導体装置を製造できる容器
の洗浄方法、及び、その洗浄方法を適用した太陽電池の
製造方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and by cleaning the container using ozone,
To provide a method for cleaning a container capable of sufficiently removing a cleaning inhibitor, obtaining a stable cleaning effect, and manufacturing a semiconductor device without deterioration in characteristics, and a method for manufacturing a solar cell to which the cleaning method is applied. With the goal.

【0006】[0006]

【課題を解決するための手段】第1発明に係る容器の洗
浄方法は、界面活性剤を使用した半導体洗浄を行う容器
を洗浄する方法において、オゾンを用いて前記容器を洗
浄することを特徴とする。
According to a first aspect of the present invention, there is provided a method for cleaning a container, which is characterized in that the container is cleaned using a surfactant, and the container is cleaned using ozone. To do.

【0007】第1発明にあっては、オゾンを用いて、具
体的にはオゾン水またはオゾンガスにて、容器の壁面を
洗浄することにより、容器の壁面に付着された洗浄阻害
物質をオゾンの酸化力によって酸化・分解して除去す
る。この結果、洗浄阻害物質は十分に除去されて、その
容器内で行われる半導体の洗浄効果が安定化し、この結
果、不十分な洗浄に伴う特性劣化は製造される半導体装
置に生じない。
In the first aspect of the present invention, the wall surface of the container is washed with ozone, specifically with ozone water or ozone gas, so that the cleaning inhibitor attached to the wall surface of the container is oxidized with ozone. It is oxidized and decomposed by force and removed. As a result, the cleaning inhibitor is sufficiently removed, and the cleaning effect of the semiconductor performed in the container is stabilized, and as a result, characteristic deterioration due to insufficient cleaning does not occur in the manufactured semiconductor device.

【0008】第2発明に係る太陽電池の製造方法は、請
求項1記載の洗浄方法を適用した容器内で、太陽電池用
のシリコン基板に凹凸形状を形成するためのエッチング
処理を実施することを特徴とする。
A method of manufacturing a solar cell according to a second aspect of the present invention comprises performing an etching treatment for forming an uneven shape on a silicon substrate for a solar cell in a container to which the cleaning method according to claim 1 is applied. Characterize.

【0009】第2発明にあっては、光閉じ込め効果を得
るためにシリコン基板の表面に凹凸形状(テクスチャ構
造)を形成するエッチング処理を行う容器に対して、第
1発明による、オゾンを用いた容器の洗浄方法を施す。
この結果、エッチング処理が安定化して、鏡面を殆ど有
さない理想的なピラミッド状のテクスチャ構造をシリコ
ン基板の表面に形成できて、製造される太陽電池の光電
変換特性は向上する。
In the second aspect of the invention, ozone is used in the first aspect of the invention for a container that is subjected to an etching treatment for forming an uneven shape (texture structure) on the surface of a silicon substrate in order to obtain a light confining effect. Implement container cleaning method.
As a result, the etching process is stabilized, an ideal pyramid-like texture structure having almost no mirror surface can be formed on the surface of the silicon substrate, and the photoelectric conversion characteristics of the manufactured solar cell are improved.

【0010】[0010]

【発明の実施の形態】以下、本発明をその実施の形態を
示す図面を参照して具体的に説明する。なお、以下の説
明では、HIT(Heterojunction with Intrinsic Thin
-layer)型の太陽電池におけるシリコン基板の表面に凹
凸形状(テクスチャ構造)を形成するためのエッチング
処理を施す容器に対して本発明を適用する例について述
べる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to the drawings showing the embodiments thereof. In the following description, HIT (Heterojunction with Intrinsic Thin
An example in which the present invention is applied to a container that is subjected to an etching treatment for forming an uneven shape (texture structure) on the surface of a silicon substrate in a -layer) type solar cell will be described.

【0011】図1は、HIT型の太陽電池の構成を示す
断面図である。図1において、1は単結晶シリコン,多
結晶シリコン等の結晶系半導体からなるn型のシリコン
基板である。シリコン基板1の表面(一方の主面)に
は、光電変換効率を向上すべく光閉じ込め効果を得るた
めに、均一な凹凸形状(テクスチャ構造)の加工が施さ
れている。この凹凸形状(テクスチャ構造)は、後述す
るように異方性エッチングによって形成する。
FIG. 1 is a sectional view showing the structure of a HIT type solar cell. In FIG. 1, reference numeral 1 is an n-type silicon substrate made of a crystalline semiconductor such as single crystal silicon or polycrystalline silicon. The surface (one main surface) of the silicon substrate 1 is processed to have a uniform uneven shape (texture structure) in order to obtain a light confinement effect in order to improve photoelectric conversion efficiency. This uneven shape (texture structure) is formed by anisotropic etching as described later.

【0012】シリコン基板1の表面上には、i型非晶質
シリコン層/p型非晶質シリコン層の積層体2と、例え
ばITO(Indium Tin Oxide)からなる透光性導電膜3
とが積層形成されている。このように表面側に、n型の
シリコン基板と非晶質シリコン層とのヘテロ接合が形成
されている。透光性導電膜3上には、例えばAgペース
トからなる櫛型状の集電極4が形成されている。また、
シリコン基板1の裏面(他方の主面)には、例えばAl
膜からなる裏面電極5が形成されている。
On the surface of the silicon substrate 1, a laminate 2 of i-type amorphous silicon layer / p-type amorphous silicon layer and a transparent conductive film 3 made of, for example, ITO (Indium Tin Oxide).
And are stacked. Thus, the heterojunction between the n-type silicon substrate and the amorphous silicon layer is formed on the front surface side. A comb-shaped collector electrode 4 made of, for example, Ag paste is formed on the transparent conductive film 3. Also,
On the back surface (the other main surface) of the silicon substrate 1, for example, Al
A back surface electrode 5 made of a film is formed.

【0013】次に、このような構成を有する太陽電池の
製造工程について説明する。まず、(100)面に沿っ
てスライスしたn型のシリコン基板1を、温度85℃、
2.5モル/リットルのNaOH水溶液に浸漬する。こ
の浸漬によって、シリコン基板1の表面の付着物及び加
工歪をエッチング除去する。
Next, a manufacturing process of the solar cell having such a structure will be described. First, the n-type silicon substrate 1 sliced along the (100) plane is heated at a temperature of 85 ° C.
Immerse in 2.5 mol / liter NaOH aqueous solution. By this immersion, the deposits and processing strains on the surface of the silicon substrate 1 are removed by etching.

【0014】次いで、上記処理後のシリコン基板1を、
0.5モル/リットルのNaOH水溶液に例えばカプリ
ル酸からなる10モル/リットルの界面活性剤を添加さ
せて温度を85℃としたエッチング液を収納した容器内
に40分間浸漬する。なお、界面活性剤としてカプリル
酸を用いているが、他の有機酸、例えばアルキルスルホ
ン酸などを使用してもよい。NaOH水溶液を用いた異
方性エッチングでは(111)面のエッチング速度が他
の結晶方位のエッチング速度に比べて極めて遅いので、
(100)面にスライスされたシリコン基板1に対する
このNaOHでの異方性エッチングにより、(111)
面に配向した4つの壁によって構成された断面がV字形
のピラミッド状の凹凸形状がシリコン基板1の表面に形
成される。また、本例では、添加した界面活性剤が、N
aOHによるエッチングの残り滓を除去してシリコン基
板1を洗浄する作用を果たしており、シリコン基板1に
対する異方性エッチング処理と洗浄処理とを同時に行っ
ている。
Then, the silicon substrate 1 after the above treatment is
For example, 10 mol / l of a surfactant made of caprylic acid is added to 0.5 mol / l of NaOH aqueous solution and immersed in a container containing an etching solution having a temperature of 85 ° C. for 40 minutes. Although caprylic acid is used as the surfactant, other organic acids such as alkyl sulfonic acid may be used. In anisotropic etching using an aqueous NaOH solution, the etching rate of the (111) plane is extremely slow compared to the etching rates of other crystal orientations,
By anisotropic etching with this NaOH on the silicon substrate 1 sliced on the (100) plane, (111)
A pyramidal concavo-convex shape having a V-shaped cross section, which is composed of four walls oriented in the plane, is formed on the surface of the silicon substrate 1. In this example, the added surfactant is N
It has a function of cleaning the silicon substrate 1 by removing the residue of etching by aOH, and performs the anisotropic etching process and the cleaning process on the silicon substrate 1 at the same time.

【0015】次いで、上記処理後のシリコン基板1を室
温にて純水で洗浄した後、2モル/リットルのHF水溶
液に室温にて浸してシリコン基板1の表面の酸化膜を除
去し、その後、再び室温にて純水で洗浄する。次に、H
F及びHNO3 を1:10の割合で混合させた溶液に室
温にてシリコン基板1を30秒間浸して、ピラミッド形
状に丸みを持たせた後、室温にて純水で洗浄する。
Next, the silicon substrate 1 after the above treatment is washed with pure water at room temperature and then immersed in a 2 mol / l HF aqueous solution at room temperature to remove the oxide film on the surface of the silicon substrate 1, and thereafter. Wash again with pure water at room temperature. Next, H
The silicon substrate 1 is dipped in a solution in which F and HNO 3 are mixed at a ratio of 1:10 at room temperature for 30 seconds to have a rounded pyramid shape, and then washed with pure water at room temperature.

【0016】次いで、濃度15ppmのオゾン水に室温
にてシリコン基板1を5分間浸して、界面活性剤を分解
・除去した後、室温にて純水で洗浄する。次に、2モル
/リットルのHF水溶液に室温にてシリコン基板1を浸
してオゾンによる表面の酸化膜を除去した後、室温にて
純水で洗浄する。シリコン基板1に対する処理はこれで
終了し、最後にシリコン基板1を乾燥させる。
Next, the silicon substrate 1 is immersed in ozone water having a concentration of 15 ppm at room temperature for 5 minutes to decompose and remove the surfactant, and then washed with pure water at room temperature. Next, the silicon substrate 1 is immersed in a 2 mol / liter HF aqueous solution at room temperature to remove the surface oxide film formed by ozone, and then washed with pure water at room temperature. The processing on the silicon substrate 1 is completed at this point, and the silicon substrate 1 is finally dried.

【0017】以上のような処理を施したシリコン基板1
の表面に、プラズマCVD(Chemical Vapor Depositio
n)法にて、i型/p型の非晶質シリコン層の積層体2を
形成する。次に、スパッタ法により、積層体2の上にI
TOからなる透光性導電膜3を形成する。次に、Agペ
ーストのスクリーン印刷法により、透光性導電膜3の上
に櫛形の集電極4を形成する。最後に、シリコン基板1
の裏面に、Alを蒸着させて裏面電極5を形成する。
The silicon substrate 1 which has been subjected to the above-mentioned processing
Plasma CVD (Chemical Vapor Depositio)
By the method n), a laminate 2 of i-type / p-type amorphous silicon layers is formed. Next, I is formed on the laminate 2 by a sputtering method.
A transparent conductive film 3 made of TO is formed. Next, the comb-shaped collector electrode 4 is formed on the translucent conductive film 3 by a screen printing method of Ag paste. Finally, the silicon substrate 1
A back electrode 5 is formed by evaporating Al on the back surface of.

【0018】上述したような製造工程における、NaO
H/界面活性剤の混合溶液を用いる異方性エッチング/
洗浄処理にあって、初期の段階では良好なエッチング/
洗浄処理を実行できる。しかしながら、容器を洗浄する
ことなく、この処理を長期にわたって継続させた場合に
は、容器の壁面に付着する洗浄阻害物質の量が多くなっ
て混合溶液に混入し、洗浄阻害物質の影響が出てくる。
この結果、界面活性剤とシリコンとの相互作用が弱くな
って、界面活性剤による洗浄効果が不安定となり、良好
な異方性エッチングを行えずに、シリコン基板1に所望
のランダムテクスチャ構造を形成できなくなる。
NaO in the manufacturing process as described above
Anisotropic etching using mixed solution of H / surfactant /
In the cleaning process, good etching /
A cleaning process can be performed. However, if this treatment is continued for a long time without cleaning the container, the amount of the cleaning inhibitor adhering to the wall surface of the container increases and mixes into the mixed solution, and the effect of the cleaning inhibitor appears. come.
As a result, the interaction between the surfactant and silicon is weakened, the cleaning effect by the surfactant becomes unstable, and a desired random texture structure is formed on the silicon substrate 1 without performing good anisotropic etching. become unable.

【0019】即ち、図2に示すように、平坦部がなくて
微細且つ緻密な理想的なピラミッド状の凹凸形状をシリ
コン基板1の表面に本来形成しなければならないのに、
図3に示すように、隣合うピラミッド形状の間に平坦部
1aが形成されることになる。この平坦部は光の反射部
となり、図3のような凹凸形状では図2に示す凹凸形状
と比較して光閉じ込め効果が少なくなり、図3のような
凹凸形状を有するシリコン基板1を使用して製造される
太陽電池では、短絡電流値が低下して出力特性が劣化す
る。
That is, as shown in FIG. 2, an ideal pyramid-shaped concave-convex shape that does not have a flat portion and is fine and dense must be originally formed on the surface of the silicon substrate 1.
As shown in FIG. 3, the flat portion 1a is formed between the adjacent pyramids. This flat portion serves as a light reflection portion, and the uneven shape as shown in FIG. 3 has a smaller light confining effect than the uneven shape shown in FIG. 2, and the silicon substrate 1 having the uneven shape as shown in FIG. 3 is used. In the solar cell manufactured as described above, the short-circuit current value decreases and the output characteristics deteriorate.

【0020】なお、この凹凸形状を良好に形成できたか
否かは、凹凸形成後のシリコン基板1における光反射率
によってモニタでき、良好な凹凸形状である場合(図2
参照)には、その光反射率が安定した低い値を示し、不
良な凹凸形状である場合(図3参照)には、その光反射
率が不安定な高い値を示す。図4は、異方性エッチング
/洗浄処理の回数とシリコン基板1における光反射率と
の関係(概略値)を示すグラフである。初期の段階にあ
っては、シリコン基板1の安定した洗浄処理を行えて、
理想的な凹凸形状を形成できているが、その処理回数が
所定の回数aに達した後は光反射率が高くなっており、
安定した洗浄処理及びそれに基づく良好な異方性エッチ
ングを行えていないことが分かる。
Whether or not this uneven shape has been successfully formed can be monitored by the light reflectance of the silicon substrate 1 after the uneven formation, and when the uneven shape is good (FIG. 2).
(See FIG. 3) shows a stable low value of the light reflectance, and when the concave and convex shape is defective (see FIG. 3), the light reflectance shows a high unstable value. FIG. 4 is a graph showing the relationship (rough value) between the number of anisotropic etching / cleaning treatments and the light reflectance of the silicon substrate 1. In the initial stage, the silicon substrate 1 can be stably washed,
Although the ideal uneven shape can be formed, the light reflectance becomes high after the number of times of processing reaches a predetermined number a,
It can be seen that the stable cleaning process and the good anisotropic etching based on the cleaning process cannot be performed.

【0021】このような異方性エッチング/洗浄処理の
不安定化は、前述したように、容器の壁面に付着する洗
浄阻害物質に起因するので、本発明では、異方性エッチ
ング/洗浄処理が不安定化する前に,オゾンを使用し
て、その洗浄阻害物質を除去すべく容器を洗浄する。
Since the destabilization of the anisotropic etching / cleaning process is caused by the cleaning inhibitor attached to the wall surface of the container as described above, the anisotropic etching / cleaning process is performed in the present invention. Prior to destabilizing, ozone is used to clean the container to remove its cleaning inhibitors.

【0022】図5は、本発明における容器洗浄の手順を
示す図である。まず、事前の処理で使用したNaOH/
界面活性剤の混合溶液を排出する(S1)。次に、純水
で一旦容器を洗浄して、その洗浄水を排出する(S
2)。次に、pHを7以下にした状態で容器内に純水を
満たす(S3)。容器内の純水中にオゾンガスを注入
し、水中のオゾン濃度を5ppm程度に維持して、3時
間程度放置する(S4)。このオゾン水による洗浄によ
って、容器壁面に付着した洗浄阻害物質は酸化・分解さ
れて除去される。なお、この際の水中のオゾン濃度は2
〜10ppmが好ましい。
FIG. 5 is a diagram showing a procedure for cleaning the container according to the present invention. First of all, use the NaOH /
The mixed solution of the surfactant is discharged (S1). Next, the container is washed once with pure water and the washing water is discharged (S
2). Next, the container is filled with deionized water while keeping the pH at 7 or less (S3). Ozone gas is injected into the pure water in the container, the ozone concentration in the water is maintained at about 5 ppm, and it is left for about 3 hours (S4). By this cleaning with ozone water, the cleaning inhibitor attached to the wall surface of the container is oxidized and decomposed and removed. The ozone concentration in the water at this time is 2
10 ppm is preferable.

【0023】次に、オゾン水を排出した(S5)後、純
水にて容器を再び洗浄して、その洗浄水を排出する(S
6)。最後に、異方性エッチング/洗浄処理で使用する
混合溶液と同一組成比のNaOH/界面活性剤溶液にて
容器を洗浄して、その洗浄溶液を排出して(S7)、次
回の異方性エッチング/洗浄処理に備える。
Next, after discharging the ozone water (S5), the container is washed again with pure water and the cleaning water is discharged (S5).
6). Finally, the container is washed with a NaOH / surfactant solution having the same composition ratio as the mixed solution used in the anisotropic etching / washing process, and the washing solution is discharged (S7), and then the anisotropic Prepare for etching / cleaning process.

【0024】なお、上述したように容器内の純水にオゾ
ンガスを注入するのではなく、オゾン水を容器へオーバ
ーフローさせて一定の水中オゾン濃度を維持し、容器を
洗浄する(洗浄阻害物質を除去する)ようにしても、同
様の効果を奏することは勿論である。
It should be noted that instead of injecting ozone gas into the pure water in the container as described above, ozone water is allowed to overflow into the container to maintain a constant ozone concentration in water and the container is washed (cleaning inhibitor is removed. Of course, the same effect can be obtained.

【0025】図6は、本発明の効果を表す異方性エッチ
ング/洗浄処理の回数とシリコン基板1における光反射
率との関係(実測値)を示すグラフである。図6におい
て、(A)では、光反射率が不安定な高い値を示してお
り、容器壁面に付着する洗浄阻害物質の影響によって良
好な異方性エッチングを行えていない。そこで、図6に
おけるB回目の処理の前に、上述したような容器の洗浄
を実施した。その結果、B回目以降の各処理(図6の
(C))では何れも、光反射率が低い値を保っていて図
2に示すような理想的な凹凸形状を形成できており、シ
リコン基板1の安定した洗浄処理及び良好な異方性エッ
チング処理とを実現できていることが分かる。
FIG. 6 is a graph showing the relationship (measured value) between the number of anisotropic etching / cleaning treatments and the light reflectance of the silicon substrate 1 showing the effect of the present invention. In FIG. 6, (A) shows a high value where the light reflectance is unstable, and favorable anisotropic etching cannot be performed due to the influence of the cleaning inhibitor attached to the wall surface of the container. Therefore, before the B-th treatment in FIG. 6, the container was washed as described above. As a result, in each of the B-th and subsequent treatments ((C) of FIG. 6), the light reflectance was kept at a low value and the ideal concavo-convex shape as shown in FIG. 2 could be formed. It can be seen that the stable cleaning process of No. 1 and the excellent anisotropic etching process can be realized.

【0026】なお、太陽電池用のシリコン基板の凹凸形
状を形成するためのエッチング処理に適用する場合につ
いて説明したが、これは一例であり、容器に付着する洗
浄阻害物質が、製造される半導体装置の特性に悪影響を
及ぼすような場合全てに対して、上述したような容器の
洗浄方法が有効であることは勿論である。
The case of applying to the etching process for forming the uneven shape of the silicon substrate for the solar cell has been described, but this is an example, and the cleaning inhibitor adhered to the container is the semiconductor device manufactured. Needless to say, the above-described container cleaning method is effective in all cases where the characteristics of (1) are adversely affected.

【0027】[0027]

【発明の効果】以上のように本発明では、オゾンを用い
て容器を洗浄し、容器の壁面に付着する洗浄阻害物質を
酸化・分解によって除去するようにしたので、半導体の
洗浄効果を安定化でき、高く安定した特性を有する半導
体装置を製造できる。
As described above, according to the present invention, the container is cleaned using ozone, and the cleaning inhibitor adhering to the wall surface of the container is removed by oxidation / decomposition, so that the cleaning effect of the semiconductor is stabilized. Therefore, a semiconductor device having high and stable characteristics can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】HIT型の太陽電池の構成を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a configuration of a HIT type solar cell.

【図2】シリコン基板の理想的な表面形状(凹凸形状)
を示す図である。
[Fig. 2] Ideal surface shape (irregular shape) of a silicon substrate
FIG.

【図3】シリコン基板の不良な表面形状(凹凸形状)を
示す図である。
FIG. 3 is a diagram showing a defective surface shape (uneven shape) of a silicon substrate.

【図4】異方性エッチング/洗浄処理の回数とシリコン
基板における光反射率との関係(概略値)を示すグラフ
である。
FIG. 4 is a graph showing the relationship (rough value) between the number of anisotropic etching / cleaning treatments and the light reflectance of a silicon substrate.

【図5】本発明における容器洗浄の手順を示す図であ
る。
FIG. 5 is a diagram showing a procedure of container cleaning in the present invention.

【図6】本発明の効果を表す異方性エッチング/洗浄処
理の回数とシリコン基板における光反射率との関係(実
測値)を示すグラフである。
FIG. 6 is a graph showing the relationship (measured value) between the number of times of anisotropic etching / cleaning treatment and the light reflectance of a silicon substrate, which shows the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 i型非晶質シリコン層/p型非晶質シリコン層の積
層体 3 透光性導電膜 4 集電極 5 裏面電極
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Laminated body of i-type amorphous silicon layer / p-type amorphous silicon layer 3 Translucent conductive film 4 Collection electrode 5 Backside electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 界面活性剤を使用した半導体洗浄を行う
容器を洗浄する方法において、オゾンを用いて前記容器
を洗浄することを特徴とする容器の洗浄方法。
1. A method of cleaning a container for cleaning a semiconductor using a surfactant, which comprises cleaning the container with ozone.
【請求項2】 請求項1記載の洗浄方法を適用した容器
内で、太陽電池用のシリコン基板に凹凸形状を形成する
ためのエッチング処理を実施することを特徴とする太陽
電池の製造方法。
2. A method of manufacturing a solar cell, wherein an etching treatment for forming an uneven shape on a silicon substrate for a solar cell is performed in a container to which the cleaning method according to claim 1 is applied.
JP2002081908A 2002-03-22 2002-03-22 Cleaning method of vessel and method for manufacturing solar battery Pending JP2003282520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002081908A JP2003282520A (en) 2002-03-22 2002-03-22 Cleaning method of vessel and method for manufacturing solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002081908A JP2003282520A (en) 2002-03-22 2002-03-22 Cleaning method of vessel and method for manufacturing solar battery

Publications (1)

Publication Number Publication Date
JP2003282520A true JP2003282520A (en) 2003-10-03

Family

ID=29230354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002081908A Pending JP2003282520A (en) 2002-03-22 2002-03-22 Cleaning method of vessel and method for manufacturing solar battery

Country Status (1)

Country Link
JP (1) JP2003282520A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072438A1 (en) * 2007-12-04 2009-06-11 Mimasu Semiconductor Industry Co., Ltd. Process for producing polycrystalline silicon substrate and polycrystalline silicon substrate
JP2010261070A (en) * 2009-05-01 2010-11-18 Kanto Chem Co Inc Indium oxalate solubilizer composition
WO2011145604A1 (en) * 2010-05-18 2011-11-24 株式会社新菱 Etching solution, and method for processing surface of silicon substrate
WO2012001874A1 (en) * 2010-06-28 2012-01-05 株式会社Sumco Method for cleaning semiconductor wafer for solar cell substrate
WO2012023613A1 (en) * 2010-08-20 2012-02-23 株式会社トクヤマ Texture-forming composition, method for producing silicon substrate, and kit for preparing texture-forming composition
JP2013110327A (en) * 2011-11-22 2013-06-06 Shinryo Corp Method for manufacturing silicon substrate for solar cell
JP2014175574A (en) * 2013-03-12 2014-09-22 Shin Etsu Handotai Co Ltd Processing method of cleaning tank
JP2015207768A (en) * 2009-10-14 2015-11-19 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Method for purifying and micro-etching semiconductor wafer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072438A1 (en) * 2007-12-04 2009-06-11 Mimasu Semiconductor Industry Co., Ltd. Process for producing polycrystalline silicon substrate and polycrystalline silicon substrate
JP2010261070A (en) * 2009-05-01 2010-11-18 Kanto Chem Co Inc Indium oxalate solubilizer composition
JP2015207768A (en) * 2009-10-14 2015-11-19 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Method for purifying and micro-etching semiconductor wafer
EP2573801A4 (en) * 2010-05-18 2015-03-11 Shinryo Corp Etching solution, and method for processing surface of silicon substrate
WO2011145604A1 (en) * 2010-05-18 2011-11-24 株式会社新菱 Etching solution, and method for processing surface of silicon substrate
JP2012004528A (en) * 2010-05-18 2012-01-05 Shinryo Corp Etchant, and surface processing method of silicon substrate
CN102906863A (en) * 2010-05-18 2013-01-30 株式会社新菱 Etching solution, and method for processing surface of silicon substrate
TWI503400B (en) * 2010-05-18 2015-10-11 新菱股份有限公司 Etching solution and silicon substrate surface processing methods
KR101407988B1 (en) * 2010-05-18 2014-06-18 가부시키가이샤 신료 Etching solution, and method for processing surface of silicon substrate
WO2012001874A1 (en) * 2010-06-28 2012-01-05 株式会社Sumco Method for cleaning semiconductor wafer for solar cell substrate
WO2012023613A1 (en) * 2010-08-20 2012-02-23 株式会社トクヤマ Texture-forming composition, method for producing silicon substrate, and kit for preparing texture-forming composition
JP2013110327A (en) * 2011-11-22 2013-06-06 Shinryo Corp Method for manufacturing silicon substrate for solar cell
JP2014175574A (en) * 2013-03-12 2014-09-22 Shin Etsu Handotai Co Ltd Processing method of cleaning tank

Similar Documents

Publication Publication Date Title
TWI625864B (en) Method for preparing crystalline silicon solar cell suede structure
US20110272625A1 (en) Surface cleaning and texturing process for crystalline solar cells
WO2021136196A1 (en) Monocrystalline silicon wafer with pyramid superposed structure
KR101624989B1 (en) Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell
CN114256382A (en) Texturing and cleaning method for silicon wafer and preparation method for crystalline silicon solar cell
JP3719632B2 (en) Method for manufacturing silicon solar cell
TWI596790B (en) Photovoltaic element and manufacturing method thereof
CN110137302A (en) The cleaning of silicon heterojunction solar battery crystalline silicon substrate and etching method and silicon heterojunction solar battery
CN106601862A (en) Texturing method for reducing reflectivity of monocrystalline silicon heterojunction solar cell
JP4340031B2 (en) Surface roughening method for solar cell substrate
JP2003282520A (en) Cleaning method of vessel and method for manufacturing solar battery
JP5467697B2 (en) Manufacturing method of solar cell
CN104393104B (en) A kind for the treatment of technology for HIT solar cell texture
JP2003069059A (en) Method for roughening glass substrate, and thin film polycrystalline silicon solar battery using the same
CN102593241A (en) Crystalline silicon solar energy battery and method for etching edge of crystalline silicon solar energy battery
JP4339990B2 (en) Surface roughening method of silicon substrate
CN104393094B (en) N-type silicon chip cleaning texturing method for HIT battery
JP2003197940A (en) Method for roughing substrate for solar battery
TW201041174A (en) Method for manufacturing substrate having concave-convex structure and solar cell comprising the same
JP4587988B2 (en) Method for manufacturing solar cell element
JP2007142471A (en) Method for manufacturing solar cell
JPH05267701A (en) Transparent, conductive tin oxide film pattering method
JPH0766437A (en) Manufacture of substrate for photoelectric transducer
JPH11312665A (en) Surface-roughening method of semiconductor substrate
US7556741B2 (en) Method for producing a solar cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050823