JP2003280055A - Vacuum ultraviolet-ray generating apparatus - Google Patents
Vacuum ultraviolet-ray generating apparatusInfo
- Publication number
- JP2003280055A JP2003280055A JP2002082308A JP2002082308A JP2003280055A JP 2003280055 A JP2003280055 A JP 2003280055A JP 2002082308 A JP2002082308 A JP 2002082308A JP 2002082308 A JP2002082308 A JP 2002082308A JP 2003280055 A JP2003280055 A JP 2003280055A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum ultraviolet
- wavelength
- sum frequency
- laser
- yag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、和周波発生により
特に0.208μm〜0.174μmの波長範囲でコヒ
ーレントな真空紫外線を発生する真空紫外線発生装置に
関するものである。
【0002】
【従来の技術】励起光源にNd:YAG、Nd:YLF
等の固体レーザーを用い、その第2高調波で光パラメト
リック発振器を励起し、その出力を非線形光学結晶で波
長変換して、さらにNd:YAG、Nd:YLFの基本
波と和周波発生を行ない0.19μmまでの真空紫外線
を発生する装置としてはBBOやCLBO結晶を用いた
ものが知られている。
【0003】
【発明が解決しようとする課題】しかし、0.19μm
以下の波長の真空紫外線を発生せしめる従来の技術では
以下に述べる問題があった。
【0004】即ち、非線形光学素子としてBBO結晶を
用いたものは0.189μm以下の波長では出力光がす
べて結晶中に吸収され外部に取り出せないという欠点が
あった。またCLBO結晶を用いたものは、位相整合条
件が満足されないため0.186μm以下の真空紫外線
は発生不可能という欠点があった。
【0005】本発明は、上記課題を解決するためになさ
れたものであり、その目的とするところは,高変換効率
且つ高出力で、0.208μm〜0.174μmの波長
範囲で真空紫外線を安定に出力せしめる真空紫外線発生
装置を提供することにある。
【0006】
【課題を解決するための手段】上記の目的を達成すべく
本発明者等は種々の検討を試みた結果、和周波発生素子
としてK2Al2B2O7(KAB)結晶を用いること
により、0.208μm〜0.174μmの波長範囲で
変換効率の高い真空紫外線の発生を見いだしたものであ
る。
【0007】即ち、本発明の真空紫外線発生装置は、励
起光源として1.064μmの波長でレーザー発振する
Nd:YAGや1.047μmと1.053μmの波長
でレーザー発振するNd:YLFの固体レーザーを用
い、その第2高調波(0.532μm、0.5235μ
m、0.5265μm)で励起した各種の光パラメトリ
ック発振器を励起。その出力を従来の方法で0.266
μm〜0.208μmの波長範囲の紫外線に波長変換
し、非線形光学素子K2Al2B2O7で再度Nd:Y
AGまたはNd:YLFレーザーの基本波との和周波発
生を行ない0.208μm〜0.174μmの真空紫外
線を得るものである。
【0008】KAB結晶は0.17μmまで透明で、紫
外領域での破壊しきい値が高く、しかも励起光に対する
出力特性が優れている。 従って、これを非線形光学素
子として用い、位相整合条件を適宜設定することによ
り、高い変換効率で安定した出力の真空紫外線が0.2
08μm〜0.174μmの波長範囲で得られる。
【0009】
【発明の実施形態】以下、図示した実施の形態に基づき
本発明を詳細に説明する。 図1は本発明の真空紫外線
発生装置の形態を示すものである。 図中、1は励起光
源(Nd:YAGまたはNd:YLFレーザー)、2は
非線形光学素子(第2高調波発生)、3はビーム・スプ
リッター、4は光パラメトリック発振器、5は非線形光
学素子(第2高調波発生)、6は非線形光学素子(和周
波発生)、7はビーム・コンバイナー、8および9は直
角プリズム、10は非線形光学素子(KAB)を示す。
【0010】本発明の真空紫外線発生装置は、図1に示
す励起光を出射する励起光源1と第2高調波発生用の非
線形光学素子2、励起光源の基本波と第2高調波を分離
するビーム・スプリッター3、励起光源上に配置された
光パラメトリック発振器4、該光パラメトリック発振器
出力の第2高調波発生用の非線形光学素子5、その和周
波発生用の非線形光学素子6、励起光源1の基本波と和
周波を重ねあわせるためのビーム・コンバイナー7、直
角プリズム8,9、0.208μm〜0.174μmの
和周波発生用の非線形光学素子10から構成されてい
る。
【0011】励起光源には波長1.064μmのレーザ
ーを出力するNd:YAGレーザーおよび波長1.04
7μmまたは1.053μmのレーザーを出力するN
d:YLFレーザーが用いられる。 この励起光源1か
ら出射された励起光は非線形光学素子2で第2高調波に
変換され、ビーム・スプリッター3で第2高調と分離さ
れプリズム8,9をとおり非線形光学素子10に入射す
る。ビーム・スプリッター3で分離された励起光源1の
第2高調波は光パラメトリック発振器4を励起する。
得られたパラメトリック出力光は非線形光学素子5と6
で0.266μm〜0.208μmの和周波に波長変換
され、ビーム・コンバイナー7を通過して非線形光学素
子10に入射して、0.208μm〜0.174μmの
真空紫外線となる。
【0012】和周波発生用非線形光学素子10は、タイ
プ―1(第1種の位相整合で、カット角はθ=70±5
°、φ=60°または180°、但し、φはx軸からy
軸方向へ測定した極座標の角度、θは角度φで引かれた
xy面内の線分へのz軸からの極座標の角度である)で
切り出したK2Al2B2O7(KAB)結晶が用いら
れる。この結晶はBBOやCLBOと異なり潮解性がな
く、0.17μmまで透明という特徴を有している。
【0013】かかる構成において、励起光源として波長
1.064μmで発振するNd:YAGレーザーを用
い、これにより励起光を出射しながら光パラメトリック
発振器の波長を同調し、非線形光学素子5,6,10を
図示した軸を中心に所定の出力光の波長に応じて適宜角
度調整すると0.208μm〜0.174μmの波長範
囲でコヒーレントな真空紫外線を安定して得ることがで
きる。
【0014】以上の説明から明らかなように、本発明に
よれば励起光源として1.064μmの波長でレーザー
発振するNd:YAGレーザーおよび1.047μmと
1.053μmの波長でレーザー発振するNd:YLF
レーザーを用い、その第2高調波で励起した光パラメト
リック発振器の出力光を波長変換し、KAB結晶で再
度、和周波発生を行なう構成なので、0.208μm〜
0.174μmの波長範囲で安定した出力の真空紫外線
を効率よく得ることができる。
【0015】図1に示すように真空紫外線発生装置にお
いて、励起光源としてNd:YAGレーザーを用い、R
TiOAsO4(RTA)光パラメトリック発振器の出
力を2個のBBO結晶で0.266μm〜0.208μ
mの波長の紫外線に変換し、θ=69±1°、φ=60
°にカットした長さ7mmのKAB結晶を用いて適宜位
相整合角を調整することにより、平均出力50mWの
0.193μm光および5mWの0.176μm光が1
0KHzで得られた。 また同じ出力のNd:YLFレ
ーザーを用いた場合には偏光損失がないため変換効率は
約4倍に上がる計算となる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum ultraviolet ray generator for generating coherent vacuum ultraviolet rays in a wavelength range of 0.208 μm to 0.174 μm by sum frequency generation. It is. [0002] Nd: YAG, Nd: YLF are used as excitation light sources.
The solid-state laser is used to excite an optical parametric oscillator with its second harmonic, the output is wavelength-converted by a non-linear optical crystal, and Nd: YAG, Nd: YLF fundamental wave and sum frequency generation are performed. Devices using a BBO or CLBO crystal are known as devices for generating vacuum ultraviolet rays up to .19 μm. [0003] However, 0.19 μm
The conventional technique for generating vacuum ultraviolet rays having the following wavelengths has the following problems. That is, a device using a BBO crystal as a nonlinear optical element has a drawback that at a wavelength of 0.189 μm or less, all output light is absorbed in the crystal and cannot be extracted outside. Further, the one using the CLBO crystal has a drawback that the vacuum ultraviolet ray of 0.186 μm or less cannot be generated because the phase matching condition is not satisfied. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a high conversion efficiency and a high output and to stabilize vacuum ultraviolet rays in a wavelength range of 0.208 μm to 0.174 μm. It is another object of the present invention to provide a vacuum ultraviolet ray generating device for outputting the same. The present inventors have made various studies to achieve the above object, and as a result, have found that a K 2 Al 2 B 2 O 7 (KAB) crystal is used as a sum frequency generating element. By using this, generation of vacuum ultraviolet light having high conversion efficiency in the wavelength range of 0.208 μm to 0.174 μm has been found. That is, the vacuum ultraviolet ray generating apparatus of the present invention uses an Nd: YAG laser oscillating at a wavelength of 1.064 μm or an Nd: YLF solid laser oscillating at a wavelength of 1.047 μm and 1.053 μm as an excitation light source. And its second harmonic (0.532 μm, 0.5235 μm
m, 0.5265 μm) to excite various optical parametric oscillators. Its output is 0.266 in a conventional manner.
The wavelength is converted to ultraviolet light in the wavelength range of μm to 0.208 μm, and Nd: Y is again applied by the nonlinear optical element K 2 Al 2 B 2 O 7.
It generates a sum frequency with the fundamental wave of the AG or Nd: YLF laser to obtain a vacuum ultraviolet ray of 0.208 μm to 0.174 μm. The KAB crystal is transparent up to 0.17 μm, has a high breakdown threshold in the ultraviolet region, and has excellent output characteristics with respect to excitation light. Therefore, by using this as a non-linear optical element and appropriately setting the phase matching conditions, the vacuum ultraviolet ray having a high conversion efficiency and a stable output can be reduced to 0.2.
It is obtained in the wavelength range of 08 μm to 0.174 μm. Hereinafter, the present invention will be described in detail based on the illustrated embodiments. FIG. 1 shows an embodiment of a vacuum ultraviolet ray generating apparatus according to the present invention. In the figure, 1 is an excitation light source (Nd: YAG or Nd: YLF laser), 2 is a non-linear optical element (second harmonic generation), 3 is a beam splitter, 4 is an optical parametric oscillator, 5 is a non-linear optical element (No. 6 is a nonlinear optical element (sum frequency generation), 7 is a beam combiner, 8 and 9 are right angle prisms, and 10 is a nonlinear optical element (KAB). In the vacuum ultraviolet ray generating apparatus of the present invention, an excitation light source 1 for emitting excitation light shown in FIG. 1, a nonlinear optical element 2 for generating a second harmonic, and a fundamental wave and a second harmonic of the excitation light source are separated. A beam splitter 3, an optical parametric oscillator 4 disposed on an excitation light source, a nonlinear optical element 5 for generating a second harmonic of the output of the optical parametric oscillator, a nonlinear optical element 6 for generating a sum frequency thereof, and a pump light source 1. It comprises a beam combiner 7 for superimposing a fundamental wave and a sum frequency, right angle prisms 8, 9 and a non-linear optical element 10 for sum frequency generation of 0.208 μm to 0.174 μm. An Nd: YAG laser that outputs a laser having a wavelength of 1.064 μm is used as an excitation light source,
N that outputs 7 μm or 1.053 μm laser
d: A YLF laser is used. The excitation light emitted from the excitation light source 1 is converted into the second harmonic by the nonlinear optical element 2, separated from the second harmonic by the beam splitter 3, and enters the nonlinear optical element 10 through the prisms 8 and 9. The second harmonic of the excitation light source 1 separated by the beam splitter 3 excites the optical parametric oscillator 4.
The obtained parametric output light is applied to the nonlinear optical elements 5 and 6
Is converted to a sum frequency of 0.266 μm to 0.208 μm, passes through the beam combiner 7 and enters the nonlinear optical element 10, and becomes vacuum ultraviolet rays of 0.208 μm to 0.174 μm. The nonlinear optical element 10 for sum frequency generation is of type-1 (a first type of phase matching, and the cut angle is θ = 70 ± 5).
°, φ = 60 ° or 180 °, where φ is y from the x-axis
The angle of the polar coordinate measured in the axial direction, θ is the angle of the polar coordinate from the z-axis to the line segment in the xy plane drawn by the angle φ)), and the K 2 Al 2 B 2 O 7 (KAB) crystal cut out Is used. Unlike BBO and CLBO, this crystal has no deliquescence and has a feature of being transparent up to 0.17 μm. In such a configuration, an Nd: YAG laser oscillating at a wavelength of 1.064 μm is used as an excitation light source, whereby the wavelength of an optical parametric oscillator is tuned while emitting excitation light, and the nonlinear optical elements 5, 6, and 10 are controlled. By appropriately adjusting the angle around the illustrated axis according to the wavelength of the predetermined output light, coherent vacuum ultraviolet rays can be stably obtained in the wavelength range of 0.208 μm to 0.174 μm. As apparent from the above description, according to the present invention, an Nd: YAG laser which oscillates at a wavelength of 1.064 μm and an Nd: YLF which oscillates at a wavelength of 1.047 μm and 1.053 μm are used as an excitation light source.
Since the output light of the optical parametric oscillator pumped by the second harmonic is converted using a laser and the sum frequency is generated again by the KAB crystal,
Vacuum ultraviolet rays having a stable output in a wavelength range of 0.174 μm can be efficiently obtained. As shown in FIG. 1, in a vacuum ultraviolet ray generator, an Nd: YAG laser is
The output of the TiOAsO 4 (RTA) optical parametric oscillator is 0.266 μm to 0.208 μm by two BBO crystals.
m = ultraviolet light, θ = 69 ± 1 °, φ = 60
By appropriately adjusting the phase matching angle using a 7 mm long KAB crystal cut to an angle of 0.1 °, 0.193 μm light having an average output of 50 mW and 0.176 μm light having an average output of 5 mW become 1
Obtained at 0 KHz. In addition, when an Nd: YLF laser having the same output is used, there is no polarization loss, so that the conversion efficiency is calculated to increase about four times.
【図面の簡単な説明】
【図1】本発明の真空紫外線発生装置の形態を示す図で
ある。
【符号の説明】
1 励起光源
2 非線形光学素子(第2高調波発生)
3 ビーム・スプリッター
4 光パラメトリック発振器
5 非線形光学素子(第2高調波発生)
6 非線形光学素子(和周波発生)
7 ビーム・コンバイナー
8 プリズム
9 プリズム
10 非線形光学素子(和周波発生、KAB)BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an embodiment of a vacuum ultraviolet ray generating device of the present invention. [Description of Signs] 1 Excitation light source 2 Nonlinear optical element (second harmonic generation) 3 Beam splitter 4 Optical parametric oscillator 5 Nonlinear optical element (second harmonic generation) 6 Nonlinear optical element (sum frequency generation) 7 Beam Combiner 8 Prism 9 Prism 10 Nonlinear optical element (sum frequency generation, KAB)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 孝友 大阪府吹田市山田西2−8 A9−310 (72)発明者 森 勇介 大阪府交野市私部8−16−9 (72)発明者 吉村 政志 大阪府池田市石橋1−21−18 シャーツ石 橋232 Fターム(参考) 2K002 AB12 BA03 CA02 HA20 HA21 5F072 AB02 AB15 JJ20 KK05 KK15 QQ02 QQ03 QQ04 RR01 RR03 RR05 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takatomo Sasaki A9-310 2-8 Yamada Nishi, Suita-shi, Osaka (72) Inventor Yusuke Mori 8-16-9, Katano-shi, Osaka (72) Inventor Masashi Yoshimura 1-21-18 Ishibashi, Ikeda-shi, Osaka Bridge 232 F term (reference) 2K002 AB12 BA03 CA02 HA20 HA21 5F072 AB02 AB15 JJ20 KK05 KK15 QQ02 QQ03 QQ04 RR01 RR03 RR05
Claims (1)
0.174μmまでの波長でコヒーレントな真空紫外を
発生する装置であって、励起光源として1.064μm
の波長でレーザー発振するNd:YAG(Nd3+:Y
3Al5O12)、1.047μmと1.053μmの
波長でレーザー発振するNd:YLF(Nd3+:Li
YF4)の固体レーザーを用い、その第2高調波0.5
32μm、0.5235μm、0.5265μmで各種
の光パラメトリック発振器を励起。その第2高調波と位
相整合しなかった0.532μm、0.5235μm、
0.5265μmをβ―BaB3O5(BBO)やCs
LiB6O10(CLBO)等の結晶を用いて0.26
6μm〜0.208μmまでの紫外線に変換し、Nd:
YAG、Nd:YLFレーザーの基本波(1.064μ
m、1.047μm、1.053μm)をK2Al2B
2O7(KAB)結晶を用いて再度、和周波発生を行な
い、0.208μm〜0.174μmまでの波長範囲で
コヒーレントな真空紫外線を発生する真空紫外線発生装
置。1. The method according to claim 1, wherein the sum frequency is 0.208 μm or more.
An apparatus for generating coherent vacuum ultraviolet light at a wavelength of up to 0.174 μm, wherein 1.064 μm
Nd: YAG (Nd 3+ : Y)
3 Al 5 O 12 ), Nd: YLF (Nd 3+ : Li) that oscillates at wavelengths of 1.047 μm and 1.053 μm.
YF 4 ) using a solid-state laser whose second harmonic is 0.5
Excitation of various optical parametric oscillators at 32 μm, 0.5235 μm and 0.5265 μm. 0.532 μm, 0.5235 μm, which were not phase-matched with the second harmonic,
0.5265 μm is converted to β-BaB 3 O 5 (BBO) or Cs
0.26 using a crystal such as LiB 6 O 10 (CLBO)
It is converted into ultraviolet light of 6 μm to 0.208 μm, and Nd:
Basic wave of YAG, Nd: YLF laser (1.064μ
m, 1.047 μm, 1.053 μm) to K 2 Al 2 B
A vacuum ultraviolet ray generator that generates a sum frequency again using 2 O 7 (KAB) crystal and generates coherent vacuum ultraviolet rays in a wavelength range of 0.208 μm to 0.174 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002082308A JP2003280055A (en) | 2002-03-25 | 2002-03-25 | Vacuum ultraviolet-ray generating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002082308A JP2003280055A (en) | 2002-03-25 | 2002-03-25 | Vacuum ultraviolet-ray generating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003280055A true JP2003280055A (en) | 2003-10-02 |
Family
ID=29230546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002082308A Pending JP2003280055A (en) | 2002-03-25 | 2002-03-25 | Vacuum ultraviolet-ray generating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003280055A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109916841A (en) * | 2019-03-15 | 2019-06-21 | 北京大学 | The interconnect device and method of higher hamonic wave vacuum ultraviolet light source and ultrahigh vacuum instrument |
WO2022181676A1 (en) | 2021-02-24 | 2022-09-01 | 信弘 梅村 | 215-222 nm wavelength laser beam generating apparatus |
-
2002
- 2002-03-25 JP JP2002082308A patent/JP2003280055A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109916841A (en) * | 2019-03-15 | 2019-06-21 | 北京大学 | The interconnect device and method of higher hamonic wave vacuum ultraviolet light source and ultrahigh vacuum instrument |
WO2022181676A1 (en) | 2021-02-24 | 2022-09-01 | 信弘 梅村 | 215-222 nm wavelength laser beam generating apparatus |
KR20230144647A (en) | 2021-02-24 | 2023-10-16 | 노부히로 우메무라 | Wavelength 215 to 222 nm laser light generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4925085B2 (en) | Deep ultraviolet laser light generation method and deep ultraviolet laser device | |
US6999483B1 (en) | External 3rd, 4th and 5th harmonic laser | |
JP4489440B2 (en) | Generation of fourth harmonic with enhanced intracavity resonance using uncoated Brewster surface | |
WO1999014631A1 (en) | Light source | |
JP4231829B2 (en) | Internal cavity sum frequency mixing laser | |
JP2704341B2 (en) | Optical wavelength converter | |
US5825798A (en) | Laser oscillating apparatus and method of driving laser beam source | |
JPH06283794A (en) | Laser-diode-pumped solid laser | |
JP2007086101A (en) | Deep ultraviolet laser device | |
US20070064750A1 (en) | Deep ultraviolet laser apparatus | |
KR100863199B1 (en) | Laser Apparatus and Method for Harmonic Beam Generation | |
JP2009058782A (en) | Laser beam generation device and laser beam generation method | |
JP2003280055A (en) | Vacuum ultraviolet-ray generating apparatus | |
JPH1152443A (en) | Laser beam generating device | |
JPH11284269A (en) | Solid laser third harmonic ultraviolet light output resonator structure | |
JP4446300B2 (en) | 5th harmonic generator | |
JPH1041573A (en) | Laser oscillator | |
JPH04137775A (en) | Semiconductor laser excitation solid state laser | |
JPH11251666A (en) | Method and apparatus for generating laser beam | |
JP2004219675A (en) | Far-infrared solid laser oscillation system | |
JP2000171843A (en) | Light source device | |
JP3421067B2 (en) | Solid state laser device | |
JP4713281B2 (en) | Infrared generator for cholesterol removal | |
JPH08227085A (en) | Laser device | |
JPH0750442A (en) | Laser equipment for processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060425 |