[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003269824A - Gas-liquid separator for ejector cycle - Google Patents

Gas-liquid separator for ejector cycle

Info

Publication number
JP2003269824A
JP2003269824A JP2002076076A JP2002076076A JP2003269824A JP 2003269824 A JP2003269824 A JP 2003269824A JP 2002076076 A JP2002076076 A JP 2002076076A JP 2002076076 A JP2002076076 A JP 2002076076A JP 2003269824 A JP2003269824 A JP 2003269824A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
gas
phase refrigerant
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002076076A
Other languages
Japanese (ja)
Other versions
JP4147793B2 (en
Inventor
Susumu Kawamura
進 川村
Takeshi Sakai
猛 酒井
Shinya Kato
真也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002076076A priority Critical patent/JP4147793B2/en
Publication of JP2003269824A publication Critical patent/JP2003269824A/en
Application granted granted Critical
Publication of JP4147793B2 publication Critical patent/JP4147793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To positively separate a gas-phase refrigerant, a liquid-phase refrigerant and refrigerator oil in a gas-liquid separator for an ejector cycle. <P>SOLUTION: A liquid-phase refrigerant outflow port 54 and an oil return hole 55 are provided on the lower side than an inflow port 52, and a gas-phase refrigerant outflow port 53 is provided on the higher side than the liquid-phase refrigerant outflow port 54 and the oil return hole 55. The liquid-phase refrigerant outflow port 54 is provided on the higher side than the oil return hole 55. The tank cross-sectional area S1 of a large diameter part 51a provided with the liquid-phase refrigerant outflow port 54 and oil return hole 55, out of a tank body 51 is made larger than the tank cross-sectional area S2 of a small diameter part 51b provided with the inflow port 52, out of the tank body 51, and a shielding plate 56 is provided above the liquid level. Consequently, the gas-phase refrigerant, liquid-phase refrigerant and refrigerator oil are positively separated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エジェクタサイク
ル用の気液分離器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid separator for an ejector cycle.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】エジェ
クタサイクルとは、周知のごとく、エジェクタにて冷媒
を減圧膨張させて蒸発器にて蒸発した気相冷媒を吸引す
るとともに、膨張エネルギーを圧力エネルギーに変換し
て圧縮機の吸入圧を上昇させる冷凍サイクルである。
As is well known, the ejector cycle is a well-known ejector cycle in which a refrigerant is decompressed and expanded by an ejector to suck a vapor phase refrigerant evaporated in an evaporator and expansion energy is converted into pressure energy. It is a refrigerating cycle in which the suction pressure of the compressor is increased by converting into.

【0003】つまり、エジェクタサイクルでは、圧縮機
→放熱器→エジェクタ→気液分離器→圧縮機の順に循環
する冷媒流れと、気液分離器→蒸発器→エジェクタ→気
液分離器の順に循環する冷媒流れとが存在し、気液分離
器は、エジェクタから流出した冷媒を気相冷媒と液相冷
媒とに分離して気相冷媒を圧縮機の吸引側に供給し、液
相冷媒を蒸発器側に供給する。
That is, in the ejector cycle, the refrigerant flow circulates in the order of compressor → radiator → ejector → gas-liquid separator → compressor, and circulates in the order of gas-liquid separator → evaporator → ejector → gas-liquid separator. There is a refrigerant flow, the gas-liquid separator separates the refrigerant flowing out of the ejector into a gas-phase refrigerant and a liquid-phase refrigerant, supplies the gas-phase refrigerant to the suction side of the compressor, and evaporates the liquid-phase refrigerant. Supply to the side.

【0004】このとき、圧縮機にて液圧縮が発生するこ
とを防止するためには、理想的には気相冷媒、つまり飽
和ガスのみを気液分離器から圧縮機に供給することが望
ましい。なお、圧縮機にて液圧縮が発生すると、吐出温
度及び吐出圧力が過度に上昇して圧縮機の寿命低下を招
くとともに、圧縮機の消費動力が増大してしまう。
At this time, in order to prevent liquid compression from occurring in the compressor, ideally it is desirable to supply only the gas-phase refrigerant, that is, the saturated gas, from the gas-liquid separator to the compressor. When liquid compression occurs in the compressor, the discharge temperature and the discharge pressure are excessively increased, the life of the compressor is shortened, and the power consumption of the compressor is increased.

【0005】一方、液相冷媒と共に多くの冷凍機油が蒸
発器内に流れ込んでしまうと、冷凍機油が蒸発器内面に
付着するようにして、多量の冷凍機油が蒸発器に滞留し
てしまうおそれがある。
On the other hand, if a large amount of refrigerating machine oil flows into the evaporator together with the liquid-phase refrigerant, the refrigerating machine oil may adhere to the inner surface of the evaporator and a large amount of refrigerating machine oil may stay in the evaporator. is there.

【0006】そして、冷凍機油が蒸発器内面に付着する
と、液相冷媒と蒸発器との間の熱伝達率が低下して液相
冷媒の蒸発を阻害し、蒸発器の熱交換効率の低下を招く
とともに、実質的な冷媒通路断面積が縮小して蒸発器内
を流れる冷媒流量の減少、及びこれに呼応して蒸発器で
の吸熱能力の低下を招く。
When the refrigerating machine oil adheres to the inner surface of the evaporator, the heat transfer coefficient between the liquid-phase refrigerant and the evaporator is reduced, which hinders the evaporation of the liquid-phase refrigerant and reduces the heat exchange efficiency of the evaporator. At the same time, the cross-sectional area of the refrigerant passage is substantially reduced to decrease the flow rate of the refrigerant flowing in the evaporator, and in response to this, the heat absorption capacity of the evaporator is decreased.

【0007】さらに、蒸発器で冷凍機油が滞留するた
め、圧縮機にて冷凍機油不足、つまり潤滑不足が発生す
るおそれもある。
Further, since the refrigerating machine oil stays in the evaporator, there is a possibility that the compressor may lack the refrigerating machine oil, that is, the lubrication may be insufficient.

【0008】本発明は、上記点に鑑み、気相冷媒、液相
冷媒及び冷凍機油を分離することができる、従来と異な
る新規な構造を有する気液気液分離器を提供することを
目的とする。
In view of the above points, an object of the present invention is to provide a gas-liquid gas-liquid separator having a novel structure different from the conventional one, which can separate a gas-phase refrigerant, a liquid-phase refrigerant and a refrigerating machine oil. To do.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1に記載の発明では、圧縮機(1
0)にて圧縮された高圧の冷媒を放冷する放熱器(2
0)と、低圧の冷媒を蒸発させる蒸発器(30)、放熱
器(20)から流出した冷媒の圧力エネルギーを速度エ
ネルギーに変換して冷媒を減圧膨張させるノズル、及び
ノズルから噴射する冷媒と蒸発器(30)から吸引した
冷媒とを混合させながら速度エネルギーを圧力エネルギ
ーに変換して冷媒の圧力を昇圧させる昇圧部とを有する
エジェクタ(40)とを備えるエジェクタサイクルに適
用され、エジェクタ(40)から流出した冷媒を気相冷
媒と液相冷媒とに分離して気相冷媒を圧縮機(10)の
吸引側に供給し、液相冷媒を蒸発器(30)側に供給す
る気液分離器であって、エジェクタ(40)から流出し
た冷媒が流入する流入部(52)、気相冷媒を流出させ
る気相冷媒流出部(53)、液相冷媒を流出させる液相
冷媒流出部(54)、及び冷凍機油を流出させるオイル
戻し部(55)が設けられたタンク本体(51)を有
し、タンク本体(51)の上部側にて、主に気相成分と
液相成分とを遠心分離し、一方、タンク本体(51)の
下部側にて、主に液相冷媒と冷凍機油とを比重分離する
ことを特徴とする。
In order to achieve the above object, the present invention provides a compressor (1
Radiator (2) that cools the high-pressure refrigerant compressed by
0), an evaporator (30) for evaporating a low-pressure refrigerant, a nozzle for converting pressure energy of the refrigerant flowing out of the radiator (20) into velocity energy to expand the refrigerant under reduced pressure, and a refrigerant injected from the nozzle for evaporation. The ejector (40) is provided with an ejector (40) having a pressure increasing unit for converting velocity energy into pressure energy and increasing the pressure of the refrigerant while mixing with the refrigerant sucked from the container (30). A gas-liquid separator that separates the refrigerant that has flowed out of the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplies the gas-phase refrigerant to the suction side of the compressor (10), and supplies the liquid-phase refrigerant to the evaporator (30) side. The inflow part (52) into which the refrigerant flowing out of the ejector (40) flows, the gas-phase refrigerant outflow part (53) to outflow the gas-phase refrigerant, and the liquid-phase refrigerant outflow part (54 to outflow the liquid-phase refrigerant). , And a tank main body (51) provided with an oil return part (55) for letting out refrigerating machine oil, and centrifugally separates a gas phase component and a liquid phase component mainly on the upper side of the tank main body (51). On the other hand, on the other hand, it is characterized in that the liquid phase refrigerant and the refrigerating machine oil are mainly separated by specific gravity at the lower side of the tank body (51).

【0010】これにより、気相冷媒、液相冷媒及び冷凍
機油を分離することができる、従来と異なる新規な構造
を有する気液気液分離器を得ることができる。
As a result, it is possible to obtain a gas-liquid gas-liquid separator having a novel structure different from the conventional one, which can separate the gas-phase refrigerant, the liquid-phase refrigerant and the refrigerating machine oil.

【0011】請求項2に記載の発明では、タンク本体
(51)のうち液相冷媒流出部(54)が設けられた部
位におけるタンク断面積(S1)は、タンク本体(5
1)のうち流入部(52)が設けられた部位におけるタ
ンク断面積(S2)に比べて大きいことを特徴とする。
According to the second aspect of the invention, the tank cross-sectional area (S1) at the portion of the tank body (51) where the liquid-phase refrigerant outflow portion (54) is provided is the tank body (5).
It is characterized in that it is larger than the tank cross-sectional area (S2) in the part of 1) where the inflow part (52) is provided.

【0012】これにより、タンク断面積が小さい部位か
らタンク断面積が大きい部位に流入した冷媒は、その旋
回速度を低下させるので、気液分離器内に溜まった液相
冷媒の液面を安定させることができる。
As a result, the refrigerant flowing from the portion having a small tank cross-sectional area to the portion having a large tank cross-sectional area lowers its swirling speed, and thus stabilizes the liquid surface of the liquid-phase refrigerant accumulated in the gas-liquid separator. be able to.

【0013】したがって、液相冷媒と冷凍機油とを確実
に比重分離することができるので、、液相冷媒を蒸発器
(30)に安定的に供給することができ、封入冷媒量を
低減することができる。延いては、エジェクタサイクル
の製造原価低減を図ることができる。
Therefore, since the liquid-phase refrigerant and the refrigerating machine oil can be reliably separated from each other in specific gravity, the liquid-phase refrigerant can be stably supplied to the evaporator (30) and the amount of the enclosed refrigerant can be reduced. You can As a result, the manufacturing cost of the ejector cycle can be reduced.

【0014】請求項3に記載の発明では、液相冷媒流出
部(54)及びオイル戻し部(55)より上方側には、
タンク本体(51)内に流入した冷媒が、直接的に、液
相冷媒流出部(54)及びオイル戻し部(55)側に流
入することを抑制する流入抑止部材(56)が設けられ
ていることを特徴とする。
According to the third aspect of the present invention, the liquid-phase refrigerant outflow portion (54) and the oil return portion (55) are provided on the upper side.
An inflow suppression member (56) is provided to prevent the refrigerant flowing into the tank body (51) from directly flowing into the liquid-phase refrigerant outflow portion (54) and the oil return portion (55). It is characterized by

【0015】これにより、気液分離器内に溜まった液相
冷媒の液面をより一層安定させることができるので、液
相冷媒と冷凍機油とを確実に比重分離することができ
る。
As a result, the liquid surface of the liquid-phase refrigerant accumulated in the gas-liquid separator can be further stabilized, so that the liquid-phase refrigerant and the refrigerating machine oil can be reliably separated by specific gravity.

【0016】請求項4に記載の発明では、流入抑止部材
(56)には、タンク本体(51)内を旋回するように
流れる冷媒を減速させる減速手段(56a)が設けられ
ていることを特徴とする。
In the invention according to claim 4, the inflow suppressing member (56) is provided with deceleration means (56a) for decelerating the refrigerant flowing so as to swirl in the tank body (51). And

【0017】これにより、タンク断面積が小さい部位か
らタンク断面積が大きい部位に流入した冷媒の旋回速度
を確実に低下させることができるので、気液分離器内に
溜まった液相冷媒の液面をより一層安定させることがで
きる、液相冷媒と冷凍機油とを確実に比重分離すること
ができる。
As a result, the swirling speed of the refrigerant flowing from the portion having a small tank cross-sectional area to the portion having a large tank cross-sectional area can be surely reduced, so that the liquid level of the liquid-phase refrigerant accumulated in the gas-liquid separator can be reduced. The liquid-phase refrigerant and the refrigerating machine oil can be reliably separated from each other by the specific gravity.

【0018】なお、液相冷媒の密度が冷凍機油の密度よ
り小さい場合には、請求項5に記載の発明のごとく、液
相冷媒流出部(54)をオイル戻し部(55)より上方
側に位置させることが望ましい。
When the density of the liquid-phase refrigerant is lower than the density of the refrigerating machine oil, the liquid-phase refrigerant outflow portion (54) is located above the oil return portion (55) as in the fifth aspect of the invention. It is desirable to locate it.

【0019】因みに、液相冷媒の密度より小さい密度を
有する冷凍機油を採用した場合には、オイル戻し部(5
5)を液相冷媒流出部(54)より上方側に位置させる
ことが望ましい。
Incidentally, when a refrigerating machine oil having a density smaller than that of the liquid-phase refrigerant is adopted, the oil return section (5
It is desirable to position 5) above the liquid-phase refrigerant outlet (54).

【0020】請求項6に記載の発明では、圧縮機(1
0)にて圧縮された高圧の冷媒を放冷する放熱器(2
0)と、低圧の冷媒を蒸発させる蒸発器(30)と、放
熱器(20)から流出した冷媒の圧力エネルギーを速度
エネルギーに変換して冷媒を減圧膨張させるノズル、及
びノズルから噴射する冷媒と蒸発器(30)から吸引し
た冷媒とを混合させながら速度エネルギーを圧力エネル
ギーに変換して冷媒の圧力を昇圧させる昇圧部とを有す
るエジェクタ(40)と、エジェクタ(40)から流出
した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を
圧縮機(10)の吸引側に供給し、液相冷媒を蒸発器
(30)側に供給する請求項1ないし5のいずれか1つ
に記載の気液分離器(50)とを備え、高圧の冷媒は、
冷媒の臨界圧力以上まで加圧されることを特徴とする。
In the invention described in claim 6, the compressor (1
Radiator (2) that cools the high-pressure refrigerant compressed by
0), an evaporator (30) for evaporating a low-pressure refrigerant, a nozzle for converting pressure energy of the refrigerant flowing out of the radiator (20) into velocity energy to expand the refrigerant under reduced pressure, and a refrigerant injected from the nozzle. The refrigerant that has flowed out from the ejector (40) and the ejector (40) that has a pressure increasing unit that increases the pressure of the refrigerant by converting velocity energy into pressure energy while mixing the refrigerant sucked from the evaporator (30) The liquid phase refrigerant is separated into a liquid phase refrigerant and a gas phase refrigerant is supplied to the suction side of the compressor (10), and a liquid phase refrigerant is supplied to the evaporator (30) side. And a gas-liquid separator (50) according to item 1, wherein the high-pressure refrigerant is
It is characterized in that the refrigerant is pressurized to above the critical pressure.

【0021】これにより、エジェクタサイクルを効率よ
く稼動させることができる。
As a result, the ejector cycle can be operated efficiently.

【0022】なお、請求項7に記載の発明のごとく、冷
媒は、二酸化炭素としてもよい。
In the seventh aspect of the invention, the refrigerant may be carbon dioxide.

【0023】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。
Incidentally, the reference numerals in the parentheses of the above-mentioned means are examples showing the correspondence with the concrete means described in the embodiments described later.

【0024】[0024]

【発明の実施の形態】本実施形態は、本発明に係るエジ
ェクタサイクルを空調装置に適用したものであって、図
1は本実施形態に係るエジェクタサイクルの模式図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In this embodiment, the ejector cycle according to the present invention is applied to an air conditioner, and FIG. 1 is a schematic diagram of the ejector cycle according to the present embodiment.

【0025】圧縮機10は冷媒を吸入圧縮するものであ
り、凝縮器20は圧縮機10から吐出した冷媒と室外空
気とを熱交換して冷媒が吸熱した熱を放冷する高圧側熱
交換器である。因みに、本実施形態では、冷媒としてフ
ロン(R404)を用いているが、冷媒として二酸化炭
素を用いてもよいことは言うまでもない。
The compressor 10 sucks and compresses the refrigerant, and the condenser 20 exchanges heat between the refrigerant discharged from the compressor 10 and the outdoor air and releases the heat absorbed by the refrigerant to the high pressure side heat exchanger. Is. Incidentally, in the present embodiment, CFC (R404) is used as the refrigerant, but it goes without saying that carbon dioxide may be used as the refrigerant.

【0026】なお、冷媒としてフロンを用いた場合に
は、凝縮器20にて冷媒が凝縮するが、冷媒として、二
酸化炭素を用いた場合には、高圧側冷媒圧力は冷媒の臨
界圧力以上となり、かつ、凝縮器20内で冷媒が凝縮す
ることなく、冷媒入口側から冷媒出口側に向かうほど冷
媒温度が低下するような温度分布を有するので、凝縮器
20は放熱器として機能する。
When chlorofluorocarbon is used as the refrigerant, the refrigerant is condensed in the condenser 20, but when carbon dioxide is used as the refrigerant, the pressure of the high-pressure side refrigerant becomes equal to or higher than the critical pressure of the refrigerant, Moreover, since the refrigerant has a temperature distribution such that the refrigerant temperature does not condense in the condenser 20 and decreases from the refrigerant inlet side toward the refrigerant outlet side, the condenser 20 functions as a radiator.

【0027】蒸発器30は室内に吹き出す空気と液相冷
媒とを熱交換させて液相冷媒を蒸発させることにより冷
媒を蒸発させて空気から吸熱する低圧側熱交換器であ
り、エジェクタ40は、冷媒を減圧膨張させるノズル、
並びに蒸発器30にて蒸発した気相冷媒を吸引するとと
もに膨張エネルギーを圧力エネルギーに変換して圧縮機
10の吸入圧を上昇させる混合部及びディフューザから
なる昇圧部を有して構成された減圧手段とポンプ手段と
を兼ねるものである。
The evaporator 30 is a low-pressure heat exchanger that heat-exchanges the air blown out into the room with the liquid-phase refrigerant to evaporate the liquid-phase refrigerant to evaporate the refrigerant and absorb heat from the air. The ejector 40 is A nozzle for expanding the refrigerant under reduced pressure,
In addition, the decompression unit is configured to have a pressure increasing unit including a mixing unit and a diffuser for sucking the vapor phase refrigerant evaporated in the evaporator 30 and converting the expansion energy into pressure energy to increase the suction pressure of the compressor 10. And the pump means.

【0028】気液分離器50はエジェクタ40から流出
した冷媒が流入するとともに、その流入した冷媒を気相
冷媒と液相冷媒とに分離して冷媒を蓄える気液分離手段
であり、気液分離器50の気相冷媒流出口は圧縮機10
の吸引側に接続され、液相冷媒流出口は蒸発器30側の
流入側に接続される。
The gas-liquid separator 50 is a gas-liquid separating means for storing the refrigerant by separating the inflowing refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant while the refrigerant flowing out from the ejector 40 flows in. The gas-phase refrigerant outlet of the compressor 50 is the compressor 10
Of the liquid phase refrigerant is connected to the inflow side of the evaporator 30.

【0029】次に、気液分離器50の構造を述べる。Next, the structure of the gas-liquid separator 50 will be described.

【0030】図2は気液分離器50の模式図であり、タ
ンク本体51は、エジェクタ40から流出した冷媒が流
入する流入部をなす流入口52、気相冷媒を流出させる
気相冷媒流出部をなす気相冷媒流出口53、液相冷媒を
流出させる液相冷媒流出部をなす液相冷媒流出口54、
及び冷凍機油を流出させるオイル戻し部をなすオイル戻
し穴55が設けられ冷媒容器である。
FIG. 2 is a schematic diagram of the gas-liquid separator 50. The tank main body 51 has an inflow port 52 which forms an inflow part into which the refrigerant flowing out of the ejector 40 flows, and a gas-phase refrigerant outflow part which allows the gas-phase refrigerant to flow out. A gas-phase refrigerant outlet port 53, a liquid-phase refrigerant outlet port 54 for forming a liquid-phase refrigerant outlet,
Also, the refrigerant container is provided with an oil return hole 55 that forms an oil return portion for letting out refrigeration oil.

【0031】そして、液相冷媒流出口54及びオイル戻
し穴55は流入口52より下方側に設けられ、気相冷媒
流出口53は液相冷媒流出口54及びオイル戻し穴55
より上方側に設けられ、液相冷媒流出口54はオイル戻
し穴55より上方側に設けられている。
The liquid refrigerant outlet 54 and the oil return hole 55 are provided below the inlet 52, and the gas refrigerant outlet 53 is the liquid refrigerant outlet 54 and the oil return hole 55.
The liquid-phase refrigerant outlet port 54 is provided above the oil return hole 55.

【0032】なお、流入口52は、図3に示すように、
小径部51bに流入した冷媒が小径部51b内で旋回す
るように小径部51bの円周内壁の接線方向に向けて開
口している。
The inflow port 52 is, as shown in FIG.
The refrigerant flowing into the small diameter portion 51b is opened in the tangential direction of the inner circumferential wall of the small diameter portion 51b so that the refrigerant swirls in the small diameter portion 51b.

【0033】また、タンク本体51のうち液相冷媒流出
口54及びオイル戻し穴55が設けられた大径部51a
のタンク断面積S1は、図2に示すように、タンク本体
51のうち流入口52が設けられた小径部51bのタン
ク断面積S2に比べて大きくなっている。
Further, a large diameter portion 51a of the tank body 51 in which the liquid-phase refrigerant outlet 54 and the oil return hole 55 are provided.
2, the tank cross-sectional area S1 is larger than the tank cross-sectional area S2 of the small diameter portion 51b of the tank body 51 in which the inflow port 52 is provided.

【0034】そして、液相冷媒流出口54及びオイル戻
し穴55より上方側には、図2に示すように、タンク本
体51内に流入した冷媒が、直接的に、液相冷媒流出口
54及びオイル戻し穴55側に流入することを抑制する
流入抑止部材としての遮蔽版56が設けられており、こ
の遮蔽版56の上面側には、図4に示すように、タンク
本体51内を旋回するように流れる冷媒を減速させる減
速手段としての減速ブレード56aが一体形成されてい
る。
As shown in FIG. 2, above the liquid-phase refrigerant outlet 54 and the oil return hole 55, the refrigerant that has flowed into the tank body 51 directly flows into the liquid-phase refrigerant outlet 54 and A shield plate 56 is provided as an inflow suppressing member for suppressing the inflow to the oil return hole 55 side, and the upper surface side of the shield plate 56 swirls in the tank body 51 as shown in FIG. A deceleration blade 56a is integrally formed as a deceleration means for decelerating the flowing refrigerant.

【0035】なお、タンク本体51は、加工性に優れた
材質であり、本実施形態では、アルミニウム合金を採用
している。
The tank body 51 is made of a material having excellent workability, and in this embodiment, an aluminum alloy is used.

【0036】次に、本実施形態に係る気液分離器50の
作用効果述べる。
Next, the function and effect of the gas-liquid separator 50 according to this embodiment will be described.

【0037】流入口52からタンク本体51内に流入し
た冷媒は、タンク本体51の上部側、つまり小径部51
bにて主に気相成分と液相成分とが遠心分離され、タン
ク本体51の下部側、つまり大径部51aにて主に液相
冷媒と冷凍機油とを比重分離される。
The refrigerant flowing from the inlet 52 into the tank main body 51 is on the upper side of the tank main body 51, that is, the small diameter portion 51.
The gas phase component and the liquid phase component are mainly centrifugally separated in b, and the liquid phase refrigerant and the refrigerating machine oil are mainly gravity-separated in the lower side of the tank main body 51, that is, the large diameter part 51a.

【0038】ここで、遠心分離とは、冷凍機油を含む冷
媒を旋回させて、液相成分(液相冷媒及び冷凍機油)に
作用する遠心力と気相成分(気相冷媒)に作用する遠心
力との相違を利用して分離することであり、比重分離と
は、液相冷媒に作用する重力と冷凍機油に作用する重力
との相違を利用して分離することを言う。
Here, the term "centrifugal separation" means that a refrigerant containing a refrigerating machine oil is swirled so that a centrifugal force acting on a liquid phase component (liquid phase refrigerant and refrigerating machine oil) and a centrifugal force acting on a gas phase component (gas phase refrigerant). The separation is performed by utilizing the difference between the force and the gravity separation, and the specific gravity separation is performed by utilizing the difference between the gravity acting on the liquid-phase refrigerant and the gravity acting on the refrigerating machine oil.

【0039】そして、気相成分に比べて密度が大きい液
相成分は、気相成分に比べて大きな旋回速度でタンク本
体51の内周壁に沿って下方側に螺旋状に流れ、気相成
分は気相冷媒流出口53から圧縮機10側に流出する。
The liquid phase component having a density higher than that of the gas phase component spirally flows downward along the inner peripheral wall of the tank main body 51 at a swirling speed higher than that of the gas phase component, and the gas phase component is The gas-phase refrigerant outlet 53 flows out to the compressor 10 side.

【0040】このとき、大径部51aにおけるタンク断
面積S1が小径部51bにおけるタンク断面積S2に比
べて大きくなっているので、小径部51bから大径部5
1aに流入した冷媒は、その旋回速度を低下させる。
At this time, since the tank cross-sectional area S1 in the large diameter portion 51a is larger than the tank cross-sectional area S2 in the small diameter portion 51b, the small diameter portion 51b to the large diameter portion 5
The refrigerant flowing into 1a reduces its swirling speed.

【0041】したがって、気液分離器50内に溜まった
液相冷媒の液面を安定させることができるので、液相冷
媒と冷凍機油とを確実に比重分離することができる。延
いては、液相冷媒を蒸発器30に安定的に供給すること
ができるので、封入冷媒量を低減することができるの
で、エジェクタサイクルの製造原価低減を図ることがで
きる。
Therefore, since the liquid surface of the liquid-phase refrigerant accumulated in the gas-liquid separator 50 can be stabilized, the liquid-phase refrigerant and the refrigerating machine oil can be reliably separated by specific gravity. In addition, since the liquid-phase refrigerant can be stably supplied to the evaporator 30, the amount of the enclosed refrigerant can be reduced and the manufacturing cost of the ejector cycle can be reduced.

【0042】また、遮蔽版56にてタンク本体51内に
流入した冷媒が、直接的に、液相冷媒流出口54及びオ
イル戻し穴55側に流入することが確実に抑制されるの
で、気液分離器50内に溜まった液相冷媒の液面をより
一層安定させることができ、液相冷媒と冷凍機油とを確
実に比重分離することができる。
Further, the refrigerant that has flowed into the tank main body 51 by the shield plate 56 is surely suppressed from directly flowing into the liquid-phase refrigerant outlet port 54 and the oil return hole 55 side. The liquid level of the liquid-phase refrigerant accumulated in the separator 50 can be further stabilized, and the specific gravity of the liquid-phase refrigerant and the refrigerating machine oil can be reliably separated.

【0043】さらに、遮蔽版56に減速ブレード56a
が設けられているので、小径部51bから大径部51a
に流入した冷媒の旋回速度を確実に低下させることがで
きるので、気液分離器50内に溜まった液相冷媒の液面
をより一層安定させることができ、液相冷媒と冷凍機油
とを確実に比重分離することができる。
Further, the shield plate 56 is provided with a reduction blade 56a.
Is provided, the small diameter portion 51b to the large diameter portion 51a
Since the swirling speed of the refrigerant flowing into the can be reliably reduced, the liquid level of the liquid-phase refrigerant accumulated in the gas-liquid separator 50 can be further stabilized, and the liquid-phase refrigerant and the refrigerating machine oil can be reliably retained. Specific gravity can be separated.

【0044】(その他の実施形態)上述の実施形態で
は、空調装置に本発明を適用したが、本発明はこれに限
定されるものではなく、給湯器や冷蔵庫等にも適用する
ことができる。
(Other Embodiments) In the above-described embodiments, the present invention is applied to the air conditioner, but the present invention is not limited to this and can be applied to a water heater, a refrigerator and the like.

【0045】また、遮蔽版56、特に減速ブレード56
aの形状は、図4に示された形状に限定されるものでは
なく、冷媒速度を減速させることができる形状であれば
よい。
Further, the shielding plate 56, especially the reduction blade 56
The shape of a is not limited to the shape shown in FIG. 4, and may be any shape that can reduce the speed of the refrigerant.

【0046】また、上述の実施形態では、段付き状にタ
ンク本体51内の断面積が変化するものであったが、本
発明はこれに限定されるものではなく、下方側に向かう
ほど、タンク断面積Sが増大するような円錐フラスコ状
のタンク本体51を採用してもよい。
Further, in the above-mentioned embodiment, the cross-sectional area of the tank main body 51 changes in a stepped manner, but the present invention is not limited to this, and the tank goes down toward the lower side. A conical flask-shaped tank body 51 that increases the cross-sectional area S may be adopted.

【0047】また、冷媒は、二酸化炭素及びフロンに限
定されるものではなく、炭化水素系の冷媒や窒素等の自
然冷媒又は混合冷媒であってもよい。
The refrigerant is not limited to carbon dioxide and chlorofluorocarbon, and may be a hydrocarbon refrigerant, a natural refrigerant such as nitrogen, or a mixed refrigerant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係るエジェクタサイクルの
模式図である。
FIG. 1 is a schematic diagram of an ejector cycle according to an embodiment of the present invention.

【図2】本発明の実施形態に係る気液分離器の模式図で
ある。
FIG. 2 is a schematic diagram of a gas-liquid separator according to an embodiment of the present invention.

【図3】本発明の実施形態に係る気液分離器の上面図で
ある。
FIG. 3 is a top view of the gas-liquid separator according to the embodiment of the present invention.

【図4】本発明の実施形態に係る遮蔽版の二面図であ
る。
FIG. 4 is a two-sided view of the shielding plate according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

50…気液分離器、51…タンク本体、52…流入口、
53…気相冷媒流出口 53、54…液相冷媒流出口、55…オイル戻し穴、5
6…遮蔽版。
50 ... Gas-liquid separator, 51 ... Tank body, 52 ... Inflow port,
53 ... Gas-phase refrigerant outlet 53, 54 ... Liquid-phase refrigerant outlet, 55 ... Oil return hole, 5
6 ... Shield version.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 真也 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinya Kato             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(10)にて圧縮された高圧の冷
媒を放冷する放熱器(20)と、 低圧の冷媒を蒸発させる蒸発器(30)、 前記放熱器(20)から流出した冷媒の圧力エネルギー
を速度エネルギーに変換して冷媒を減圧膨張させるノズ
ル、及び前記ノズルから噴射する冷媒と前記蒸発器(3
0)から吸引した冷媒とを混合させながら速度エネルギ
ーを圧力エネルギーに変換して冷媒の圧力を昇圧させる
昇圧部とを有するエジェクタ(40)とを備えるエジェ
クタサイクルに適用され、 前記エジェクタ(40)から流出した冷媒を気相冷媒と
液相冷媒とに分離して気相冷媒を前記圧縮機(10)の
吸引側に供給し、液相冷媒を前記蒸発器(30)側に供
給する気液分離器であって、 前記エジェクタ(40)から流出した冷媒が流入する流
入部(52)、気相冷媒を流出させる気相冷媒流出部
(53)、液相冷媒を流出させる液相冷媒流出部(5
4)、及び冷凍機油を流出させるオイル戻し部(55)
が設けられたタンク本体(51)を有し、 前記タンク本体(51)の上部側にて、主に気相成分と
液相成分とを遠心分離し、一方、前記タンク本体(5
1)の下部側にて、主に液相冷媒と冷凍機油とを比重分
離することを特徴とするエジェクタサイクル用の気液分
離器。
1. A radiator (20) for allowing a high-pressure refrigerant compressed by a compressor (10) to cool, an evaporator (30) for evaporating a low-pressure refrigerant, and the radiator (20) flowing out. A nozzle that converts pressure energy of the refrigerant into velocity energy to expand the refrigerant under reduced pressure, and a refrigerant that is injected from the nozzle and the evaporator (3
0) and an ejector (40) having a pressure increasing unit for increasing the pressure of the refrigerant by converting velocity energy into pressure energy while mixing with the refrigerant, and the ejector cycle is applied from the ejector (40). Gas-liquid separation in which the discharged refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the gas-phase refrigerant is supplied to the suction side of the compressor (10), and the liquid-phase refrigerant is supplied to the evaporator (30) side. And an inflow part (52) into which the refrigerant flowing out of the ejector (40) flows, a gas-phase refrigerant outflow part (53) to outflow the gas-phase refrigerant, and a liquid-phase refrigerant outflow part to outflow the liquid-phase refrigerant ( 5
4) and an oil return part (55) for letting out refrigerating machine oil
A tank main body (51) provided with, and mainly at the upper side of the tank main body (51), a gas phase component and a liquid phase component are centrifugally separated, while the tank main body (5
A gas-liquid separator for an ejector cycle, characterized in that the liquid phase refrigerant and the refrigerating machine oil are mainly subjected to specific gravity separation on the lower side of 1).
【請求項2】 前記タンク本体(51)のうち前記液相
冷媒流出部(54)が設けられた部位におけるタンク断
面積(S1)は、前記タンク本体(51)のうち前記流
入部(52)が設けられた部位におけるタンク断面積
(S2)に比べて大きいことを特徴とする請求項1に記
載のエジェクタサイクル用の気液分離器。
2. A tank cross-sectional area (S1) at a portion of the tank body (51) where the liquid-phase refrigerant outflow portion (54) is provided is the inflow portion (52) of the tank body (51). 2. The gas-liquid separator for an ejector cycle according to claim 1, wherein the tank cross-sectional area (S2) at a portion where is provided is large.
【請求項3】 前記液相冷媒流出部(54)及び前記オ
イル戻し部(55)より上方側には、前記タンク本体
(51)内に流入した冷媒が、直接的に、前記前記液相
冷媒流出部(54)及び前記オイル戻し部(55)側に
流入することを抑制する流入抑止部材(56)が設けら
れていることを特徴とする請求項1に記載のエジェクタ
サイクル用の気液分離器。
3. The refrigerant flowing into the tank body (51) is directly above the liquid phase refrigerant outflow section (54) and the oil return section (55). The gas-liquid separation for an ejector cycle according to claim 1, further comprising an inflow prevention member (56) for suppressing inflow to the outflow portion (54) and the oil return portion (55) side. vessel.
【請求項4】 前記流入抑止部材(56)には、前記タ
ンク本体(51)内を旋回するように流れる冷媒を減速
させる減速手段(56a)が設けられていることを特徴
とする請求項3に記載のエジェクタサイクル用の気液分
離器。
4. The deceleration member (56) is provided with a deceleration means (56a) for decelerating the refrigerant flowing so as to swirl in the tank body (51). A gas-liquid separator for the ejector cycle according to 1.
【請求項5】 前記液相冷媒流出部(54)は、前記オ
イル戻し部(55)より上方側に位置していることを特
徴とする請求項1ないし4のいずれか1つに記載のエジ
ェクタサイクル用の気液分離器。
5. The ejector according to any one of claims 1 to 4, wherein the liquid-phase refrigerant outflow portion (54) is located above the oil return portion (55). Gas-liquid separator for cycles.
【請求項6】 圧縮機(10)にて圧縮された高圧の冷
媒を放冷する放熱器(20)と、 低圧の冷媒を蒸発させる蒸発器(30)と、 前記放熱器(20)から流出した冷媒の圧力エネルギー
を速度エネルギーに変換して冷媒を減圧膨張させるノズ
ル、及び前記ノズルから噴射する冷媒と前記蒸発器(3
0)から吸引した冷媒とを混合させながら速度エネルギ
ーを圧力エネルギーに変換して冷媒の圧力を昇圧させる
昇圧部とを有するエジェクタ(40)と、 前記エジェクタ(40)から流出した冷媒を気相冷媒と
液相冷媒とに分離して気相冷媒を前記圧縮機(10)の
吸引側に供給し、液相冷媒を前記蒸発器(30)側に供
給する請求項1ないし5のいずれか1つに記載の気液分
離器(50)とを備え、 前記高圧の冷媒は、冷媒の臨界圧力以上まで加圧される
ことを特徴とするエジェクタサイクル。
6. A radiator (20) for cooling the high-pressure refrigerant compressed by a compressor (10), an evaporator (30) for evaporating a low-pressure refrigerant, and an outflow from the radiator (20). A nozzle for converting pressure energy of the formed refrigerant into velocity energy to expand the refrigerant under reduced pressure, a refrigerant injected from the nozzle and the evaporator (3
0), the ejector (40) having a pressure increasing unit for increasing the pressure of the refrigerant by converting velocity energy into pressure energy while mixing with the refrigerant, and the refrigerant flowing out from the ejector (40) is a vapor phase refrigerant. The liquid phase refrigerant is supplied to the suction side of the compressor (10), and the liquid phase refrigerant is supplied to the evaporator (30) side. The gas-liquid separator (50) according to claim 5, wherein the high-pressure refrigerant is pressurized to a pressure equal to or higher than the critical pressure of the refrigerant.
【請求項7】 前記冷媒は、二酸化炭素であることを特
徴とする請求項6に記載のエジェクタサイクル。
7. The ejector cycle according to claim 6, wherein the refrigerant is carbon dioxide.
JP2002076076A 2002-03-19 2002-03-19 Gas-liquid separator for ejector cycle Expired - Fee Related JP4147793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076076A JP4147793B2 (en) 2002-03-19 2002-03-19 Gas-liquid separator for ejector cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076076A JP4147793B2 (en) 2002-03-19 2002-03-19 Gas-liquid separator for ejector cycle

Publications (2)

Publication Number Publication Date
JP2003269824A true JP2003269824A (en) 2003-09-25
JP4147793B2 JP4147793B2 (en) 2008-09-10

Family

ID=29204973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076076A Expired - Fee Related JP4147793B2 (en) 2002-03-19 2002-03-19 Gas-liquid separator for ejector cycle

Country Status (1)

Country Link
JP (1) JP4147793B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541943A3 (en) * 2003-12-09 2005-08-31 Fujikoki Corporation Gas liquid separator
WO2005103588A1 (en) * 2004-04-08 2005-11-03 York International Corporation Flash tank for economizer refrigeration systems
KR100669289B1 (en) 2004-12-09 2007-01-15 주식회사 대우일렉트로닉스 Accumulator of variable capacity type
JP2008101830A (en) * 2006-10-18 2008-05-01 Daikin Ind Ltd Oil separator
JP2010002134A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device
JP2010185644A (en) * 2009-02-12 2010-08-26 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device with gas-liquid separator
KR101086021B1 (en) * 2009-04-22 2011-11-22 한국에너지기술연구원 Oil Recovery Equipment
JP2015031404A (en) * 2013-07-31 2015-02-16 株式会社デンソー Ejector
JP2016003825A (en) * 2014-06-18 2016-01-12 富士電機株式会社 Gas-liquid separator
CN109357449A (en) * 2018-10-29 2019-02-19 中国科学院理化技术研究所 Gas-liquid separator and refrigeration/heat pump system
CN109974355A (en) * 2019-04-16 2019-07-05 西北工业大学 A kind of gas-liquid separator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115204B (en) * 2015-08-14 2017-08-08 浙江大学 The gas-liquid separator and control method of a kind of controllable lubrication oil circulation amount

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541943A3 (en) * 2003-12-09 2005-08-31 Fujikoki Corporation Gas liquid separator
CN100453929C (en) * 2003-12-09 2009-01-21 株式会社不二工机 Gas liquid separator
CN100526763C (en) * 2004-04-08 2009-08-12 约克国际公司 Flash tank for economizer circuit, method for separating refrigerant and refrigeration system
WO2005103588A1 (en) * 2004-04-08 2005-11-03 York International Corporation Flash tank for economizer refrigeration systems
KR100883364B1 (en) * 2004-04-08 2009-02-11 요크 인터내셔널 코포레이션 Flash tank for economizer refrigeration systems
KR100669289B1 (en) 2004-12-09 2007-01-15 주식회사 대우일렉트로닉스 Accumulator of variable capacity type
JP2008101830A (en) * 2006-10-18 2008-05-01 Daikin Ind Ltd Oil separator
JP2010002134A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device
JP2010185644A (en) * 2009-02-12 2010-08-26 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device with gas-liquid separator
KR101086021B1 (en) * 2009-04-22 2011-11-22 한국에너지기술연구원 Oil Recovery Equipment
JP2015031404A (en) * 2013-07-31 2015-02-16 株式会社デンソー Ejector
JP2016003825A (en) * 2014-06-18 2016-01-12 富士電機株式会社 Gas-liquid separator
CN109357449A (en) * 2018-10-29 2019-02-19 中国科学院理化技术研究所 Gas-liquid separator and refrigeration/heat pump system
CN109974355A (en) * 2019-04-16 2019-07-05 西北工业大学 A kind of gas-liquid separator

Also Published As

Publication number Publication date
JP4147793B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP5482767B2 (en) Ejector refrigeration cycle
JP6272497B2 (en) Oil separator
US6742356B2 (en) Gas-liquid separator for ejector cycle
JP2003269824A (en) Gas-liquid separator for ejector cycle
JP2007046806A (en) Ejector type cycle
CN1170860A (en) Dual inlet oil separator for chiller
ZA200505559B (en) Receiver tank for refrigeration cycle heat exchanger with the receiver tank and condensation device for refrigeration cycle
JP2003329336A (en) Gas-liquid separator for steam-compression type refrigerating cycle and ejector cycle
US6799435B2 (en) Vapor compression refrigeration system
JP2003139098A (en) Ejector
JP2003222445A (en) Gas liquid separator for ejector cycle and oil separator
JP2002130874A (en) Refrigerating cycle device
JP2008275211A (en) Vapor compression-type refrigerating cycle
JP2008309343A (en) Expansion mechanism and refrigerating apparatus having the same
JP2008139019A (en) Ejector cycle
JP2002349978A (en) Ejector cycle
JP2005233470A (en) Gas-liquid separator
JPH09250848A (en) Transversely long accumulator for freezer
JP4249380B2 (en) Air conditioner
JP4333556B2 (en) Gas-liquid separator for ejector cycle
JP2000356439A (en) Accumulator
JP2000199658A (en) Gas/liquid separator for cooling device
JP2004340136A (en) Ejector
JP2003262413A (en) Ejector cycle
JP2004028460A (en) Vapor compression type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees