[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003268591A - Method and apparatus for electrolytic treatment - Google Patents

Method and apparatus for electrolytic treatment

Info

Publication number
JP2003268591A
JP2003268591A JP2002066909A JP2002066909A JP2003268591A JP 2003268591 A JP2003268591 A JP 2003268591A JP 2002066909 A JP2002066909 A JP 2002066909A JP 2002066909 A JP2002066909 A JP 2002066909A JP 2003268591 A JP2003268591 A JP 2003268591A
Authority
JP
Japan
Prior art keywords
substrate
plating
high resistance
electrolytic
resistance structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002066909A
Other languages
Japanese (ja)
Inventor
Kazuhide Watanabe
和英 渡辺
Shinji Nomichi
伸治 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002066909A priority Critical patent/JP2003268591A/en
Publication of JP2003268591A publication Critical patent/JP2003268591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for electrolytic treatment by which uniform electrolytic treatment in a substrate plane can be performed without changing the thickness and film type of a conductive layer, the electrolyte of a plating solution, and an apparatus therefor. <P>SOLUTION: A high resistance structure 22 having an electric conductivity lower than that of an electrolytic solution 10 is installed at least in a part of the electrolytic solution 10 which is filled between a substrate W to be treated that has a contact point with either of positive and negative electrodes and the other electrode 14 that is placed oppositely to the substrate W. Then the electrolytic treatment is applied to the surface of the substrate W. A fluorine-based polymer material is used as the high resistance structure 22. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被処理基板の表面
にめっきやエッチング等の電解処理を施す電解処理方法
および電解処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic treatment method and an electrolytic treatment apparatus for subjecting the surface of a substrate to be treated to electrolytic treatment such as plating and etching.

【0002】[0002]

【従来の技術】電解処理、特に電解めっきは、金属膜の
形成方法として広く利用されている。近年例えば銅の多
層配線用の電解銅めっきや、バンプ形成用の電解金めっ
きなど、半導体産業などでもその有効性(安価、孔埋め
特性など)が注目され利用されつつある。
2. Description of the Related Art Electrolytic treatment, especially electrolytic plating, is widely used as a method for forming a metal film. In recent years, for example, electrolytic copper plating for multilayer wiring of copper and electrolytic gold plating for forming bumps have attracted attention and are being used for their effectiveness (inexpensive, hole filling characteristics, etc.) in the semiconductor industry and the like.

【0003】図1はいわゆるフェイスダウン方式を採用
して半導体ウエハ等の被処理基板(以下、基板という)
の表面に電解めっきを施すめっき装置の従来の一般的な
構成を示すもので、このめっき装置は、上方に開口し内
部にめっき液100を保持する円筒状のめっき槽102
と、基板Wを着脱自在に下向きに保持して該基板Wをめ
っき槽102の上端開口部を塞ぐ位置に配置する基板保
持部104とを有している。めっき槽102の内部に
は、めっき液100中に浸漬されて陽極電極となる平板
状の陽極板106が水平に配置されている。一方、基板
Wの下面(めっき面)には導電層Sが形成され、この導
電層Sは、その周縁部に陰極電極との接点を有してい
る。
FIG. 1 shows a substrate to be processed (hereinafter referred to as a substrate) such as a semiconductor wafer by employing a so-called face-down method.
1 shows a conventional general configuration of a plating apparatus for performing electrolytic plating on the surface of a cylindrical plating tank 102 that opens upward and holds a plating solution 100 inside.
And a substrate holding part 104 for detachably holding the substrate W downward and disposing the substrate W at a position where the upper end opening of the plating bath 102 is closed. Inside the plating tank 102, a flat anode plate 106 that is immersed in the plating solution 100 and serves as an anode electrode is horizontally arranged. On the other hand, a conductive layer S is formed on the lower surface (plating surface) of the substrate W, and the conductive layer S has a contact point with the cathode electrode at the peripheral portion thereof.

【0004】前記めっき槽102の底部中央には、上方
に向けためっき液の噴流を形成するめっき液噴射管10
8が接続され、めっき槽102の上部外側には、めっき
液受け110が配置されている。
At the center of the bottom of the plating tank 102, a plating solution injection pipe 10 for forming an upward jet of the plating solution.
8 is connected, and a plating solution receiver 110 is arranged outside the upper part of the plating tank 102.

【0005】これにより、めっき槽102の上部に基板
Wを基板保持部104で下向きに保持して配置し、めっ
き液100をめっき槽102の底部から上方に噴出させ
て、基板Wの下面(めっき面)にめっき液100の噴流
を当てつつ、陽極板106(陽極電極)と基板Wの導電
層S(陰極電極)の間にめっき電源112から所定の電
圧を印加することで、基板Wの下面にめっき膜を形成す
るようにしている。この時、めっき槽102をオーバー
フローしためっき液100は、めっき液受け110から
回収される。
As a result, the substrate W is placed above the plating bath 102 while being held downward by the substrate holding unit 104, and the plating solution 100 is jetted upward from the bottom of the plating bath 102 so that the bottom surface of the substrate W (plating The lower surface of the substrate W by applying a predetermined voltage from the plating power supply 112 between the anode plate 106 (anode electrode) and the conductive layer S (cathode electrode) of the substrate W while applying the jet of the plating solution 100 to the surface). The plating film is formed on. At this time, the plating solution 100 overflowing the plating tank 102 is recovered from the plating solution receiver 110.

【0006】[0006]

【発明が解決しようとする課題】ここで、LSI用のウ
エハや液晶基板は、年々大面積となる傾向にあり、これ
に伴って、基板の表面に形成されるめっき膜の膜厚のバ
ラツキが問題となってきている。つまり、基板に陰極電
位を与えるために、基板に予め形成した導電層の周縁部
に電極との接点を設けているが、基板の面積が大きくな
ると、基板の周辺の接点から基板中央までの導電層の電
気抵抗が大きくなり、基板面内で電位差が生じてめっき
速度に差が出て、めっき膜の膜厚のバラツキに繋がって
しまう。
The LSI wafer and the liquid crystal substrate tend to have a large area year by year, and as a result, variations in the thickness of the plating film formed on the surface of the substrate occur. It's becoming a problem. In other words, in order to apply a cathode potential to the substrate, a contact with the electrode is provided on the periphery of the conductive layer previously formed on the substrate, but when the area of the substrate becomes large, the conductivity from the contact around the substrate to the center of the substrate is increased. The electric resistance of the layer increases, a potential difference occurs in the surface of the substrate, a difference in plating rate occurs, and this leads to variations in the thickness of the plated film.

【0007】すなわち、図3は、直径200mmのシリ
コン基板上に、30nm及び80nmの膜厚の導電層
(銅薄膜)を形成し、図1に示すような従来の一般的な
めっき装置を使用して電解銅めっきを行なった場合の基
板面内における銅めっき膜の膜厚分布を示す図である。
図4は、直径が200mm及び300mmのシリコン基
板上に膜厚100nmの導電層(銅薄膜)を形成し、前
記と同様にして電解銅めっきを行なった場合の基板面内
における銅めっき膜の膜厚分布を示す図である。図3及
び図4から明らかなように、導電層が薄い場合や、基板
直径が大きい場合には、電解めっきによって形成される
銅めっき膜の膜厚分布のバラツキが大きくなり、著しい
場合は基板の中央付近で全く銅膜が形成されないことが
起こる。
That is, in FIG. 3, a conductive layer (copper thin film) having a film thickness of 30 nm and 80 nm is formed on a silicon substrate having a diameter of 200 mm, and a conventional general plating apparatus as shown in FIG. 1 is used. It is a figure which shows the film thickness distribution of the copper plating film in a board | substrate surface when electrolytic copper plating is performed by.
FIG. 4 shows a film of a copper plating film in a substrate surface when a conductive layer (copper thin film) having a film thickness of 100 nm is formed on silicon substrates having diameters of 200 mm and 300 mm and electrolytic copper plating is performed in the same manner as described above. It is a figure which shows thickness distribution. As is clear from FIGS. 3 and 4, when the conductive layer is thin or when the substrate diameter is large, the variation in the film thickness distribution of the copper plating film formed by electrolytic plating is large, and when it is remarkable, the substrate It happens that no copper film is formed near the center.

【0008】この現象を、電気化学的に説明すると以下
のようになる。図2は、図1に示す従来の一般的な電解
めっき装置の電気的等価回路図である。つまり、共にめ
っき液100中に没した陽極板106(陽極電極)と基
板Wの導電層S(陰極電極)の間にめっき電源112か
ら所定の電圧を印加して、導電層Sの表面にめっき膜を
形成すると、この回路中には、以下のような抵抗成分が
存在する。 R1 電源−陽極間の電源線抵抗および各種接触抵抗 R2 陽極における分極抵抗 R3 めっき液抵抗 R4 陰極(めっき表面)における分極抵抗 R5 導電層の抵抗 R6 陰極電位導入接点−電源間の電源線抵抗および各
種接触抵抗
This phenomenon is electrochemically explained as follows. FIG. 2 is an electrically equivalent circuit diagram of the conventional general electrolytic plating apparatus shown in FIG. That is, a predetermined voltage is applied from the plating power supply 112 between the anode plate 106 (anode electrode) and the conductive layer S (cathode electrode) of the substrate W, both of which are immersed in the plating solution 100, to plate the surface of the conductive layer S. When a film is formed, the following resistance component exists in this circuit. R1 Power line resistance between power supply and anode and various contact resistances R2 Polarization resistance at anode R3 Plating solution resistance R4 Polarization resistance at cathode (plating surface) R5 Resistance of conductive layer R6 Power supply line resistance between cathode potential introducing contact and power supply and various Contact resistance

【0009】図2から明らかなように、導電層Sの抵抗
R5が他の電気抵抗R1〜R4及びR6に比して大きく
なると、この導電層Sの抵抗R5の両端に生じる電位差
が大きくなり、それに伴ってめっき電流に差が生じる。
このように、陰極導入接点から遠い位置ではめっきの膜
成長速度が低下してしまい、導電層Sの膜厚が薄いと抵
抗R5が更に大きくなって、この現象が顕著に現れてし
まう。さらに、この事実は、基板の面内で電流密度が異
なることを意味し、めっきの特性自体(めっき膜の抵抗
率、純度、埋込特性など)が面内で均一とならない。
As is apparent from FIG. 2, when the resistance R5 of the conductive layer S becomes larger than the other electric resistances R1 to R4 and R6, the potential difference across the resistance R5 of the conductive layer S becomes large, Along with that, a difference occurs in the plating current.
In this way, the film growth rate of the plating is reduced at a position far from the cathode introduction contact, and the resistance R5 is further increased when the thickness of the conductive layer S is thin, and this phenomenon becomes prominent. Furthermore, this fact means that the current densities are different in the plane of the substrate, and the plating characteristics themselves (resistivity, purity, embedding characteristics, etc. of the plating film) are not uniform in the plane.

【0010】なお、基板が陽極になる電解エッチングに
おいても、電流方向が反対となるだけで同様の問題が生
じる。例えば、大口径ウエハの製造プロセスでは、ウエ
ハの中央部のエッチング速度が周縁部に比して遅くな
る。
Even in the electrolytic etching in which the substrate serves as an anode, the same problem occurs because the current directions are reversed. For example, in a large-diameter wafer manufacturing process, the etching rate at the central portion of the wafer is slower than that at the peripheral portion.

【0011】これらの問題を回避する方法としては、導
電層の厚さを厚くしたり電気導電率を低くすることが考
えられる。しかし、基板はめっき以外の製造工程でも様
々な制約を受けるばかりでなく、例えば、微細パターン
上にスパッタ法で厚い導電層を形成するとパターン内部
にボイドが発生し易くなってしまうため、容易に導電層
の厚みを厚くしたり導電層の膜種を変更することはでき
ない。
As a method of avoiding these problems, it is conceivable to increase the thickness of the conductive layer or reduce the electric conductivity. However, the substrate is not only subject to various restrictions in manufacturing processes other than plating, but, for example, when a thick conductive layer is formed on a fine pattern by a sputtering method, voids are likely to occur inside the pattern, so that the conductive layer is easily conductive. It is not possible to increase the layer thickness or change the film type of the conductive layer.

【0012】また、陰極電位導入用の接点を基板の一面
に配置すれば、基板面内における電位差を小さくするこ
とが可能であるが、電気接点とした部位はLSIとして
使用できないなど現実的でない。更に、めっき液の抵抗
値(図2中の抵抗R3,R2またはR4)を高くするこ
とも有効であるが、めっき液の電解質を変更することは
めっき特性全体の変更を意味し、例えば、めっきする金
属イオン濃度を下げればめっき速度を十分高くとれない
などの制約が出てくる。
Further, if the contact for introducing the cathode potential is arranged on one surface of the substrate, it is possible to reduce the potential difference in the surface of the substrate, but the portion used as the electrical contact cannot be used as an LSI, which is not realistic. Further, it is also effective to increase the resistance value of the plating solution (resistance R3, R2 or R4 in FIG. 2), but changing the electrolyte of the plating solution means changing the overall plating characteristics. If the metal ion concentration is lowered, the plating rate cannot be sufficiently high.

【0013】以上のように、基板の周辺部に接点を設
け、基板表面の導電層を用いて電解めっきを行う工程に
おいては、基板のサイズが大きくなるとめっき膜厚が基
板の面内で大きく異なってしまうという問題が発生し、
被処理基板面内での膜厚及びプロセスの均一化が重要な
半導体工業においては、特にこの問題が大きな制約とな
っている。
As described above, in the process of providing a contact on the peripheral portion of the substrate and performing the electroplating using the conductive layer on the surface of the substrate, the plating film thickness greatly varies within the plane of the substrate as the size of the substrate increases. The problem of
In the semiconductor industry, where it is important to make the film thickness and the process uniform within the surface of the substrate to be processed, this problem is a major limitation.

【0014】本発明は上記に鑑みて為されたもので、導
電層の厚みや膜種、めっき液の電解質等を変更すること
なく、基板面内における均一な電解処理を行えるように
した電解処理方法及び電解処理装置を提供することを目
的とする。
The present invention has been made in view of the above, and an electrolytic treatment that can perform a uniform electrolytic treatment within the surface of a substrate without changing the thickness and film type of the conductive layer, the electrolyte of the plating solution, and the like. An object is to provide a method and an electrolytic treatment apparatus.

【0015】[0015]

【課題を解決するための手段】上記問題点を解決するた
め本発明の電解処理方法は、陽極と陰極の一方の電極と
の接点を持つ被処理基板と該被処理基板に対峙させた他
方の電極との間に満たした電解液の少なくとも一部に該
電解液の電気伝導率より低い電気伝導率の高抵抗構造体
を設けて被処理基板表面の電解処理を行なう電解処理方
法において、前記高抵抗構造体としてフッ素系高分子材
料を用いたことを特徴とする。
In order to solve the above problems, the electrolytic treatment method of the present invention is directed to a substrate to be treated having a contact point between one electrode of an anode and one of the cathode and the other substrate facing the substrate to be treated. In the electrolytic treatment method, the high resistance structure having an electric conductivity lower than that of the electrolytic solution is provided in at least a part of the electrolytic solution filled between the electrode and the electrolytic treatment of the surface of the substrate to be processed, A feature is that a fluorine-based polymer material is used as the resistance structure.

【0016】これにより、電解液中に没した陽極と陰極
との間の電気抵抗を高抵抗構造体を介することで電解液
のみからなる場合よりも高くして、被処理基板表面の電
気抵抗による電流密度の面内差を小さくすることができ
る。同時に電解処理過程では、高抵抗構造体自体からの
コンタミネーションが無いことが望ましく、このため高
抵抗構造体自体にフッ素系高分子材料を使用することで
コンタミネーションが無く成膜する金属膜中に不純物が
溶け込む恐れがない電解処理を実現した。ここで、被処
理基板を陰極の接点に接触させることで電解めっきを、
被処理基板を陽極の接点に接触させることで電解エッチ
ングを行うことができる。
As a result, the electric resistance between the anode and the cathode submerged in the electrolytic solution is made higher than that in the case of only the electrolytic solution by interposing the high resistance structure. The in-plane difference in current density can be reduced. At the same time, in the electrolytic treatment process, it is desirable that there is no contamination from the high resistance structure itself. Therefore, by using a fluorine-based polymer material for the high resistance structure itself, there is no contamination in the formed metal film. We have achieved an electrolytic process that does not cause impurities to dissolve. Here, electrolytic plating is performed by bringing the substrate to be processed into contact with the contact of the cathode,
Electrolytic etching can be performed by bringing the substrate to be processed into contact with the contact of the anode.

【0017】また、本発明は、前記フッ素系高分子材料
からなる高抵抗構造体に、シンクロトロン光による微細
加工によって前記他方の電極から被処理基板方向に向け
て多数の貫通孔を設けたことを特徴とする。
Further, according to the present invention, a large number of through holes are provided in the high resistance structure made of the fluoropolymer material from the other electrode toward the substrate to be processed by microfabrication by synchrotron light. Is characterized by.

【0018】即ち、フッ素系高分子材料からなる高抵抗
構造体への貫通孔の加工には、シンクロトロン(SR)
リング(電子蓄積リング)によって発生するシンクロト
ロン光を用いたSR(シンクロトロン)エッチング技術
を用いる。シンクロトロン光(SR光)とは光速に近い
速度で走っている電子が磁場の力で曲げられたときに電
子軌道の接線方向に放出される強い光のことをいう。こ
のSR光は、強い志向性を持った光であり、真空紫外、
X線の光源としては他の光源と比較して数桁強いもので
ある。このためレーザを照射しても微細な加工ができな
い難加工性材料であるフッ素系高分子材料(例えばPT
FE樹脂(ポリテトラフルオルエチレン樹脂))にこの
シンクロトロン光を利用することによって、フッ素系高
分子材料への微細で高アスペクト比の加工が可能になっ
た。具体的にはこのSR光エッチング技術を用い、PT
FE樹脂板にマスクを通してシンクロトロン光を当てる
と、シンクロトロン光が当たった部分がSR光エッチン
グされて微細な貫通孔構造を作ることができる。本発明
では、このSR光エッチング技術を応用し、フッ素系高
分子材料にマスクを通してシンクロトロン光を当て、多
数の貫通孔が空いたフッ素系高分子材料を製作する。そ
して貫通孔が前記他方の電極から被処理基板方向に貫通
するようにフッ素系高分子材料を配置する。
That is, for processing a through hole in a high resistance structure made of a fluoropolymer material, a synchrotron (SR) is used.
An SR (synchrotron) etching technique using synchrotron light generated by a ring (electron storage ring) is used. Synchrotron light (SR light) refers to strong light emitted in the tangential direction of the electron orbit when an electron running at a speed close to the speed of light is bent by the force of a magnetic field. This SR light is a light with a strong directionality, vacuum ultraviolet,
As an X-ray light source, it is several orders of magnitude stronger than other light sources. For this reason, a fluorine-based polymer material (for example, PT
By utilizing this synchrotron light for the FE resin (polytetrafluoroethylene resin), fine and high aspect ratio processing into a fluorine-based polymer material has become possible. Specifically, using this SR photo-etching technology, PT
When synchrotron light is applied to the FE resin plate through a mask, the portion exposed to the synchrotron light is subjected to SR light etching to form a fine through-hole structure. In the present invention, this SR photo-etching technique is applied, and synchrotron light is applied to a fluorine-based polymer material through a mask to manufacture a fluorine-based polymer material having a large number of through holes. Then, the fluoropolymer material is arranged so that the through hole penetrates from the other electrode toward the substrate to be processed.

【0019】このシンクロトロン光による微細加工によ
り、高抵抗構造体の気孔率を制御し、電流も前記他方の
電極と被処理基板間で流れ易く、別の方向には流れにく
くなり、電流密度の制御性が向上できる。
By the fine processing by the synchrotron light, the porosity of the high resistance structure is controlled, and the current easily flows between the other electrode and the substrate to be processed, but it becomes difficult to flow in the other direction, and the current density is reduced. Controllability can be improved.

【0020】また本発明は、前記他方の電極と被処理基
板間に電流を流した際の被処理基板表面の状態が所望の
処理状態となるように、前記貫通孔の分布及び/又は内
径を制御することによって、被処理基板表面各部の電解
処理状態を所望の処理状態とすることを特徴とする。
Further, according to the present invention, the distribution and / or the inner diameter of the through holes are adjusted so that the surface of the substrate to be processed has a desired processing state when an electric current is applied between the other electrode and the substrate to be processed. By controlling, the electrolytic treatment state of each part of the surface of the substrate to be treated is set to a desired treatment state.

【0021】陽極と被処理基板間に高抵抗構造体を入れ
ることによって、被処理基板上の導電層の抵抗の影響を
小さくし、極力被処理基板表面で電流分布に差がないよ
うにしているが、完全に差を無くすことは難しい。そこ
で、シンクロトロン光による微細加工によって形成され
る該貫通孔の分布及び/又は内径を制御することによっ
て、被処理基板表面の電解処理状態を所望の処理状態に
制御する。例えば電解めっきの場合、被処理基板表面の
膜厚分布を該貫通孔の穴径、或いは穴ピッチで気孔分布
を制御することで、電極間の電流密度を制御し、所望の
膜厚分布を得ることができる。
By inserting a high resistance structure between the anode and the substrate to be processed, the influence of the resistance of the conductive layer on the substrate to be processed is reduced and the difference in current distribution on the surface of the substrate to be processed is minimized. However, it is difficult to completely eliminate the difference. Therefore, the electrolytic treatment state of the surface of the substrate to be treated is controlled to a desired treatment state by controlling the distribution and / or the inner diameter of the through holes formed by fine processing using synchrotron light. For example, in the case of electrolytic plating, the current density between the electrodes is controlled by controlling the pore size distribution of the film thickness distribution on the surface of the substrate to be processed by the hole diameter of the through holes or the hole pitch to obtain the desired film thickness distribution. be able to.

【0022】また本発明の電解処理装置は、陽極と陰極
の一方の電極との接点を持つ被処理基板と該被処理基板
に対峙させた他方の電極との間に満たした電解液の少な
くとも一部に該電解液の電気伝導率より低い電気伝導率
の高抵抗構造体を設けて被処理基板表面の電解処理を行
なう電解処理装置において、前記高抵抗構造体がフッ素
系高分子材料によって構成されていることを特徴とす
る。
In the electrolytic treatment apparatus of the present invention, at least one of the electrolytic solution filled between the substrate to be treated having a contact point between the anode and the one electrode of the cathode and the other electrode facing the substrate to be treated. In a electrolytic treatment apparatus for performing electrolytic treatment on a surface of a substrate to be treated by providing a high resistance structure having an electric conductivity lower than that of the electrolytic solution in a portion, the high resistance structure is made of a fluorine-based polymer material. It is characterized by

【0023】また本発明は、前記フッ素系高分子材料か
らなる高抵抗構造体には、前記他方の電極から被処理基
板方向に向けて多数の貫通孔が設けられていることを特
徴とする。
The present invention is also characterized in that the high resistance structure made of the fluoropolymer material is provided with a large number of through holes from the other electrode toward the substrate to be processed.

【0024】また本発明は、前記高抵抗構造体に、親水
性を持たす表面処理が施され、且つ前記電解液が含有さ
れていることを特徴とする。
Further, the present invention is characterized in that the high resistance structure is subjected to a surface treatment having hydrophilicity and contains the electrolytic solution.

【0025】これによって高抵抗構造体に電解液が浸水
し、電極間に電流(イオン)が流れ、電流密度を均一化
し、被処理基板上の膜厚分布を均一にできる。例えば、
親水性を持たす表面処理方法として、エキシマレーザー
の光化学反応によって、親水基や親油基など、特定の官
能基をPTFE樹脂表面に置換する改質法等が報告され
ている。またプラズマを照射することによって、濡れ性
を改善(表面の脱脂、表面の活性化、表面を粗す)する
方法もある。
As a result, the high-resistivity structure is flooded with the electrolytic solution, a current (ions) flows between the electrodes, the current density is made uniform, and the film thickness distribution on the substrate to be processed can be made uniform. For example,
As a surface treatment method for imparting hydrophilicity, a modification method in which a PTFE resin surface is substituted with a specific functional group such as a hydrophilic group or a lipophilic group by a photochemical reaction of an excimer laser has been reported. There is also a method of improving wettability (degreasing the surface, activating the surface, and roughening the surface) by irradiating with plasma.

【0026】また本発明は、前記高抵抗構造体が、少な
くとも二層以上の高抵抗構造体によって構成され、各層
の高抵抗構造体の貫通孔の分布を他層の高抵抗構造体の
貫通孔の分布と異なる分布にしていることを特徴とす
る。
In the present invention, the high resistance structure is composed of at least two or more layers of high resistance structure, and the distribution of the through holes of the high resistance structure of each layer is determined by the through holes of the high resistance structure of another layer. The distribution is different from the distribution of.

【0027】ここで、通常、銅の電解めっきに際して
は、陽極に特殊な配慮を必要とする。第1に、陽極から
発生する一価の銅イオンを捕獲するために陽極表面に
「ブラックフィルム」と呼ばれるにかわ質の黒色膜を形
成する必要から、陽極材料に含燐銅を用いることであ
る。この黒色膜は、銅、燐、塩素などの複合物と言われ
ているが、二価銅イオンのみをめっき液中に送り込み、
めっき表面の異常析出などの原因になる一価銅イオンを
捕獲する働きをする。そして本発明は、高抵抗構造体を
二層以上にし、ブラックフィルムの欠落物やめっき膜に
不要な異物に対するフィルタ効果を持つ層と、本来の高
抵抗構造体としての層とで高抵抗構造体を構成した。ま
た銅の陽極板がめっきと共に電解消耗しその表面が欠落
することも有るが、このような欠落物に対しても前記フ
ィルタとしての機能によって捕獲し、被処理基板のめっ
き表面に付着することを回避する。但し、一層でフィル
タ機能と所望の高抵抗構造体としての機能を持たすこと
が可能で有れば、二層以上にする必要はない。
Here, usually, in the electrolytic plating of copper, the anode requires special consideration. First, phosphorus-containing copper is used as the anode material because it is necessary to form a glue-like black film called "black film" on the surface of the anode in order to capture monovalent copper ions generated from the anode. This black film is said to be a compound of copper, phosphorus, chlorine, etc., but only divalent copper ions are sent into the plating solution,
It functions to capture monovalent copper ions that cause abnormal deposition on the plating surface. And the present invention has a high resistance structure having two or more layers of high resistance structure, a layer having a filter effect against foreign matter unnecessary in a black film and a plating film, and a layer as an original high resistance structure. Configured. In addition, the copper anode plate may be electrolytically consumed with plating and its surface may be chipped, but such a chipped material is also captured by the function of the filter and attached to the plating surface of the substrate to be processed. To avoid. However, if it is possible to have a filter function and a function as a desired high resistance structure with one layer, it is not necessary to have two or more layers.

【0028】更に陽極に溶解性の銅陽極を使う代わり
に、不溶解性の陽極、例えばチタニウム表面に酸化イリ
ジウムを被覆したものを用いることもできる。この場
合、陽極表面では多量の酸素ガスが発生するが、この酸
素ガスも高抵抗構造体によって被処理基板表面に到達し
ないようにすることで、めっき膜の一部が欠落するなど
の不良の発生を無くすことができる。このように、フッ
素系高分子材料からなる高抵抗構造体を電気伝導率の低
い物質としてめっき液中に導入し、なおかつ陽極と陰極
を分離するように一様に配置することで、隔膜効果を得
るようにすることができる。
Further, instead of using a soluble copper anode for the anode, an insoluble anode, for example, a titanium surface coated with iridium oxide may be used. In this case, a large amount of oxygen gas is generated on the surface of the anode, but by preventing this oxygen gas from reaching the surface of the substrate to be processed by the high resistance structure, defects such as a part of the plating film may be lost. Can be eliminated. In this way, by introducing the high-resistance structure made of a fluoropolymer material into the plating solution as a substance having a low electric conductivity, and arranging the anode and the cathode uniformly so as to separate them, the diaphragm effect can be obtained. You can get it.

【0029】[0029]

【発明の実施の形態】以下、本発明の電解処理方法及び
電解処理装置の実施の形態を図面を参照して説明する。
図5は、本発明の第1の実施の形態の電解めっき装置に
適用した電解処理装置の要部概要図を示し、図6は、そ
の電気的等価回路図を示す。これは、直径200mmの
シリコン基板(以下、基板という)を、いわゆるフェイ
スダウン方式で保持して、この表面(下面)に銅めっき
を施すようにしたもので、この基板Wの下面(めっき
面)には、導電層(シード層)Sとしてのスパッタ銅の
薄膜が、例えば100nmの膜厚で形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an electrolytic treatment method and an electrolytic treatment apparatus of the present invention will be described below with reference to the drawings.
FIG. 5 shows a schematic view of a main part of an electrolytic treatment apparatus applied to the electrolytic plating apparatus according to the first embodiment of the present invention, and FIG. 6 shows an electrically equivalent circuit diagram thereof. This is a method in which a silicon substrate having a diameter of 200 mm (hereinafter referred to as a substrate) is held by a so-called face-down method and copper plating is applied to this surface (lower surface). The lower surface (plated surface) of this substrate W A sputtered copper thin film as the conductive layer (seed layer) S is formed in the film with a thickness of, for example, 100 nm.

【0030】このめっき装置には、例えば硫酸銅をベー
スとしためっき液10を保持する上方に開口したカップ
状のめっき槽12が備えられ、このめっき槽12の底部
には、例えば直径30mmの中央孔14aを有するドー
ナツ形状の陽極板14が設置されている。この陽極板1
4の材質は、例えばリンを0.04重量パーセント含む
銅である。めっき槽12の周囲には、このめっき槽12
の上部からオーバーフローしためっき液10を回収する
めっき液受け16が配置されている。
This plating apparatus is provided with a cup-shaped plating tank 12 which holds a plating solution 10 based on, for example, copper sulfate and which opens upward, and the bottom of this plating tank 12 has, for example, a center with a diameter of 30 mm. A donut-shaped anode plate 14 having holes 14a is installed. This anode plate 1
The material of No. 4 is, for example, copper containing 0.04 weight percent of phosphorus. Around the plating tank 12, the plating tank 12
A plating solution receiver 16 for collecting the plating solution 10 overflowing from the upper part of the is arranged.

【0031】基板Wの周辺部に位置して、めっき槽12
の上方には、基板Wの下面周縁部に圧接して、ここから
のめっき液10の流出を阻止するリップシール18と、
このリップシール18の外方に位置し基板Wと接触して
該基板Wに陰極電位を導入する接点20が設けられてい
る。
The plating bath 12 is located at the periphery of the substrate W.
Above, a lip seal 18 that is pressed against the peripheral portion of the lower surface of the substrate W to prevent the plating solution 10 from flowing out from there.
A contact 20 is provided outside the lip seal 18 and comes into contact with the substrate W to introduce a cathode potential to the substrate W.

【0032】めっき槽12の内部には、陽極板14と基
板Wとの間に位置して、めっき液10の電気伝導率より
低い所望の電気伝導率となるように貫通孔24aを設け
たフッ素系高分子材料からなる高抵抗構造体22が配置
されている。この高抵抗構造体22は、この例では、例
えばシンクロトロン光による微細加工した径100μm
の貫通孔24aを多数形成し(図5では図示の都合上、
実際よりも貫通孔24aの数はかなり少なくまた径はか
なり大きく記載されている)、これら多数の貫通孔24
aの内部にめっき液10を含有させることで構成されて
いる。
Inside the plating tank 12, fluorine is provided between the anode plate 14 and the substrate W and provided with through holes 24a so as to have a desired electric conductivity lower than that of the plating solution 10. A high resistance structure 22 made of a polymer material is arranged. In this example, the high resistance structure 22 has a diameter of 100 μm finely processed by synchrotron light, for example.
A large number of through holes 24a are formed (for convenience of illustration in FIG. 5,
It is described that the number of the through holes 24a is considerably smaller than the actual size and the diameter is considerably large.)
It is configured by containing the plating solution 10 inside a.

【0033】フッ素系高分子材料からなる高抵抗構造体
22への貫通孔24aの加工には、シンクロトロン(S
R)リング(電子蓄積リング)によって発生するシンク
ロトロン光を用いたSR(シンクロトロン)エッチング
技術を用いる。シンクロトロン光(SR光)は光速に近
い速度で走っている電子が磁場の力で曲げられたときに
電子軌道の接線方向に放出される強い光のことをいう。
このSR光は、強い志向性を持った光であり、真空紫
外、X線の光源としては他の光源と比較して数桁強いも
のである。このためレーザを照射しても微細な加工がで
きない難加工性材料であるフッ素系高分子材料(例えば
PTFE樹脂(ポリテトラフルオルエチレン樹脂))に
このシンクロトロン光を利用することによって、フッ素
系高分子材料の微細で高アスペクト比の加工が可能にな
った。具体的にはこのSR光エッチング技術を用い、図
10に示すように、電導性基板上のPTFE樹脂板にマ
スクを通してシンクロトロン光を当てると、シンクロト
ロン光が当たった部分がSR光エッチングされて微細な
貫通孔構造を作ることができる。そこで本発明では、図
11に示すように、このSR光エッチング技術を応用
し、フッ素系高分子材料24にマスクを通してシンクロ
トロン光を当て、多数の貫通孔24aが空いたフッ素系
高分子材料24を製作する。
A synchrotron (S) is used for processing the through hole 24a in the high resistance structure 22 made of a fluoropolymer material.
The SR (synchrotron) etching technique using the synchrotron light generated by the R) ring (electron storage ring) is used. Synchrotron light (SR light) refers to strong light emitted in the tangential direction of the electron orbit when an electron running at a speed close to the speed of light is bent by the force of a magnetic field.
This SR light is a light with a strong orientation and is several orders of magnitude stronger than other light sources as a light source for vacuum ultraviolet rays and X-rays. Therefore, by using this synchrotron light for a fluorine-based polymer material (for example, a PTFE resin (polytetrafluoroethylene resin)) that is a difficult-to-process material that cannot be finely processed even when irradiated with a laser, Fine processing of polymer materials with high aspect ratio has become possible. Specifically, using this SR photo-etching technique, as shown in FIG. 10, when the synchrotron light is applied to the PTFE resin plate on the conductive substrate through a mask, the part exposed to the synchrotron light is SR photo-etched. It is possible to make a fine through-hole structure. Therefore, in the present invention, as shown in FIG. 11, by applying this SR photo-etching technique, the fluoropolymer material 24 is irradiated with synchrotron light through a mask, and the fluoropolymer material 24 having a large number of through holes 24a is formed. To produce.

【0034】このフッ素系高分子材料24自体は絶縁体
であるが、図5に示すように貫通孔24aにめっき液1
0を入り込ませ、貫通孔24aの絶縁体全体に占める割
合を制御することで高抵抗構造体22が構成される。こ
のフッ素系高分子材料24の陽極板14の中央孔14a
に対向する位置には、例えば図5,図11に示すように
径100μmの貫通孔24aを他の部分より多く設ける
か、或いは他の部分の貫通孔24aの内径よりも内径の
大きな貫通孔24a(例えば直径2mm)を複数個設け
る。
Although the fluoropolymer material 24 itself is an insulator, the plating solution 1 is applied to the through hole 24a as shown in FIG.
The high resistance structure 22 is configured by allowing 0 to enter and controlling the ratio of the through hole 24a to the entire insulator. The central hole 14a of the anode plate 14 of this fluoropolymer material 24
5, a through hole 24a having a diameter of 100 μm is provided at a position opposite to that of the other portion, or a through hole 24a having an inner diameter larger than the inner diameter of the through hole 24a of the other portion is provided. Plural (for example, diameter 2 mm) are provided.

【0035】これにより、めっき槽12の上部に基板W
を下向きに配置し、めっき液10をめっき槽12の底部
から陽極板14の中央孔14aとフッ素系高分子材料2
4の貫通孔24aを通過させて上方に噴出させ、基板W
の下面(めっき面)にめっき液10の噴流を当てつつ、
陽極板14(陽極電極)と基板Wの導電層S(陰極電
極)の間にめっき電源26(図6参照)から所定の電圧
を印加することで、基板Wの下面にめっき膜が形成され
る。この時、めっき槽12をオーバーフローしためっき
液10は、めっき液受け16から回収される。
As a result, the substrate W is placed on the plating bath 12.
Is placed downward, and the plating solution 10 is applied from the bottom of the plating tank 12 to the central hole 14a of the anode plate 14 and the fluoropolymer material 2
No. 4 through the through hole 24a and ejected upward,
While applying the jet of the plating solution 10 to the lower surface (plating surface) of
A plating film is formed on the lower surface of the substrate W by applying a predetermined voltage from the plating power supply 26 (see FIG. 6) between the anode plate 14 (anode electrode) and the conductive layer S (cathode electrode) of the substrate W. . At this time, the plating solution 10 overflowing the plating tank 12 is recovered from the plating solution receiver 16.

【0036】このように微細加工した貫通孔24aが多
数あるフッ素系高分子材料24からなる高抵抗構造体2
2を陽極板14、基板W間に挿入することによって、図
6に示す等価回路に示すように、抵抗Rpが新たな抵抗
として加わることになる。
A high resistance structure 2 made of a fluoropolymer material 24 having a large number of through holes 24a finely processed in this way.
By inserting 2 between the anode plate 14 and the substrate W, the resistance Rp is added as a new resistance as shown in the equivalent circuit shown in FIG.

【0037】このように高抵抗構造体22によって大き
な抵抗Rpが発生すると、基板Wの中央部における抵抗
と周辺部における抵抗の比、すなわち(R2+Rp+R
3+R4)/(R2+Rp+R3+R4+R5)は1に
近づき、導電層Sの抵抗R5による影響を受けなくな
り、基板Wの表面の電気抵抗による電流密度の面内差が
小さくなって、めっき膜の面内均一性が向上する。な
お、図6において、抵抗R1〜R6は、図2に示す抵抗
R1〜R6と同じ抵抗を示している。
When the large resistance Rp is generated by the high resistance structure 22, the ratio of the resistance in the central portion of the substrate W to the resistance in the peripheral portion, that is, (R2 + Rp + R)
3 + R4) / (R2 + Rp + R3 + R4 + R5) approaches 1 and is no longer affected by the resistance R5 of the conductive layer S, and the in-plane difference in the current density due to the electric resistance of the surface of the substrate W is reduced and the in-plane uniformity of the plating film is reduced. improves. In FIG. 6, resistors R1 to R6 are the same as resistors R1 to R6 shown in FIG.

【0038】図7は、前述のように、フッ素系高分子材
料24からなる高抵抗構造体22を設置しためっき装置
(本実施形態例)と、設置しなかっためっき装置(従来
例)を使用して、基板Wの表面に銅めっきを施した時の
基板面内におけるめっき膜の膜厚分布を示す。この図7
から、この実施の形態のめっき装置にあっては、基板中
央部分の薄膜化現象が起こらず、均一にめっきされてい
ることが分かる。
As shown in FIG. 7, as described above, the plating apparatus in which the high resistance structure 22 made of the fluorine-based polymer material 24 is installed (this embodiment example) and the plating apparatus in which it is not installed (conventional example) are used. Then, the thickness distribution of the plating film in the substrate surface when the surface of the substrate W is plated with copper is shown. This Figure 7
From the above, it can be seen that in the plating apparatus of this embodiment, the phenomenon of thinning in the central portion of the substrate does not occur, and uniform plating is performed.

【0039】ここで、高抵抗構造体22の抵抗値は、微
細加工によって、貫通孔24aの径、あるいは貫通孔2
4aの分布を変えることによって制御可能である。
Here, the resistance value of the high resistance structure 22 is set to the diameter of the through hole 24a or the through hole 2 by fine processing.
It can be controlled by changing the distribution of 4a.

【0040】また、この実施の形態では、電解めっきに
ついて説明したが、電流方向を逆転させれば、つまり、
この装置をそのまま用い、電源の極性を反転させること
で電解エッチングが可能であり、この場合、エッチング
の均一性を向上させることができる。
In this embodiment, the electrolytic plating is explained, but if the current direction is reversed, that is,
By using this device as it is and inverting the polarity of the power supply, electrolytic etching can be performed, and in this case, the uniformity of etching can be improved.

【0041】図8は、本発明の第2の実施の形態の電解
めっき装置に適用した電解処理装置の要部概要図であ
る。このめっき装置は、いわゆるフェイスアップ方式を
採用したもので、基板Wは上向きに基板載せ台30上に
載置されており、基板Wの周辺に位置して、例えばバイ
トンゴム製のリップシール34と、このリップシール3
4の外方に位置し基板Wの導電層Sと接触して該基板W
に陰極電位を導入する接点36が設けられている。リッ
プシール34は、例えば10mmの高さを持って、めっ
き液10を保持できるようになっている。基板載せ台3
0の上方に保持具32が配置され、この保持具32に陽
極板38とフッ素系高分子材料42からなる高抵抗構造
体40が所定間隔離間して保持固定されている。このフ
ッ素系高分子材料42は、この例では、例えばシンクロ
トロン光による微細加工した径100μmの貫通孔が多
数あり、内部にめっき液10を含有させることで高抵抗
構造体40を構成するようになっている。また、陽極板
38は、保持具32と高抵抗構造体40により完全に被
覆された構造となっている。なお、高抵抗構造体40
は、めっき液の蓄えられた別の槽(図示せず)で予めめ
っき液を含浸させておくことが望ましい。
FIG. 8 is a schematic view of the essential parts of an electrolytic treatment apparatus applied to the electrolytic plating apparatus according to the second embodiment of the present invention. This plating apparatus employs a so-called face-up system, in which the substrate W is placed upward on the substrate platform 30 and is located around the substrate W and has a lip seal 34 made of Viton rubber, for example. This lip seal 3
4, which is located outside the substrate W and is in contact with the conductive layer S of the substrate W.
A contact 36 for introducing a cathode potential is provided at. The lip seal 34 has a height of 10 mm, for example, and can hold the plating solution 10. Substrate stand 3
A holding member 32 is arranged above 0, and an anode plate 38 and a high resistance structure 40 made of a fluoropolymer material 42 are held and fixed to the holding member 32 with a predetermined gap. In this example, the fluorine-based polymer material 42 has a large number of through-holes with a diameter of 100 μm which are finely processed by synchrotron light, and the plating solution 10 is contained therein to form the high resistance structure 40. Has become. Further, the anode plate 38 has a structure in which it is completely covered with the holder 32 and the high resistance structure 40. The high resistance structure 40
It is desirable that the plating solution is previously impregnated in another tank (not shown) in which the plating solution is stored.

【0042】そして、基板Wの上面と高抵抗構造体40
の下面との間に、隙間S1を設定した第1めっき室44
が、高抵抗構造体40の上面と陽極板38の下面との間
に、隙間S2を設定した第2めっき室46がそれぞれ設
けられており、これらの各めっき室44,46には、め
っき液10が導入される。このめっき液10の導入方法
としては、リップシール34と高抵抗構造体40の端面
との隙間から導入したり、めっき液注入口39から陽極
板38に設けた貫通孔38aを介して高抵抗構造体40
の裏側(上部)に加圧しためっき液10を導入するなど
の方法が採られる。なお、この実施の形態において、電
解めっき中に基板Wと基板載せ台30、若しくは、陽極
板38と高抵抗構造体40を回転させるように構成して
も良い。
Then, the upper surface of the substrate W and the high resistance structure 40
The first plating chamber 44 in which a gap S1 is set between the lower surface and the lower surface of the
However, a second plating chamber 46 in which a gap S2 is set is provided between the upper surface of the high resistance structure 40 and the lower surface of the anode plate 38, and the plating solution is provided in each of the plating chambers 44 and 46. 10 are introduced. The plating solution 10 may be introduced through the gap between the lip seal 34 and the end surface of the high resistance structure 40, or through the through hole 38a provided in the anode plate 38 from the plating solution injection port 39 to form the high resistance structure. Body 40
A method such as introducing the pressurized plating solution 10 to the back side (upper part) of the above is adopted. In addition, in this embodiment, the substrate W and the substrate mounting table 30, or the anode plate 38 and the high resistance structure 40 may be rotated during the electrolytic plating.

【0043】この実施の形態のめっき装置を使用して基
板Wの上面(めっき面)に銅めっきを施した銅めっき膜
の膜厚は、フッ素系高分子材料42から構成される高抵
抗構造体40を設けることで、前記実施の形態と同様に
膜厚の面内均一性の向上を図ることができる。
The thickness of the copper-plated film obtained by copper-plating the upper surface (plating surface) of the substrate W using the plating apparatus of this embodiment has a high resistance structure composed of the fluoropolymer material 42. By providing 40, it is possible to improve the in-plane uniformity of the film thickness, as in the above-described embodiment.

【0044】この実施の形態にあっては、陽極板38を
高抵抗構造体40と保持具32により完全に被覆し、陽
極板38と高抵抗構造体40との間にめっき液10が満
たされる構造となっているが、このように構成するとと
もに、フッ素系高分子材料42の貫通孔の径や貫通孔の
分布を適宜選択することで、基板W表面各部の銅めっき
膜の膜厚のコントロールが図れるという従来にはない新
たな効果を得ることができる。
In this embodiment, the anode plate 38 is completely covered with the high resistance structure 40 and the holder 32, and the plating solution 10 is filled between the anode plate 38 and the high resistance structure 40. Although it has a structure, the thickness of the copper plating film on each part of the surface of the substrate W is controlled by appropriately selecting the diameter of the through holes and the distribution of the through holes of the fluorine-based polymer material 42 while being configured in this way It is possible to obtain a new effect that is not possible in the past.

【0045】ところで、通常、銅の電解めっきに際して
は、陽極に特殊な配慮をする必要がある。第1に、陽極
から発生する一価の銅イオンを捕獲するために陽極表面
に「ブラックフィルム」と呼ばれるにかわ質の黒色膜を
形成する必要から、陽極材料に含燐銅を用いることであ
る。この黒色膜は、銅、燐、塩素などの複合物と言われ
ているが、二価銅イオンのみをめっき液中に送り込み、
めっき表面の異常析出などの原因になる一価銅イオンを
捕獲する働きをする。
By the way, usually, in the electrolytic plating of copper, it is necessary to give special consideration to the anode. First, phosphorus-containing copper is used as the anode material because it is necessary to form a glue-like black film called "black film" on the surface of the anode in order to capture monovalent copper ions generated from the anode. This black film is said to be a compound of copper, phosphorus, chlorine, etc., but only divalent copper ions are sent into the plating solution,
It functions to capture monovalent copper ions that cause abnormal deposition on the plating surface.

【0046】図9は、本発明の第3の実施の形態の電解
めっき装置に適用した電解処理装置を示す要部概要図で
ある。このめっき装置は、いわゆるフェイスアップ方式
を採用したもので、図7に示す第2の実施の形態の電解
めっき装置と構成はほぼ同じであり、同一部分には同一
符号を付す。そして第2の実施の形態例と相違するの
は、高抵抗構造体40を二層のフッ素系高分子材料42
−1,2からなる高抵抗構造体40−1,2で構成し、
両高抵抗構造体40−1,2の何れか一方の層を陽極板
38の表面に形成したブラックフィルム45の欠落物や
めっき膜に不要な異物に対するフィルタ効果を持つ層と
し、他方の層を本来の高抵抗構造体の層としたことであ
る。なお高抵抗構造体は三層以上であってもよい。さら
に、銅の陽極板38がめっきと共に電解消耗しその表面
が欠落することも有るが、この欠落物に対しても本実施
の形態例によればフィルタとしての機能によって少なく
とも二層以上の高抵抗構造体で捕獲し、欠落物が基板W
のめっき表面に付着することを回避できる。但し、一層
でフィルタ機能と所望の高抵抗構造体としての機能を持
たすことが可能で有れば、二層にする必要はない。
FIG. 9 is a schematic view of the essential parts showing an electrolytic treatment apparatus applied to the electrolytic plating apparatus according to the third embodiment of the present invention. This plating apparatus adopts a so-called face-up system, and its configuration is almost the same as that of the electrolytic plating apparatus of the second embodiment shown in FIG. 7, and the same parts are designated by the same reference numerals. The difference from the second embodiment is that the high resistance structure 40 is made up of two layers of fluoropolymer material 42.
-1 and a high resistance structure 40-1 composed of
One of the layers of both the high resistance structures 40-1 and 40-2 is used as a layer having a filter effect with respect to a missing substance of the black film 45 formed on the surface of the anode plate 38 and a foreign matter unnecessary for the plating film, and the other layer is used. That is to say, it is the layer of the original high resistance structure. The high resistance structure may have three or more layers. Further, the copper anode plate 38 may be electrolytically consumed along with the plating and its surface may be cut off. However, according to the present embodiment, a high resistance of at least two layers or more is also provided for this dropout due to the function as a filter. Captured by the structure, the missing material is the substrate W
It is possible to avoid adhesion to the plating surface of. However, if it is possible to provide a filter function and a desired high resistance structure function with one layer, it is not necessary to form two layers.

【0047】ところで上記実施の形態例において、陽極
板14(38)に溶解性の銅陽極を使う代わりに、不溶
解性の陽極、例えばチタニウム表面に酸化イリジウムを
被覆したものを用いることもできる。この場合、陽極板
14(38)表面では多量の酸素ガスが発生するが、こ
の酸素ガスは陽極板14(38)と基板W間に介在する
高抵抗構造体22(40)によって基板W表面に到達し
ないようにすることができ、これによってめっき膜の一
部が欠落するなどの不良の発生を無くすことができる。
特に図9に示すように高抵抗構造体40−1,2を二層
以上にすれば、より効果的である。このように、高抵抗
構造体をめっき液中に導入し、なおかつ陽極と陰極を分
離するように一様に配置することで、隔膜効果を得るよ
うにすることもできる。
By the way, in the above embodiment, instead of using a soluble copper anode for the anode plate 14 (38), an insoluble anode, for example, a titanium surface coated with iridium oxide may be used. In this case, a large amount of oxygen gas is generated on the surface of the anode plate 14 (38), but this oxygen gas is generated on the surface of the substrate W by the high resistance structure 22 (40) interposed between the anode plate 14 (38) and the substrate W. It is possible to prevent the occurrence of defects, such as the occurrence of defects such as a partial loss of the plated film.
In particular, it is more effective if the high resistance structures 40-1 and 40-2 have two or more layers as shown in FIG. In this way, it is possible to obtain the diaphragm effect by introducing the high resistance structure into the plating solution and disposing the anode and the cathode uniformly so as to be separated.

【0048】図12は、前述の電解処理装置を備えた基
板処理装置の全体を示す平面図で、図12に示すよう
に、この基板処理装置には、同一設備内に位置して、内
部に複数の基板Wを収納する2基のロード・アンロード
部210と、めっき処理及びその付帯処理を行う2基の
めっきユニット212と、ロード・アンロード部210
とめっきユニット212との間で基板Wの受渡しを行う
搬送ロボット214と、めっき液タンク216を有する
めっき液供給設備218が備えられている。
FIG. 12 is a plan view showing the whole of the substrate processing apparatus equipped with the above-described electrolytic processing apparatus. As shown in FIG. Two loading / unloading sections 210 for accommodating a plurality of substrates W, two plating units 212 for performing plating processing and incidental processing thereof, and loading / unloading section 210
A transfer robot 214 for transferring the substrate W between the substrate and the plating unit 212, and a plating solution supply facility 218 having a plating solution tank 216 are provided.

【0049】前記めっきユニット212には、図13に
示すように、めっき処理及びその付帯処理を行う基板処
理部220が備えられ、この基板処理部220に隣接し
て、めっき液を溜めるめっき液トレー222が配置され
ている。また、回転軸224を中心に揺動する揺動アー
ム226の先端に保持されて前記基板処理部220とめ
っき液トレー222との間を揺動する円板状の電極部2
28を有する電極アーム部230が備えられている。更
に、基板処理部220の側方に位置して、プレコート・
回収アーム232と、純水やイオン水等の薬液、更には
気体等を基板に向けて噴射する固定ノズル234が配置
されている。この実施の形態にあっては、3個の固定ノ
ズル234が備えられ、その内の1個を純水の供給用に
用いている。
As shown in FIG. 13, the plating unit 212 is provided with a substrate processing section 220 for performing a plating process and its attendant processing, and a plating solution tray for accumulating a plating solution adjacent to the substrate processing section 220. 222 are arranged. Further, the disk-shaped electrode unit 2 is held at the tip of a swing arm 226 swinging around the rotary shaft 224 and swings between the substrate processing unit 220 and the plating solution tray 222.
An electrode arm portion 230 having 28 is provided. In addition, the pre-coat
A recovery arm 232 and a fixed nozzle 234 for ejecting a chemical liquid such as pure water or ion water, and further a gas or the like toward the substrate are arranged. In this embodiment, three fixed nozzles 234 are provided, and one of them is used for supplying pure water.

【0050】前記基板処理部220には、図14及び図
15に示すように、被めっき面を上向きにして基板Wを
保持する基板保持部236と、この基板保持部236の
上方に該基板保持部236の周縁部を囲繞するように配
置されたカソード部238が備えられている。更に、基
板保持部236の周囲を囲繞して処理中に用いる各種薬
液の飛散を防止する有底略円筒状のカップ240が、エ
アシリンダ242を介して上下動自在に配置されてい
る。
In the substrate processing section 220, as shown in FIGS. 14 and 15, a substrate holding section 236 for holding the substrate W with the surface to be plated facing upward, and the substrate holding section above the substrate holding section 236. The cathode part 238 is provided so as to surround the peripheral part of the part 236. Furthermore, a cup 240 having a substantially cylindrical shape with a bottom, which surrounds the periphery of the substrate holding portion 236 and prevents scattering of various chemicals used during processing, is vertically movably arranged via an air cylinder 242.

【0051】ここで、前記基板保持部236は、エアシ
リンダ244によって、下方の基板受渡し位置Aと、上
方のめっき位置Bと、これらの中間の前処理・洗浄位置
Cとの間を昇降し、回転モータ246及びベルト248
を介して、任意の加速度及び回転速度で前記カソード部
238と一体に回転するように構成されている。この基
板受渡し位置Aに対向して、めっきユニット212のフ
レーム側面の搬送ロボット214側には、図17に示す
ように、基板搬出入口250が設けられ、また基板保持
部236がめっき位置Bまで上昇した時に、基板保持部
236で保持された基板Wの周縁部に下記のカソード部
238のシール材290とカソード電極288が当接す
るようになっている。一方、前記カップ240は、その
上端が前記基板搬出入口250の下方に位置し、図15
に仮想線で示すように、上昇した時に前記基板搬出入口
250を塞いでカソード部238の上方に達するように
なっている。
Here, the substrate holding section 236 is moved up and down by the air cylinder 244 between a lower substrate transfer position A, an upper plating position B, and a pretreatment / cleaning position C intermediate therebetween. Rotation motor 246 and belt 248
It is configured so as to rotate integrally with the cathode portion 238 at any acceleration and rotation speed via the. As shown in FIG. 17, a substrate loading / unloading port 250 is provided on the frame side surface of the plating unit 212 on the side of the transfer robot 214 facing the substrate delivery position A, and the substrate holding portion 236 is raised to the plating position B. At this time, the sealing material 290 and the cathode electrode 288 of the cathode portion 238 described below come into contact with the peripheral edge portion of the substrate W held by the substrate holding portion 236. On the other hand, the upper end of the cup 240 is located below the substrate loading / unloading port 250.
As indicated by a phantom line, the substrate loading / unloading port 250 is closed when it rises and reaches above the cathode portion 238.

【0052】前記めっき液トレー222は、めっきを実
施していない時に、電極アーム部230の本発明で用い
る高抵抗構造体310及びアノード298をめっき液で
湿潤させるためのもので、図16に示すように、この高
抵抗構造体310が収容できる大きさに設定され、図示
しないめっき液供給口とめっき液排水口を有している。
また、フォトセンサがめっき液トレー222に取り付け
られており、めっき液トレー222内のめっき液の満
水、即ちオーバーフローと排水の検出が可能になってい
る。めっき液トレー222の底板は着脱が可能であり、
めっき液トレー222の周辺には、図示しない局所排気
口が設置されている。
The plating solution tray 222 is used to wet the high resistance structure 310 and the anode 298 of the electrode arm portion 230 used in the present invention with the plating solution when plating is not performed, and is shown in FIG. As described above, the high resistance structure 310 is set to a size that can be accommodated, and has a plating solution supply port and a plating solution drain port (not shown).
Further, a photo sensor is attached to the plating solution tray 222, and it is possible to detect fullness of the plating solution in the plating solution tray 222, that is, overflow and drainage. The bottom plate of the plating solution tray 222 is removable,
Around the plating solution tray 222, a local exhaust port (not shown) is installed.

【0053】前記電極アーム部230は、図18及び図
19に示すように、上下動モータ254と図示しないボ
ールねじを介して上下動し、旋回モータ256を介し
て、前記めっき液トレー222と基板処理部220との
間を旋回(揺動)するようになっている。
As shown in FIGS. 18 and 19, the electrode arm portion 230 moves up and down via a vertical movement motor 254 and a ball screw (not shown), and a turning motor 256 causes the plating solution tray 222 and the substrate to move. It is adapted to swivel (swing) with the processing section 220.

【0054】また、プレコート・回収アーム232は、
図20に示すように、上下方向に延びる支持軸258の
上端に連結されて、ロータリアクチュエータ260を介
して旋回(揺動)し、エアシリンダ262(図17参
照)を介して上下動するように構成されている。このプ
レコート・回収アーム232には、その自由端側にプレ
コート液吐出用のプレコートノズル264が、基端側に
めっき液回収用のめっき液回収ノズル266がそれぞれ
保持されている。そして、プレコートノズル264は、
例えばエアシリンダによって駆動するシリンダに接続さ
れて、プレコート液がプレコートノズル264から間欠
的に吐出され、、また、めっき液回収ノズル266は、
例えばシリンダポンプまたはアスピレータに接続され
て、基板上のめっき液がめっき液回収ノズル266から
吸引されるようになっている。
The precoat / recovery arm 232 is
As shown in FIG. 20, it is connected to the upper end of a support shaft 258 extending in the vertical direction, swivels (swings) via a rotary actuator 260, and moves up and down via an air cylinder 262 (see FIG. 17). It is configured. The precoat / recovery arm 232 holds a precoat nozzle 264 for ejecting a precoat solution on its free end side and a plating solution recovery nozzle 266 for recovering a plating solution on its base end side. Then, the precoat nozzle 264 is
For example, the precoat liquid is intermittently discharged from the precoat nozzle 264 by being connected to a cylinder driven by an air cylinder, and the plating liquid recovery nozzle 266 is
For example, it is connected to a cylinder pump or an aspirator so that the plating solution on the substrate is sucked from the plating solution recovery nozzle 266.

【0055】前記基板保持部236は、図21乃至図2
3に示すように、円板状のステージ268を備え、この
ステージ268の周縁部の円周方向に沿った6カ所に、
上面に段差部を有する台座272を備え基板Wを水平に
載置して保持する支持腕270が立設されている。この
支持腕270の内の1つは、爪を有しておらず、この爪
を有さない支持腕270に対向する支持腕270の上端
には、基板Wの端面に当接し回動して基板Wを前記爪を
有さない支持腕270の台座272の段差部に押付ける
押付け片274が回動自在に支承されている。また、他
の4個の支持腕270の上端には、回動して基板Wをこ
の上方から下方に押付けるチャック爪276が回動自在
に支承されている。
The substrate holder 236 is shown in FIGS.
As shown in FIG. 3, a disc-shaped stage 268 is provided, and at six positions along the circumferential direction of the peripheral portion of the stage 268,
A support arm 270, which is provided with a pedestal 272 having a step portion on the upper surface and horizontally holds and holds the substrate W, is provided upright. One of the support arms 270 does not have a claw, and the upper end of the support arm 270 facing the support arm 270 that does not have a claw is brought into contact with the end surface of the substrate W to rotate. A pressing piece 274 that presses the substrate W against the stepped portion of the pedestal 272 of the support arm 270 having no claw is rotatably supported. Further, chuck claws 276 that rotate to press the substrate W downward from above are rotatably supported on the upper ends of the other four support arms 270.

【0056】ここで、前記押付け片274及びチャック
爪276の下端は、コイルばね278を介して下方に付
勢した押圧棒280の上端に連結されて、この押圧棒2
80の下動に伴って押付け片274及びチャック爪27
6が内方に回動して閉じるようになっており、ステージ
268の下方には前記押圧棒280に下面に当接してこ
れを上方に押上げる支持板282が配置されている。
Here, the lower ends of the pressing piece 274 and the chuck claw 276 are connected to the upper end of a pressing rod 280 biased downward through a coil spring 278, and the pressing rod 2 is pressed.
The pressing piece 274 and the chuck claw 27 along with the downward movement of 80
6 is rotated inward to be closed, and below the stage 268, a support plate 282 that is in contact with the lower surface of the pressing rod 280 and pushes it upward is disposed.

【0057】これにより、基板保持部236が図15に
示す基板受渡し位置Aに位置する時、押圧棒280は支
持板282に当接し上方に押上げられて、押付け片27
4及びチャック爪276が外方に回動して開き、ステー
ジ268を上昇させると、押圧棒280がコイルばね2
78の弾性力で下降して、押付け片274及びチャック
爪276が内方に回転して閉じるようになっている。
As a result, when the substrate holding portion 236 is located at the substrate transfer position A shown in FIG. 15, the pressing rod 280 comes into contact with the support plate 282 and is pushed upward to push the pressing piece 27.
4 and the chuck claw 276 are rotated outward to open, and the stage 268 is lifted, the pressing rod 280 moves the coil spring 2
The elastic force of 78 descends, and the pressing piece 274 and the chuck claw 276 rotate inward and close.

【0058】前記カソード部238は、図24及び図2
5に示すように、前記支持板282(図15及び図23
等参照)の周縁部に立設した支柱284の上端に固着し
た環状の枠体286と、この枠体286の下面に内方に
突出させて取付けた、この例では6分割されたカソード
電極288と、このカソード電極288の上方を覆うよ
うに前記枠体286の上面に取付けた環状のシール材2
90とを有している。このシール材290は、その内周
縁部が内方に向け下方に傾斜し、かつ徐々に薄肉となっ
て、内周端部が下方に垂下するように構成されている。
The cathode portion 238 is shown in FIGS.
5, the support plate 282 (see FIGS. 15 and 23).
Etc.), an annular frame body 286 fixed to the upper end of a pillar 284 standing upright on the periphery, and a cathode electrode 288 divided into six in this example, which is attached to the lower surface of the frame body 286 so as to project inward. And an annular seal member 2 attached to the upper surface of the frame body 286 so as to cover the cathode electrode 288.
90 and. The sealing material 290 is configured such that the inner peripheral edge portion thereof is inclined downward inward and gradually becomes thin so that the inner peripheral end portion hangs downward.

【0059】これにより、図15に示すように、基板保
持部236がめっき位置Bまで上昇した時に、この基板
保持部236で保持した基板Wの周縁部にカソード電極
288が押付けられて通電し、同時にシール材290の
内周端部が基板Wの周縁部上面に圧接し、ここを水密的
にシールして、基板の上面(被めっき面)に供給された
めっき液が基板Wの端部から染み出すのを防止するとと
もに、めっき液がカソード電極288を汚染することを
防止するようになっている。
As a result, as shown in FIG. 15, when the substrate holder 236 is raised to the plating position B, the cathode electrode 288 is pressed against the peripheral edge of the substrate W held by the substrate holder 236 to energize, At the same time, the inner peripheral edge of the sealing material 290 is pressed against the upper surface of the peripheral edge of the substrate W to seal it water-tightly, and the plating solution supplied to the upper surface (the surface to be plated) of the substrate is applied from the edge of the substrate W Not only is it prevented from leaching out, but the plating solution is also prevented from contaminating the cathode electrode 288.

【0060】なお、この実施の形態において、カソード
部238は、上下動不能で基板保持部236と一体に回
転するようになっているが、上下動自在で、下降した時
にシール材290が基板Wの被めっき面に圧接するよう
に構成しても良い。
In this embodiment, the cathode portion 238 cannot move up and down and rotates together with the substrate holding portion 236. However, the cathode portion 238 can move up and down, and the sealing material 290 moves down the substrate W when lowered. You may comprise so that it may press-contact the to-be-plated surface.

【0061】前記電極アーム部230の電極部228
は、図26乃至図28に示すように、揺動アーム226
の自由端にボールベアリング292を介して連結したハ
ウジング294と、このハウジング294の周囲を囲繞
する中空の支持枠296と、前記ハウジング294と支
持枠296で周縁部を挟持して固定したアノード298
とを有し、このアノード298は、前記ハウジング29
4の開口部を覆って、ハウジング294の内部に吸引室
300が形成されている。この吸引室300の内部に
は、めっき液供給設備218(図12参照)から延びる
めっき液供給管302に接続され直径方向に延びるめっ
き液導入管304がアノード298の上面に当接して配
置され、更に、ハウジング294には、吸引室300に
連通するめっき液排出管306が接続されている。
The electrode portion 228 of the electrode arm portion 230
Is a swing arm 226, as shown in FIGS.
A housing 294 connected to the free end of the housing via a ball bearing 292, a hollow support frame 296 surrounding the periphery of the housing 294, and an anode 298 fixed by sandwiching a peripheral portion between the housing 294 and the support frame 296.
And the anode 298 has the housing 29
A suction chamber 300 is formed inside the housing 294 so as to cover the opening of No. 4. Inside this suction chamber 300, a plating solution supply pipe 302 extending from a plating solution supply facility 218 (see FIG. 12) and connected in a diametrical direction to a plating solution introduction pipe 304 is arranged in contact with the upper surface of the anode 298. Further, the housing 294 is connected to a plating solution discharge pipe 306 that communicates with the suction chamber 300.

【0062】前記めっき液導入管304は、マニホール
ド構造とすると被めっき面に均一なめっき液を供給する
のに有効である。即ち、その長手方向に連続して延びる
めっき液導入路304aと該導入路304aに沿った所
定のピッチで、下方に連通する複数のめっき液導入孔3
04bが設けられ、また、アノード298の該めっき液
導入孔304bに対応する位置に、めっき液注入孔29
8aが設けられている。更に、アノード298には、そ
の全面に亘って上下に連通する多数の通孔298bが設
けられている。これにより、めっき液供給管302から
めっき液導入管304に導入されためっき液は、めっき
液導入孔304b及びめっき液注入孔298aからアノ
ード298の下方に達し、またアノード298をめっき
液中に浸した状態で、めっき液排出管306を吸引する
ことで、アノード298の下方のめっき液は、通孔29
8bから吸引室300を通過して該めっき液排出管30
6から排出されるようになっている。
When the plating solution introducing pipe 304 has a manifold structure, it is effective for supplying a uniform plating solution to the surface to be plated. That is, the plating solution introduction passage 304a extending continuously in the longitudinal direction and the plurality of plating solution introduction holes 3 communicating downward at a predetermined pitch along the introduction passage 304a.
04b is provided, and the plating solution injection hole 29 is provided at a position corresponding to the plating solution introduction hole 304b of the anode 298.
8a is provided. Further, the anode 298 is provided with a large number of through holes 298b which are vertically communicated with each other over the entire surface thereof. As a result, the plating solution introduced from the plating solution supply pipe 302 to the plating solution introduction pipe 304 reaches below the anode 298 through the plating solution introduction hole 304b and the plating solution injection hole 298a, and the anode 298 is immersed in the plating solution. In this state, the plating solution discharge pipe 306 is sucked so that the plating solution below the anode 298 can pass through the through hole 29.
8b through the suction chamber 300 and the plating solution discharge pipe 30
It is designed to be discharged from 6.

【0063】そして、前記電極部228は、基板保持部
236がめっき位置C(図15参照)にある時に、基板
保持部236で保持された基板Wと高抵抗構造体310
との隙間が、例えば0.5〜3mm程度となるまで下降
し、この状態で、めっき液供給管302からめっき液を
供給して、高抵抗構造体310にめっき液を含ませなが
ら、基板Wの上面(被めっき面)とアノード298との
間をめっき液で満たし、これによって、基板Wの被めっ
き面にめっきが施される。
The electrode portion 228 and the substrate W held by the substrate holding portion 236 and the high resistance structure 310 when the substrate holding portion 236 is at the plating position C (see FIG. 15).
The gap between the substrate W and the substrate W is lowered until the gap between the high resistance structure 310 and the high resistance structure 310 is lowered by supplying the plating solution from the plating solution supply pipe 302 in this state. The upper surface (the surface to be plated) and the anode 298 are filled with a plating solution, so that the surface to be plated of the substrate W is plated.

【0064】次に、前記基板処理装置の動作について説
明する。先ず、ロード・アンロード部210からめっき
処理前の基板Wを搬送ロボット214で取出し、被めっ
き面を上向きにした状態で、フレームの側面に設けられ
た基板搬出入口250から一方のめっきユニット212
の内部に搬送する。この時、基板保持部236は、下方
の基板受渡し位置Aにあり、搬送ロボット214は、そ
のハンドがステージ268の真上に到達した後に、ハン
ドを下降させることで、基板Wを支持腕270上に載置
する。そして、搬送ロボット214のハンドを前記基板
搬出入口250を通って退去させる。
Next, the operation of the substrate processing apparatus will be described. First, the substrate W before plating processing is taken out from the loading / unloading section 210 by the transfer robot 214, and with the surface to be plated facing upward, one plating unit 212 from the substrate loading / unloading port 250 provided on the side surface of the frame.
To the inside. At this time, the substrate holding unit 236 is at the lower substrate transfer position A, and the transfer robot 214 lowers the hand after the hand reaches directly above the stage 268, so that the substrate W is placed on the support arm 270. Place on. Then, the hand of the transfer robot 214 is moved away through the substrate loading / unloading port 250.

【0065】搬送ロボット214のハンドの退去が完了
した後、カップ240を上昇させ、同時に基板受渡し位
置Aにあった基板保持部236を前処理・洗浄位置Cに
上昇させる。この時、この上昇に伴って、支持腕270
上に載置された基板は、台座272と押付け片274で
位置決めされ、チャック爪276で確実に把持される。
After the hand of the transfer robot 214 is completely withdrawn, the cup 240 is raised and at the same time, the substrate holder 236 at the substrate transfer position A is raised to the pretreatment / cleaning position C. At this time, with this rise, the supporting arm 270
The substrate placed on the top is positioned by the pedestal 272 and the pressing piece 274, and is securely gripped by the chuck claw 276.

【0066】一方、電極アーム部230の電極部228
は、この時点ではめっき液トレー222上の通常位置に
あって、高抵抗構造体310あるいはアノード298が
めっき液トレー222内に位置しており、この状態でカ
ップ240の上昇と同時に、めっき液トレー222及び
電極部228にめっき液の供給を開始する。そして、基
板のめっき工程に移るまで、新しいめっき液を供給し、
併せてめっき液排出管306を通じた吸引を行って、高
抵抗構造体310に含まれるめっき液の交換と泡抜きを
行う。なお、カップ240の上昇が完了すると、フレー
ム側面の基板搬出入口250はカップ240で塞がれて
閉じ、フレーム内外の雰囲気が遮断状態となる。
On the other hand, the electrode portion 228 of the electrode arm portion 230
Is in the normal position on the plating solution tray 222 at this time, and the high resistance structure 310 or the anode 298 is located in the plating solution tray 222. The supply of the plating solution to the 222 and the electrode portion 228 is started. Then, supply new plating solution until the process of plating the substrate,
At the same time, suction is performed through the plating solution discharge pipe 306 to replace the plating solution contained in the high resistance structure 310 and remove bubbles. When the cup 240 is completely lifted, the substrate loading / unloading port 250 on the side surface of the frame is closed and closed by the cup 240, and the atmosphere inside and outside the frame is shut off.

【0067】カップ240が上昇するとプレコート処理
に移る。即ち、基板Wを受け取った基板保持部236を
回転させ、待避位置にあったプレコート・回収アーム2
32を基板と対峙する位置へ移動させる。そして、基板
保持部236の回転速度が設定値に到達したところで、
プレコート・回収アーム232の先端に設けられたプレ
コートノズル264から、例えば界面活性剤からなるプ
レコート液を基板の被めっき面に吐出する。この時、基
板保持部236が回転しているため、プレコート液は基
板Wの被めっき面の全面に行き渡る。次に、プレコート
・回収アーム232を待避位置へ戻し、基板保持部23
6の回転速度を増して、遠心力により基板Wの被めっき
面のプレコート液を振り切って乾燥させる。
When the cup 240 moves up, the precoating process is started. That is, the substrate holding part 236 that has received the substrate W is rotated, and the precoat / recovery arm 2 that has been in the retracted position is rotated.
32 is moved to a position facing the substrate. Then, when the rotation speed of the substrate holding portion 236 reaches the set value,
A pre-coating nozzle 264 provided at the tip of the pre-coating / collecting arm 232 discharges a pre-coating liquid containing, for example, a surfactant onto the surface to be plated of the substrate. At this time, since the substrate holder 236 is rotating, the precoat liquid is spread over the entire surface of the substrate W to be plated. Next, the precoat / recovery arm 232 is returned to the retracted position, and the substrate holder 23
The rotation speed of 6 is increased, and the precoat liquid on the surface to be plated of the substrate W is shaken off and dried by centrifugal force.

【0068】プレコート完了後にめっき処理に移る。先
ず、基板保持部236を、この回転を停止、若しくは回
転速度をめっき時速度まで低下させた状態で、めっきを
施すめっき位置Bまで上昇させる。すると、基板Wの周
縁部はカソード電極288に接触して通電可能な状態と
なり、同時に基板Wの周縁部上面にシール材290が圧
接して、基板Wの周縁部が水密的にシールされる。
After the completion of precoating, the plating process is started. First, the substrate holding portion 236 is raised to the plating position B where plating is performed with the rotation stopped or the rotation speed reduced to the plating speed. Then, the peripheral edge of the substrate W comes into contact with the cathode electrode 288 to be able to conduct electricity, and at the same time, the sealing material 290 is pressed against the upper surface of the peripheral edge of the substrate W to seal the peripheral edge of the substrate W in a watertight manner.

【0069】一方、搬入された基板Wのプレコート処理
が完了したという信号に基づいて、電極アーム部230
をめっき液トレー222上方からめっきを施す位置の上
方に電極部228が位置するように水平方向に旋回さ
せ、この位置に到達した後に、電極部228をカソード
部238に向かって下降させる。この時、高抵抗構造体
310を基板Wの被めっき面に接触することなく、0.
5〜3mm程度に近接した位置とする。電極部228の
下降が完了した時点で、めっき電流を投入し、めっき液
供給管302からめっき液を電極部228の内部に供給
して、アノード298を貫通しためっき液注入孔298
aより高抵抗構造体310にめっき液を供給する。これ
によってめっき液が、高抵抗構造体310と基板Wの被
めっき面との間の隙間に満たされ、基板Wの被めっき面
に銅めっきが施される。この時、基板保持部236を低
速で回転させても良い。
On the other hand, based on the signal that the pre-coating process of the loaded substrate W is completed, the electrode arm portion 230
Is horizontally swung from above the plating solution tray 222 so that the electrode portion 228 is located above the plating position, and after reaching this position, the electrode portion 228 is lowered toward the cathode portion 238. At this time, the high resistance structure 310 does not contact the plated surface of the substrate W, and
The position is close to about 5 to 3 mm. When the lowering of the electrode part 228 is completed, a plating current is supplied to supply the plating solution from the plating solution supply pipe 302 to the inside of the electrode part 228, and the plating solution injection hole 298 penetrating the anode 298.
A plating solution is supplied to the high resistance structure 310 from a. As a result, the plating solution fills the gap between the high resistance structure 310 and the surface to be plated of the substrate W, and the surface to be plated of the substrate W is plated with copper. At this time, the substrate holder 236 may be rotated at a low speed.

【0070】めっき処理が完了すると、電極アーム部2
30を上昇させ旋回させてめっき液トレー222の上方
へ戻し、通常位置へ下降させる。次に、プレコート・回
収アーム232を待避位置から基板Wに対峙する位置へ
移動させて下降させ、めっき液回収ノズル266から基
板W上のめっきの残液を回収する。このめっき残液の回
収が終了した後、プレコート・回収アーム232を待避
位置へ戻し、基板の被めっき面のリンスのために、純水
用の固定ノズル234から基板Wの中央部に純水を吐出
し、同時に基板保持部236をスピードを増して回転さ
せて基板Wの表面のめっき液を純水に置換する。このよ
うに、基板Wのリンスを行うことで、基板保持部236
をめっき位置Bから下降させる際に、めっき液が跳ね
て、カソード部238のカソード電極288が汚染され
ることが防止される。
When the plating process is completed, the electrode arm portion 2
30 is lifted and swung to return to above the plating solution tray 222, and lowered to the normal position. Next, the precoat / recovery arm 232 is moved from the retracted position to a position facing the substrate W and lowered, and the residual plating solution on the substrate W is recovered from the plating solution recovery nozzle 266. After the recovery of the plating residual liquid is completed, the precoat / recovery arm 232 is returned to the retracted position, and pure water is rinsed from the fixed nozzle 234 for pure water to the central portion of the substrate W to rinse the plated surface of the substrate. The plating solution on the surface of the substrate W is replaced with pure water by discharging and simultaneously rotating the substrate holder 236 at an increased speed. In this way, by rinsing the substrate W, the substrate holding part 236.
It is possible to prevent the plating solution from splashing and contaminating the cathode electrode 288 of the cathode portion 238 when lowering the plating electrode from the plating position B.

【0071】リンス終了後に水洗工程に入る。即ち、基
板保持部236をめっき位置Bから前処理・洗浄位置C
へ下降させ、純水用の固定ノズル234から純水を供給
しつつ基板保持部236及びカソード部238を回転さ
せて水洗を実施する。この時、カソード部238に直接
供給した純水、又は基板Wの面から飛散した純水によっ
てシール材290及びカソード電極288も基板Wと同
時に洗浄することができる。
After the rinsing is completed, a water washing process is started. That is, the substrate holder 236 is moved from the plating position B to the pretreatment / cleaning position C.
Then, the substrate holding portion 236 and the cathode portion 238 are rotated while supplying pure water from the fixed nozzle 234 for pure water to wash with water. At this time, the sealing material 290 and the cathode electrode 288 can be cleaned at the same time as the substrate W by the pure water directly supplied to the cathode part 238 or the pure water scattered from the surface of the substrate W.

【0072】水洗完了後にドライ工程に入る。即ち、固
定ノズル234からの純水の供給を停止し、更に基板保
持部236及びカソード部238の回転スピードを増し
て、遠心力により基板表面の純水を振り切って乾燥させ
る。併せて、シール材290及びカソード電極288も
乾燥させる。ドライ工程が完了すると基板保持部236
及びカソード部238の回転を停止させ、基板保持部2
36を基板受渡し位置Aまで下降させる。すると、チャ
ック爪276による基板Wの把持が解かれ、基板Wは、
支持腕270の上面に載置された状態となる。これと同
時に、カップ240も下降させる。
After completion of washing with water, a dry process is started. That is, the supply of pure water from the fixed nozzle 234 is stopped, the rotation speeds of the substrate holding portion 236 and the cathode portion 238 are further increased, and the pure water on the substrate surface is shaken off by the centrifugal force to be dried. At the same time, the sealing material 290 and the cathode electrode 288 are also dried. When the dry process is completed, the substrate holder 236
And stopping the rotation of the cathode part 238,
36 is lowered to the substrate transfer position A. Then, the grip of the substrate W by the chuck claw 276 is released, and the substrate W is
It is in a state of being placed on the upper surface of the support arm 270. At the same time, the cup 240 is also lowered.

【0073】以上でめっき処理及びそれに付帯する前処
理や洗浄・乾燥工程の全工程を終了し、搬送ロボット2
14は、そのハンドを基板搬出入口250から基板Wの
下方に挿入し、そのまま上昇させることで、基板保持部
236から処理後の基板Wを受取る。そして、搬送ロボ
ット214は、この基板保持部236から受取った処理
後の基板Wをロード・アンロード部210に戻す。
With the above, all the processes of the plating process and the pretreatments accompanying it and the cleaning / drying process are completed, and the transfer robot 2
The substrate 14 receives the processed substrate W from the substrate holder 236 by inserting the hand from the substrate loading / unloading port 250 to the lower side of the substrate W and raising it. Then, the transfer robot 214 returns the processed substrate W received from the substrate holding unit 236 to the load / unload unit 210.

【0074】図30は、前述の電解処理装置を備えた他
の基板処理装置の平面配置図である。図示するように、
この基板処理装置は、半導体基板を収容した基板カセッ
トの受け渡しを行う搬入・搬出エリア520と、プロセ
ス処理を行うプロセスエリア530と、プロセス処理後
の半導体基板の洗浄及び乾燥を行う洗浄・乾燥エリア5
40を具備する。洗浄・乾燥エリア540は、搬入・搬
出エリア520とプロセスエリア530の間に配置され
ている。搬入・搬出エリア520と洗浄・乾燥エリア5
40には隔壁521を設け、洗浄・乾燥エリア540と
プロセスエリア530の間には隔壁523を設けてい
る。
FIG. 30 is a plan layout view of another substrate processing apparatus equipped with the above-described electrolytic processing apparatus. As shown,
This substrate processing apparatus includes a carry-in / carry-out area 520 for delivering and receiving a substrate cassette containing a semiconductor substrate, a process area 530 for carrying out process processing, and a cleaning / drying area 5 for cleaning and drying the semiconductor substrate after the process processing.
40 is provided. The cleaning / drying area 540 is arranged between the loading / unloading area 520 and the process area 530. Loading / unloading area 520 and washing / drying area 5
40 is provided with a partition 521, and a partition 523 is provided between the cleaning / drying area 540 and the process area 530.

【0075】隔壁521には、搬入・搬出エリア520
と洗浄・乾燥エリア540との間で半導体基板を受け渡
すための通路(図示せず)を設け、該通路を開閉するた
めのシャッター522を設けている。また、隔壁523
にも洗浄・乾燥エリア540とプロセスエリア530と
の間で半導体基板を受け渡すための通路(図示せず)を
設け、該通路を開閉するためのシャッター524を設け
ている。洗浄・乾燥エリア540とプロセスエリア53
0は独自に給排気できるようになっている。
The partition 521 has a loading / unloading area 520.
A passage (not shown) for transferring the semiconductor substrate is provided between the cleaning and drying area 540 and a shutter 522 for opening and closing the passage. In addition, the partition wall 523
Also, a passage (not shown) for transferring the semiconductor substrate is provided between the cleaning / drying area 540 and the process area 530, and a shutter 524 for opening and closing the passage is provided. Cleaning / drying area 540 and process area 53
0 can supply and exhaust air independently.

【0076】上記構成の半導体基板配線用の基板処理装
置はクリーンルーム内に設置され、各エリアの圧力は、 (搬入・搬出エリア520の圧力)>(洗浄・乾燥エリ
ア540の圧力)>(プロセスエリア530の圧力) に設定され、且つ搬入・搬出エリア520の圧力は、ク
リーンルーム内圧力より低く設定される。これにより、
プロセスエリア530から洗浄・乾燥エリア540に空
気が流出しないようにし、洗浄・乾燥エリア540から
搬入・搬出エリア520に空気が流出しないようにし、
さらに搬入・搬出エリア520からクリーンルーム内に
空気が流出しないようにしている。
The substrate processing apparatus for wiring a semiconductor substrate having the above-mentioned configuration is installed in a clean room, and the pressure in each area is (pressure in loading / unloading area 520)> (pressure in cleaning / drying area 540)> (process area) (The pressure of 530) and the pressure of the carry-in / carry-out area 520 is set lower than the pressure in the clean room. This allows
Prevent air from flowing from the process area 530 to the cleaning / drying area 540, and prevent air from flowing from the cleaning / drying area 540 to the loading / unloading area 520,
Further, air is prevented from flowing out of the carry-in / carry-out area 520 into the clean room.

【0077】搬入・搬出エリア520には、半導体基板
を収容した基板カセットを収納するロードユニット52
0aとアンロードユニット520bが配置されている。
洗浄・乾燥エリア540には、めっき処理後の処理を行
う各2基の水洗部541、乾燥部542が配置されると
共に、半導体基板の搬送を行う搬送部(搬送ロボット)
543が備えられている。ここに水洗部541として
は、例えば前端にスポンジがついたペンシル型のものや
スポンジ付きローラ形式のものが用いられる。乾燥部5
42としては、例えば半導体基板を高速でスピンさせて
脱水、乾燥させる形式のものが用いられる。
The loading / unloading area 520 has a load unit 52 for accommodating a substrate cassette accommodating semiconductor substrates.
0a and unload unit 520b are arranged.
In the cleaning / drying area 540, two water washing sections 541 and two drying sections 542 for performing post-plating processing are arranged, and a transfer section (transfer robot) for transferring semiconductor substrates.
543 is provided. As the water washing section 541, for example, a pencil type with a sponge on the front end or a roller type with a sponge is used. Drying part 5
As 42, for example, a type in which a semiconductor substrate is spun at high speed to dehydrate and dry is used.

【0078】プロセスエリア530内には、半導体基板
のめっきの前処理を行う前処理槽531と、銅めっき処
理を行うめっき装置(本発明の電解処理装置を用いてな
るめっき装置)532が配置されると共に、半導体基板
の搬送を行う搬送部(搬送ロボット)533が備えられ
ている。
In the process area 530, there are arranged a pretreatment tank 531 for pretreatment of semiconductor substrate plating and a plating apparatus (plating apparatus using the electrolytic treatment apparatus of the present invention) 532 for copper plating treatment. In addition, a transfer unit (transfer robot) 533 that transfers the semiconductor substrate is provided.

【0079】図31は、基板処理装置内の気流の流れを
示す。洗浄・乾燥エリア540においては、配管546
より新鮮な外部空気が取込まれ、高性能フィルタ544
を通してファンにより押込まれ、天井540aよりダウ
ンフローのクリーンエアとして水洗部541、乾燥部5
42の周囲に供給される。供給されたクリーンエアの大
部分は、床540bより循環配管545により天井54
0a側に戻され、再び高性能フィルタ544を通してフ
ァンにより押込まれて、洗浄・乾燥エリア540内に循
環する。一部の気流は、水洗部541及び乾燥部542
内からダクト552を通って排気される。
FIG. 31 shows the flow of airflow in the substrate processing apparatus. In the cleaning / drying area 540, piping 546
Fresher external air is taken in and high performance filter 544
Is pressed by a fan through the ceiling 540a, and the washing section 541 and the drying section 5 are provided as clean air having a downflow from the ceiling 540a.
It is supplied around 42. Most of the clean air supplied is supplied from the floor 540b to the ceiling 54 through the circulation pipe 545.
It is returned to the 0a side, pushed again by the fan through the high-performance filter 544, and circulates in the cleaning / drying area 540. Part of the airflow is the washing part 541 and the drying part 542.
The air is exhausted from the inside through the duct 552.

【0080】プロセスエリア530は、ウエットゾーン
といいながらも、半導体基板表面にパーティクルが付着
することは許されない。このためプロセスエリア530
内に天井530aより、ファンにより押込まれて高性能
フィルタ533を通してダウンフローのクリーンエアを
流すことにより、半導体基板にパーティクルが付着する
ことを防止している。
Although the process area 530 is called a wet zone, particles are not allowed to adhere to the surface of the semiconductor substrate. Therefore, the process area 530
Particles are prevented from adhering to the semiconductor substrate by being pushed in by a fan from the ceiling 530a and flowing down-flow clean air through the high-performance filter 533.

【0081】しかしながら、ダウンフローを形成するク
リーンエアの全流量を外部からの給排気に依存すると、
膨大な給排気量が必要となる。このため、室内を負圧に
保つ程度の排気のみをダクト553よりの外部排気と
し、ダウンフローの大部分の気流を、配管534、53
5を通した循環気流でまかなうようにしている。
However, if the total flow rate of the clean air that forms the downflow depends on the supply / exhaust from the outside,
A huge amount of air supply and exhaust is required. For this reason, only the exhaust that maintains the negative pressure in the room is used as the external exhaust from the duct 553, and most of the downflow air is supplied to the pipes 534 and 53.
Circulating airflow through 5 is used to cover the situation.

【0082】循環気流とした場合に、プロセスエリア5
30を通過したクリーンエアは、薬液ミストや気体を含
むため、これをスクラバ536及びミトセパレータ53
7,538を通して除去する。これにより天井530a
側の循環ダクト534に戻ったエアは、薬液ミストや気
体を含まないものとなり、再びファンにより押込まれて
高性能フィルタ533を通ってプロセスエリア530内
にクリーンエアとして循環する。
When the circulating air flow is used, the process area 5
The clean air that has passed through 30 contains the chemical liquid mist and gas, so the clean air is passed through the scrubber 536 and the mito separator 53.
Remove through 7,538. As a result, the ceiling 530a
The air that has returned to the side circulation duct 534 does not contain the chemical mist or gas, is pushed again by the fan, passes through the high-performance filter 533, and circulates in the process area 530 as clean air.

【0083】床部530bよりプロセスエリア530内
を通ったエアの一部は、ダクト553を通って外部に排
出され、薬液ミストや気体を含むエアがダクト553を
通って外部に排出される。天井530aのダクト539
からは、これらの排気量に見合った新鮮な空気がプロセ
スエリア530内に負圧に保った程度に供給される。
A part of the air that has passed through the process area 530 from the floor portion 530b is discharged to the outside through the duct 553, and the air containing the chemical mist and gas is discharged to the outside through the duct 553. Duct 539 on the ceiling 530a
From the above, fresh air corresponding to these exhaust amounts is supplied to the process area 530 to such an extent that the negative pressure is maintained.

【0084】上記のように搬入・搬出エリア520、洗
浄・乾燥エリア540及びプロセスエリア530のそれ
ぞれの圧力は、 (搬入・搬出エリア520の圧力)>(洗浄・乾燥エリ
ア540の圧力)>(プロセスエリア530の圧力) に設定されている。従って、シャッター522,524
(図30参照)を開放すると、これらのエリア間の空気
の流れは、図31に示すように、搬入・搬出エリア52
0、洗浄・乾燥エリア540及びプロセスエリア530
の順に流れる。また、排気はダクト552及び553を
通して、図33に示すように、集合排気ダクト554に
集められる。
As described above, the respective pressures of the loading / unloading area 520, the cleaning / drying area 540 and the process area 530 are as follows: (pressure of loading / unloading area 520)> (pressure of cleaning / drying area 540)> (process Area 530 pressure). Therefore, the shutters 522, 524
When the air flow between these areas is opened (see FIG. 30), the loading / unloading area 52, as shown in FIG.
0, cleaning / drying area 540 and process area 530
Flow in order. Further, the exhaust gas is collected in the collective exhaust duct 554 through the ducts 552 and 553, as shown in FIG.

【0085】図33は、基板処理装置がクリーンルーム
内に配置された一例を示す外観図である。搬入・搬出エ
リア520のカセット受渡し口555と操作パネル55
6のある側面が仕切壁557で仕切られたクリーンルー
ムのクリーン度の高いワーキングゾーン558に露出し
ており、その他の側面は、クリーン度の低いユーティリ
ティゾーン559に収納されている。
FIG. 33 is an external view showing an example in which the substrate processing apparatus is arranged in a clean room. Cassette delivery port 555 and operation panel 55 in the loading / unloading area 520
A side face 6 is exposed to a working zone 558 having a high cleanliness of a clean room partitioned by a partition wall 557, and the other side faces are housed in a utility zone 559 having a low cleanness.

【0086】上記のように、洗浄・乾燥エリア540と
搬入・搬出エリア520とプロセスエリア530の間に
配置し、搬入・搬出エリア520と洗浄・乾燥エリア5
40の間及び洗浄・乾燥エリア540とプロセスエリア
530の間にはそれぞれ隔壁521,523を設けたの
で、ワーキングゾーン558から乾燥した状態でカセッ
ト受渡し口555を通して半導体基板配線用の基板処理
装置内に搬入される半導体基板は、基板処理装置内でめ
っき処理され、洗浄・乾燥した状態でワーキングゾーン
558に搬出されるので、半導体基板面にはパーティク
ルやミストが付着することなく、且つクリーンルーム内
のクリーン度の高いワーキングゾーン558をパーティ
クルや薬液や洗浄液ミストで汚染することはない。
As described above, the cleaning / drying area 540, the loading / unloading area 520, and the process area 530 are arranged, and the loading / unloading area 520 and the cleaning / drying area 5 are arranged.
40 and between the cleaning / drying area 540 and the process area 530 are provided with partition walls 521 and 523, respectively. Therefore, in a dry state from the working zone 558 through the cassette delivery port 555 into the substrate processing apparatus for semiconductor substrate wiring. The semiconductor substrate to be carried in is plated in the substrate processing apparatus, and is carried out to the working zone 558 in a cleaned and dried state, so that the surface of the semiconductor substrate is free from particles and mist and is clean in a clean room. The highly frequent working zone 558 is not contaminated with particles, chemicals, or cleaning liquid mist.

【0087】なお、図30及び図31では、基板処理装
置が搬入・搬出エリア520、洗浄・乾燥エリア54
0、プロセスエリア530を具備する例を示したが、プ
ロセスエリア530内又はプロセスエリア530に隣接
してCMP装置を配置するエリアを設け、該プロセスエ
リア530又はCMP装置を配置するエリアと搬入・搬
出エリア520の間に洗浄・乾燥エリア540を配置す
るように構成しても良い。要は、半導体基板配線用の基
板処理装置に半導体基板が乾燥状態で搬入され、めっき
処理の終了した半導体基板が洗浄され、乾燥した状態で
排出される構成であればよい。
In FIGS. 30 and 31, the substrate processing apparatus has a loading / unloading area 520 and a cleaning / drying area 54.
0, the example in which the process area 530 is provided is shown, but an area in which the CMP device is arranged is provided in the process area 530 or adjacent to the process area 530, and the process area 530 or the area in which the CMP device is arranged and the carry-in / carry-out. A cleaning / drying area 540 may be arranged between the areas 520. The point is that the semiconductor substrate may be loaded into the substrate processing apparatus for wiring the semiconductor substrate in a dry state, and the semiconductor substrate after the plating process may be washed and discharged in a dry state.

【0088】上記例では、基板処理装置を半導体基板配
線用のめっき装置を例に説明したが、基板は半導体基板
に限定されるものではなく、まためっき処理する部分も
基板面上に形成された配線部に限定されるものではな
い。また、上記例では銅めっきを例に説明したが、銅め
っきに限定されるものではない。
In the above example, the substrate processing apparatus has been described by taking the plating apparatus for semiconductor substrate wiring as an example. However, the substrate is not limited to the semiconductor substrate, and the portion to be plated is also formed on the substrate surface. It is not limited to the wiring part. Further, in the above example, copper plating was described as an example, but the invention is not limited to copper plating.

【0089】図34は、半導体基板配線用の他の基板処
理装置の平面構成を示す図である。図示するように、半
導体基板配線用の基板処理装置は、半導体基板を搬入す
る搬入部601、銅めっきを行う銅めっき装置(本発明
の電解処理装置を用いてなるめっき装置)602、水洗
浄を行う水洗槽603,604、化学機械研磨(CM
P)を行うCMP部605、水洗槽606,607、乾
燥槽608及び配線層形成が終了した半導体基板を搬出
する搬出部609を具備し、これら各槽に半導体基板を
移送する図示しない基板移送手段が1つの装置として配
置され、半導体基板配線用の基板処理装置を構成してい
る。
FIG. 34 is a diagram showing a planar structure of another substrate processing apparatus for wiring a semiconductor substrate. As shown in the figure, a substrate processing apparatus for wiring a semiconductor substrate includes a carry-in section 601 for carrying in a semiconductor substrate, a copper plating apparatus for performing copper plating (plating apparatus using the electrolytic processing apparatus of the present invention) 602, and water washing. Washing tanks 603, 604, chemical mechanical polishing (CM
PMP part 605 for performing P), water washing tanks 606 and 607, a drying tank 608, and a carry-out section 609 for carrying out the semiconductor substrate on which the wiring layer formation has been completed. Are arranged as one device to form a substrate processing device for semiconductor substrate wiring.

【0090】上記配置構成の基板処理装置において、基
板移送手段により、搬入部601に載置された基板カセ
ット601−1から、配線層が形成されていない半導体
基板を取り出し、銅めっき装置602に移送する。該銅
めっき装置602において、配線溝や配線孔(コンタク
トホール)からなる配線部を含む半導体基板Wの表面上
に銅めっき層を形成する。
In the substrate processing apparatus having the above arrangement, the substrate transfer means takes out the semiconductor substrate on which the wiring layer is not formed from the substrate cassette 601-1 placed on the carry-in section 601 and transfers it to the copper plating device 602. To do. In the copper plating apparatus 602, a copper plating layer is formed on the surface of the semiconductor substrate W including the wiring portion including wiring grooves and wiring holes (contact holes).

【0091】前記銅めっき装置602で銅めっき層の形
成が終了した半導体基板Wを、基板移送手段で水洗槽6
03及び水洗槽604に移送し、水洗を行う。続いて該
水洗浄の終了した半導体基板Wを基板移送手段でCMP
部605に移送し、該CMP部605で、銅めっき層か
ら配線溝や配線孔に形成した銅めっき層を残して半導体
基板Wの表面上の銅めっき層を除去する。
The semiconductor substrate W, on which the copper plating layer has been formed by the copper plating apparatus 602, is washed by the substrate transfer means with a water bath 6.
03 and the washing tank 604 to wash with water. Subsequently, the semiconductor substrate W, which has been washed with water, is subjected to CMP by the substrate transfer means.
Then, the CMP section 605 removes the copper plating layer on the surface of the semiconductor substrate W in the CMP section 605, leaving the copper plating layer formed in the wiring groove and the wiring hole from the copper plating layer.

【0092】続いて上記のように銅めっき層から配線溝
や配線孔からなる配線部に形成した銅めっき層を残して
半導体基板Wの表面上の不要の銅めっき層の除去が終了
した半導体基板Wを、基板移送手段で水洗槽606及び
水洗槽607に送り、水洗浄し、更に水洗浄の終了した
半導体基板Wは乾燥槽608で乾燥させ、乾燥の終了し
た半導体基板Wを配線層の形成の終了した半導体基板と
して、搬出部609の基板カセット609−1に格納す
る。
Subsequently, the semiconductor substrate in which the unnecessary copper plating layer on the surface of the semiconductor substrate W has been removed leaving the copper plating layer formed in the wiring portion including the wiring groove and the wiring hole from the copper plating layer as described above. W is sent to the washing tank 606 and the washing tank 607 by the substrate transfer means, washed with water, and the semiconductor substrate W that has been washed with water is dried in the drying tank 608, and the dried semiconductor substrate W is formed into a wiring layer. The finished semiconductor substrate is stored in the substrate cassette 609-1 of the carry-out section 609.

【0093】[0093]

【発明の効果】以上詳細に説明したように、本発明によ
れば、電解液中に没した陽極と陰極との間の電気抵抗を
高抵抗構造体を介して電解液のみからなる場合よりも高
くして、被処理基板表面の電気抵抗による電流密度の面
内差を小さくすることができ、これによって、電解処理
による被処理基板の面内均一性をより高めることができ
る。
As described above in detail, according to the present invention, the electric resistance between the anode and the cathode submerged in the electrolytic solution is higher than that in the case where only the electrolytic solution is provided through the high resistance structure. By increasing the height, the in-plane difference in the current density due to the electric resistance on the surface of the substrate to be processed can be reduced, and thereby the in-plane uniformity of the substrate to be processed by the electrolytic treatment can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の電解めっき装置の概要図である。FIG. 1 is a schematic diagram of a conventional electrolytic plating apparatus.

【図2】図1に示す電解めっき装置の電気的等価回路図
である。
2 is an electrical equivalent circuit diagram of the electrolytic plating apparatus shown in FIG.

【図3】図1に示す電解めっき装置を使用して異なる膜
厚の導電層を形成した基板に銅の電解めっきを施した時
の基板面内におけるめっき膜の膜厚分布を示す図であ
る。
FIG. 3 is a diagram showing a film thickness distribution of a plating film in a substrate surface when electrolytic plating of copper is performed on a substrate on which conductive layers having different thicknesses are formed by using the electrolytic plating apparatus shown in FIG. .

【図4】図1に示す電解めっき装置を使用して異なる大
きさの基板に銅の電解めっきを施した時の基板面内にお
けるめっき膜の膜厚分布を示す図である。
FIG. 4 is a diagram showing a film thickness distribution of a plating film in a substrate surface when copper electrolytic plating is applied to substrates of different sizes using the electrolytic plating apparatus shown in FIG.

【図5】本発明の第1の実施の形態の電解めっき装置に
適用した電解処理装置の要部概要図である。
FIG. 5 is a schematic view of a main part of an electrolytic treatment apparatus applied to the electrolytic plating apparatus according to the first embodiment of the present invention.

【図6】図5に示す電解めっき装置の電気的等価回路図
である。
6 is an electrically equivalent circuit diagram of the electrolytic plating apparatus shown in FIG.

【図7】図5に示す電解めっき装置と従来の電解めっき
装置でめっきを施した時の基板面内におけるめっき膜の
膜厚分布を示す図である。
FIG. 7 is a diagram showing a film thickness distribution of a plated film in a substrate surface when plating is performed by the electrolytic plating apparatus shown in FIG. 5 and a conventional electrolytic plating apparatus.

【図8】本発明の第2の実施の形態の電解めっき装置に
適用した電解処理装置の要部概要図である。
FIG. 8 is a schematic view of a main part of an electrolytic treatment apparatus applied to an electrolytic plating apparatus according to a second embodiment of the present invention.

【図9】本発明の第3の実施の形態の電解めっき装置に
適用した電解処理装置の要部概要図である。
FIG. 9 is a schematic view of a main part of an electrolytic treatment apparatus applied to an electrolytic plating apparatus according to a third embodiment of the present invention.

【図10】SR光エッチング技術によってPTFE樹脂
板に貫通孔を設ける方法を示す概略図である。
FIG. 10 is a schematic view showing a method of forming a through hole in a PTFE resin plate by SR photo-etching technology.

【図11】フッ素系高分子材料24を示す図であり、図
11(a)は概略斜視図、図11(b)は要部拡大断面
図である。
11A and 11B are diagrams showing a fluorinated polymer material 24. FIG. 11A is a schematic perspective view and FIG. 11B is an enlarged sectional view of a main part.

【図12】本発明の電解処理装置を備えた基板処理装置
の全体を示す平面図である。
FIG. 12 is a plan view showing an entire substrate processing apparatus including the electrolytic processing apparatus of the present invention.

【図13】めっきユニット212を示す平面図である。FIG. 13 is a plan view showing a plating unit 212.

【図14】図13のA−A線断面図である。14 is a cross-sectional view taken along the line AA of FIG.

【図15】基板保持部236とカソード部238の拡大
断面図である。
FIG. 15 is an enlarged cross-sectional view of a substrate holding portion 236 and a cathode portion 238.

【図16】図13の正面図である。FIG. 16 is a front view of FIG.

【図17】図13の右側面図である。FIG. 17 is a right side view of FIG.

【図18】図13の背面図である。FIG. 18 is a rear view of FIG.

【図19】図13の左側面図である。FIG. 19 is a left side view of FIG.

【図20】プレコート・回収アーム232を示す正面図
である。
FIG. 20 is a front view showing a precoat / recovery arm 232.

【図21】基板保持部236の平面図である。FIG. 21 is a plan view of the substrate holder 236.

【図22】図21のB−B線断面図である。22 is a cross-sectional view taken along the line BB of FIG.

【図23】図21のC−C線断面図である。23 is a cross-sectional view taken along the line CC of FIG.

【図24】カソード部238の平面図である。FIG. 24 is a plan view of the cathode portion 238.

【図25】図24のD−D線断面図である。25 is a cross-sectional view taken along line DD of FIG.

【図26】電極アーム部230の平面図である。FIG. 26 is a plan view of an electrode arm portion 230.

【図27】図26の縦断正面図である。27 is a vertical sectional front view of FIG. 26. FIG.

【図28】図26のE−E線断面図である。28 is a cross-sectional view taken along the line EE of FIG.

【図29】図28の一部を拡大して示す拡大図である。FIG. 29 is an enlarged view showing a part of FIG. 28 in an enlarged manner.

【図30】本発明の電解処理装置を備えた他の基板処理
装置の平面配置図である。
FIG. 30 is a plan layout view of another substrate processing apparatus including the electrolytic processing apparatus of the present invention.

【図31】図30に示す基板処理装置内の気流の流れを
示す図である。
FIG. 31 is a diagram showing the flow of airflow in the substrate processing apparatus shown in FIG. 30.

【図32】図30に示す基板処理装置の各エリア間の空
気の流れを示す図である。
FIG. 32 is a diagram showing an air flow between areas of the substrate processing apparatus shown in FIG. 30.

【図33】図30に示す基板処理装置をクリーンルーム
内に配置した一例を示す外観図である。
33 is an external view showing an example in which the substrate processing apparatus shown in FIG. 30 is arranged in a clean room.

【図34】他の基板処理装置の平面構成図である。FIG. 34 is a plan configuration diagram of another substrate processing apparatus.

【符号の説明】[Explanation of symbols]

W 基板(被処理基板) S 導電層(シード層) 10 めっき液(電解液) 12 めっき槽 14 陽極板 16 めっき液受け 18 リップシール 20 接点 22 高抵抗構造体 24 フッ素系高分子材料 24a 貫通孔 26 めっき電源 30 基板載せ台 32 保持具 34 リップシール 36 接点 38 陽極板 38a 貫通孔 39 めっき液注入口 40 高抵抗構造体 42 フッ素系高分子材料 S1 隙間 44 第1めっき室 S2 隙間 46 第2めっき室 40−1,2 高抵抗構造体 42−1,2 フッ素系高分子材料 45 ブラックフィルム W substrate (substrate to be processed) S conductive layer (seed layer) 10 Plating solution (electrolytic solution) 12 plating tank 14 Anode plate 16 Plating solution receiver 18 lip seal 20 contacts 22 High resistance structure 24 Fluoropolymer material 24a through hole 26 Plating power supply 30 board mount 32 Holder 34 Lip Seal 36 contacts 38 Anode plate 38a through hole 39 Plating solution inlet 40 High resistance structure 42 Fluorine-based polymer material S1 gap 44 First plating room S2 gap 46 Second plating room 40-1, High resistance structure 42-1, Fluorine-based polymer material 45 black film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K024 AA09 AB02 AB15 BA11 BB12 BC10 CA06 CB06 CB07 CB21 CB26 DA04 DB10 GA16 4M104 BB09 DD52    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K024 AA09 AB02 AB15 BA11 BB12                       BC10 CA06 CB06 CB07 CB21                       CB26 DA04 DB10 GA16                 4M104 BB09 DD52

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極の一方の電極との接点を持つ
被処理基板と該被処理基板に対峙させた他方の電極との
間に満たした電解液の少なくとも一部に該電解液の電気
伝導率より低い電気伝導率の高抵抗構造体を設けて被処
理基板表面の電解処理を行なう電解処理方法において、 前記高抵抗構造体としてフッ素系高分子材料を用いたこ
とを特徴とする電解処理方法。
1. At least a part of an electrolytic solution filled between a substrate to be processed having a contact point between one electrode of an anode and a cathode and the other electrode facing the substrate to be processed, and at least a part of the electrolyte of the electrolytic solution. In an electrolytic treatment method of providing a high resistance structure having an electric conductivity lower than that of conductivity to perform an electrolytic treatment of a surface of a substrate to be processed, an electrolytic treatment characterized by using a fluorine-based polymer material as the high resistance structure. Method.
【請求項2】 前記フッ素系高分子材料からなる高抵抗
構造体には、シンクロトロン光による微細加工によって
前記他方の電極から被処理基板方向に向けて多数の貫通
孔を設けていることを特徴とする請求項1記載の電解処
理方法。
2. The high resistance structure made of the fluorine-based polymer material is provided with a large number of through holes from the other electrode toward the substrate to be processed by fine processing using synchrotron light. The electrolytic treatment method according to claim 1.
【請求項3】 前記他方の電極と被処理基板間に電流を
流した際の被処理基板表面の状態が所望の処理状態とな
るように、前記貫通孔の分布及び/又は内径を制御する
ことによって、被処理基板表面各部の電解処理状態を所
望の処理状態とすることを特徴とする請求項2記載の電
解処理方法。
3. The distribution and / or inner diameter of the through holes is controlled so that the surface of the substrate to be processed is in a desired processing state when a current is applied between the other electrode and the substrate to be processed. 3. The electrolytic treatment method according to claim 2, wherein the electrolytic treatment state of each part of the surface of the substrate to be treated is set to a desired treatment state.
【請求項4】 陽極と陰極の一方の電極との接点を持つ
被処理基板と該被処理基板に対峙させた他方の電極との
間に満たした電解液の少なくとも一部に該電解液の電気
伝導率より低い電気伝導率の高抵抗構造体を設けて被処
理基板表面の電解処理を行なう電解処理装置において、 前記高抵抗構造体がフッ素系高分子材料によって構成さ
れていることを特徴とする電解処理装置。
4. At least a part of an electrolytic solution filled between a substrate to be processed having a contact point between one electrode of an anode and a cathode and the other electrode facing the substrate to be processed, and at least a part of the electrolytic solution containing electricity. In an electrolytic treatment apparatus for providing a high resistance structure having an electric conductivity lower than that of conductivity to perform an electrolytic treatment of a surface of a substrate to be processed, the high resistance structure is made of a fluorine-based polymer material. Electrolytic treatment equipment.
【請求項5】 前記フッ素系高分子材料からなる高抵抗
構造体には、前記他方の電極から被処理基板方向に向け
て多数の貫通孔が設けられていることを特徴とする請求
項4記載の電解処理装置。
5. The high resistance structure made of a fluoropolymer material is provided with a large number of through holes extending from the other electrode toward the substrate to be processed. Electrolytic treatment equipment.
【請求項6】 前記高抵抗構造体には、親水性を持たす
表面処理が施され、且つ前記電解液が含有されているこ
とを特徴とする請求項5記載の電解処理装置。
6. The electrolytic treatment apparatus according to claim 5, wherein the high resistance structure is surface-treated so as to have hydrophilicity and contains the electrolytic solution.
【請求項7】 前記高抵抗構造体は、少なくとも二層以
上の高抵抗構造体によって構成され、各層の高抵抗構造
体の貫通孔の分布を他層の高抵抗構造体の貫通孔の分布
と異なる分布にしていることを特徴とする請求項5記載
の電解処理装置。
7. The high resistance structure is composed of at least two or more layers of high resistance structure, and the distribution of the through holes of the high resistance structure of each layer is defined as the distribution of the through holes of the high resistance structure of another layer. The electrolytic processing apparatus according to claim 5, wherein the electrolytic processing apparatuses have different distributions.
JP2002066909A 2002-03-12 2002-03-12 Method and apparatus for electrolytic treatment Pending JP2003268591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066909A JP2003268591A (en) 2002-03-12 2002-03-12 Method and apparatus for electrolytic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066909A JP2003268591A (en) 2002-03-12 2002-03-12 Method and apparatus for electrolytic treatment

Publications (1)

Publication Number Publication Date
JP2003268591A true JP2003268591A (en) 2003-09-25

Family

ID=29198485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066909A Pending JP2003268591A (en) 2002-03-12 2002-03-12 Method and apparatus for electrolytic treatment

Country Status (1)

Country Link
JP (1) JP2003268591A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342062C (en) * 2003-12-01 2007-10-10 株式会社东芝 Electroplate device, electroplate method and method for manufacturing semiconductor device
WO2010144330A2 (en) * 2009-06-09 2010-12-16 Novellus Systems, Inc. Method and apparatus for electroplating
US7967969B2 (en) 2000-05-10 2011-06-28 Novellus Systems, Inc. Method of electroplating using a high resistance ionic current source
US8308931B2 (en) 2006-08-16 2012-11-13 Novellus Systems, Inc. Method and apparatus for electroplating
US8475637B2 (en) 2008-12-17 2013-07-02 Novellus Systems, Inc. Electroplating apparatus with vented electrolyte manifold
US8540857B1 (en) 2008-12-19 2013-09-24 Novellus Systems, Inc. Plating method and apparatus with multiple internally irrigated chambers
US8623193B1 (en) 2004-06-16 2014-01-07 Novellus Systems, Inc. Method of electroplating using a high resistance ionic current source
US8858774B2 (en) 2008-11-07 2014-10-14 Novellus Systems, Inc. Electroplating apparatus for tailored uniformity profile
US9394620B2 (en) 2010-07-02 2016-07-19 Novellus Systems, Inc. Control of electrolyte hydrodynamics for efficient mass transfer during electroplating
US9449808B2 (en) 2013-05-29 2016-09-20 Novellus Systems, Inc. Apparatus for advanced packaging applications
US9523155B2 (en) 2012-12-12 2016-12-20 Novellus Systems, Inc. Enhancement of electrolyte hydrodynamics for efficient mass transfer during electroplating
US9567685B2 (en) 2015-01-22 2017-02-14 Lam Research Corporation Apparatus and method for dynamic control of plated uniformity with the use of remote electric current
US9624592B2 (en) 2010-07-02 2017-04-18 Novellus Systems, Inc. Cross flow manifold for electroplating apparatus
US9670588B2 (en) 2013-05-01 2017-06-06 Lam Research Corporation Anisotropic high resistance ionic current source (AHRICS)
US9752248B2 (en) 2014-12-19 2017-09-05 Lam Research Corporation Methods and apparatuses for dynamically tunable wafer-edge electroplating
US9816194B2 (en) 2015-03-19 2017-11-14 Lam Research Corporation Control of electrolyte flow dynamics for uniform electroplating
US9822461B2 (en) 2006-08-16 2017-11-21 Novellus Systems, Inc. Dynamic current distribution control apparatus and method for wafer electroplating
US9909228B2 (en) 2012-11-27 2018-03-06 Lam Research Corporation Method and apparatus for dynamic current distribution control during electroplating
US9988733B2 (en) 2015-06-09 2018-06-05 Lam Research Corporation Apparatus and method for modulating azimuthal uniformity in electroplating
US10014170B2 (en) 2015-05-14 2018-07-03 Lam Research Corporation Apparatus and method for electrodeposition of metals with the use of an ionically resistive ionically permeable element having spatially tailored resistivity
US10094034B2 (en) 2015-08-28 2018-10-09 Lam Research Corporation Edge flow element for electroplating apparatus
US10233556B2 (en) 2010-07-02 2019-03-19 Lam Research Corporation Dynamic modulation of cross flow manifold during electroplating
US10364505B2 (en) 2016-05-24 2019-07-30 Lam Research Corporation Dynamic modulation of cross flow manifold during elecroplating
US10781527B2 (en) 2017-09-18 2020-09-22 Lam Research Corporation Methods and apparatus for controlling delivery of cross flowing and impinging electrolyte during electroplating
US11001934B2 (en) 2017-08-21 2021-05-11 Lam Research Corporation Methods and apparatus for flow isolation and focusing during electroplating

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7967969B2 (en) 2000-05-10 2011-06-28 Novellus Systems, Inc. Method of electroplating using a high resistance ionic current source
CN100342062C (en) * 2003-12-01 2007-10-10 株式会社东芝 Electroplate device, electroplate method and method for manufacturing semiconductor device
US8623193B1 (en) 2004-06-16 2014-01-07 Novellus Systems, Inc. Method of electroplating using a high resistance ionic current source
US10023970B2 (en) 2006-08-16 2018-07-17 Novellus Systems, Inc. Dynamic current distribution control apparatus and method for wafer electroplating
US9822461B2 (en) 2006-08-16 2017-11-21 Novellus Systems, Inc. Dynamic current distribution control apparatus and method for wafer electroplating
US8308931B2 (en) 2006-08-16 2012-11-13 Novellus Systems, Inc. Method and apparatus for electroplating
US8858774B2 (en) 2008-11-07 2014-10-14 Novellus Systems, Inc. Electroplating apparatus for tailored uniformity profile
US10920335B2 (en) 2008-11-07 2021-02-16 Novellus Systems, Inc. Electroplating apparatus for tailored uniformity profile
US11549192B2 (en) 2008-11-07 2023-01-10 Novellus Systems, Inc. Electroplating apparatus for tailored uniformity profile
US10017869B2 (en) 2008-11-07 2018-07-10 Novellus Systems, Inc. Electroplating apparatus for tailored uniformity profile
US9260793B2 (en) 2008-11-07 2016-02-16 Novellus Systems, Inc. Electroplating apparatus for tailored uniformity profile
US9309604B2 (en) 2008-11-07 2016-04-12 Novellus Systems, Inc. Method and apparatus for electroplating
US8475637B2 (en) 2008-12-17 2013-07-02 Novellus Systems, Inc. Electroplating apparatus with vented electrolyte manifold
US8540857B1 (en) 2008-12-19 2013-09-24 Novellus Systems, Inc. Plating method and apparatus with multiple internally irrigated chambers
CN102459717B (en) * 2009-06-09 2014-12-10 诺发系统有限公司 Method and apparatus for electroplating
WO2010144330A2 (en) * 2009-06-09 2010-12-16 Novellus Systems, Inc. Method and apparatus for electroplating
WO2010144330A3 (en) * 2009-06-09 2011-03-03 Novellus Systems, Inc. Method and apparatus for electroplating
CN102459717A (en) * 2009-06-09 2012-05-16 诺发系统有限公司 Method and apparatus for electroplating
US9624592B2 (en) 2010-07-02 2017-04-18 Novellus Systems, Inc. Cross flow manifold for electroplating apparatus
US10190230B2 (en) 2010-07-02 2019-01-29 Novellus Systems, Inc. Cross flow manifold for electroplating apparatus
US9394620B2 (en) 2010-07-02 2016-07-19 Novellus Systems, Inc. Control of electrolyte hydrodynamics for efficient mass transfer during electroplating
US9464361B2 (en) 2010-07-02 2016-10-11 Novellus Systems, Inc. Control of electrolyte hydrodynamics for efficient mass transfer during electroplating
US10233556B2 (en) 2010-07-02 2019-03-19 Lam Research Corporation Dynamic modulation of cross flow manifold during electroplating
US9909228B2 (en) 2012-11-27 2018-03-06 Lam Research Corporation Method and apparatus for dynamic current distribution control during electroplating
US9834852B2 (en) 2012-12-12 2017-12-05 Novellus Systems, Inc. Enhancement of electrolyte hydrodynamics for efficient mass transfer during electroplating
US10662545B2 (en) 2012-12-12 2020-05-26 Novellus Systems, Inc. Enhancement of electrolyte hydrodynamics for efficient mass transfer during electroplating
US9523155B2 (en) 2012-12-12 2016-12-20 Novellus Systems, Inc. Enhancement of electrolyte hydrodynamics for efficient mass transfer during electroplating
US9670588B2 (en) 2013-05-01 2017-06-06 Lam Research Corporation Anisotropic high resistance ionic current source (AHRICS)
US10301739B2 (en) 2013-05-01 2019-05-28 Lam Research Corporation Anisotropic high resistance ionic current source (AHRICS)
US9449808B2 (en) 2013-05-29 2016-09-20 Novellus Systems, Inc. Apparatus for advanced packaging applications
US9899230B2 (en) 2013-05-29 2018-02-20 Novellus Systems, Inc. Apparatus for advanced packaging applications
US9752248B2 (en) 2014-12-19 2017-09-05 Lam Research Corporation Methods and apparatuses for dynamically tunable wafer-edge electroplating
US9567685B2 (en) 2015-01-22 2017-02-14 Lam Research Corporation Apparatus and method for dynamic control of plated uniformity with the use of remote electric current
US9816194B2 (en) 2015-03-19 2017-11-14 Lam Research Corporation Control of electrolyte flow dynamics for uniform electroplating
US10014170B2 (en) 2015-05-14 2018-07-03 Lam Research Corporation Apparatus and method for electrodeposition of metals with the use of an ionically resistive ionically permeable element having spatially tailored resistivity
US10923340B2 (en) 2015-05-14 2021-02-16 Lam Research Corporation Apparatus and method for electrodeposition of metals with the use of an ionically resistive ionically permeable element having spatially tailored resistivity
US9988733B2 (en) 2015-06-09 2018-06-05 Lam Research Corporation Apparatus and method for modulating azimuthal uniformity in electroplating
US10094034B2 (en) 2015-08-28 2018-10-09 Lam Research Corporation Edge flow element for electroplating apparatus
US10364505B2 (en) 2016-05-24 2019-07-30 Lam Research Corporation Dynamic modulation of cross flow manifold during elecroplating
US11047059B2 (en) 2016-05-24 2021-06-29 Lam Research Corporation Dynamic modulation of cross flow manifold during elecroplating
US11001934B2 (en) 2017-08-21 2021-05-11 Lam Research Corporation Methods and apparatus for flow isolation and focusing during electroplating
US10781527B2 (en) 2017-09-18 2020-09-22 Lam Research Corporation Methods and apparatus for controlling delivery of cross flowing and impinging electrolyte during electroplating

Similar Documents

Publication Publication Date Title
JP2003268591A (en) Method and apparatus for electrolytic treatment
EP1986215B1 (en) Substrate processing apparatus
US6632335B2 (en) Plating apparatus
US6800188B2 (en) Copper plating bath and plating method for substrate using the copper plating bath
KR20030007468A (en) Substrate processing apparatus
US7374646B2 (en) Electrolytic processing apparatus and substrate processing method
US20070158202A1 (en) Plating apparatus and method for controlling plating solution
US20050051437A1 (en) Plating apparatus and plating method
JP2004250785A (en) Electrolytic treatment apparatus and substrate treatment apparatus
US7479213B2 (en) Plating method and plating apparatus
JP2002105695A (en) Plating apparatus and plating method
JP3657173B2 (en) Substrate plating equipment
JP4509968B2 (en) Plating equipment
JP3611545B2 (en) Plating equipment
JP2007254882A (en) Electroplating device and electroplating method
JP3715846B2 (en) Board plating equipment
JP2005146334A (en) Plating method and plating apparatus
JP2002249896A (en) Liquid treating apparatus and method
JP4166131B2 (en) Plating apparatus and plating method
JP3874609B2 (en) Plating method
JP3998689B2 (en) Substrate plating equipment
JP2005264281A (en) Plating apparatus and plating method
JP2005082821A (en) Plating device for substrate
JP2010116601A (en) Electrolytic treatment apparatus
JP2000355798A (en) Substrate plating device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061010

A131 Notification of reasons for refusal

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A02