JP2003275738A - Method for treating contaminant - Google Patents
Method for treating contaminantInfo
- Publication number
- JP2003275738A JP2003275738A JP2002084150A JP2002084150A JP2003275738A JP 2003275738 A JP2003275738 A JP 2003275738A JP 2002084150 A JP2002084150 A JP 2002084150A JP 2002084150 A JP2002084150 A JP 2002084150A JP 2003275738 A JP2003275738 A JP 2003275738A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- pollutants
- separation
- phase
- carbon particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Processing Of Solid Wastes (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Gases By Adsorption (AREA)
- Physical Water Treatments (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、土壌を汚染する汚
染物質の処理方法に関し、特に、汚染物質の回収不完全
や処理システムからの漏出等を防止して高い確度で汚染
物質の回収・処理を行うことができる土壌の汚染物質の
処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating pollutants that contaminate soil, and more particularly, to collect and treat pollutants with high accuracy by preventing incomplete collection of pollutants and leakage from a treatment system. The present invention relates to a method for treating soil pollutants.
【0002】[0002]
【従来の技術】近年、有害物質による土壌汚染が深刻な
問題となっている。汚染物質の例としては、カドミウ
ム、全シアン、有機隣、鉛、六価クロム、砒素、総水
銀、アルキル水銀、PCB、銅、ジクロロメタン、四塩
化炭素、1,2−ジクロロエタン、1,1−ジクロロエ
チレン、シス−1,2−ジクロロエチレン、1,1,1
−トリクロロエタン、1,1,2−トリクロロエタン、
トリクロロエチレン、テトラクロロエチレン、1,3−
ジクロロプロペン、チウラム、シマジン、チオベンカル
ブ、ベンゼン、セレン、ダイオキシン(DXN)類等の
生体に有害な物質や、油などの毒性は低くても土壌の利
用を困難にする物質などがある。特に、低濃度でも有害
性の高いDXN類やPCB類による土壌汚染が数多く発
見され、深刻な問題となっている。2. Description of the Related Art In recent years, soil pollution due to harmful substances has become a serious problem. Examples of pollutants are cadmium, all-cyan, organic neighbors, lead, hexavalent chromium, arsenic, total mercury, alkylmercury, PCB, copper, dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene. , Cis-1,2-dichloroethylene, 1,1,1
-Trichloroethane, 1,1,2-trichloroethane,
Trichlorethylene, tetrachloroethylene, 1,3-
There are substances that are harmful to living organisms, such as dichloropropene, thiuram, simazine, thiobencarb, benzene, selenium, and dioxin (DXN), and substances that have low toxicity such as oil but make soil use difficult. In particular, many soil pollutions due to DXNs and PCBs, which are highly harmful even at low concentrations, have been found, which is a serious problem.
【0003】従来、汚染物質を土壌から除去するには、
焼却炉やセメントキルンなどを利用して高温によって土
壌の汚染物質をガス化すると同時に燃焼分解してしまう
ことが多かった。この場合、燃焼分解後の燃焼ガスはそ
のまま煙突から排気する。燃焼による分解は安価に実施
できる方法であるが、安定的に分解能力を維持すること
は非常に困難であるため、安定した分解能力を得るため
には大量に燃料を投入して燃焼状態を安定させる必要が
生じ、かえって安価であるというメリットを損なう。Traditionally, to remove pollutants from soil,
In many cases, incinerators and cement kilns were used to gasify pollutants in the soil at high temperature and at the same time to decompose them by combustion. In this case, the combustion gas after combustion decomposition is exhausted from the chimney as it is. Although decomposition by combustion is a cheap method, it is extremely difficult to maintain stable decomposition capacity, so in order to obtain stable decomposition capacity, a large amount of fuel is injected to stabilize the combustion state. However, the advantage of being inexpensive is lost.
【0004】そこで、土壌を加熱してガス化した汚染物
質を燃焼分解せずに、土壌から分離した後一旦回収する
方法が提案されており、土壌から回収される汚染物質
は、回収状況に応じて種々の公知分解技術を用いて分解
処理することになる。Therefore, a method has been proposed in which the soil is heated and gasified pollutants are not burned and decomposed but separated from the soil and then collected once. Therefore, the decomposition treatment is performed by using various known decomposition techniques.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記の汚染物
質を回収する方法においては、土壌から分離した汚染物
質ガスを処理装置外に漏洩させないために、汚染物質を
確実に回収する必要がある。このため、活性炭及びその
他の特殊な捕集剤や添加剤(以下、薬剤と総称する)が
用いられている。しかし、これらの薬剤等の使用による
処理は費用の増大を招いている。また、これらの薬剤の
吸着効率等は、汚染物質との接触時間が長いほど向上す
るため、実際の処理装置は、薬剤を有効に作用させるた
めに必然的に大きくなり、装置構造も複雑になる。更
に、処理装置から放出する排気または排水の汚染物質濃
度を環境基準以下にするために十分な処理が必要となる
が、処理労力や費用の増大が問題となり、処理手順を効
率的に構成して処理労力や費用を低減することが強く望
まれていた。However, in the above method for recovering the pollutant, it is necessary to reliably recover the pollutant in order to prevent the pollutant gas separated from the soil from leaking out of the processing apparatus. For this reason, activated carbon and other special scavengers and additives (hereinafter collectively referred to as chemicals) are used. However, the treatment by using these chemicals or the like causes an increase in cost. Further, the adsorption efficiency of these chemicals is improved as the contact time with the pollutant is longer, so that the actual processing apparatus is inevitably large in order to effectively act the chemicals, and the apparatus structure becomes complicated. . Furthermore, sufficient treatment is necessary to keep the concentration of pollutants in the exhaust gas or wastewater discharged from the treatment equipment below the environmental standard, but the increase in treatment labor and cost poses a problem, and the treatment procedure must be constructed efficiently. It has been strongly desired to reduce processing labor and cost.
【0006】また、DXN類及びPCB類は土壌汚染の
問題以前から有害物質として注目され、数多くの分解技
術が提案されているが、汚染物質を分離・回収する際に
従来使用されているキレート剤などの捕集剤は、汚染物
質の分解を阻害することが多い。従って、分解技術を土
壌浄化に適用する場合には、回収した汚染物質から分解
を阻害する捕集剤を分離する必要があり、手間がかか
る。このため、分解を阻害するような捕集剤を外部から
添加することなく汚染物質を回収できる土壌の汚染物質
の処理方法が望まれている。[0006] DXNs and PCBs have been noted as harmful substances even before the problem of soil pollution and many decomposition techniques have been proposed. However, chelating agents conventionally used for separating and recovering pollutants. Scavengers such as often inhibit the degradation of pollutants. Therefore, when the decomposition technique is applied to soil purification, it is necessary to separate the scavenger that inhibits decomposition from the collected pollutants, which is troublesome. For this reason, there is a demand for a method for treating pollutants in soil that can collect pollutants without externally adding a scavenger that inhibits decomposition.
【0007】本発明は、処理装置から汚染物質を漏洩さ
せることなく効率よく汚染土壌の浄化処理ができ、浄化
処理の費用及び労力の低減が可能な効率的な汚染物質の
処理が行える土壌の汚染物質の処理方法を提供すること
を課題とする。[0007] The present invention is capable of efficiently purifying contaminated soil without leaking pollutants from the treatment equipment, and can reduce the cost and labor of the purification treatment, so that the pollutants can be efficiently treated. An object is to provide a method for treating a substance.
【0008】[0008]
【課題を解決するための手段】本発明の一態様によれ
ば、汚染物質の処理方法は、土壌に含まれる汚染物質及
び有機炭素化合物を気化する気化工程と、気化した前記
汚染物質及び前記有機炭素化合物を含むガスを低酸素雰
囲気中で加熱して前記有機炭素化合物を炭化し炭素粒子
を生成する炭化工程と、前記炭素粒子と共に前記炭素粒
子に吸着される前記汚染物質を回収する回収工程とを有
することを要旨とする。According to one aspect of the present invention, there is provided a method for treating pollutants, which comprises a vaporization step of vaporizing pollutants and organic carbon compounds contained in soil, and the vaporized pollutants and organic compounds. A carbonization step of heating a gas containing a carbon compound in a low oxygen atmosphere to carbonize the organic carbon compound to generate carbon particles, and a recovery step of recovering the contaminants adsorbed by the carbon particles together with the carbon particles. It is a gist to have.
【0009】また、本発明の一態様によれば、汚染物質
の処理方法は、土壌に含まれる汚染物質を気化する気化
工程と、気化した前記汚染物質を冷却して凝縮液を得る
凝縮工程と、前記凝縮液の親水性相と親油性相とを分液
する相分離工程と、前記相分離工程で分液した前記親水
性相に含まれるダストを分離するダスト分離工程と、前
記親水性相を分離膜を通して前記親水性相から該汚染物
質を除去する膜分離工程とを有することを要旨とする。Further, according to one aspect of the present invention, a method for treating a pollutant includes a vaporizing step of vaporizing the pollutant contained in the soil, and a condensing step of cooling the vaporized pollutant to obtain a condensate. A phase separation step of separating a hydrophilic phase and a lipophilic phase of the condensate, a dust separation step of separating dust contained in the hydrophilic phase separated in the phase separation step, and the hydrophilic phase And a membrane separation step of removing the contaminants from the hydrophilic phase through a separation membrane.
【0010】[0010]
【発明の実施の形態】汚染土壌の加熱によって土壌から
汚染物質を気化分離すると、これと共に土壌中の有機炭
素化合物も気化する。気化したガスを有機炭素化合物が
炭化するような条件下で加熱すると炭素粒子が生じて汚
染物質の吸着剤として作用し、炭素粒子を回収すること
によって吸着された汚染物質がいっしょに回収される。
加熱温度に応じて汚染物質の分解が進行し、炭素粒子は
分解の触媒として作用して分解を促進するので、処理後
の排気及び排水から汚染物質を十分に除去することがで
きる。汚染物質及び有機炭素化合物の気化において、汚
染土壌は好ましくは約400℃以上且つ約600℃以下
に加熱し、有機炭素化合物の炭化では、発生した汚染物
質及び有機炭素化合物を含むガスを低酸素環境下で約7
00℃以上、好ましくは約800℃以上且つ約1200
℃以下の温度に加熱し、有機炭素化合物の炭化により炭
素粒子を生じる。この炭素粒子を約200℃以下に冷却
して収集することにより、雰囲気中の汚染物質を十分に
取り込んだ炭素粒子が回収される。このようにして、汚
染物質の漏洩・再排出が最大限に防止された土壌浄化が
安価な費用で実施できる。BEST MODE FOR CARRYING OUT THE INVENTION When a pollutant is vaporized and separated from the soil by heating the polluted soil, an organic carbon compound in the soil is vaporized together with the pollutant. When the vaporized gas is heated under conditions such that the organic carbon compound is carbonized, carbon particles are generated and act as an adsorbent for pollutants, and the adsorbed pollutants are collected together by collecting the carbon particles.
Degradation of pollutants progresses according to the heating temperature, and the carbon particles act as a catalyst for the decomposition to promote the decomposition, so that the pollutants can be sufficiently removed from the exhaust gas and waste water after the treatment. In the vaporization of pollutants and organic carbon compounds, the polluted soil is preferably heated to about 400 ° C. or more and about 600 ° C. or less, and the carbonization of the organic carbon compounds involves generating a gas containing the pollutants and the organic carbon compounds in a low oxygen environment. About 7 below
00 ° C or higher, preferably about 800 ° C or higher and about 1200
Heating to a temperature of ℃ or less, carbonization of the organic carbon compound produces carbon particles. By cooling the carbon particles to a temperature of about 200 ° C. or lower and collecting the carbon particles, the carbon particles in which the pollutants in the atmosphere are sufficiently taken in are recovered. In this way, soil remediation with maximum leakage and re-emission of pollutants can be carried out at low cost.
【0011】以下、本発明の土壌処理を詳細に説明す
る。The soil treatment of the present invention will be described in detail below.
【0012】本発明の土壌処理における被処理対象とな
る汚染物質は、加熱又は減圧によって気化(または昇
華)する生体または環境上有害な有機化合物及び金属類
であり、特に、実用の点から、400℃の加熱または真
空によって蒸発する物質が被処理対象として適してい
る。有機化合物としては、例えば、PCB、ダイオキシ
ン(DXN)類、ジクロロメタン、四塩化炭素、1,2
−ジクロロエタン、1,1−ジクロロエチレン、シス−
1,2−ジクロロエチレン、1,1,1−トリクロロエ
タン、1,1,2−トリクロロエタン、トリクロロエチ
レン、テトラクロロエチレン、1,3−ジクロロプロペ
ン、チウラム、シマジン、チオベンカルブ、ベンゼン、
ナフタレン、アントラセンなどの人体に有害な化合物が
挙げられ、金属類としては、例えば、カドミウム、燐、
鉛、クロム、砒素、水銀、セレンなどが挙げられるが、
特にこれらの物質に限定するものではなく、上述のよう
な気化可能な汚染物質を含んだ土壌について浄化つまり
汚染物質の除去を行うことができる。The pollutants to be treated in the soil treatment of the present invention are organic compounds and metals that are harmful to the living body or the environment and are vaporized (or sublimated) by heating or depressurization. A substance that evaporates by heating at ℃ or by vacuum is suitable as an object to be treated. Examples of the organic compound include PCB, dioxins (DXN), dichloromethane, carbon tetrachloride, 1,2
-Dichloroethane, 1,1-dichloroethylene, cis-
1,2-dichloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethylene, tetrachloroethylene, 1,3-dichloropropene, thiuram, simazine, thiobencarb, benzene,
There are compounds harmful to the human body such as naphthalene and anthracene. Examples of the metals include cadmium, phosphorus,
Lead, chromium, arsenic, mercury, selenium, etc. can be mentioned,
The soil is not particularly limited to these substances, and the soil containing the vaporizable pollutant as described above can be purified, that is, the pollutant can be removed.
【0013】本発明では、樹木、草花、動植物の死骸や
糞などの土壌に含まれる有機物を炭素源として利用して
汚染物質の処理を行うことができる。従って、処理を施
す土壌は、炭化条件で炭素を生じる有機炭素化合物を含
んだ土壌であればよい。つまり、陸地を構成する岩石が
砕けて細粒となったものに生物遺体またはその分解物な
どが混じった土壌を特に限定することなく処理すること
ができる。例えば、農耕地、園芸場や山間部に多い有機
物(腐植土)を多く含む土壌;道路、宅地、工場などの
比較的腐植土の少ない土壌などが挙げられ、また、湖、
海、川などの水底の構成物質である底質や、前述のいず
れかのものが混入した汚泥なども含まれる。また、有機
炭素化合物は、上記のような土壌に天然に含まれるもの
に限らず、人為的に土壌に加えられたものでもよく、例
えば、土壌の汚染物質が人体に特に有害ではない油脂類
等の有機化合物を含む場合には、このような有機化合物
が炭化における炭素源となる。尚、水分を含む土壌は、
汚染物質の気化において水蒸気を発生し、有機化合物の
炭化において生じる炭素粒子表面において残留する炭化
水素を水蒸気により除去して炭素粒子を付活して吸着能
の高い活性炭を生成するので、本発明において有利であ
る。In the present invention, pollutants can be treated by using organic matter contained in soil such as trees, flowers, carcasses of animals and plants, and feces as a carbon source. Therefore, the soil to be treated may be a soil containing an organic carbon compound that produces carbon under carbonization conditions. That is, it is possible to treat soil in which rocks constituting the land are crushed into fine grains and biological remains or decomposed products thereof are mixed without particular limitation. For example, soil that contains a large amount of organic matter (humus) in agricultural land, horticultural fields and mountains; soil that contains a relatively small amount of humus such as roads, residential land, factories, lakes,
It also includes bottom sediment, which is a constituent material of the bottom of the sea and rivers, and sludge mixed with any of the above. Further, the organic carbon compound is not limited to those naturally contained in the soil as described above, it may be artificially added to the soil, for example, oils and fats soil contaminants are not particularly harmful to the human body, etc. When such an organic compound is included, such an organic compound serves as a carbon source in carbonization. The soil containing water is
In the present invention, water vapor is generated in the vaporization of pollutants, and the hydrocarbons remaining on the surface of the carbon particles generated in the carbonization of the organic compound are removed by the water vapor to activate the carbon particles to generate activated carbon having a high adsorption ability. It is advantageous.
【0014】土壌から汚染物質を気化分離するための気
化手段は、土壌を加熱することにより汚染物質を気化し
て土壌から除去可能な手段であれば特に限定されず、例
えば、キルン炉、流動床炉、真空加熱炉などのような加
熱炉が挙げられる。このような加熱炉を気化手段として
汚染土壌を投入し加熱して汚染物質を気化することによ
り、土壌中の有機炭素化合物及び水分も共に気化する。
汚染物質の気化に必要な加熱温度は雰囲気圧によって変
化し、常圧においては概して400℃程度以上であれば
よい。The vaporizing means for vaporizing and separating the pollutants from the soil is not particularly limited as long as it is a means capable of vaporizing the pollutants by heating the soil and removing them from the soil. For example, a kiln furnace, a fluidized bed A heating furnace such as a furnace or a vacuum heating furnace can be used. By using such a heating furnace as a vaporizing means and introducing the contaminated soil and heating it to vaporize the pollutants, the organic carbon compound and the water in the soil are also vaporized.
The heating temperature required for vaporizing the pollutants varies depending on the atmospheric pressure, and at atmospheric pressure, it is generally about 400 ° C. or higher.
【0015】汚染物質の気化自体は有酸素雰囲気中で行
うことができるが、この段階において、低酸素雰囲気中
で高温に加熱すると、汚染物質等のガス化と同時に有機
物の熱分解反応が起こって分子量100〜3000程度
の高分子量の成分が発生する。つまり、吸着剤として利
用する炭素粒子の生成に好適な分子量の高い成分を発生
させることができる。このような熱分解を起こすには、
加熱する温度は150℃以上、好ましくは400℃以上
とし、温度が高い程熱分解が進行するが、600℃を越
えると高分子量成分の発生量が著しく低下し、エネルギ
ー効率上からも好ましくない。また、発生した高分子量
ガスは酸素によって分解するので、上記のような高分子
量成分を得るためには、雰囲気の酸素濃度は低いことが
必要であり、気化手段の出口における酸素濃度は5vol
%(容積比)以下、好ましくは0%であることが重要で
ある。The vaporization of the pollutant itself can be carried out in an oxygen-containing atmosphere. At this stage, if the pollutant is heated to a high temperature in a low-oxygen atmosphere, the pyrolysis reaction of the organic matter occurs simultaneously with the gasification of the pollutant. A high molecular weight component having a molecular weight of about 100 to 3000 is generated. That is, it is possible to generate a component having a high molecular weight suitable for generating carbon particles used as an adsorbent. To cause such thermal decomposition,
The heating temperature is 150 ° C. or higher, preferably 400 ° C. or higher, and the higher the temperature, the more the thermal decomposition proceeds. Further, since the generated high molecular weight gas is decomposed by oxygen, in order to obtain the above high molecular weight component, the oxygen concentration in the atmosphere needs to be low, and the oxygen concentration at the outlet of the vaporizing means is 5 vol.
% (Volume ratio) or less, preferably 0% is important.
【0016】土壌から気化した汚染物質及び有機炭素化
合物を含んだ被処理ガスは、前述のように気化条件によ
って高分子量成分を含み、更に、土壌の状態に依って、
土壌に含まれる水分、及び、ガス流にのって土壌の一部
が飛散した細粒分(約75μm未満)を主とした鉱物粒
子を含む。このような被処理ガスは低酸素雰囲気(酸素
濃度:5vol%以下)中でさらに高温に加熱して有機炭
素化合物を炭化する。炭化を進行させるための加熱温度
は800℃以上、好ましくは1000℃以上が好適であ
る。但し、これより高温になると炭素粒子の生成効率が
低下するので、具体的には1200℃以下が好ましい。
この温度においては汚染物質の分解反応も進行する。ま
た、生成した炭素粒子は、汚染物質の分解反応、特にハ
ロゲン化合物の脱ハロゲン反応に対して触媒作用を有
し、汚染物質の分解が進行する。土壌の汚染物質に対す
る有機炭素化合物の割合が約1/1以上であれば、炭素
粒子による効果は顕著に得られる。The gas to be treated containing pollutants and organic carbon compounds vaporized from the soil contains a high molecular weight component depending on the vaporization conditions as described above, and further, depending on the state of the soil,
It contains mineral particles mainly composed of water contained in soil and fine particles (less than about 75 μm) in which a part of soil is scattered by gas flow. Such a gas to be treated is further heated to a higher temperature in a low oxygen atmosphere (oxygen concentration: 5 vol% or less) to carbonize the organic carbon compound. The heating temperature for promoting carbonization is 800 ° C. or higher, preferably 1000 ° C. or higher. However, if the temperature is higher than this, the production efficiency of carbon particles decreases, and therefore, it is specifically preferably 1200 ° C. or lower.
At this temperature, the decomposition reaction of pollutants also proceeds. Further, the produced carbon particles have a catalytic action on the decomposition reaction of the pollutant, particularly the dehalogenation reaction of the halogen compound, and the decomposition of the pollutant proceeds. If the ratio of the organic carbon compound to the pollutant in the soil is about 1/1 or more, the effect of the carbon particles can be remarkably obtained.
【0017】ガスを高温に加熱する方法には、ヒーター
によって加熱する方式、バーナーを用いた間接加熱方
式、熱交換器を利用した高温の熱媒体によって被処理ガ
スを間接加熱する方式や、あらかじめ高温に加熱した気
体媒体を被処理ガスと混合して加熱する方式、被処理ガ
スまたはこれに含まれる成分との接触により発熱反応を
起こす反応剤を用いる方式などがあるが、被処理ガスを
高温に加熱できる手段であれば特に限定されない。但
し、余熱した高温水蒸気を投入する方式は、土壌由来の
水の効果を補うことができる点で特に有効である。つま
り、加熱した被処理ガス中の高分子量成分が熱分解によ
り低分子化して固体炭素が析出するときに、水蒸気が炭
素表面に残留した炭化水素を除去し、炭素粒子を付加し
て有害物質を捕集する能力を高める。土壌に含有する水
分量だけで十分な場合には、水蒸気による加熱方式を用
いる必要はなく、間接加熱等の前述した方式によって好
適に実施することができ、必要に応じて被処理ガスに加
水すればよい。The method of heating the gas to a high temperature includes a method of heating with a heater, an indirect heating method with a burner, a method of indirectly heating the gas to be treated with a high-temperature heating medium using a heat exchanger, There are methods such as heating the mixed gaseous medium with the gas to be treated and heating it, and using a reactant that causes an exothermic reaction by contact with the gas to be treated or the components contained in it. There is no particular limitation as long as it can be heated. However, the method of adding preheated high-temperature steam is particularly effective in that the effect of water derived from soil can be supplemented. In other words, when the high molecular weight component in the heated gas to be treated is pyrolyzed to lower molecular weight and solid carbon is deposited, water vapor removes the hydrocarbons remaining on the carbon surface and adds carbon particles to remove harmful substances. Increase the ability to collect. When only the amount of water contained in the soil is sufficient, it is not necessary to use a heating method using steam, and it can be suitably carried out by the above-mentioned method such as indirect heating, and if necessary, it may be added to the gas to be treated. Good.
【0018】加熱による炭化終了後の被処理ガスは冷却
し、炭素粒子の収集は約200℃以下の温度で行う。冷
却過程中に、炭素粒子が汚染物質を吸着・捕集するのに
適した温度に達し、被処理ガス中に残存する汚染物質を
十分に吸着する。被処理ガスの冷却温度が水の沸点以上
であれば、炭素粒子の収集は乾式で行うことができ、水
の沸点未満であれば、水分が凝縮するので湿式での収集
となる。The gas to be treated after the completion of carbonization by heating is cooled, and the carbon particles are collected at a temperature of about 200 ° C. or lower. During the cooling process, the carbon particles reach a temperature suitable for adsorbing and collecting the pollutants, and sufficiently adsorb the pollutants remaining in the gas to be treated. If the cooling temperature of the gas to be treated is equal to or higher than the boiling point of water, the carbon particles can be collected by a dry method. If the cooling temperature is lower than the boiling point of water, the water is condensed because the water is condensed.
【0019】収集手段としては、バグフィルターや湿式
分離膜などの、炭素粒子を被処理ガスから分離できる濾
材が挙げられるが、これらに限定されるものではない。
ガスから濾別される炭素粒子を濾材表面に堆積させて層
を形成すると、炭素粒子自体もフィルタを構成し、より
いっそうの収集効果が望める。また、被処理ガスが炭素
粒子と接触する時間が長いほど、汚染物質の分解、なか
でも有機塩素化合物の脱塩素が進行するため、濾材表面
に炭素粒子を堆積するのは汚染物質の分解無害化を促進
する効果がある。Examples of the collecting means include, but are not limited to, filter media such as bag filters and wet separation membranes that can separate carbon particles from the gas to be treated.
When the carbon particles filtered out from the gas are deposited on the surface of the filter medium to form a layer, the carbon particles themselves also constitute a filter, and a further collection effect can be expected. In addition, the longer the contact time of the gas to be treated with the carbon particles, the more the decomposition of pollutants, especially the dechlorination of organic chlorine compounds progresses. Has the effect of promoting.
【0020】図1は、上記の処理を行う装置の一例を示
す。土壌加熱炉1に汚染土壌を投入して加熱し、汚染物
質、有機炭素化合物及び水分が気化する。土壌から気化
した被処理ガスは、ガス加熱炉2において更に加熱して
有機炭素化合物を炭化する。必要に応じて水蒸気供給部
2aからガス加熱炉2に水蒸気が供給され、ガス加熱炉
2の加熱温度は温度制御部2bによって制御される。炭
化後の被処理ガスは、冷却器3によって冷却する。冷却
温度が水の沸点以上であれば、図2(a)の乾式処理に
従って、フィルタを備える炭素回収装置4に通して炭素
粒子をガスから分離した後、ガスを水分捕集装置5にお
いて常温まで冷却して水蒸気を凝縮し排水として分離す
る。被処理ガスの冷却温度が水の沸点未満であれば、図
2(b)の湿式処理に従って、冷却器3での冷却によっ
て凝縮分離し炭素粒子を含む水を水分捕集装置5によっ
て分離収集し、凝縮水をフィルタを備える炭素回収装置
4’に通過させて炭素粒子と排水とに分離し回収する。FIG. 1 shows an example of an apparatus for performing the above processing. The contaminated soil is put into the soil heating furnace 1 and heated to vaporize the pollutants, the organic carbon compounds and the water. The gas to be treated vaporized from the soil is further heated in the gas heating furnace 2 to carbonize the organic carbon compound. Steam is supplied from the steam supply unit 2a to the gas heating furnace 2 as needed, and the heating temperature of the gas heating furnace 2 is controlled by the temperature control unit 2b. The gas to be treated after carbonization is cooled by the cooler 3. If the cooling temperature is equal to or higher than the boiling point of water, the carbon particles are separated from the gas by passing through the carbon recovery device 4 equipped with a filter according to the dry process of FIG. Cool to condense water vapor and separate as wastewater. If the cooling temperature of the gas to be treated is lower than the boiling point of water, water containing carbon particles that is condensed and separated by cooling in the cooler 3 is separated and collected by the moisture collecting device 5 according to the wet process of FIG. 2B. , The condensed water is passed through a carbon recovery device 4 ′ equipped with a filter to separate and collect carbon particles and waste water.
【0021】自然界の土壌は、一般に、種々の有機化合
物を含んでいるので、汚染土壌を加熱した際に生じるガ
スは、高温加熱による炭化処理をしなければ、高分子量
成分がそのまま活性炭などの捕集剤や添加剤等の薬剤に
接触し、特にタール状のものは薬剤表面を覆うため、目
的とする汚染物質の捕集妨害を起こしたり、薬剤が充填
塔タイプであると充填塔自体の圧力損失を増大させてし
まい、正常な運転操作そのものを妨害してしまう。しか
し、本発明ではタール状となるような高分子量成分は炭
化して炭素粒子として利用するので、薬剤や処理施設の
損傷、処理費用の増大を回避することができる。Since the natural soil generally contains various organic compounds, the gas generated when the contaminated soil is heated, the high-molecular-weight component is directly captured by the activated carbon and the like unless carbonized by high temperature heating. Contact with chemicals such as scavengers and additives, especially tar-like substances cover the surface of the chemicals, which may interfere with the collection of target pollutants, and if the chemical is a packed tower type, the pressure of the packed tower itself This increases the loss and interferes with normal driving. However, in the present invention, the high-molecular-weight component that becomes tar-like is carbonized and used as carbon particles, so that it is possible to avoid damage to chemicals and treatment facilities and increase in treatment cost.
【0022】また、PCB等の汚染物質の分解技術とし
て紫外線照射による方式があるが、汚染物質と共にター
ル分が存在すると、タール分中の芳香族化合物のエネル
ギー吸収によって汚染物質の分解がぼうがいする。本実
施形態では、タール分を炭素粒子の原料とするため、炭
素粒子の製造と同時にPCB分解の妨害となるタール分
を除去する効果が得られる。Further, as a technique for decomposing pollutants such as PCBs, there is a method of irradiating with ultraviolet rays. However, if tar components are present together with the contaminants, the energy absorption of the aromatic compounds in the tar components causes the decomposition of the contaminants. . In this embodiment, since the tar content is used as the raw material of the carbon particles, the effect of removing the tar content that interferes with the decomposition of PCB at the same time as the production of the carbon particles can be obtained.
【0023】汚染土壌を加熱して土壌から汚染物質を除
去する土壌の浄化において、土壌から発生する汚染物
質、水蒸気及び有機物が混在するガスをそれ以上加熱す
ることなく凝縮回収すると、汚染物質及び土壌中有機物
の分解生成物が混在した凝縮液となる。この凝縮液から
汚染物質、特にPCBやDXN等の有機化合物系の汚染
物質を回収する場合、排気及び排水の汚染物質濃度が低
くなるように効率よく回収するには、処理手順に工夫が
必要となる。本発明では、処理工程として、相分離(自
発的に分かれる複数の液相を分液する)、固体分離(液
体と固体とを分離する)及び膜分離(液相中の物質を分
子レベルで分離する)を主に適用し、必要に応じて油水
分離(分散液の分散相を外部刺激によって強制的に集合
させて個別の液相に分離させて分液する)または液液抽
出が組み込まれる。In the purification of soil for heating polluted soil to remove pollutants from the soil, if the gas containing pollutants, water vapor and organic matter generated from the soil is condensed and collected without further heating, the pollutants and soil It becomes a condensate in which decomposition products of organic matter are mixed. When recovering pollutants, especially organic compound-based pollutants such as PCB and DXN from this condensate, it is necessary to devise a treatment procedure in order to efficiently collect pollutants in exhaust gas and wastewater so that the pollutant concentration becomes low. Become. In the present invention, as the treatment process, phase separation (separation of a plurality of liquid phases that spontaneously separates), solid separation (separation of liquid and solid) and membrane separation (separation of substances in a liquid phase at a molecular level) are performed. Is mainly applied, and if necessary, oil-water separation (forcibly collecting the dispersed phase of the dispersion liquid by an external stimulus to separate into separate liquid phases for liquid separation) or liquid-liquid extraction is incorporated.
【0024】以下、図3〜8を参照して説明する。A description will be given below with reference to FIGS.
【0025】土壌加熱炉1で加熱される汚染土壌から得
られるガスをスクラバ6で凝縮した凝縮液は、分液槽7
において比重差によって上相、中相、下相の3つの液相
にわかれる。中相は水に微量の汚染物質が溶解または顕
濁した親水性の液相である。上相及び下相は水に難溶性
の液相で、比重の軽いものと重いもので各々に分離す
る。なお、上相は土壌中の有機物の分解生成物に汚染物
質が溶解したものが、下相は汚染物質が主成分となるこ
とが多い。相分離は、これらの液相を相毎に取り出すこ
とにより凝縮液から汚染物質を分離する工程であり、上
相及び下相から汚染物質が回収される。なお、下相に
は、比較的粒径が大きく沈降しやすいダストも含まれ
る。相分離は特別な装置を用いなくとも可能である。例
えば、土壌を加熱したときに発生するガス及びミストの
大気放出を防止するために設けられたスクラバーに付属
する水槽と兼用することも可能である。The condensate obtained by condensing the gas obtained from the contaminated soil heated in the soil heating furnace 1 in the scrubber 6 is used in the liquid separating tank 7
In the above, due to the difference in specific gravity, there are three liquid phases, an upper phase, a middle phase and a lower phase. The middle phase is a hydrophilic liquid phase in which a trace amount of contaminants are dissolved or turbid in water. The upper and lower phases are liquid phases that are poorly soluble in water, and are separated into those with a low specific gravity and those with a high specific gravity. In addition, in the upper phase, pollutants are often dissolved in decomposition products of organic matter in soil, and in the lower phase, pollutants are often the main components. Phase separation is a process of separating pollutants from the condensate by taking out these liquid phases for each phase, and the pollutants are recovered from the upper phase and the lower phase. The lower phase also contains dust that has a relatively large particle size and tends to settle. Phase separation is possible without using special equipment. For example, it can be used also as a water tank attached to a scrubber provided to prevent atmospheric release of gas and mist generated when soil is heated.
【0026】相分離で上相及び下相を除去して得た中相
は、濾材8によって液中に存在するダスト(スラッジ)
を分離する(ダスト除去)。濾材には通常の濾過膜や砂
濾過などが利用できる。分離したダストには汚染物質が
吸着している。濾材8を透過した透過液は、その一部を
前術のスクラバーにおいて噴霧水等に利用するように構
成してもよい。The middle phase obtained by removing the upper and lower phases by phase separation is the dust (sludge) existing in the liquid by the filter medium 8.
Is separated (dust removal). As the filter material, an ordinary filter membrane or sand filter can be used. Pollutants are adsorbed on the separated dust. A part of the permeated liquid that has permeated through the filter medium 8 may be used as spray water or the like in the scrubber of the previous operation.
【0027】土壌の汚染が比較的軽度で相分離によって
得られる中相に含まれる有機成分が少ない場合は、中相
に含まれる汚染物質の除去は分離膜9を用いた膜分離に
よって行うことができる(図3参照)が、中相の有機成
分が比較的多い場合や有機成分の組成が複雑なために分
散液状である場合には、膜分離による処理では機能不全
を起こし易いので、油水分離を行う(図4又は図5参
照)のが効率的である。When the soil is relatively slightly contaminated and the organic component contained in the middle phase obtained by phase separation is small, the contaminants contained in the middle phase can be removed by membrane separation using the separation membrane 9. Although it is possible (see Fig. 3), when the medium phase organic component is relatively large or the composition of the organic component is complex and thus it is in a dispersed liquid state, the treatment by membrane separation tends to cause malfunction, so oil-water separation (See FIG. 4 or FIG. 5) is efficient.
【0028】油水分離は、微細な流路を有する透過膜を
備えた分液槽10を用いて行う。微小油滴が分散した水
相液を透過させると、油滴は透過膜を透過しながら膜に
補足され、他の油滴との合体を繰り返して粗粒化する。
この結果、比重差によって親油性液相を水から分別形成
することができる。透過膜の材料は親油性のものが好ま
しい。油水分離によって、前述の相分離の行程と同様
に、上相、中相、下相の3つの液相に分けることができ
る。前述と同様に、汚染物質を含む親油性相を取り除い
た親水性相は膜分離によって無害化処理する。Oil-water separation is performed using a liquid separation tank 10 provided with a permeable membrane having a fine flow path. When the aqueous phase liquid in which fine oil droplets are dispersed is permeated, the oil droplets are captured by the membrane while permeating through the permeable membrane, and are repeatedly coalesced with other oil droplets to form coarse particles.
As a result, the lipophilic liquid phase can be formed separately from water by the difference in specific gravity. The material of the permeable membrane is preferably lipophilic. By the oil-water separation, it is possible to separate into three liquid phases of an upper phase, a middle phase and a lower phase, similarly to the above-mentioned phase separation process. Similar to the above, the hydrophilic phase from which the lipophilic phase containing contaminants has been removed is detoxified by membrane separation.
【0029】膜分離は、油水分離を経た水を主成分とす
る水相液から汚染物質を除去して環境基準、排水基準を
満たす濃度まで低下させる行程であり、分離膜を備えた
膜分離器9で除去を行う。利用できる分離膜には、逆浸
透膜(RO)、限外濾過膜(UF)、精密濾過(MF)
などがある。このような膜処理によって汚染物質が除去
された透過水と、汚染物質が濃縮した濃縮水を得ること
ができる。複数の膜の種類を組み合わせて利用してもよ
い。複数の膜を組み合わせて使う場合は、図6のよう
に、下流側の膜MLで濃縮された液を上流側の膜MUへ
循環させて再処理するように膜分離器9を構成すると有
効である。膜分離による透過水は、環境基準や排水基準
を満たす濃度まで除去できていれば排水として放流でき
る。あるいは、加熱によって水分を失った浄化処理後の
土壌に加えて土壌の再生に利用してもよい。濃縮水は、
油水分離又は相分離の行程へ再循環させて汚染物質を分
離することができる。Membrane separation is a process in which contaminants are removed from an aqueous phase liquid containing water as a main component that has undergone oil-water separation to reduce the concentration to a level satisfying environmental standards and drainage standards. A membrane separator having a separation membrane is provided. Remove at 9. The separation membranes that can be used include reverse osmosis membrane (RO), ultrafiltration membrane (UF), microfiltration (MF).
and so on. By such membrane treatment, it is possible to obtain permeated water from which contaminants have been removed and concentrated water in which contaminants have been concentrated. A plurality of types of membranes may be used in combination. When a plurality of membranes are used in combination, it is effective to configure the membrane separator 9 so as to circulate the liquid concentrated in the downstream membrane ML to the upstream membrane MU for reprocessing as shown in FIG. is there. The permeated water obtained by membrane separation can be discharged as drainage if it is removed to a concentration that meets environmental standards and drainage standards. Alternatively, it may be used for regenerating the soil in addition to the soil after the purification treatment that loses water by heating. The concentrated water is
The contaminants can be separated by recycling to the oil-water separation or phase separation process.
【0030】あるいは、図7のように、前述の油水分離
に代えて、溶剤を用いた液液抽出を行うように処理プロ
セスを構成することもできる。この場合、相分離によっ
て得た中相は、ダスト除去を行う前に抽出槽11におい
て液液抽出すると好ましい。これにより、液液抽出後に
濾材8によって分離されるダストに含まれる汚染物質が
極めて少なくなるので、ダストの直接廃棄が可能にな
る。液液抽出では、水に難溶性で凝縮液から汚染物質を
抽出できる溶媒を親水性相(中相)に接触させて汚染物
質を抽出分離する。ただし、ここで用いる溶媒は汚染物
質の分解を妨害しない溶媒を用いる必要がある。例え
ば、n−ヘキサンは水に難溶性でPCBとDXNを溶解
し易い。また、直鎖構造なので、汚染物質をUV分解法
で分解する際に共存してもなんら問題ない。Alternatively, as shown in FIG. 7, the treatment process can be configured to perform liquid-liquid extraction using a solvent instead of the oil-water separation described above. In this case, the middle phase obtained by phase separation is preferably liquid-liquid extracted in the extraction tank 11 before removing dust. As a result, the contaminants contained in the dust separated by the filter medium 8 after the liquid-liquid extraction are extremely small, so that the dust can be directly discarded. In liquid-liquid extraction, a solvent that is sparingly soluble in water and capable of extracting contaminants from a condensate is brought into contact with the hydrophilic phase (middle phase) to extract and separate contaminants. However, the solvent used here must be a solvent that does not interfere with the decomposition of pollutants. For example, n-hexane is poorly soluble in water and easily dissolves PCB and DXN. Further, since it has a linear structure, there is no problem even if it coexists when decomposing contaminants by the UV decomposition method.
【0031】上記のような処理プロセスによって回収さ
れる汚染物質は、分解装置12において分解処理する。
汚染物質の分解は、例えば、UV照射による光分解法、
触媒を利用した触媒分解法、金属ナトリウムを用いるS
D法などによって可能である。また、ダイオキシンの場
合は、燃焼分解も利用可能である。The pollutants collected by the above treatment process are decomposed in the decomposition device 12.
Decomposition of pollutants can be performed, for example, by photolysis by UV irradiation
Catalyst decomposition method using a catalyst, S using metallic sodium
It is possible by the D method or the like. In the case of dioxins, combustion decomposition can also be used.
【0032】図4の処理プロセスは、相分離、ダスト分
離、油水分離、膜分離の順に処理することにより、相分
離及び油水分離で発生する上下の液相と、ダスト除去で
発生するスラッジとを回収することにより汚染物質をそ
のまま分解手段に供給することができる。なお、例えば
図8のように工程の順番を変更すると処理効率が低下す
るので、高濃度汚染に対する処理が難しくなる。In the treatment process of FIG. 4, the upper and lower liquid phases generated in the phase separation and the oil-water separation and the sludge generated in the dust removal are processed by sequentially performing the phase separation, the dust separation, the oil-water separation and the membrane separation. By collecting the pollutants, the pollutants can be directly supplied to the decomposition means. It should be noted that, for example, if the order of the steps is changed as shown in FIG. 8, the processing efficiency is lowered, and thus it becomes difficult to process high-concentration contamination.
【0033】相分離及び油水分離では、汚染物質の初期
濃度が高いほど分離できる汚染物質の総量が増加し分離
効率が向上する。他方、膜分離の行程では透過水に対し
て濃縮水の比率を大きくとることにより、分離率を向上
できる。そこで、図5の処理プロセスは、土壌の加熱の
初期に発生するガスに汚染物質が少ないことを考慮し、
土壌の加熱初期に発生する汚染物質の少ないガスと加熱
後期の汚染物質の多いガスとを異なる経路によって処理
する(以下、初期のガス由来の凝縮液を凝縮液A、後期
のものを凝縮液Bとする)。加熱初期の凝縮液Aはほと
んどが水であるので、凝縮液Bは、加熱初期に水が除去
される分だけ汚染物質の濃度が高くなるため、相分離、
油水分離での効率を向上することができる。従って、必
要に応じて濾材13によりダスト除去した凝縮液Aを、
油水分離後の水相に混合して膜分離により無害化処理を
行うことにより、汚染物質の除去効率を長時間に渡って
高く維持し、処理システムのメンテナンス頻度を抑える
ことができる。また、汚染土壌の加熱処理するための掘
削時や降雨等によって発生する浸出水についても無害化
処理を施す必要があるが、この場合には、浸出水に溶解
しているSi、Na、Ca等の鉱物質が膜分離時に膜表
面に析出して膜の透過性を妨害する問題がある。これに
対し、凝縮水Aを混合してこれらの成分の濃度を低下さ
せてから無害化処理することによって、上記問題を解決
することができる。尚、凝縮水Aと凝縮水Bとを効果的
に分けるには、土壌の加熱温度を初期においては300
℃以下、好ましくは200℃以下までとして凝縮水Aを
分取し、その後温度を上げて凝縮水Bを取ればよい。In phase separation and oil-water separation, the higher the initial concentration of pollutants, the greater the total amount of pollutants that can be separated and the higher the separation efficiency. On the other hand, in the process of membrane separation, the separation rate can be improved by increasing the ratio of concentrated water to permeated water. Therefore, in the treatment process of FIG. 5, considering that the gas generated in the early stage of heating the soil contains less pollutants,
Gas with little pollutant generated in the early stage of soil heating and gas with many pollutant in the latter stage of heating are processed by different routes (hereinafter, the condensate derived from the initial gas is the condensate A and the latter one is the condensate B. And). Since most of the condensate A in the initial stage of heating is water, the condensate B has a high concentration of pollutants as much as water is removed in the initial stage of heating, so phase separation,
The efficiency in oil-water separation can be improved. Therefore, if necessary, the condensate A from which the dust is removed by the filter medium 13
By performing detoxification treatment by membrane separation after mixing with the aqueous phase after oil-water separation, it is possible to maintain the removal efficiency of pollutants high for a long time and reduce the maintenance frequency of the treatment system. In addition, it is necessary to detoxify leachate generated during excavation for heat treatment of contaminated soil, rain, etc., but in this case, Si, Na, Ca, etc. dissolved in leachate There is a problem that the mineral substances of (3) are deposited on the surface of the membrane during the membrane separation and interfere with the permeability of the membrane. On the other hand, the above problem can be solved by mixing the condensed water A to reduce the concentrations of these components and then performing the detoxification treatment. In order to effectively separate the condensed water A and the condensed water B, the soil heating temperature is set to 300 at the initial stage.
Condensed water A may be fractionated at a temperature of not higher than 0 ° C, preferably 200 ° C or lower, and then the temperature may be raised to take condensed water B.
【0034】図7では、相分離とダスト除去の間に液液
抽出を行って、相分離から取り入れるダストを含んだ中
相液をそのまま抽出処理している。これにより、水中の
微量の汚染物質を抽出すると共にダストに吸着している
汚染物質も抽出される。従って、ダストの汚染物質は除
去できているので、ダスト除去で回収されるスラッジを
土壌に戻して利用することができる。このプロセスにお
いて油水分離は必要ない。In FIG. 7, the liquid-liquid extraction is performed between the phase separation and the dust removal, and the intermediate-phase liquid containing dust taken in from the phase separation is extracted as it is. As a result, a trace amount of pollutants in the water are extracted, and the pollutants adsorbed on the dust are also extracted. Therefore, since the dust pollutants can be removed, the sludge recovered by the dust removal can be returned to the soil and used. No oil-water separation is required in this process.
【0035】本発明では、外部から捕集剤を添加して使
う必要がないため、処理費用が安価にできる。In the present invention, since it is not necessary to add a scavenger from the outside to use, the processing cost can be reduced.
【0036】[0036]
【実施例】(実施例1)図1の装置を用い、表1に記載
する処理条件に従って、汚染物質を含んだ各種土質の土
壌に対して土壌の浄化処理(実験番号1〜20)を行
い、浄化処理による排水及び排ガスの汚染物質濃度の測
定によって評価を行った。その結果を表1に示す。処理
手順及び結果の評価については、以下の通りである。EXAMPLES Example 1 Using the apparatus shown in FIG. 1, according to the treatment conditions shown in Table 1, soil purification treatment (experiment Nos. 1 to 20) was performed on soils of various soils containing pollutants. The evaluation was performed by measuring the concentration of pollutants in wastewater and exhaust gas from the purification treatment. The results are shown in Table 1. The processing procedure and evaluation of the results are as follows.
【0037】汚染土壌を所定の処理割合で土壌加熱炉に
投入して加熱し、発生したガスをガス加熱炉に導入した
後に、ガスを冷却器3で冷却し、ガス中の炭素粒子を収
集した。炭素粒子の収集を乾式で行う場合には、冷却器
3の冷却温度は170℃、湿式の場合には冷却温度は大
気温度とした。乾式収集の場合は、図2(a)のよう
に、冷却ガスを炭素回収装置4のフィルタに通して炭素
粒子をガスから分離した後、ガスを水分捕集装置5にお
いて常温まで冷却して水蒸気を凝縮し排水として分離し
た。湿式収集の場合は、冷却器3での冷却によって凝縮
分離し炭素粒子を含む水を水分捕集装置5によって収集
し、凝縮水を炭素回収装置4’のフィルタを通過させて
炭素粒子と排水とに分離し回収した。The contaminated soil was charged into the soil heating furnace at a predetermined treatment rate and heated, the generated gas was introduced into the gas heating furnace, and then the gas was cooled by the cooler 3 to collect carbon particles in the gas. . When the carbon particles were collected by a dry method, the cooling temperature of the cooler 3 was 170 ° C., and in the case of a wet method, the cooling temperature was atmospheric temperature. In the case of dry collection, as shown in FIG. 2 (a), the cooling gas is passed through the filter of the carbon recovery device 4 to separate the carbon particles from the gas, and then the gas is cooled to room temperature in the moisture collection device 5 to vaporize it. Was condensed and separated as waste water. In the case of wet collection, water containing carbon particles that is condensed and separated by cooling in the cooler 3 is collected by the moisture collector 5, and the condensed water is passed through the filter of the carbon recovery device 4 ′ to generate carbon particles and waste water. Separated and collected.
【0038】上記の処理によって得られた排水及び排ガ
スの汚染物質濃度を測定し、法定基準(PCB:[排
水]0.0005mg/L以下、[排ガス]0.1mg
/m3以下、ダイオキシン:[排水]10pg−TEQ
/L以下、[排ガス]0.1ng−TEQ/m3以下)
に適合するか否かによって評価した。The pollutant concentrations of the waste water and the exhaust gas obtained by the above treatment were measured, and the legal standards (PCB: [waste water] 0.0005 mg / L or less, [exhaust gas] 0.1 mg) were measured.
/ M 3 or less, dioxin: [drainage] 10 pg-TEQ
/ L or less, [exhaust gas] 0.1 ng-TEQ / m 3 or less)
It was evaluated according to whether or not
【0039】尚、表1において、土質は土の工学的分類
方法(JGS M111)に準じ、土壌の処理量は、時
間あたりに処理した土壌の量(湿重量)を示す。土壌の
汚染物質濃度の単位は、PCBについてはmg/kg単
位、ダイオキシンについてはng−TEQ/gである。
有機物量は、熱しゃく減量として湿重量あたりの含有量
に換算している。In Table 1, the soil quality is in accordance with the soil engineering classification method (JGS M111), and the amount of treated soil is the amount of treated soil per hour (wet weight). Units of soil pollutant concentration are mg / kg for PCBs and ng-TEQ / g for dioxins.
The amount of organic matter is converted to the content per wet weight as a heat loss reduction.
【0040】[0040]
【表1】
表1の結果において、土質が同じであっても重量減少量
に違いが生じているが、これは、土壌の採取場所が異な
るためと考えられる。[Table 1] In the results shown in Table 1, there is a difference in the amount of weight loss even if the soil quality is the same, which is considered to be due to the difference in the soil sampling location.
【0041】実験1からわかるように、炭素粒子を生成
することにより、汚染物質が炭素粒子で捕集できるの
で、排水、排ガス中の汚染物質濃度が法規制を満たすよ
うに汚染物質の処理をすることができる。実験2では、
比較のために、被処理ガスの加熱による炭化を行ってい
ない。この場合、炭素粒子が生成せず、排水、排ガス中
の汚染物質濃度が極めて高く、法規制を満たさなかっ
た。実験3〜20は処理条件を変更した例であり、これ
らにおいても炭化が好適に進行し汚染物質の処理に有効
に作用していることが示されている。As can be seen from Experiment 1, the pollutants can be collected by the carbon particles by producing the carbon particles, and therefore the pollutants are treated so that the pollutant concentrations in the waste water and exhaust gas satisfy the legal regulations. be able to. In Experiment 2,
For comparison, carbonization was not performed by heating the gas to be treated. In this case, carbon particles were not generated, the pollutant concentration in the wastewater and exhaust gas was extremely high, and the legal regulations were not satisfied. Experiments 3 to 20 are examples in which the treatment conditions were changed, and it was shown that carbonization also proceeds favorably in these cases and effectively acts on the treatment of pollutants.
【0042】(実施例2)表2に示す各種土質の土壌を
土壌加熱炉で加熱して生じたガスをスクラバにより冷却
し、得られた凝縮液に対して図3〜5及び図7〜8のい
ずれかに示す手順に従って実験21〜41の処理を行
い、排水の汚染物質濃度を測定して、排水中の汚染物質
濃度が法定基準(PCB:[排水]0.0005mg/
L以下、[排ガス]0.1mg/m3以下、ダイオキシ
ン:[排水]10pg−TEQ/L以下、[排ガス]
0.1ng−TEQ/m3以下)に適合するか否かによ
り汚染物質の除去効率を評価した。結果を表2に示す。Example 2 Soil of various soil types shown in Table 2 was heated in a soil heating furnace to cool gas produced by a scrubber, and the obtained condensate was subjected to FIGS. 3 to 5 and 7 to 8. The treatment of Experiments 21 to 41 is performed according to the procedure shown in any one of 1. to measure the pollutant concentration in the wastewater, and the pollutant concentration in the wastewater is a legal standard (PCB: [wastewater] 0.0005 mg /
L or less, [exhaust gas] 0.1 mg / m 3 or less, dioxin: [drainage] 10 pg-TEQ / L or less, [exhaust gas]
0.1 ng-TEQ / m 3 or less), the removal efficiency of pollutants was evaluated depending on whether or not it complies with. The results are shown in Table 2.
【0043】尚、表2において、土質は土の工学的分類
方法(JGS M111)に準じ、土壌の処理量は、時
間当りに処理した土壌の量(湿重量)を示す。また、水
分は土壌の湿重量あたりの水分重量の割合で示す。土壌
加熱温度は土壌から汚染物質を気化分離するために土壌
加熱炉で加熱した温度を示す。土壌の汚染物質濃度の単
位は、PCBについてはmg/kg単位、ダイオキシン
についてはng−TEQ/gである。In Table 2, the soil quality is in accordance with the soil engineering classification method (JGS M111), and the amount of treated soil is the amount of treated soil per hour (wet weight). The water content is indicated by the ratio of the weight of water to the weight of wet soil. The soil heating temperature indicates the temperature heated by the soil heating furnace in order to vaporize and separate pollutants from the soil. Units of soil pollutant concentration are mg / kg for PCBs and ng-TEQ / g for dioxins.
【0044】[0044]
【表2】
表2の結果において、土壌の土質が同じであっても重量
減少量に違いが生じているのは、採取場所が異なるため
と考えられる。[Table 2] In the results of Table 2, it is considered that the difference in the weight reduction amount occurs even if the soil quality is the same because the sampling location is different.
【0045】実験21、22、23からわかるように図
4、5、7に示す処理手順は汚染物質の除去効率が良
く、排水の汚染物質濃度が法規制を満たすように凝縮液
を好適に処理できることが解る。処理行程の順番が異な
る場合(実験24)や油水分離を行わない場合(実験2
6)には、除去効率が低下する。実験24ではダスト除
去の行程でタール状の物質が濾材に付着し、濾材の洗浄
を行っても透過能力が復元できず、凝縮水の処理を継続
することができなかった。実験26では微細な油滴が分
散した凝縮水を無害化処理工程で直接処理するため膜表
面を油滴が覆い、膜の洗浄を行っても透過能力が復元で
きず、凝縮水の処理を継続することができなかった。但
し、実験24及び26の手順は、汚染濃度が低い場合に
は対応可能である(例えば、実験25)。更に、実験2
7〜41に示すような諸条件においても好適に汚染物質
の除去を行うことができる。As can be seen from Experiments 21, 22, and 23, the treatment procedures shown in FIGS. 4, 5, and 7 are suitable for treating the condensate so that the pollutant removal efficiency is good and the pollutant concentration in the wastewater meets the legal regulations. I know what I can do. When the order of the treatment process is different (Experiment 24) or when oil-water separation is not performed (Experiment 2)
In 6), the removal efficiency decreases. In Experiment 24, a tar-like substance adhered to the filter medium during the dust removal process, and even if the filter medium was washed, the permeation capacity could not be restored and the treatment of condensed water could not be continued. In Experiment 26, the condensed water in which fine oil droplets were dispersed was directly treated in the detoxification treatment process, so the membrane surface was covered with the oil droplets, and even if the membrane was washed, the permeation capacity could not be restored and the condensed water treatment was continued I couldn't. However, the procedures of Experiments 24 and 26 can be applied when the contamination concentration is low (for example, Experiment 25). Furthermore, Experiment 2
The contaminants can be preferably removed even under the various conditions shown in 7 to 41.
【0046】[0046]
【発明の効果】本発明は土壌を加熱することによって汚
染物質をガス化分離する土壌の浄化において、土壌が含
む有機物を利用して炭素粉末を製造することにより、簡
便で安価、さらに効率の高い汚染物質の捕集方法を提供
できる。INDUSTRIAL APPLICABILITY According to the present invention, in the purification of soil in which pollutants are gasified and separated by heating the soil, carbon powder is produced by utilizing organic matter contained in the soil, which is simple, inexpensive and highly efficient. A method for collecting pollutants can be provided.
【0047】本発明は土壌を加熱することによって汚染
物質をガス化分離する土壌の浄化方法において、発生す
る水蒸気と汚染物質が混在するガスを凝縮回収した凝縮
液に含む汚染物質を、捕集剤を用いずに分離回収濃縮で
きるため、汚染物質の分解手段にそのまま供することが
可能となる。The present invention relates to a method for purifying soil in which pollutants are gasified and separated by heating the soil, and the pollutants contained in the condensate obtained by condensing and collecting the gas containing the generated water vapor and the pollutants are collected. Since it is possible to separate and collect and concentrate without using, it becomes possible to directly use it as a means for decomposing pollutants.
【図1】本発明に係る土壌処理装置の一実施例を示す概
略構成図。FIG. 1 is a schematic configuration diagram showing an embodiment of a soil treatment apparatus according to the present invention.
【図2】本発明に係る土壌処理における炭素粒子の乾式
収集(a)及び湿式収集(b)を示す図。FIG. 2 is a diagram showing dry collection (a) and wet collection (b) of carbon particles in the soil treatment according to the present invention.
【図3】本発明に係る土壌処理における凝縮液の処理を
実施する装置の第1の実施形態を示す概略構成図。FIG. 3 is a schematic configuration diagram showing a first embodiment of an apparatus for performing treatment of a condensate in soil treatment according to the present invention.
【図4】本発明に係る土壌処理における凝縮液の処理を
実施する装置の第2の実施形態を示す概略構成図。FIG. 4 is a schematic configuration diagram showing a second embodiment of the apparatus for carrying out the treatment of the condensate in the soil treatment according to the present invention.
【図5】本発明に係る土壌処理における凝縮液の処理を
実施する装置の第3の実施形態を示す概略構成図。FIG. 5 is a schematic configuration diagram showing a third embodiment of an apparatus for performing treatment of a condensate in soil treatment according to the present invention.
【図6】本発明に係る土壌処理における凝縮液の処理で
用いる膜分離器の一実施形態を示す概略構成図。FIG. 6 is a schematic configuration diagram showing an embodiment of a membrane separator used in the treatment of the condensate in the soil treatment according to the present invention.
【図7】本発明に係る土壌処理における凝縮液の処理を
実施する装置の第4の実施形態を示す概略構成図。FIG. 7 is a schematic configuration diagram showing a fourth embodiment of the apparatus for carrying out the treatment of the condensate in the soil treatment according to the present invention.
【図8】本発明に係る土壌処理における凝縮液の処理を
実施する装置の第5の実施形態を示す概略構成図。FIG. 8 is a schematic configuration diagram showing a fifth embodiment of the apparatus for carrying out the treatment of the condensate in the soil treatment according to the present invention.
1 土壌加熱炉、 2 ガス加熱炉、 3 冷却器 4、4’ 炭素回収装置 5 水分捕集装置、 6 スクラバ、 7 分液槽 8,13 濾材、 9 膜分離器、 10 分液槽 11 抽出槽、 12 分解装置 1 soil heating furnace, 2 gas heating furnace, 3 cooler 4,4 'carbon recovery device 5 Moisture collector, 6 Scrubber, 7 Separation tank 8,13 Filter material, 9 Membrane separator, 10 Separation tank 11 extraction tanks, 12 decomposition devices
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/06 B01J 20/20 B 4G066 B01J 20/20 C02F 1/26 B C02F 1/26 1/44 K 1/44 9/00 502D 9/00 502 502E 502Z 503Z 503 504B 504 B09B 3/00 303P (72)発明者 轟木 朋浩 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 名古 肇 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 羽中田 佳男 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 4D004 AA41 AB02 AB03 AB05 AB06 AB07 AC04 CA22 CA42 4D006 GA03 GA06 GA07 KA01 KA52 KA63 KB14 KB30 LA08 MB10 PA01 PB12 PB14 PC23 4D012 CA20 CC13 CG01 CH06 CH10 4D037 AA11 AB14 BA11 4D056 AB18 AB19 AC02 4G066 AA04B AA75B CA21 CA25 CA27 CA33 CA46 CA50 CA51 DA01 FA22 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01D 53/06 B01J 20/20 B 4G066 B01J 20/20 C02F 1/26 B C02F 1/26 1/44 K 1/44 9/00 502D 9/00 502 502E 502Z 503Z 503 504B 504 B09B 3/00 303P (72) Inventor Tomohiro Tokidoki 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Prefecture Toshiba Corporation Yokohama Works (72) Inventor Hajime Nako 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Incorporated company Toshiba Yokohama Office (72) Inventor Yoshio Hananaka, Shin-Sugita-cho, Isogo-ku, Yokohama, Kanagawa Prefecture F-term (in Toshiba Corporation, Yokohama office) Reference) 4D004 AA41 AB02 AB03 AB05 AB06 AB07 AC04 CA22 CA42 4D006 GA03 GA06 GA07 KA01 KA52 KA63 KB14 KB30 LA08 M B10 PA01 PB12 PB14 PC23 4D012 CA20 CC13 CG01 CH06 CH10 4D037 AA11 AB14 BA11 4D056 AB18 AB19 AC02 4G066 AA04B AA75B CA21 CA25 CA27 CA33 CA46 CA50 CA51 DA01 FA22
Claims (4)
合物を気化する気化工程と、気化した前記汚染物質及び
前記有機炭素化合物を含むガスを低酸素雰囲気中で加熱
して前記有機炭素化合物を炭化し炭素粒子を生成する炭
化工程と、前記炭素粒子と共に前記炭素粒子に吸着され
る前記汚染物質を回収する回収工程とを有することを特
徴とする汚染物質の処理方法。1. A vaporization step of vaporizing pollutants and organic carbon compounds contained in soil, and heating the gas containing the vaporized pollutants and organic carbon compounds in a low oxygen atmosphere to carbonize the organic carbon compounds. A method for treating a pollutant, comprising: a carbonization step of producing carbon particles and a recovery step of recovering the pollutants adsorbed by the carbon particles together with the carbon particles.
上且つ600℃以下に加熱する工程であり、前記炭化工
程における前記ガスの加熱温度は800℃以上且つ12
00℃以下であり、前記回収工程は、前記炭素粒子を2
00℃以下に冷却して収集する工程であることを特徴と
する請求項1記載の処理方法。2. The vaporizing step is a step of heating the soil to 400 ° C. or more and 600 ° C. or less, and the heating temperature of the gas in the carbonizing step is 800 ° C. or more and 12 ° C. or more.
The temperature is not higher than 00 ° C., and the carbon particles are not
The processing method according to claim 1, which is a step of cooling to below 00 ° C and collecting.
工程と、気化した前記汚染物質を冷却して凝縮液を得る
凝縮工程と、前記凝縮液の親水性相と親油性相とを分液
する相分離工程と、前記相分離工程で分液した前記親水
性相に含まれるダストを分離するダスト分離工程と、前
記親水性相を分離膜を通して前記親水性相から該汚染物
質を除去する膜分離工程とを有する汚染物質の処理方
法。3. A vaporization step of vaporizing a pollutant contained in soil, a condensing step of cooling the vaporized pollutant to obtain a condensate, and a liquid separation of a hydrophilic phase and a lipophilic phase of the condensate. Phase separation step, a dust separation step for separating dust contained in the hydrophilic phase separated in the phase separation step, and a membrane for removing the contaminants from the hydrophilic phase through a separation membrane. A method for treating pollutants, comprising a separation step.
性相に分散する分散相を、透過膜を用いた油水分離又は
親油性抽出液を用いた液液抽出によって除去する工程を
有する請求項3記載の処理方法。4. The method further comprises, before the membrane separation step, a step of removing the dispersed phase dispersed in the hydrophilic phase by oil-water separation using a permeable membrane or liquid-liquid extraction using a lipophilic extract. The processing method according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002084150A JP3751572B2 (en) | 2002-03-25 | 2002-03-25 | Pollution treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002084150A JP3751572B2 (en) | 2002-03-25 | 2002-03-25 | Pollution treatment method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005023686A Division JP2005161315A (en) | 2005-01-31 | 2005-01-31 | Method for treating contaminant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003275738A true JP2003275738A (en) | 2003-09-30 |
JP3751572B2 JP3751572B2 (en) | 2006-03-01 |
Family
ID=29206979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002084150A Expired - Lifetime JP3751572B2 (en) | 2002-03-25 | 2002-03-25 | Pollution treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3751572B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007237129A (en) * | 2006-03-10 | 2007-09-20 | Central Res Inst Of Electric Power Ind | Deoiling method of oil-containing substance using liquefied substance |
CN114752423A (en) * | 2022-04-06 | 2022-07-15 | 浙江大学 | Activated sludge biomass fuel and preparation method thereof |
-
2002
- 2002-03-25 JP JP2002084150A patent/JP3751572B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007237129A (en) * | 2006-03-10 | 2007-09-20 | Central Res Inst Of Electric Power Ind | Deoiling method of oil-containing substance using liquefied substance |
JP4542517B2 (en) * | 2006-03-10 | 2010-09-15 | 財団法人電力中央研究所 | Deoiling method of oil-containing substance using liquefied product |
CN114752423A (en) * | 2022-04-06 | 2022-07-15 | 浙江大学 | Activated sludge biomass fuel and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3751572B2 (en) | 2006-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101721614B1 (en) | Apparatus and method for treating gas discharged from cement kiln | |
US5205906A (en) | Process for the catalytic treatment of wastewater | |
US5160636A (en) | Process for the treatment of mixed wastes | |
JPH05192648A (en) | Method for decontaminating contaminated soil | |
JP2003523281A (en) | Adsorbed powder for removing mercury from hot and humid gas streams | |
KR102061828B1 (en) | Soil remediation method for remediating soil contaminated with mercury and persistent organic pollutants | |
JP6242761B2 (en) | Waste water treatment apparatus and treatment method | |
JP2007181784A (en) | Waste treatment apparatus | |
KR20180049016A (en) | Contaminated soil and groundwater purification using improved stimulants | |
JP3626459B2 (en) | Organohalogen compound processing apparatus and processing method thereof | |
JP2010149076A (en) | Method and apparatus for purifying leachate | |
JPS5815165B2 (en) | Process for purifying air or gas streams of flammable, filter-adsorbable vapor or gaseous impurities | |
JP3751572B2 (en) | Pollution treatment method | |
JP2005161315A (en) | Method for treating contaminant | |
RU2250123C2 (en) | Method of detoxifying mud, in particular sea and lagoon sediments, or grounds containing organic and/or inorganic trace pollutants | |
JP2007307431A (en) | Soil treatment method and soil treatment apparatus | |
JP3811705B2 (en) | Exhaust gas treatment method and equipment | |
JP2008029968A (en) | Halogen-based toxic substance removal/purification/detoxication apparatus | |
JP3692325B2 (en) | Soil purification equipment | |
JP4119631B2 (en) | Processing system for soil containing hazardous substances | |
US5489738A (en) | Enhanced volatilization of polychlorinated biphenyl compounds | |
JP6127113B1 (en) | Radioactive contaminant treatment method and radioactive contaminant treatment facility | |
JP4509700B2 (en) | Exhaust gas treatment method and exhaust gas treatment equipment | |
JPH11188352A (en) | Method and apparatus for treating drainage water | |
JP2001137634A (en) | Device and method for treating waste gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051207 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3751572 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131216 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |