JP2003275773A - Wastewater treatment method for polyphenylene sulfide - Google Patents
Wastewater treatment method for polyphenylene sulfideInfo
- Publication number
- JP2003275773A JP2003275773A JP2002080724A JP2002080724A JP2003275773A JP 2003275773 A JP2003275773 A JP 2003275773A JP 2002080724 A JP2002080724 A JP 2002080724A JP 2002080724 A JP2002080724 A JP 2002080724A JP 2003275773 A JP2003275773 A JP 2003275773A
- Authority
- JP
- Japan
- Prior art keywords
- cod
- polyphenylene sulfide
- substance
- wastewater
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
(57)【要約】
【課題】 ポリフェニレンスルフィドを代表とするポリ
アリーレンスルフィドの製造時の精製工程において排出
される高COD物質含有排水を、効率良く、沈殿槽を用
いずに連続処理が可能な排水処理方法、及び排水処理装
置を提供する。
【解決手段】 COD物質を含有する排水に、pH調整
後に凝集剤を加え、あるいは酸性凝集剤を加えてpH調
整し、COD物質を不溶化させ、不溶化させたCOD物
質を分離することを特徴とする排水処理方法である。ま
た、精製工程の排水が導入され、混合機能を有してお
り、且つpH指示調節計を備えておりpH調製と凝集処
理が可能な凝集反応槽と、前記凝集反応槽より導入され
た不溶化したCOD物質を分離する連続式遠心分離装置
とからなることを特徴とする排水処理装置である。
PROBLEM TO BE SOLVED: To efficiently and continuously treat wastewater containing high COD substances discharged in a purification step at the time of production of polyarylene sulfide represented by polyphenylene sulfide without using a sedimentation tank Provided are a treatment method and a wastewater treatment device. SOLUTION: A coagulant is added to a wastewater containing a COD substance after pH adjustment, or a pH is adjusted by adding an acidic coagulant, so that the COD substance is insolubilized and the insolubilized COD substance is separated. It is a wastewater treatment method. In addition, the wastewater from the purification step is introduced, has a mixing function, and is equipped with a pH indicator controller, capable of pH adjustment and coagulation treatment, and an insolubilized reaction tank introduced from the coagulation reaction tank. A wastewater treatment device comprising a continuous centrifugal separator for separating COD substances.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポリフェニレンス
ルフィド(以下、PPSと略称する)製造時の排水処理
方法、及び排水処理装置に関する。更に詳しくは、PP
Sに代表されるポリアリーレンスルフィド(以下、PA
Sと略称する)の精製工程で、水洗によって生ずる難分
解性のCOD物質(即ち、被酸化性物質)を含有する排
水処理方法及び排水処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method and a wastewater treatment apparatus for producing polyphenylene sulfide (hereinafter abbreviated as PPS). More specifically, PP
Polyarylene sulfide represented by S (hereinafter, PA
The present invention relates to a wastewater treatment method and a wastewater treatment apparatus that contain a hardly decomposable COD substance (that is, an oxidizable substance) generated by washing with water in a purification step of S).
【0002】[0002]
【従来の技術】PPSに代表されるPASは、耐熱性、
耐薬品性等に優れ、電気・電子部品、自動車部品等の成
形品の他、繊維、フィルム用途等に幅広く利用されつつ
ある。2. Description of the Related Art PAS represented by PPS is heat resistant,
It has excellent chemical resistance and is being widely used for electric and electronic parts, molded parts such as automobile parts, fiber and film applications.
【0003】PASの代表的な製造方法としては、例え
ば、特公昭45−3368号、特公昭52−12240
号等に開示されているが如く、有機極性溶媒(例えば、
N−メチルピロリドン(以下、NMPと略す)、N,N
−ジメチルアセトアミド、N−メチル−ε−カプロラク
タム等)中で、スルフィド化剤(例えば、硫化ナトリウ
ムに代表される硫化アルカリ金属、あるいは水硫化ナト
リウムに代表される水硫化アルカリ金属と水酸化ナトリ
ウムに代表される水酸化アルカリ金属の組み合わせ等)
と、p−ジクロルベンゼンに代表されるポリハロ芳香族
化合物とを重合反応させる方法等により得られる。Typical methods for producing PAS include, for example, Japanese Patent Publication Nos. 45-3368 and 52-12240.
Organic polar solvents (eg,
N-methylpyrrolidone (hereinafter abbreviated as NMP), N, N
In dimethylacetamide, N-methyl-ε-caprolactam, etc., a sulfidizing agent (for example, an alkali metal sulfide represented by sodium sulfide, or an alkali metal hydrosulfide represented by sodium hydrosulfide and sodium hydroxide) Combination of alkali metal hydroxides)
And a polyhaloaromatic compound typified by p-dichlorobenzene.
【0004】重合反応は、通常、高温高圧のアルカリ条
件下で行われ、例えば、原料として硫化ナトリウムとp
−ジクロルベンゼンを用いた場合には、目的物質のPP
Sと共に、塩化ナトリウムが生成する他に重合反応後の
所謂「粗反応生成物」には未反応の原料や溶媒、副生成
物、オリゴマー等が含有されている。The polymerization reaction is usually carried out under alkaline conditions of high temperature and high pressure. For example, sodium sulfide and p are used as raw materials.
-When dichlorobenzene is used, the target substance PP
In addition to the production of sodium chloride, the so-called "crude reaction product" after the polymerization reaction contains unreacted raw materials, solvents, by-products, oligomers and the like.
【0005】重合反応後の粗反応生成物は適当な容器に
取り出され、それに含有される溶媒は減圧蒸留装置、濾
過器、遠心分離器等の適当な固液分離装置を用いて分離
回収されて(本操作を脱溶媒という)、再利用された
り、必要に応じて更に精製されて利用される。The crude reaction product after the polymerization reaction is taken out into a suitable container, and the solvent contained therein is separated and recovered by using a suitable solid-liquid separation device such as a vacuum distillation device, a filter, a centrifugal separator and the like. (This operation is called desolvation), and it is reused or, if necessary, further purified before use.
【0006】一方、脱溶媒後の「粗ポリアリーレンスル
フィド」は、一般には水洗と濾過が繰り返され、主に例
えば塩化ナトリウムやアルカリ性物質等の不純物が除去
される。一般には、100℃未満で行う水洗方法と、1
00℃以上の高温高圧下で行う熱水洗とがある。PPS
は水洗又は熱水洗後に濾過器、遠心濾過器等で分離さ
れ、その後乾燥され、必要に応じて熱処理し架橋反応を
行い製品とする。On the other hand, the "crude polyarylene sulfide" after desolvation is generally repeatedly washed with water and filtered to mainly remove impurities such as sodium chloride and alkaline substances. Generally, a method of washing with water below 100 ° C. and 1
There is hot water washing performed under high temperature and high pressure of 00 ° C or higher. PPS
After washing with water or hot water, the product is separated with a filter, a centrifugal filter, etc., then dried, and if necessary, heat treated to carry out a crosslinking reaction to obtain a product.
【0007】精製工程中で発生する排水のうち、COD
負荷原因となる溶媒は脱溶媒時の溶媒の回収率向上によ
り改善可能であり、また、未反応の硫化物は酸化処理に
よりCODの削減は可能であるが、全体の半分以上を占
める水洗した排水に含まれるCOD物質の削減には至ら
なかった。Of the wastewater generated during the refining process, COD
The solvent that causes the load can be improved by improving the recovery rate of the solvent at the time of desolventization, and unreacted sulfide can be reduced in COD by oxidation treatment, but it is more than half of the total washed wastewater It did not reach the reduction of COD substances contained in.
【0008】従来のCOD物質含有排水の処理方法とし
ては、pH調整して凝集させる方法が一般に知られてい
る。例えば、特開平8−257574号公報にはCOD
物質を含有する排水に、アルカル剤を加えてpHを調整
して、酸化剤を添加混合し二酸化マンガンの存在下で前
記COD物質を酸化し、更に無機系あるいは高分子凝集
剤を加え、凝集沈殿槽でCOD物質を不溶化、凝集させ
ながら沈殿させた後引き抜き除去し、上澄水は中和処理
して放水する方法が開示されている。しかしながら特開
平8−257574号公報記載の方法では、不溶化させ
たCOD物質の沈殿に長時間を要し、大きな処理槽と広
い設置スペースが必要であった。また、沈殿物を引き抜
き、デカンターで処理をする装置まで考慮するとコスト
的にも高価となり、更に沈殿物の引き抜き作業では連続
処理が困難であるという問題があった。As a conventional method for treating wastewater containing a COD substance, a method of adjusting pH and aggregating is generally known. For example, JP-A-8-257574 discloses a COD.
To the wastewater containing the substance, an alcal agent is added to adjust the pH, an oxidant is added and mixed, the COD substance is oxidized in the presence of manganese dioxide, and an inorganic or polymer coagulant is further added to coagulate and precipitate. A method is disclosed in which a COD substance is insolubilized in a tank, precipitated while being aggregated, and then removed, and the supernatant water is neutralized and discharged. However, in the method described in JP-A-8-257574, it takes a long time to precipitate the insolubilized COD substance, and a large processing tank and a large installation space are required. In addition, considering the apparatus for extracting the precipitate and treating it with a decanter, the cost becomes high, and further there is a problem that continuous processing is difficult in the operation of extracting the precipitate.
【0009】また、凝集させたCOD物質を含む反応液
を固液分離装置へ送り、分離処理する方法も、このまま
の油状物では極めて分離効率が低く実用上問題があっ
た。そのため大量の水で希釈して排水する方法もある
が、環境汚染上好ましくない。Further, the method of sending the reaction liquid containing the agglomerated COD substance to the solid-liquid separation device and performing the separation treatment has a problem in practical use because the oily substance as it is has extremely low separation efficiency. Therefore, there is a method of diluting with a large amount of water and draining it, but it is not preferable in terms of environmental pollution.
【0010】また、特開平11−169870号公報
は、PAS製造時にPASを単離精製する工程で排出さ
れる着色排水をpH7〜10に調整した後、次亜塩素酸
化合物を添加する方法であるが、着色排水の脱色を目的
にしたものであり、COD物質の除去を目的にしたもの
ではなかった。Further, JP-A-11-169870 discloses a method of adding a hypochlorous acid compound after adjusting the pH of the colored waste water discharged in the step of isolating and purifying PAS during the production of PAS to 7 to 10. However, the purpose was to decolorize the colored wastewater, not to remove the COD substance.
【0011】[0011]
【発明が解決しようとする課題】本発明は、上記のよう
な問題点に鑑み、ポリフェニレンスルフィドを代表とす
るポリアリーレンスルフィドの製造時の精製工程におい
て排出される高COD物質含有排水を、効率良く、沈殿
槽を用いずに連続処理が可能な排水処理方法、及び排水
処理装置を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above problems, the present invention efficiently removes high COD substance-containing wastewater discharged in the purification step during the production of polyarylene sulfide typified by polyphenylene sulfide. It is an object of the present invention to provide a wastewater treatment method and a wastewater treatment apparatus capable of continuous treatment without using a settling tank.
【0012】[0012]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、PPSを代表とす
るPAS製造時の精製工程のCOD物質を含有するアル
カリ性の排水に、酸性凝集剤を加えてpHを4〜6に調
整してCOD物質を不溶化又は難溶化させ(「酸析処
理」という)、且つ大きなフロック状に析出させる酸性
凝集剤を使用することにより、固液分離を容易にして、
COD物質の除去が容易に出来ることを見出し、本発明
を完成するに至った。Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that alkaline waste water containing a COD substance in a purification step during the production of PAS represented by PPS is acidic. Solid-liquid separation is achieved by adding an aggregating agent to adjust the pH to 4 to 6 to insolubilize or sparingly dissolve the COD substance (referred to as “acid deposition treatment”) and to precipitate large flocs in the form of an acidic aggregating agent. To facilitate
The inventors have found that the COD substance can be easily removed, and completed the present invention.
【0013】即ち、本発明は、有機極性溶媒中でポリハ
ロ芳香族化合物とスルフィド化剤とを反応させて得られ
たポリフェニレンスルフィドを含有する生成物からポリ
フェニレンスルフィドを単離精製する工程(精製工程)
において出されるCOD物質(即ち、被酸化性物質)を
含有する排水に、pH調整後に凝集剤を加え、あるいは
酸性凝集剤を加えてpH調整し、COD物質を不溶化又
は難溶化させ、不溶化又は難溶化させたCOD物質を分
離することを特徴とするポリフェニレンスルフィドの排
水処理方法である。That is, the present invention is a step of isolating and purifying polyphenylene sulfide from a product containing polyphenylene sulfide obtained by reacting a polyhaloaromatic compound with a sulfidizing agent in an organic polar solvent (purification step).
In the wastewater containing the COD substance (that is, the oxidizable substance), the pH of the COD substance is added after the pH is adjusted, or the pH of the COD substance is adjusted by adding an acidic flocculant to make the COD substance insoluble or hardly soluble. A method for treating wastewater of polyphenylene sulfide, which comprises separating a solubilized COD substance.
【0014】また、本発明は、ポリフェニレンスルフィ
ド製造時の精製工程の排水が導入され、混合機能を有し
ており、且つpH指示調節計を備えておりpH調製と凝
集処理が可能な凝集反応槽と、前記凝集反応槽より導入
された不溶化又は難溶化したCOD物質を分離する連続
式遠心分離装置とからなることを特徴とするポリフェニ
レンスルフィドの排水処理装置である。Further, according to the present invention, an aggregating reaction tank is introduced in which wastewater in the purification step during the production of polyphenylene sulfide is introduced, has a mixing function, and is equipped with a pH indicator controller and capable of pH adjustment and aggregating treatment. And a continuous centrifugal separator for separating insolubilized or sparingly-solubilized COD substances introduced from the coagulation reaction tank, which is a wastewater treatment device for polyphenylene sulfide.
【0015】[0015]
【発明の実施の形態】PPSを代表とするPASは、通
常、N−メチルピロリドン等の有機極性溶媒中で、少な
くとも1種のポリハロ芳香族化合物と少なくとも1種の
スルフィド化剤とを従来公知の重合条件下で反応させて
得られる。重合反応後、粗反応生成物から減圧条件下で
溶媒留去あるいは濾過等の適当な方法で脱溶媒して溶媒
を回収する方法が一般にとられており、本発明でも特に
制限はしない。BEST MODE FOR CARRYING OUT THE INVENTION A PAS typified by PPS is a conventionally known compound containing at least one polyhaloaromatic compound and at least one sulfidizing agent in an organic polar solvent such as N-methylpyrrolidone. Obtained by reacting under polymerization conditions. After the polymerization reaction, a method of recovering the solvent by removing the solvent from the crude reaction product by a suitable method such as distillation of the solvent or filtration under a reduced pressure condition is generally used, and the present invention is not particularly limited.
【0016】本発明でいうポリハロ芳香族化合物とは、
例えば、芳香族環に直接結合した2個以上のハロゲン原
子を有するハロゲン化芳香族化合物であり、例えば、p
−ジクロルベンゼン、o−ジクロルベンゼン、m−ジク
ロルベンゼン、トリクロルベンゼン、テトラクロルベン
ゼン、ジブロムベンゼン、ジヨードベンゼン、トリブロ
ムベンゼン、トリヨードベンゼン、ジクロルナフタレ
ン、ジブロムナフタレン、ジクロルジフェニルベンゼ
ン、ジブロムジフェニルベンゼン、ジクロルベンゾフェ
ノン、ジブロムベンゾフェノン、ジクロルジフェニルエ
ーテル、ジブロムジフェニルエーテル、ジクロルジフェ
ニルスルフィド、ジブロムジフェニルスルフィド、ジク
ロルビフェニル、ジブロムビフェニル等のポリハロ芳香
族化合物及びこれらの混合物が挙げられる。これらの中
で、好ましいのは、使用する全ポリハロ芳香族化合物の
モル数に対して、p−ジクロルベンゼンを80モル%以
上含むものである。The polyhaloaromatic compound referred to in the present invention is
For example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, for example, p
-Dichlorobenzene, o-dichlorobenzene, m-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, triiodobenzene, dichloronaphthalene, dibromonaphthalene, dichloro Polyhaloaromatic compounds such as diphenylbenzene, dibromodiphenylbenzene, dichlorobenzophenone, dibromobenzophenone, dichlorodiphenyl ether, dibromodiphenyl ether, dichlorodiphenyl sulfide, dibromodiphenyl sulfide, dichlorobiphenyl, dibromobiphenyl, and these A mixture may be mentioned. Among these, preferred is one containing p-dichlorobenzene in an amount of 80 mol% or more based on the total number of moles of the polyhaloaromatic compound used.
【0017】また、本発明でいうスルフィド化剤とは、
特に制限されるものではなく、アルカリ金属硫化物の無
水物又は含水物又は水溶液として用いることが出来、例
えば、硫化リチウム、硫化ナトリウム、硫化カリウム、
硫化ルビジウム及び硫化セシウム、又はこれらの水和物
等が挙げられ、これらはそれぞれ単独で用いても2種以
上を混合して用いてもよい。上記アルカリ金属硫化物の
中でも、反応性に優れる点から硫化ナトリウムと硫化カ
リウムが好ましく、中でも硫化ナトリウムが特に好まし
い。The sulfidizing agent referred to in the present invention is
It is not particularly limited and can be used as an anhydride or a water-containing substance or an aqueous solution of an alkali metal sulfide, for example, lithium sulfide, sodium sulfide, potassium sulfide,
Examples thereof include rubidium sulfide and cesium sulfide, and hydrates thereof. These may be used alone or in combination of two or more. Among the above alkali metal sulfides, sodium sulfide and potassium sulfide are preferable from the viewpoint of excellent reactivity, and sodium sulfide is particularly preferable.
【0018】また、これらアルカリ金属硫化物は、例え
ば、アルカリ金属水硫化物とアルカリ金属水酸化物、あ
るいは硫化水素とアルカリ金属水酸化物とを反応容器中
で事前に接触させ、反応させることによっても得られる
が、反応系外で調整されたものを用いてもよい。These alkali metal sulfides can be obtained by, for example, contacting an alkali metal hydrosulfide and an alkali metal hydroxide or hydrogen sulfide and an alkali metal hydroxide in advance in a reaction vessel and reacting them. Although it can also be obtained, a product prepared outside the reaction system may be used.
【0019】アルカリ金属水酸化物としては、例えば、
水酸化リチウム、水酸化ナトリウム、水酸化カリウム、
水酸化ルビジウム、水酸化セシウム等が挙げられるが、
中でも水酸化リチウム、水酸化ナトリウム、水酸化カリ
ウムが好ましく、水酸化ナトリウムが特に好ましい。こ
れらはそれぞれ単独使用でも2種以上を混合して用いて
もよい。また、アルカリ金属水硫化物とアルカリ金属水
酸化物は、固体状態、液体状態、溶融状態等、どのよう
な形態で反応に用いてもよく、特に制限はない。As the alkali metal hydroxide, for example,
Lithium hydroxide, sodium hydroxide, potassium hydroxide,
Examples include rubidium hydroxide and cesium hydroxide,
Of these, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is particularly preferable. These may be used alone or in combination of two or more. The alkali metal hydrosulfide and the alkali metal hydroxide may be used in the reaction in any form such as a solid state, a liquid state and a molten state, and there is no particular limitation.
【0020】尚、通常、硫化アルカリ金属中に微量存在
する水硫化アルカリ金属、チオ硫酸アルカリ金属と反応
させるために、少量の水酸化アルカリ金属を加えても差
し支えない。Incidentally, a small amount of alkali metal hydroxide may be added in order to react with the alkali metal hydrosulfide and the alkali metal thiosulfate which are usually present in trace amounts in the alkali metal sulfide.
【0021】アルカリ金属水硫化物は、特に制限され
ず、アルカリ金属水硫化物の無水物又は含水物又は水溶
液として用いることが出来る。アルカリ金属水硫化物と
しては、例えば、水硫化リチウム、水硫化ナトリウム、
水硫化カリウム、水硫化ルビジウム及び水硫化セシウム
等が挙げられ、中でも水硫化ナトリウムが好ましい。こ
れらはそれぞれ単独でも2種以上を混合して使用しても
よい。The alkali metal hydrosulfide is not particularly limited, and it can be used as an anhydrous or hydrous substance or an aqueous solution of the alkali metal hydrosulfide. As the alkali metal hydrosulfide, for example, lithium hydrosulfide, sodium hydrosulfide,
Examples thereof include potassium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide, with sodium hydrosulfide being preferred. These may be used alone or in admixture of two or more.
【0022】また、本発明でいう有機極性溶媒とは、例
えば、N−メチルピロリドン(以下、NMPと略称す
る)、N−シクロヘキシルピロリドン、N−メチル−ε
−カプロラクタム、ホルムアミド、アセトアミド、N−
メチルホルムアミド、N,N−ジメチルアセトアミド、
2−ピロリドン、ε−カプロラクタム等が挙げられ、こ
れらの中でも、N−メチルピロリドンがスルフィド化剤
の反応性を向上させる特性に優れる点から特に好まし
い。The organic polar solvent used in the present invention is, for example, N-methylpyrrolidone (hereinafter abbreviated as NMP), N-cyclohexylpyrrolidone, N-methyl-ε.
-Caprolactam, formamide, acetamide, N-
Methylformamide, N, N-dimethylacetamide,
2-pyrrolidone, ε-caprolactam and the like can be mentioned, and among these, N-methylpyrrolidone is particularly preferable because it is excellent in the property of improving the reactivity of the sulfidizing agent.
【0023】上記有機極性溶媒の使用量は、使用する溶
媒の種類及び系内の溶媒に対する系内の水分量により異
なるため、特に制限されるものではないが、反応系を撹
拌可能な状態に維持するためには、重合に用いる有機極
性溶媒の使用量はスルフィド化剤中の硫黄源1モル当た
り1.0〜6.0モルとなる範囲であることが好まし
く、より好ましくは2.5〜4.5モルの範囲である。The amount of the organic polar solvent used is not particularly limited because it varies depending on the type of solvent used and the amount of water in the system relative to the solvent in the system, but the reaction system is maintained in a stirrable state. In order to achieve this, the amount of the organic polar solvent used for the polymerization is preferably in the range of 1.0 to 6.0 mol, and more preferably 2.5 to 4 mol, per mol of the sulfur source in the sulfidizing agent. It is in the range of 0.5 mol.
【0024】また、必要に応じて重合反応を行う前に、
例えば、原料である有機極性溶媒とアルカリ金属硫化
物、又はアルカリ金属水硫化物とアルカリ金属水酸化物
を反応容器に加え、昇温しながら系内の水を系外に留出
させる、所謂、脱水反応を行った後に密閉し、ポリハロ
芳香族化合物の溶融物または有機極性溶媒を使用した溶
液を滴下し、重合反応を行うとよい。If necessary, before carrying out the polymerization reaction,
For example, an organic polar solvent and an alkali metal sulfide as a raw material, or an alkali metal hydrosulfide and an alkali metal hydroxide are added to a reaction vessel, water in the system is distilled out of the system while heating, a so-called, It is advisable to carry out the polymerization reaction by performing a dehydration reaction and then sealing and then dropping a melt of a polyhaloaromatic compound or a solution using an organic polar solvent.
【0025】重合条件としては、特に限定しないが、好
ましくは180〜300℃の範囲であり、より好ましく
は200〜260℃、特に好ましくは200〜250℃
の範囲である。比較的低温で重合反応を行うことによ
り、副反応を抑制することが出来、優れた物性と良好な
色調のPASを得ることが出来る。The polymerization conditions are not particularly limited, but are preferably in the range of 180 to 300 ° C, more preferably 200 to 260 ° C, particularly preferably 200 to 250 ° C.
Is the range. By carrying out the polymerization reaction at a relatively low temperature, side reactions can be suppressed, and PAS having excellent physical properties and good color tone can be obtained.
【0026】重合反応終了後、通常、粗反応生成物中の
溶媒は、減圧蒸留装置、濾過器、遠心分離器等の適当な
固液分離装置にて、脱溶媒され分離回収されることが好
ましい。After the completion of the polymerization reaction, it is usually preferred that the solvent in the crude reaction product is desolvated and separated and recovered by an appropriate solid-liquid separation device such as a vacuum distillation device, a filter and a centrifugal separator. .
【0027】脱溶媒後の粗ポリアリーレンスルフィド
は、通常、水洗と濾過が繰り返され、更に100℃以上
での高温高圧条件(例えば、約190℃、約1.6MP
a)での熱水洗と濾過が繰り返され、ハロゲン化アルカ
リ金属塩(例えば、塩化ナトリウム)やアルカリ性物質
(例えば、NaSH、NaOH他)、副生成物などの不
純物が除去されることが好ましい。The crude polyarylene sulfide after desolvation is usually subjected to repeated washing with water and filtration, and further under high temperature and high pressure conditions of 100 ° C. or higher (for example, about 190 ° C. and about 1.6 MP.
It is preferable that the hot water washing and filtration in a) are repeated to remove impurities such as an alkali metal halide salt (for example, sodium chloride), an alkaline substance (for example, NaSH, NaOH, etc.), and a by-product.
【0028】本発明者らは、PPSを代表とするPAS
製造時の重合工程から精製工程、及び溶媒回収工程まで
の全工程にわたり、排水中に含有されるCOD物質につ
いて詳細な解析検討を行い、その主たる原因物質が有機
極性溶媒(例えば、NMP)の開環物とポリハロ芳香族
化合物(例えば、p−ジクロルベンゼン)との反応物で
あり、これが熱水洗工程の濾過で濾液と共に排出され排
水中に含有されることを解明した。The present inventors have found that PAS represented by PPS
The COD substances contained in the wastewater are analyzed in detail throughout the entire process from the polymerization process to the purification process and the solvent recovery process during production, and the main causative agent is the release of organic polar solvents (eg NMP). It was elucidated that it is a reaction product of a ring compound and a polyhaloaromatic compound (for example, p-dichlorobenzene), which is discharged together with the filtrate in the filtration in the hot water washing step and contained in the waste water.
【0029】更に、本発明者らは、この主たるCOD物
質である有機極性溶媒(例えば、NMP)の開環物とポ
リハロ芳香族化合物(例えば、p−ジクロルベンゼン)
との反応物を除去すべく鋭意検討した結果、該反応物
がpH領域の違いにより、下記のような特徴を持つA
型、B型、又はC型の3種類の化合物に変換し得るこ
と、また、濾液のpH領域を調整することにより、水
に不溶性又は難溶性の型に変換して分離することにより
CODを大幅に減少することが可能であること、を見出
した。Furthermore, the present inventors have found that the ring-opened product of an organic polar solvent (eg, NMP), which is the main COD substance, and a polyhaloaromatic compound (eg, p-dichlorobenzene).
As a result of diligent study to remove the reaction product with A, the reaction product has the following characteristics due to the difference in pH range.
COD can be converted into 3 types of compounds of B type, B type, or C type, and by adjusting the pH range of the filtrate, the COD can be converted into a type that is insoluble or hardly soluble in water and separated to significantly reduce COD. It has been found that it can be reduced to.
【0030】例えば、p−ジクロルベンゼンを用いて重
合反応で有機極性溶媒としてNMPを使用した場合は、
熱水洗工程でNMPの開環物とp−ジクロルベンゼンと
の反応物がPASより除去されるが、該反応物は濾液の
pH領域により、以下の如くA型、B型、又はC型に相
互に変換可能であり、且つ変換することにより水溶性に
なったり水に対して不溶性あるいは難溶性になったりす
る。For example, when NMP is used as an organic polar solvent in a polymerization reaction using p-dichlorobenzene,
In the hot water washing step, the reaction product of the NMP ring-opened product and p-dichlorobenzene is removed from the PAS. The reaction product is changed to A type, B type, or C type depending on the pH range of the filtrate as follows. They can be converted into each other, and by conversion, they become water-soluble or insoluble or hardly soluble in water.
【0031】以下に、NMPの開環物とp−ジクロルベ
ンゼンとの反応物の相互変換の例を示す。An example of interconversion of the reaction product of the NMP ring-opened product and p-dichlorobenzene will be shown below.
【0032】[0032]
【化1】 [Chemical 1]
【0033】本発明では、熱水洗工程での濾液のpHを
調整し、析出する水に不溶性あるいは水に難溶性のCO
D物質を遠心分離法、デカンテーション法等の適当な方
法で分離することが好ましい。In the present invention, the pH of the filtrate in the hot water washing step is adjusted so that CO that is insoluble or sparingly soluble in water is precipitated.
It is preferable to separate the substance D by an appropriate method such as a centrifugation method or a decantation method.
【0034】本発明において、上記の熱水洗工程での濾
液のpHを調整し析出する水に不溶性又は難溶性のCO
D物質を分離する場合、COD物質を含有する排水又は
濾液に、pH調整後に凝集剤を加え、あるいは酸性凝集
剤を加えてpH調整し、COD物質を水に不溶化又は難
溶化させ、不溶化又は難溶化させたCOD物質を分離す
ることが、COD物質の除去率アップの点でより好まし
い。In the present invention, the pH of the filtrate in the above-mentioned hot water washing step is adjusted and CO that is insoluble or sparingly soluble in water to be precipitated.
When separating the D substance, the coagulant is added to the waste water or the filtrate containing the COD substance after pH adjustment or the acidic coagulant is added to adjust the pH to make the COD substance insoluble or hardly soluble in water, and thus the insoluble or difficult to dissolve. It is more preferable to separate the solubilized COD substance from the viewpoint of increasing the removal rate of the COD substance.
【0035】本発明のポリフェニレンスルフィドの排水
処理方法とは、水に不溶化又は難溶化させたCOD物質
を含む液を連続式遠心分離装置に導入して、COD物質
と共に分離する排水処理方法である。The wastewater treatment method of polyphenylene sulfide of the present invention is a wastewater treatment method of introducing a liquid containing a COD substance insolubilized or hardly soluble in water into a continuous centrifugal separator and separating it together with the COD substance.
【0036】本発明では、COD物質を水に不溶化又は
難溶化させるために排水又は濾液のpHを適切なpH範
囲に調整することが好ましい。本発明ではCOD物質
(例えば、前記のNMPの開環物とp−ジクロルベンゼ
ンとの反応物)を含有する排水又は濾液のpHを好まし
くは7〜4の範囲、より好ましくはpH6〜4の範囲に
調整して、前記COD物質を水に不溶化又は難溶化させ
析出させて分離させることが好ましい。In the present invention, in order to make the COD substance insoluble or hardly soluble in water, it is preferable to adjust the pH of the waste water or the filtrate to an appropriate pH range. In the present invention, the pH of the waste water or the filtrate containing the COD substance (for example, the reaction product of the NMP ring-opened product and p-dichlorobenzene) is preferably in the range of 7 to 4, more preferably pH 6 to 4. It is preferable that the COD substance is adjusted to be in the range, and the COD substance is insolubilized or hardly solubilized in water to be precipitated and separated.
【0037】本発明では、排水又は濾液のpHを4〜6
の範囲に調整して、固液分離に適した大きさのフロック
が形成されるようにすることが好ましい。固液分離処理
を効率よくするには、重合反応に使用した有機極性溶媒
の種類により異なるが、NMPの場合は排水又は濾液の
pHを5前後に調整するのが特に好ましい。In the present invention, the pH of the waste water or the filtrate is adjusted to 4-6.
It is preferable to adjust to the range of (4) so that a floc of a size suitable for solid-liquid separation is formed. In order to make the solid-liquid separation treatment efficient, it depends on the type of the organic polar solvent used in the polymerization reaction, but in the case of NMP, it is particularly preferable to adjust the pH of the waste water or the filtrate to around 5.
【0038】本発明で使用可能な凝集剤としては、例え
ば、無機系凝集剤、界面活性剤、高分子凝集剤等が挙げ
られる。Examples of the aggregating agent that can be used in the present invention include inorganic aggregating agents, surfactants and polymer aggregating agents.
【0039】該無機系凝集剤としては、使用可能なpH
範囲が広く、フロックの生成が速やかに行われ、凝集物
の分離処理が適切に行われるものであれば何れのものも
使用可能であるが、例えば、硫酸バン土(硫酸アルミニ
ウム)、ポリ塩化アルミニウム、硫酸第一鉄、硫酸第二
鉄、塩化第二鉄、塩化亜鉛等から選ばれる少なくとも一
種である酸性凝集剤;硫酸、塩酸、二酸化炭素等から選
ばれる少なくとも一種である酸;あるいは活性ケイ酸等
が挙げられる。本発明で使用するこれらの無機系凝集剤
の中で、硫酸バン土が凝集効果及び貯蔵安定性等の点か
ら特に好ましい。The inorganic coagulant has a usable pH
Any one can be used as long as it has a wide range, flocs are rapidly produced, and separation treatment of agglomerates is appropriately performed. For example, vansulfate (aluminum sulfate), polyaluminum chloride, etc. can be used. , At least one acidic flocculant selected from ferrous sulfate, ferric sulfate, ferric chloride, zinc chloride, etc .; at least one acid selected from sulfuric acid, hydrochloric acid, carbon dioxide, etc .; or active silicic acid Etc. Among these inorganic flocculants used in the present invention, van sulphate is particularly preferable in terms of flocculation effect and storage stability.
【0040】硫酸バン土は、例えば、図1においてオー
バーフローさせた反応液1aを固液分離装置9へ導入す
る処理方法において分離に適した大きさの凝集物1bを
生成させる。凝集物であるフロックの大きさは、特に限
定はしないが、通常、2〜4mm程度である。Van sulphate soil produces, for example, an aggregate 1b of a size suitable for separation in the treatment method in which the reaction liquid 1a overflowed in FIG. 1 is introduced into the solid-liquid separator 9. The size of flocs, which are aggregates, is not particularly limited, but is usually about 2 to 4 mm.
【0041】硫酸バン土の添加量としては、添加前の排
水又は濾液のpH(通常、アルカリ性側にありpH10
〜12程度の範囲)やCOD含有量により異なるが、排
水又は濾液1リットル当たり6%硫酸バン土(硫酸アル
ミニウム)水溶液の場合は、特に限定はしないが、好ま
しくは1〜10mlの範囲、より好ましくは4〜6ml
の範囲で使用する。The amount of bansulfate added is such that the pH of the wastewater or filtrate before addition (usually on the alkaline side, pH 10
However, in the case of a 6% aqueous solution of vanadium sulphate (aluminum sulfate) per liter of drainage or filtrate, it is not particularly limited, but is preferably in the range of 1 to 10 ml, more preferably Is 4-6 ml
Use in the range of.
【0042】図1において、凝集反応槽3での攪拌翼4
の回転数も生成させるフロックの大きさに関係し、例え
ば、反応液1aの量が1.5〜2.5m3の場合、反応
効率を低下させずフロックが破壊されて小さくなること
を防ぐためには、撹拌翼4の回転数は、適宜調製すれば
よく特に限定はしないが、通常、100〜200rpm
の範囲が好ましい。In FIG. 1, the stirring blade 4 in the flocculation reaction tank 3
Is also related to the size of the flocs to be generated. For example, when the amount of the reaction solution 1a is 1.5 to 2.5 m 3 , in order to prevent the flocs from being broken and becoming smaller without reducing the reaction efficiency. The rotating speed of the stirring blade 4 may be appropriately adjusted and is not particularly limited, but is usually 100 to 200 rpm.
Is preferred.
【0043】また、凝集反応槽3内での反応液1aの接
触時間(滞留時間)は、特に限定しないが、通常、20
分以下が好ましく、より好ましくは5〜15分の範囲で
ある。また、反応液1aの温度は、特に限定しないが、
通常、100℃未満が好ましく、より好ましくは30〜
60℃の範囲である。The contact time (residence time) of the reaction liquid 1a in the flocculation reaction tank 3 is not particularly limited, but is usually 20.
It is preferably 5 minutes or less, more preferably 5 minutes or less. The temperature of the reaction solution 1a is not particularly limited,
Generally, the temperature is preferably lower than 100 ° C, more preferably 30 to
It is in the range of 60 ° C.
【0044】また、本発明で使用可能な高分子凝集剤と
しては、陰イオン性高分子凝集剤(アルギン酸ナトリウ
ム、カルボキシルメチルセルロースナトリウム、ポリア
クリル酸ナトリウム、マレイン酸共重合物塩、ポリアク
リルアミド部分加水分解塩等)、陽イオン性高分子凝集
剤(水溶性アニリン樹脂塩酸塩、ポリチオ尿素酢酸塩、
ポリエチレンアミノトリアゾール、ポリビニルベンジル
トリメチルアンモニウムクロリド、キトザン、ポリエチ
レンアミン、ビニルピリジン共重合物塩、ポリアクリル
酸エステル系カチオン重合体等)、非イオン性高分子凝
集剤(デンプン、水溶性尿素樹脂、ポリアクリルアミ
ド、ポリオキシエチレン等)、両性高分子凝集剤(ゼラ
チン等)が挙げられ、これらの中でも、陰イオン性高分
子凝集剤、非イオン性高分子凝集剤が好ましい。また、
本発明の目的を阻害しない範囲で無機系凝集剤と高分子
凝集剤を併用してもよく、更に界面活性剤を併用しても
よい。The polymer flocculants usable in the present invention include anionic polymer flocculants (sodium alginate, sodium carboxymethyl cellulose, sodium polyacrylate, maleic acid copolymer salt, polyacrylamide partial hydrolysis). Salt, etc., cationic polymer flocculant (water-soluble aniline resin hydrochloride, polythiourea acetate,
Polyethyleneaminotriazole, polyvinylbenzyltrimethylammonium chloride, chitosan, polyethyleneamine, vinylpyridine copolymer salt, polyacrylic acid ester-based cationic polymer, etc., nonionic polymer flocculant (starch, water-soluble urea resin, polyacrylamide) , Polyoxyethylene, etc.) and amphoteric polymer flocculants (gelatin etc.), and among these, anionic polymer flocculants and nonionic polymer flocculants are preferable. Also,
An inorganic flocculant and a polymer flocculant may be used together, and a surfactant may be used together, as long as the object of the present invention is not impaired.
【0045】本発明の排水処理装置は、ポリフェニレン
スルフィドを代表とするポリアリーレンスルフィド製造
時の精製工程の排水が導入され、混合機能を有してお
り、且つpH指示調節計を備えておりpH調製と凝集処
理が可能な凝集反応槽と、前記凝集反応槽より導入され
た不溶化又は難溶化したCOD物質を分離する連続式遠
心分離装置とからなることを特徴とする。In the wastewater treatment equipment of the present invention, the wastewater in the refining step in the production of polyarylene sulfide represented by polyphenylene sulfide is introduced, has a mixing function, and is equipped with a pH indicator controller to adjust pH. And a continuous centrifuge for separating insolubilized or sparingly soluble COD substances introduced from the coagulation reaction tank.
【0046】本発明において使用するフロックを含む固
液混合物の固液分離装置としては、例えば、遠心分離
機、遠心濾過機、フィルタープレス、水平ベルト等が挙
げられるが、連続処理ができ、固液の分離効率が高く、
処理能力に優れ、且つ設置スペースの小さい、横型連続
遠心分離機が好ましい。この中でも内部にスクリューコ
ンベアを有するロータリー型或いは固形物の排出側に縮
径している構造のデカンターを用いることができ、例え
ば、RJ型ロータリーデカンター・分離板型デカンター
(三菱化工機(株)製)、スクリューデカンター(斉藤遠
心工業(株)製)等である。Examples of the solid-liquid separation apparatus for the solid-liquid mixture containing flocs used in the present invention include a centrifuge, a centrifugal filter, a filter press, a horizontal belt, etc. Has high separation efficiency,
A horizontal continuous centrifuge having a high processing capacity and a small installation space is preferable. Among these, a rotary type having a screw conveyor inside or a decanter having a structure in which the diameter is reduced to the discharge side of solid matter can be used, and for example, an RJ type rotary decanter / separator decanter (manufactured by Mitsubishi Kakoki Co., Ltd.) ), A screw decanter (manufactured by Saito Centrifugal Industry Co., Ltd.) and the like.
【0047】図1に固液分離装置9として横型の連続式
遠心分離装置であるスクリューデカンター式装置を使用
した例を示した。図2はスクリューデカンター式装置の
概略断面図である。供給口10に供給された反応液1a
は、相対速度差を与える減速機11により回転させら
れ、回転シリンダ12とスクリュー羽根13で形成され
る空間に投入される。処理液1cは遠心力により回転体
の外周内面に寄せられ、凝集物1bと分離され、オーバ
ーフローした液が排出させられる。一方、回転シリンダ
12の内面外周に寄せられたフロックはスクリュー羽根
13により処理液1cとは反対側に送り出される。固液
分離装置9の回転数は、特に限定しないが、好ましくは
3,000〜5,000rpmであり、より好ましくは
3,500〜4,500rpmである。かかる方法にて分
離された凝集物1bの含水率(%)は、通常、40〜6
0重量%である。尚、ここで云うところの「含水率」と
は、試料を約2g秤量し熱風乾燥機中、150℃で2時
間放置後の減少量より算出した値である。FIG. 1 shows an example in which a horizontal decanter type screw decanter type device is used as the solid-liquid separation device 9. FIG. 2 is a schematic sectional view of the screw decanter type device. Reaction liquid 1a supplied to the supply port 10
Is rotated by a speed reducer 11 which gives a relative speed difference, and is put into a space formed by a rotary cylinder 12 and screw blades 13. The treatment liquid 1c is brought to the inner surface of the outer periphery of the rotating body by centrifugal force, separated from the aggregate 1b, and the overflowed liquid is discharged. On the other hand, the flocs that are brought close to the outer circumference of the inner surface of the rotary cylinder 12 are sent to the side opposite to the processing liquid 1c by the screw blades 13. The number of revolutions of the solid-liquid separation device 9 is not particularly limited, but is preferably 3,000 to 5,000 rpm, more preferably 3,500 to 4,500 rpm. The water content (%) of the aggregate 1b separated by such a method is usually 40 to 6
It is 0% by weight. The term "water content" as used herein is a value calculated from the amount of decrease after about 2 g of a sample was weighed and left in a hot air dryer at 150 ° C for 2 hours.
【0048】本発明の排水処理方法及び排水処理装置を
用いた排水処理の一実施例を概略フロー図として図1に
示す。FIG. 1 is a schematic flow chart showing one embodiment of wastewater treatment using the wastewater treatment method and the wastewater treatment apparatus of the present invention.
【0049】図1において、製造時に生じたアルカリ性
の原水1は原水送給ポンプ2により凝集反応槽3に導入
される。凝集反応槽3には液を均一化し反応を促進する
ための攪拌翼4及び反応液1aのpHを検出するpH指
示調節計5が設けられている。尚、本発明の一実施例で
ある図1では、凝集反応槽3の中の液を均一化するため
に撹拌翼4を設置した例を示しているが、液を均一化し
反応を促進させる混合機能を有するものであれば如何な
るものでもよく、例えば、凝集反応槽3にリターンライ
ンと循環ポンプを有しており反応処理液1aを循環させ
混合し均一化する方法、窒素や空気等の気体を凝集反応
槽3の液中にバブリングさせ混合し均一化する方法等が
挙げられ、特に限定はしない。In FIG. 1, an alkaline raw water 1 produced during the production is introduced into a flocculation reaction tank 3 by a raw water feed pump 2. The aggregating reaction tank 3 is provided with a stirring blade 4 for uniformizing the liquid and promoting the reaction, and a pH indicator controller 5 for detecting the pH of the reaction liquid 1a. In addition, although FIG. 1 which is one embodiment of the present invention shows an example in which a stirring blade 4 is installed in order to make the liquid in the agglomeration reaction tank 3 uniform, mixing for making the liquid uniform and promoting the reaction is shown. Any material may be used as long as it has a function, for example, a method in which the coagulation reaction tank 3 has a return line and a circulation pump to circulate and mix the reaction treatment liquid 1a to homogenize it, and to use a gas such as nitrogen or air. A method of bubbling in the liquid in the agglutination reaction tank 3 to mix and homogenize it, and the like can be mentioned, and there is no particular limitation.
【0050】次いで、pH指示調節計5の指示値によ
り、酸性凝集剤貯槽6内の酸性凝集剤7を酸性凝集剤供
給ポンプ8により凝集反応槽3に供給する。原水1は弱
酸性側へのpH調整と攪拌により、反応液1a中にフロ
ック(floc)状の凝集物1bを生成させる。凝集したフロ
ックを沈殿させないように、凝集反応槽3の液上面より
反応液をオーバーフローさせ固液分離装置9に導入す
る。Next, the acidic coagulant 7 in the acidic coagulant storage tank 6 is supplied to the coagulation reaction tank 3 by the acidic coagulant supply pump 8 according to the value indicated by the pH indicator controller 5. The raw water 1 produces a floc-like aggregate 1b in the reaction liquid 1a by adjusting the pH to the weakly acidic side and stirring. The reaction liquid is allowed to overflow from the liquid upper surface of the aggregation reaction tank 3 and introduced into the solid-liquid separation device 9 so that the flocs that have aggregated are not precipitated.
【0051】遠心分離式の固液分離装置9により、反応
液1aは凝集物1bと処理液1cに分離される。フロッ
クは分離装置内部の送出手段により装置の縮径側に排出
され、処理液1cは給液側外面より排出される。The reaction liquid 1a is separated into an aggregate 1b and a treatment liquid 1c by the centrifugal separation type solid-liquid separation device 9. The flocs are discharged to the reduced diameter side of the apparatus by the sending means inside the separator, and the processing liquid 1c is discharged from the outer surface of the liquid supply side.
【0052】次いで、フロック状の凝集物1bは、コン
ベアー、容器等の適当な手段を用いて収納し必要に応じ
乾燥させ減容化して、例えば、産業廃棄物処理業者に処
分委託したり適切な焼却設備にて焼却処分を行う。処理
液1cは排水ピット14へ排出し、処理貯水槽にて他の
処理水と混合し、適正なpH範囲内に調整した後、廃棄
または放流する。Next, the floc-like agglomerates 1b are stored by using an appropriate means such as a conveyer or a container, dried and reduced in volume as necessary, and then, for example, they are outsourced to an industrial waste disposal company or appropriately disposed. Incinerate at incineration facility. The treatment liquid 1c is discharged to the drainage pit 14, mixed with other treatment water in the treatment water storage tank, adjusted to an appropriate pH range, and then discarded or discharged.
【0053】[0053]
【実施例】以下に、本発明を一実施例を図面に基づいて
一層具体的に説明するが、本発明はこれら実施例にのみ
に限定されるものではない。尚、%は、特にことわりの
ない限り、全て重量基準である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the accompanying drawings, but the present invention is not limited to these embodiments. All percentages are by weight unless otherwise specified.
【0054】[実施例1]攪拌機付耐圧反応釜に所定量
のN−メチルピロリドン(以下、NMPと略称する)、
水硫化ナトリウム(NaSH換算濃度分析値=72.8
重量%)、47.9重量%水酸化ナトリウム水溶液を仕
込み、撹拌しながら窒素雰囲気下で205℃まで昇温さ
せ、水を含有する留出液を得た。次いで、窒素導入ライ
ンと流出ラインを閉鎖して耐圧反応釜を密閉した後、2
30℃まで昇温し、230℃に到達後、所定量のp−ジ
クロルベンゼンのNMP溶液を反応系の発熱を制御しな
がら滴下し、滴下終了後220℃で3時間反応させた
後、30分間かけて245℃まで昇温させ、更に245
℃で1.5時間反応させた。次いで、粗反応生成物を減
圧蒸留可能な脱溶媒装置に取り出し撹拌しつつ加熱減圧
条件で脱溶媒した後、得られた粗ポリアリーレンスルフ
ィドの固形物を水洗釜に移し、ポリマー重量に対して所
定量の水を加えて80℃での水洗と濾過を繰り返した
後、最後に所定量の水を加えて高温高圧条件(190
℃、1.6MPa)での熱水洗と濾過を行った。図1に
本発明の排水処理方法及び排水処理装置を用いた排水処
理の概略フロー図を示す。Example 1 A pressure-resistant reactor equipped with a stirrer was charged with a predetermined amount of N-methylpyrrolidone (hereinafter abbreviated as NMP),
Sodium hydrosulfide (NaSH conversion concentration analysis value = 72.8
Wt%), 47.9 wt% sodium hydroxide aqueous solution was charged and the temperature was raised to 205 ° C. under stirring in a nitrogen atmosphere to obtain a distillate containing water. Next, after closing the nitrogen introduction line and the outflow line and sealing the pressure resistant reactor, 2
The temperature was raised to 30 ° C., and after reaching 230 ° C., a predetermined amount of an NMP solution of p-dichlorobenzene was added dropwise while controlling the heat generation of the reaction system, and after completion of the reaction, the mixture was reacted at 220 ° C. for 3 hours, then 30 The temperature is raised to 245 ° C over a period of 2 minutes and then 245
The reaction was carried out at ℃ for 1.5 hours. Then, the crude reaction product was taken out to a desolvation apparatus capable of distillation under reduced pressure and desolvated under heating and decompression conditions while stirring, and then the obtained solid product of crude polyarylene sulfide was transferred to a water-washing pot, and the weight of the polymer was adjusted according to the weight of the polymer. After adding a fixed amount of water and repeating washing with water at 80 ° C. and filtration, a predetermined amount of water was added at the end to obtain high temperature and high pressure conditions (190
Washing with hot water at 1.6 ° C. and filtration was performed. FIG. 1 shows a schematic flow chart of wastewater treatment using the wastewater treatment method and the wastewater treatment apparatus of the present invention.
【0055】実施例1において、PPSの精製工程で水
洗濾材より出る原水1は強アルカリ性でありpH10〜
12程度である。凝集反応槽3に原水1を導入した後、
酸性凝集剤7である6%硫酸バン土水溶液をポンプにて
連続供給して撹拌下投入し硫酸バン土の使用量によりp
Hを約5に調整しCOD物質を含有するフロックを形成
させた。このようにして比重1以上の凝集物1bを酸析
させ、攪拌しながら凝集物1bを含む反応液1aを固液
分離装置9、即ち、横型の連続式遠心分離装置であるス
クリューデカンターに導入した。その結果、本発明の排
水処理方法である硫酸バン土にて処理した処理液1cの
CODは436mg/lであり、原水中のCOD削減率
は83%と優れていた。In Example 1, the raw water 1 discharged from the washing filter medium in the PPS purification step is strongly alkaline and has a pH of 10 to 10.
It is about 12. After introducing the raw water 1 into the flocculation reaction tank 3,
A 6% aqueous solution of sulphate sulphate, which is the acidic flocculant 7, is continuously supplied by a pump, and the mixture is added with stirring to adjust the amount of sulphate sulphate to
The H was adjusted to about 5 to form flocs containing the COD material. In this way, the agglomerates 1b having a specific gravity of 1 or more were acidified, and the reaction liquid 1a containing the agglomerates 1b was introduced into the solid-liquid separator 9, that is, a screw decanter which is a horizontal continuous centrifugal separator, while stirring. . As a result, the COD of the treated liquid 1c treated with the vanadium sulfate soil which is the wastewater treatment method of the present invention was 436 mg / l, and the COD reduction rate in the raw water was 83%, which was excellent.
【0056】尚、硫酸バン土による処理条件は、以下の
通りである。
酸性凝集剤 :硫酸バン土
反応液量 :2m3
反応液温度 :40℃
反応液中接触時間:10分
攪拌翼回転数 :150rpm
スクリューデカンターの種類:斉藤遠心工業(株)製、型
式SKD−320S
回転数 :4000rpmThe treatment conditions with van sulphate are as follows. Acid Flocculant: Bansulfate Reaction liquid amount: 2 m 3 Reaction liquid temperature: 40 ° C. Contact time in reaction liquid: 10 minutes Stirring blade rotation speed: 150 rpm Type of screw decanter: Saito Centrifugal Industry Co., Ltd., Model SKD-320S Rotation speed: 4000 rpm
【0057】[実施例2]実施例1において、硫酸バン
土にかえて20%塩酸水溶液を使用した以外は実施例1
と同様に行った。その結果、本発明の排水処理方法であ
る塩酸水溶液にて処理した処理液1cのCODは149
2mg/lであり、原水中のCOD削減率は42%と優
れていた。Example 2 Example 1 was repeated except that 20% hydrochloric acid aqueous solution was used instead of bansulfate.
I went the same way. As a result, the COD of the treated liquid 1c treated with the aqueous hydrochloric acid solution which is the wastewater treatment method of the present invention is 149.
It was 2 mg / l, and the COD reduction rate in raw water was 42%, which was excellent.
【0058】[比較例1]実施例1において、PPSの
精製工程で水洗濾材より出る原水1に対して何ら処理を
行わなかったところ、CODは2557mg/lであ
り、原水中のCOD削減率は1%以下であった。[Comparative Example 1] In Example 1, when the raw water 1 discharged from the washing filter medium was not treated in the PPS purification step, COD was 2557 mg / l, and the COD reduction rate in the raw water was It was 1% or less.
【0059】[0059]
【発明の効果】本発明によれば、ポリフェニレンスルフ
ィドを代表とするポリアリーレンスルフィドの製造時の
精製工程において排出される高COD物質含有排水を、
効率良く、沈殿槽を用いずにCOD物質の除去が容易に
出来る連続処理が可能な排水処理方法、及び排水処理装
置を提供することが出来る。また、本発明の排水処理方
法、及び排水処理装置を用いることにより、排水処理の
ための設置面積の削減、連続処理、処理能力アップが可
能となる。INDUSTRIAL APPLICABILITY According to the present invention, wastewater containing a high COD substance, which is discharged in the purification step during the production of polyarylene sulfide represented by polyphenylene sulfide,
It is possible to provide a wastewater treatment method and a wastewater treatment apparatus that can efficiently and continuously perform COD substance removal without using a settling tank. Further, by using the wastewater treatment method and the wastewater treatment apparatus of the present invention, it becomes possible to reduce the installation area for wastewater treatment, to perform continuous treatment, and to increase the treatment capacity.
【図1】処理工程を示す概略フロー図である。FIG. 1 is a schematic flowchart showing processing steps.
【図2】本発明の実施例における固液分離装置の概略断
面図である。FIG. 2 is a schematic cross-sectional view of a solid-liquid separation device in an example of the present invention.
1 原水 2 原水送給ポンプ 3 凝集反応槽 4 攪拌翼 5 pH指示調節計 6 酸性凝集剤貯槽 7 酸性凝集剤 8 酸性凝集剤供給ポンプ 9 固液分離装置 10 供給口 11 減速機 12 回転シリンダ 13 スクリュー羽根 14 排水ピット 1 raw water 2 Raw water supply pump 3 Aggregation reaction tank 4 stirring blades 5 pH indicator controller 6 Acid Flocculant Storage Tank 7 Acid Flocculant 8 Acid Flocculant Supply Pump 9 Solid-liquid separator 10 Supply port 11 reducer 12 rotating cylinder 13 screw blades 14 drainage pit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 杉生 大阪府堺市槙塚台2−6−3 (72)発明者 山内 暢彦 大阪府泉大津市二田町3−9−15 Fターム(参考) 4D015 BA19 BA23 BB05 CA20 DA04 DA05 DA15 DA16 DA28 EA13 EA16 EA17 EA39 4D038 AA08 AB09 AB12 AB14 BA06 BB13 BB18 BB20 4J030 BA03 BB29 BB31 BC02 BD22 BG04 BG27 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hasegawa Sugio 2-6-3 Makizukadai, Sakai City, Osaka Prefecture (72) Inventor Nobuhiko Yamauchi 3-9-15 Futamachi, Izumiotsu City, Osaka Prefecture F-term (reference) 4D015 BA19 BA23 BB05 CA20 DA04 DA05 DA15 DA16 DA28 EA13 EA16 EA17 EA39 4D038 AA08 AB09 AB12 AB14 BA06 BB13 BB18 BB20 4J030 BA03 BB29 BB31 BC02 BD22 BG04 BG27
Claims (6)
とスルフィド化剤とを反応させて得られたポリフェニレ
ンスルフィドを含有する生成物からポリフェニレンスル
フィドを単離精製する工程(精製工程)において出され
るCOD物質(即ち、被酸化性物質)を含有する排水
に、pH調整後に凝集剤を加え、あるいは酸性凝集剤を
加えてpH調整し、COD物質を不溶化又は難溶化さ
せ、該不溶化又は難溶化させたCOD物質を分離するこ
とを特徴とするポリフェニレンスルフィドの排水処理方
法。1. A COD produced in a step (purification step) of isolating and purifying polyphenylene sulfide from a product containing a polyphenylene sulfide obtained by reacting a polyhaloaromatic compound with a sulfidizing agent in an organic polar solvent. The coagulant was added to the wastewater containing the substance (that is, the oxidizable substance) after the pH was adjusted, or the pH was adjusted by adding the acidic coagulant to insolubilize or sparingly dissolve the COD substance to make it insoluble or sparingly soluble. A method for treating wastewater of polyphenylene sulfide, which comprises separating COD substances.
む液を連続式遠心分離装置に導入して、COD物質と共
に分離する請求項1記載のポリフェニレンスルフィドの
排水処理方法。2. The method for treating waste water of polyphenylene sulfide according to claim 1, wherein a liquid containing an insolubilized or sparingly solubilized COD substance is introduced into a continuous centrifugal separator and separated together with the COD substance.
域が4〜6である請求項1又は2記載のポリフェニレン
スルフィドの排水処理方法。3. The method for treating wastewater of polyphenylene sulfide according to claim 1, wherein the pH adjusting region of the wastewater containing the COD substance is 4 to 6.
ルミニウム、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、塩
化亜鉛から選ばれる少なくとも一種である請求項1〜3
の何れか一項に記載のポリフェニレンスルフィドの排水
処理方法。4. The acidic coagulant is at least one selected from vanadium sulfate, polyaluminum chloride, ferrous sulfate, ferric sulfate, ferric chloride and zinc chloride.
The method for treating wastewater of polyphenylene sulfide according to any one of 1.
工程の排水が導入され、混合機能を有しており、且つp
H指示調節計を備えておりpH調製と凝集処理が可能な
凝集反応槽と、前記凝集反応槽より導入された不溶化又
は難溶化したCOD物質を分離する連続式遠心分離装置
とからなることを特徴とするポリフェニレンスルフィド
の排水処理装置。5. The wastewater of the purification step at the time of producing polyphenylene sulfide is introduced and has a mixing function, and p
It is characterized by comprising an agglutination reaction tank equipped with an H indicator controller and capable of pH adjustment and agglutination treatment, and a continuous centrifugal separator for separating the insolubilized or hardly-solubilized COD substance introduced from the agglomeration reaction tank. Wastewater treatment equipment for polyphenylene sulfide.
ンター式装置である請求項5記載のポリフェニレンスル
フィドの排水処理装置。6. The waste water treatment device for polyphenylene sulfide according to claim 5, wherein the continuous centrifugal separator is a screw decanter type device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002080724A JP2003275773A (en) | 2002-03-22 | 2002-03-22 | Wastewater treatment method for polyphenylene sulfide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002080724A JP2003275773A (en) | 2002-03-22 | 2002-03-22 | Wastewater treatment method for polyphenylene sulfide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003275773A true JP2003275773A (en) | 2003-09-30 |
Family
ID=29206475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002080724A Pending JP2003275773A (en) | 2002-03-22 | 2002-03-22 | Wastewater treatment method for polyphenylene sulfide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003275773A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005279490A (en) * | 2004-03-30 | 2005-10-13 | Dainippon Ink & Chem Inc | Centrifuge filter base layer removal method |
WO2012070335A1 (en) * | 2010-11-26 | 2012-05-31 | 株式会社クレハ | Method for producing polyarylene sulfide, and polyarylene sulfide |
CN105036454A (en) * | 2015-06-10 | 2015-11-11 | 张家港市新盛新材料有限公司 | Polyphenylene sulfide production wastewater deep treatment method |
JP2015218214A (en) * | 2014-05-15 | 2015-12-07 | Dic株式会社 | Method for producing sulfidizing agent and method for producing polyarylene sulfide resin |
US9388283B2 (en) | 2013-09-25 | 2016-07-12 | Ticona Llc | Method of polyarylene sulfide crystallization |
US9403948B2 (en) | 2013-09-25 | 2016-08-02 | Ticona Llc | Salt byproduct separation during formation of polyarylene sulfide |
US9499420B2 (en) | 2012-11-06 | 2016-11-22 | Thatcher Company, Inc. | Formulations and methods for removing heavy metals from waste solutions containing chelating agents |
US9562139B2 (en) | 2013-09-25 | 2017-02-07 | Ticona Llc | Process for forming low halogen content polyarylene sulfides |
US9587074B2 (en) | 2013-09-25 | 2017-03-07 | Ticona Llc | Multi-stage process for forming polyarylene sulfides |
US9604156B2 (en) | 2013-09-25 | 2017-03-28 | Ticona Llc | Method and system for separation of a polymer from multiple compounds |
US9617387B2 (en) | 2013-09-25 | 2017-04-11 | Ticona Llc | Scrubbing process for polyarylene sulfide formation |
US9809681B2 (en) | 2015-02-19 | 2017-11-07 | Ticona Llc | Method for forming a low viscosity polyarylene sulfide |
US9815942B2 (en) | 2015-03-25 | 2017-11-14 | Ticona Llc | Technique for forming a high melt viscosity polyarylene sulfide |
US9988494B2 (en) | 2015-02-19 | 2018-06-05 | Ticona Llc | Method for forming a high molecular weight polyarylene sulfide |
JP2018522984A (en) * | 2015-07-23 | 2018-08-16 | ハンツマン・アドバンスド・マテリアルズ・アメリカズ・エルエルシー | Curable benzoxazine composition |
US10106654B2 (en) | 2015-02-19 | 2018-10-23 | Ticona Llc | Method of polyarylene sulfide precipitation |
WO2020159167A1 (en) * | 2019-01-28 | 2020-08-06 | 주식회사 엘지화학 | Method for recovering amide-based compounds |
CN114314779A (en) * | 2021-12-08 | 2022-04-12 | 河北建投交通投资有限责任公司 | Flocculating agent for sewage treatment station of railway tunnel |
US11319441B2 (en) | 2019-12-20 | 2022-05-03 | Ticona Llc | Method for forming a polyarylene sulfide |
US11407861B2 (en) | 2019-06-28 | 2022-08-09 | Ticona Llc | Method for forming a polyarylene sulfide |
JP2022161190A (en) * | 2021-04-08 | 2022-10-21 | Dic株式会社 | Method for producing sulfidating agent and polyarylene sulfide resin |
US12018129B2 (en) | 2021-09-08 | 2024-06-25 | Ticona Llc | Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
US12024596B2 (en) | 2021-09-08 | 2024-07-02 | Ticona Llc | Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
CN119118440A (en) * | 2024-10-25 | 2024-12-13 | 浙江锦华新材料股份有限公司 | A method for efficiently treating butanone oxime production wastewater |
-
2002
- 2002-03-22 JP JP2002080724A patent/JP2003275773A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005279490A (en) * | 2004-03-30 | 2005-10-13 | Dainippon Ink & Chem Inc | Centrifuge filter base layer removal method |
WO2012070335A1 (en) * | 2010-11-26 | 2012-05-31 | 株式会社クレハ | Method for producing polyarylene sulfide, and polyarylene sulfide |
US9096723B2 (en) | 2010-11-26 | 2015-08-04 | Kureha Corporation | Production process of poly(arylene sulfide) and poly(arylene sulfide) |
JP5781086B2 (en) * | 2010-11-26 | 2015-09-16 | 株式会社クレハ | Method for producing polyarylene sulfide and polyarylene sulfide |
US9499420B2 (en) | 2012-11-06 | 2016-11-22 | Thatcher Company, Inc. | Formulations and methods for removing heavy metals from waste solutions containing chelating agents |
US9617387B2 (en) | 2013-09-25 | 2017-04-11 | Ticona Llc | Scrubbing process for polyarylene sulfide formation |
US9388283B2 (en) | 2013-09-25 | 2016-07-12 | Ticona Llc | Method of polyarylene sulfide crystallization |
US9403948B2 (en) | 2013-09-25 | 2016-08-02 | Ticona Llc | Salt byproduct separation during formation of polyarylene sulfide |
US9562139B2 (en) | 2013-09-25 | 2017-02-07 | Ticona Llc | Process for forming low halogen content polyarylene sulfides |
US9587074B2 (en) | 2013-09-25 | 2017-03-07 | Ticona Llc | Multi-stage process for forming polyarylene sulfides |
US9604156B2 (en) | 2013-09-25 | 2017-03-28 | Ticona Llc | Method and system for separation of a polymer from multiple compounds |
US9868824B2 (en) | 2013-09-25 | 2018-01-16 | Ticona Llc | Method of polyarylene sulfide crystallization |
US9938379B2 (en) | 2013-09-25 | 2018-04-10 | Ticona Llc | Salt byproduct separation during formation of polyarylene sulfide |
JP2015218214A (en) * | 2014-05-15 | 2015-12-07 | Dic株式会社 | Method for producing sulfidizing agent and method for producing polyarylene sulfide resin |
US10106654B2 (en) | 2015-02-19 | 2018-10-23 | Ticona Llc | Method of polyarylene sulfide precipitation |
US9809681B2 (en) | 2015-02-19 | 2017-11-07 | Ticona Llc | Method for forming a low viscosity polyarylene sulfide |
US10882959B2 (en) | 2015-02-19 | 2021-01-05 | Ticona Llc | Method of polyarylene sulfide precipitation |
US9988494B2 (en) | 2015-02-19 | 2018-06-05 | Ticona Llc | Method for forming a high molecular weight polyarylene sulfide |
US9815942B2 (en) | 2015-03-25 | 2017-11-14 | Ticona Llc | Technique for forming a high melt viscosity polyarylene sulfide |
CN105036454A (en) * | 2015-06-10 | 2015-11-11 | 张家港市新盛新材料有限公司 | Polyphenylene sulfide production wastewater deep treatment method |
JP2018522984A (en) * | 2015-07-23 | 2018-08-16 | ハンツマン・アドバンスド・マテリアルズ・アメリカズ・エルエルシー | Curable benzoxazine composition |
US10851049B2 (en) | 2015-07-23 | 2020-12-01 | Huntsman Advanced Materials Americas Llc | Curable benzoxazine compositions |
WO2020159167A1 (en) * | 2019-01-28 | 2020-08-06 | 주식회사 엘지화학 | Method for recovering amide-based compounds |
US11407861B2 (en) | 2019-06-28 | 2022-08-09 | Ticona Llc | Method for forming a polyarylene sulfide |
US11319441B2 (en) | 2019-12-20 | 2022-05-03 | Ticona Llc | Method for forming a polyarylene sulfide |
JP2022161190A (en) * | 2021-04-08 | 2022-10-21 | Dic株式会社 | Method for producing sulfidating agent and polyarylene sulfide resin |
JP7691636B2 (en) | 2021-04-08 | 2025-06-12 | Dic株式会社 | Sulfidizing agent and method for producing polyarylene sulfide resin |
US12018129B2 (en) | 2021-09-08 | 2024-06-25 | Ticona Llc | Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
US12024596B2 (en) | 2021-09-08 | 2024-07-02 | Ticona Llc | Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
CN114314779A (en) * | 2021-12-08 | 2022-04-12 | 河北建投交通投资有限责任公司 | Flocculating agent for sewage treatment station of railway tunnel |
CN119118440A (en) * | 2024-10-25 | 2024-12-13 | 浙江锦华新材料股份有限公司 | A method for efficiently treating butanone oxime production wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003275773A (en) | Wastewater treatment method for polyphenylene sulfide | |
US5908559A (en) | Method for recovering and separating metals from waste streams | |
WO2011122527A1 (en) | Treatment method and treatment device for converting chlorine-containing waste into raw material for cement | |
JP6419311B2 (en) | Method for producing finely divided polyarylene sulfide and finely divided polyarylene sulfide | |
JP4907950B2 (en) | Method and apparatus for removing metal from waste water | |
CN105731622A (en) | Method for treating zinc-containing wastewater by using heavy metal flocculant | |
CN116332135A (en) | Method and system for separating and recycling elemental sulfur from sulfur-containing sludge | |
KR20040002594A (en) | Liquid treatment method and apparatus | |
JP3992627B2 (en) | Treatment method of wastewater containing persistent degradable hazardous substances | |
JPH09187752A (en) | Method for treating waste incineration ash and molten fly ash | |
JP4567344B2 (en) | How to remove arsenic | |
JP6912192B2 (en) | Silica-containing water treatment equipment and treatment method | |
WO2016104381A1 (en) | Method for treating wastewater containing sulfur-containing compounds produced in step for producing polyarylene sulfide, and method for producing polyarylene sulfide | |
JP7150385B2 (en) | Method for separating and purifying polyarylene sulfide | |
US6797195B1 (en) | Method for recovering and separating metals from waste streams | |
WO2015147090A1 (en) | Heat-treated finely powdered polyarylene sulfide and method for producing heat-treated finely powdered polyarylene sulfide | |
JPH1177094A (en) | Apparatus and method for purifying treatment of dredged soil | |
CN115536213A (en) | Oily wastewater treatment method | |
JP2005254163A (en) | Drainage treatment method in manufacturing of polyarylene sulfide resin | |
JP2005254158A (en) | Apparatus and method for removing fluorine in waste water | |
JP4758766B2 (en) | Water treatment method | |
JP4042008B2 (en) | Cement dust treatment method and apparatus | |
JP7691636B2 (en) | Sulfidizing agent and method for producing polyarylene sulfide resin | |
JP3675109B2 (en) | Treatment method for coolant waste | |
JP2003236592A (en) | Organic sludge treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050310 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050722 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090519 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100309 |