[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003264511A - Light amplifying method and device, and optical amplification relay system using the device - Google Patents

Light amplifying method and device, and optical amplification relay system using the device

Info

Publication number
JP2003264511A
JP2003264511A JP2002062669A JP2002062669A JP2003264511A JP 2003264511 A JP2003264511 A JP 2003264511A JP 2002062669 A JP2002062669 A JP 2002062669A JP 2002062669 A JP2002062669 A JP 2002062669A JP 2003264511 A JP2003264511 A JP 2003264511A
Authority
JP
Japan
Prior art keywords
optical
transmission line
power
attenuator
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002062669A
Other languages
Japanese (ja)
Other versions
JP3923342B2 (en
Inventor
Kensaku Sekiya
建作 関谷
Nobuyuki Kagi
信行 加木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002062669A priority Critical patent/JP3923342B2/en
Publication of JP2003264511A publication Critical patent/JP2003264511A/en
Application granted granted Critical
Publication of JP3923342B2 publication Critical patent/JP3923342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To flatten the gain of each wavelength by controlling the attenuation quantity of an optical variable attenuator so as to have a slope reverse to a gain slope caused by an SRS from detection results of output power. <P>SOLUTION: A correction circuit 51 calculates the correction value of the attenuation quantity of the optical variable attenuator 45 from the total optical output power detected by an optical power detection circuit 49, and a control circuit 50 controls the attenuation quantity of the optical variable attenuator 45 so as to negate the slope of a gain wavelength characteristic caused by the influence of the SRS by a downstream side optical transmission path 30 and thereby makes the gain of each wavelength uniform at an input port of an optical amplifier of the next stage through the optical transmission path 30 to flatten the gain wavelength characteristic. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、光信号の利得や
出力を波長によらず一定にするために光可変減衰器の減
衰量の調整を行う光増幅方法、その装置およびその装置
を用いた光増幅中継システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an optical amplification method for adjusting the amount of attenuation of an optical variable attenuator in order to make the gain and output of an optical signal constant irrespective of wavelength. The present invention relates to an optical amplification repeater system.

【0002】[0002]

【従来の技術】従来の光増幅中継システムでは、伝送距
離の長距離化、伝送容量の増大に伴い、データトラヒッ
クが急増している。このデータトラヒックの増加は、通
信パフォーマンスの低下を招くこととなる。そこで、こ
の通信パフォーマンスの低下を防止するため、波長多重
伝送(WDM)システムが普及しつつある。
2. Description of the Related Art In a conventional optical amplification repeater system, data traffic is rapidly increasing as the transmission distance becomes longer and the transmission capacity increases. This increase in data traffic leads to deterioration in communication performance. Therefore, in order to prevent the deterioration of the communication performance, a wavelength division multiplexing (WDM) system is becoming popular.

【0003】このようなWDMシステムは、例えば図1
2に示すように、送信端局装置10と、受信端局装置2
0と、この送信端局装置10と受信端局装置20を接続
させる光ファイバ伝送路(以下、「光伝送路」という)
30と、この光ファイバ伝送路30上に数段設けられた
光増幅装置40とから構成され、1心の光伝送路30に
波長の異なる複数の光信号を同時に伝送するものがあ
る。
Such a WDM system is shown in FIG.
2, the transmitting terminal station device 10 and the receiving terminal station device 2
0, and an optical fiber transmission line for connecting the transmitting terminal device 10 and the receiving terminal device 20 (hereinafter referred to as "optical transmission line")
There is one that is composed of a plurality of optical amplification devices 40 provided on the optical fiber transmission line 30 and several optical signals having different wavelengths are simultaneously transmitted to the optical transmission line 30 of one core.

【0004】すなわち、このシステムでは、送信端局装
置10の各光送信器111〜11n(nは任意の整数)
がそれぞれ異なる波長λ1〜λnで送信された複数の光
信号を、光カプラやWDMカプラやアレイ導波路型光分
波器(AWG)等からなる光合波器12で波長多重し
て、光増幅装置13で光増幅した後に、シングルモード
光ファイバ(SMF)や分散シフト光ファイバ(DS
F)からなる1心の伝送路30に送信している。この多
重された光信号は、例えばエルビウム添加ファイバ増幅
器(EDFA)やツリウム添加ファイバ増幅器(TDF
A)や半導体光増幅器(SOA)等からなる数段の光増
幅装置40を経て、受信端局装置20へ伝送すること
で、ハイパワーの光信号伝送を行い、長距離および大容
量伝送を実現していた。
That is, in this system, each of the optical transmitters 111 to 11n (n is an arbitrary integer) of the transmission terminal station device 10.
A plurality of optical signals transmitted at different wavelengths λ1 to λn by an optical multiplexer 12 including an optical coupler, a WDM coupler, an arrayed waveguide type optical demultiplexer (AWG), etc. After the optical amplification at 13, the single mode optical fiber (SMF) or dispersion shift optical fiber (DS
It is transmitted to one transmission line 30 composed of F). This multiplexed optical signal is, for example, an erbium-doped fiber amplifier (EDFA) or a thulium-doped fiber amplifier (TDF).
A) and a semiconductor optical amplifier (SOA), etc. are passed through several stages of optical amplifying devices 40, and then transmitted to the receiving terminal station device 20, thereby performing high-power optical signal transmission and realizing long-distance and large-capacity transmission. Was.

【0005】受信端局装置20では、光増幅装置21を
介し光分波器22によって、この多重された光信号を分
波し、波長λ1〜λn毎に光受信器231〜23nへ送
出するものがあった。
In the receiving terminal station device 20, the multiplexed optical signal is demultiplexed by the optical demultiplexer 22 via the optical amplifying device 21 and sent to the optical receivers 231 to 23n for each wavelength λ1 to λn. was there.

【0006】このシステムに用いられる光増幅装置40
は、例えば図13に示すように、光ファイバ増幅部(以
下、「光増幅部」という)41,42を備えている。こ
の光増幅部41,42は、自動利得制御回路(以下、
「AGC」という)43や自動光出力制御回路(以下、
「ALC」という)44によって制御され、多重された
光信号を一括して増幅することで、光伝送路30の伝送
損失を補償している。
Optical amplifier 40 used in this system
For example, as shown in FIG. 13, the optical fiber amplifier section (hereinafter referred to as “optical amplifier section”) 41, 42 is provided. The optical amplifying units 41 and 42 include automatic gain control circuits (hereinafter,
"AGC" 43 and automatic light output control circuit (hereinafter,
The transmission loss of the optical transmission line 30 is compensated for by collectively amplifying the multiplexed optical signal controlled by “ALC” 44.

【0007】この光増幅装置40では、光増幅部41,
42間に光可変減衰器45が接続されている。そして、
この光増幅装置40では、光分波器46,47で分波さ
れた光信号における光増幅器の光入力パワーP1と光出
力パワーP4を、光パワー検出回路48,49で検出し
ており、制御回路50は、光増幅部41の利得G1と光
増幅部42の利得G2の総和が一定になるように、この
光可変減衰器45の減衰量Aを制御している。
In this optical amplifier 40, the optical amplifiers 41,
An optical variable attenuator 45 is connected between 42. And
In this optical amplifier 40, the optical input power P1 and the optical output power P4 of the optical amplifier in the optical signals demultiplexed by the optical demultiplexers 46 and 47 are detected by the optical power detection circuits 48 and 49, and control is performed. The circuit 50 controls the attenuation amount A of the optical variable attenuator 45 so that the sum of the gain G1 of the optical amplification section 41 and the gain G2 of the optical amplification section 42 becomes constant.

【0008】すなわち、光可変減衰器45の減衰量A
は、光増幅部41の光出力パワーP2と光増幅部42の
光入力パワーP3の差 A=P2−P3 …(1) で求まり、光増幅部41の利得G1は、光増幅部41の
光出力パワーP2と光増幅部41の光入力パワーP1の
差 G1=P2−P1 …(2) で求まり、また、光増幅部42の利得G2は、光増幅部
42の光出力パワーP4と光増幅部42の光入力パワー
P3の差 G2=P4−P3 …(3) で求まる。
That is, the attenuation amount A of the variable optical attenuator 45
Is obtained by the difference A = P2−P3 (1) between the optical output power P2 of the optical amplifier 41 and the optical input power P3 of the optical amplifier 42, and the gain G1 of the optical amplifier 41 is equal to the optical power of the optical amplifier 41. The difference G1 = P2-P1 (2) between the output power P2 and the optical input power P1 of the optical amplifier 41 is obtained, and the gain G2 of the optical amplifier 42 is equal to the optical output power P4 of the optical amplifier 42 and the optical amplification. The difference of the optical input power P3 of the section 42 is obtained by G2 = P4-P3 (3).

【0009】次に、光増幅部41と42の利得は、一定
になるように制御されるので、 G1+G2=C(一定) …(4) となる。ここで(4)式に(2)式と(3)式を代入し
て、光可変減衰器45の減衰量Aを求めると、 (P2−P1)+(P4−P3)=C (P2−P3)+(P4−P1)=C (P2−P3)=C−(P4−P1) となる。したがって、(1)式からAは、 A=C−(P4−P1) …(5) で求まる。
Next, since the gains of the optical amplifiers 41 and 42 are controlled so as to be constant, G1 + G2 = C (constant) (4) Here, by substituting the equations (2) and (3) into the equation (4) to obtain the attenuation amount A of the variable optical attenuator 45, (P2-P1) + (P4-P3) = C (P2- P3) + (P4-P1) = C (P2-P3) = C- (P4-P1). Therefore, A can be obtained from the equation (1) by A = C- (P4-P1) (5).

【0010】ここで、例えば利得の総和G1+G2=2
0[dB]、光入力パワーP1=+2[dBm]、光出
力パワーP4=+18[dBm]とし、これらの値を
(5)式に代入して、光可変減衰器45の減衰量Aを求
めると、 A=20−(18−2) =4[dB] となる。
Here, for example, the total sum of gains G1 + G2 = 2
0 [dB], optical input power P1 = + 2 [dBm], optical output power P4 = + 18 [dBm], and these values are substituted into the equation (5) to obtain the attenuation amount A of the optical variable attenuator 45. Then, A = 20− (18-2) = 4 [dB].

【0011】この従来例における利得波長特性とレベル
ダイヤグラムは、図14(a)〜(c)、図15のよう
に表される。すなわち図14(a)は、光増幅部41の
利得波長特性を示し、図14(b)は、光増幅部42の
利得波長特性を示し、図14(c)は、光増幅部41,
42を多段接続した場合の利得波長特性を示す特性図で
あり、図15は、各部の光パワーを示すレベルダイヤグ
ラムを示す図である。
The gain wavelength characteristic and the level diagram in this conventional example are shown in FIGS. 14 (a) to 14 (c) and FIG. That is, FIG. 14A shows the gain wavelength characteristic of the optical amplifying section 41, FIG. 14B shows the gain wavelength characteristic of the optical amplifying section 42, and FIG. 14C shows the optical amplifying section 41,
FIG. 16 is a characteristic diagram showing a gain wavelength characteristic when 42 is connected in multiple stages, and FIG. 15 is a diagram showing a level diagram showing the optical power of each part.

【0012】これら図から明らかなように、光増幅部4
1では、光パワーP1をP2に増幅する時に、右下がり
の利得の波長特性を得られるように設計されており、光
増幅部42では、光パワーP3をP4に増幅する時に、
右上がりの利得の波長特性を得られるように設計されて
おり、出力端では、これらを合わせて利得波長特性がほ
ぼ平坦になるように設計されていた。また、光可変減衰
器は、利得波長特性を持たず、全波長を一様に光パワー
P2からP3に減衰させている。
As is clear from these figures, the optical amplifier 4
1 is designed so as to obtain a wavelength characteristic of a downward-sloping gain when the optical power P1 is amplified to P2, and the optical amplification section 42, when amplifying the optical power P3 to P4,
It was designed so as to obtain a wavelength characteristic of a gain that rises to the right, and at the output end, these were designed so that the gain wavelength characteristic was almost flat. Further, the variable optical attenuator does not have a gain wavelength characteristic, and attenuates all wavelengths uniformly from the optical power P2 to P3.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記従
来例では、図14(c)の利得波長特性に示すように、
光増幅部41で増幅された光信号の利得波長はほぼ平坦
になるように設計されているが、この光信号が光ファイ
バ伝送路30に伝送されると、非線形光学現象の1つで
あるSRS(Stimulated Raman Sc
attering:誘導ラマン散乱)の影響を受けてし
まう。
However, in the above conventional example, as shown in the gain wavelength characteristic of FIG.
The gain wavelength of the optical signal amplified by the optical amplification section 41 is designed to be substantially flat. However, when this optical signal is transmitted to the optical fiber transmission line 30, SRS which is one of the nonlinear optical phenomena. (Stimulated Raman Sc
attering: stimulated Raman scattering).

【0014】すなわち、SRSは、光ファイバ伝送路中
の光学フォノンとの相互作用によって短波長側の光パワ
ーを長波長側に移行させることから、光ファイバ伝送路
に入射されたWDM光信号は、このSRSの影響によっ
て長波長側の光信号が短波長側の光信号から利得を受け
てしまう。このため、光ファイバ伝送路を伝送した後の
WDM光信号の光パワーは、長波長側の光信号が大きく
なり、その光スペクトラムは、右上がりの波長特性を持
つようになる。
That is, since the SRS shifts the optical power on the short wavelength side to the long wavelength side by the interaction with the optical phonon in the optical fiber transmission line, the WDM optical signal incident on the optical fiber transmission line is Due to the influence of this SRS, the optical signal on the long wavelength side receives a gain from the optical signal on the short wavelength side. For this reason, the optical power of the WDM optical signal after being transmitted through the optical fiber transmission line is large in the optical signal on the long wavelength side, and the optical spectrum thereof has a wavelength characteristic that rises to the right.

【0015】従って、光増幅器を多段接続した光増幅中
継システムでは、多段接続数の増加に伴って短波長側と
長波長側の光パワーの差が大きくなり、短波長側の光信
号のS/Nが劣化してしまい、伝送効率が低下して光信
号の伝送距離が制限されるという問題点があった。
Therefore, in the optical amplification repeater system in which the optical amplifiers are connected in multiple stages, the difference in optical power between the short wavelength side and the long wavelength side increases as the number of multistage connections increases, and the S / of the optical signal on the short wavelength side increases. There is a problem that N is deteriorated, the transmission efficiency is lowered, and the transmission distance of the optical signal is limited.

【0016】また、図16の光出力パワーとWDM光信
号の光スペクトラムの傾きとの関係に示すように、この
光出力パワー(光ファイバ伝送路へ入射するトータル光
パワー)が大きいほど、WDM光信号の光スペクトラム
の傾きは大きくなっていた。
Further, as shown in the relationship between the optical output power and the inclination of the optical spectrum of the WDM optical signal in FIG. 16, the higher the optical output power (total optical power incident on the optical fiber transmission line), the more WDM light The slope of the optical spectrum of the signal was large.

【0017】この発明は、上記問題点に鑑みなされたも
ので、光パワーの検出結果からSRSによって発生する
利得の傾きと逆の傾きを持たせるように光可変減衰器の
減衰量を制御して、各波長における利得の平坦化を図
り、伝送効率を向上できる光増幅方法、その装置および
その装置を用いた光増幅中継システムを提供することを
目的とする。
The present invention has been made in view of the above problems, and controls the attenuation amount of the optical variable attenuator so as to have a slope opposite to the slope of the gain generated by the SRS from the detection result of the optical power. An object of the present invention is to provide an optical amplification method, an apparatus and an optical amplification repeater system using the apparatus, which can flatten the gain at each wavelength and improve the transmission efficiency.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するた
め、この発明では、少なくとも2つの光増幅器と少なく
とも1つの減衰器とが接続され、光伝送路を介して入力
する光信号を前記光増幅器で増幅するとともに、前記光
信号の光パワーを検出し、該検出した光パワーに応じて
前記減衰量を制御する光増幅方法において、前記各光増
幅器の利得の和が前記光伝送路へのトータル光入力パワ
ーに依存する目標値になるように、前記減衰器の減衰量
を制御する制御工程を含むことを特徴とする光増幅方法
が提供される。
In order to achieve the above object, according to the present invention, at least two optical amplifiers and at least one attenuator are connected to each other, and an optical signal input through an optical transmission line is inputted to the optical amplifier. In the optical amplification method in which the optical power of the optical signal is detected and the attenuation amount is controlled according to the detected optical power, the sum of the gains of the optical amplifiers is the total to the optical transmission line. There is provided an optical amplification method including a control step of controlling an attenuation amount of the attenuator so that a target value depends on an optical input power.

【0019】この発明によれば、各光増幅器の利得をG
1,G2とし、この利得G1は光増幅器の光出力パワー
P2と光入力パワーP1の差G1=P2−P1となり、
この利得G2は光増幅器の光出力パワーP4と光入力パ
ワーP3の差G2=P4−P3となり、この和(P2−
P1)+(P4−P3)が、光伝送路へのトータル光入
力パワーに依存する目標値C+ΔLになる(P2−P
1)+(P4−P3)=C+ΔLのようにして(後述す
る(6)式参照)、減衰器の減衰量A=C+ΔL−(P
4−P1)を制御することで、SRSによって発生する
利得の傾きと逆の傾きを持たせ、各波長における利得を
平坦にする。
According to the present invention, the gain of each optical amplifier is set to G
1, G2, and the gain G1 is the difference G1 = P2-P1 between the optical output power P2 and the optical input power P1 of the optical amplifier,
This gain G2 is the difference G2 = P4-P3 between the optical output power P4 and the optical input power P3 of the optical amplifier, and the sum (P2-
P1) + (P4-P3) becomes the target value C + ΔL depending on the total optical input power to the optical transmission line (P2-P
1) + (P4−P3) = C + ΔL (see equation (6) described later), and the attenuation amount A = C + ΔL− (P
By controlling 4-P1), a slope opposite to the slope of the gain generated by the SRS is provided, and the gain at each wavelength is flattened.

【0020】この発明の請求項2では、上記発明におい
て、前記制御工程では、前記光信号を入力させる上流側
前記光伝送路への当該光信号のトータル光入力パワー
と、前記光信号を伝搬させる下流側前記光伝送路への当
該光信号のトータル光入力パワーのうち、少なくとも一
方のトータル光入力パワーに依存する目標値になるよう
に、前記減衰器の減衰量を制御することを特徴とする。
According to a second aspect of the present invention, in the above invention, in the control step, the total optical input power of the optical signal to the upstream optical transmission line to which the optical signal is input and the optical signal are propagated. It is characterized in that the attenuation amount of the attenuator is controlled so that the target value depends on at least one total optical input power of the total optical input power of the optical signal to the downstream side optical transmission line. .

【0021】この発明によれば、減衰量を上流側の光伝
送路への光信号の各波長のトータル光入力パワーまたは
/および下流側の光伝送路への光信号の各波長のトータ
ル光入力パワーに依存する目標値に制御することによ
り、利得を均一にし、安定した光伝送を行う。
According to the present invention, the amount of attenuation is the total optical input power of each wavelength of the optical signal to the upstream optical transmission line and / or the total optical input of each wavelength of the optical signal to the downstream optical transmission line. By controlling to a target value that depends on power, the gain is made uniform and stable optical transmission is performed.

【0022】この発明の請求項3では、少なくとも2つ
の光増幅器と少なくとも1つの減衰器と分散補償型光伝
送路とが接続され、光伝送路を介して入力する光信号を
前記光増幅器で増幅するとともに、前記光信号の光パワ
ーを検出し、該検出した光パワーに応じて前記減衰量を
制御する光増幅方法において、前記各光増幅器の利得の
和が前記光伝送路へのトータル光入力パワーおよび前記
分散補償型光伝送路へのトータル光入力パワーに依存す
る目標値になるように、前記減衰器の減衰量を制御する
制御工程を含むことを特徴とする光増幅方法が提供され
る。
According to a third aspect of the present invention, at least two optical amplifiers, at least one attenuator and a dispersion compensating optical transmission line are connected, and an optical signal input via the optical transmission line is amplified by the optical amplifier. In addition, in the optical amplification method of detecting the optical power of the optical signal and controlling the attenuation amount according to the detected optical power, the sum of the gains of the optical amplifiers is the total optical input to the optical transmission line. An optical amplification method is provided, which includes a control step of controlling an attenuation amount of the attenuator so that a target value depends on power and total optical input power to the dispersion-compensated optical transmission line. .

【0023】この発明によれば、各光増幅器の利得の和
が光伝送路へのトータル光入力パワーの他に、分散補償
型光伝送路へのトータル光入力パワーに依存する目標値
になるようにすることで、SRSによって発生する利得
の傾きと逆の傾きを持たせ、各波長における利得を平坦
にする。
According to the present invention, the sum of the gains of the optical amplifiers becomes a target value that depends on the total optical input power to the dispersion compensation type optical transmission line in addition to the total optical input power to the optical transmission line. In this way, the gain has a slope opposite to the slope of the gain generated by the SRS, and the gain at each wavelength is flattened.

【0024】この発明の請求項4では、上記発明におい
て、前記制御工程では、前記光信号を入力させる上流側
の前記光伝送路への当該光信号のトータル光入力パワー
と、前記光信号を伝搬させる下流側の前記光伝送路への
当該光信号のトータル光入力パワーのうち、少なくとも
一方のトータル光入力パワーおよび前記分散補償型光伝
送路へのトータル光入力パワーに依存する目標値になる
ように、前記減衰器の減衰量を制御することを特徴とす
る。
According to a fourth aspect of the present invention, in the above invention, in the control step, the total optical input power of the optical signal to the optical transmission path on the upstream side for inputting the optical signal and the optical signal are propagated. Of the total optical input power of the optical signal to the downstream optical transmission line, the target value depends on at least one total optical input power and the total optical input power to the dispersion-compensated optical transmission line. In addition, the attenuation amount of the attenuator is controlled.

【0025】この発明によれば、減衰量を上流側光伝送
路への光信号の各波長のトータル光入力パワーまたは/
および下流側光伝送路への光信号の各波長のトータル光
入力パワーと分散補償型光伝送路へのトータル光入力パ
ワーに依存する目標値に制御することにより、利得を均
一にし、安定した光伝送を行う。
According to the present invention, the amount of attenuation is set to the total optical input power of each wavelength of the optical signal to the upstream side optical transmission line or /
By controlling to a target value that depends on the total optical input power of each wavelength of the optical signal to the downstream side optical transmission line and the total optical input power to the dispersion compensation type optical transmission line, the gain is made uniform and stable optical Make a transmission.

【0026】この発明の請求項5では、少なくとも2つ
の光増幅器と少なくとも1つの減衰器とが接続され、光
伝送路を介して入力する光信号を前記光増幅器で増幅す
るとともに、前記光信号の光パワーに応じて前記減衰量
を制御する光増幅装置において、前記光信号の光パワー
を検出する検出手段と、前記検出された光パワーに基づ
いた所定の前記減衰器の減衰量の補正値を求める補正手
段と、前記求めた補正値に基づき、前記減衰器の減衰量
を制御する制御手段とを備えたことを特徴とする光増幅
装置が提供される。
According to a fifth aspect of the present invention, at least two optical amplifiers and at least one attenuator are connected, and an optical signal input through an optical transmission line is amplified by the optical amplifier and at the same time the optical signal of the optical signal is amplified. In an optical amplifying device that controls the attenuation amount according to optical power, a detection unit that detects the optical power of the optical signal, and a predetermined correction value of the attenuation amount of the attenuator based on the detected optical power There is provided an optical amplifying device comprising: a correction unit to be obtained and a control unit to control an attenuation amount of the attenuator based on the obtained correction value.

【0027】この発明によれば、SRSの影響によって
発生する利得の傾きを補正するために、光パワーを検出
し、この光パワーの検出結果から光可変減衰器の減衰量
の補正値を求めて、この利得の傾きを打ち消すように光
可変減衰器の減衰量を制御する。
According to the present invention, in order to correct the slope of the gain caused by the influence of SRS, the optical power is detected, and the correction value of the attenuation amount of the optical variable attenuator is obtained from the detection result of this optical power. , The attenuation amount of the optical variable attenuator is controlled so as to cancel this gain slope.

【0028】この発明の請求項6では、上記発明におい
て、前記検出手段は、自装置に前記光信号を入力させる
上流側の光伝送路への当該光信号のトータル光入力パワ
ーと、前記自装置からの前記光信号を伝搬させる下流側
の光伝送路への当該光信号のトータル光入力パワーのう
ち、少なくとも一方のトータル光入力パワーを検出する
ことを特徴とする。
According to a sixth aspect of the present invention, in the above invention, the detecting means has a total optical input power of the optical signal to an upstream optical transmission line for inputting the optical signal to the own device, and the own device. The total optical input power of at least one of the total optical input power of the optical signal to the downstream side optical transmission line for propagating the optical signal from is detected.

【0029】この発明によれば、制御対象を上流側の光
伝送路または下流側の光伝送路によるSRSの影響によ
って発生する利得の傾きにするか、その両者にするかに
よって、検出する検出する光伝送路を決めてトータル光
入力パワーを検出する。
According to the present invention, the object to be detected is detected depending on whether the control target is the slope of the gain generated by the influence of SRS due to the upstream optical transmission line or the downstream optical transmission line, or both. Determine the optical transmission line and detect the total optical input power.

【0030】この発明の請求項7では、上記発明におい
て、前記補正手段は、前記検出されたトータル光入力パ
ワーに基づいて、前記光増幅器の利得の傾きを誘導ラマ
ン散乱によって発生する利得の傾きと逆の傾きを持たせ
るように、前記減衰器の減衰量の補正値を求めることを
特徴とする。
According to a seventh aspect of the present invention, in the above invention, the correcting means sets the gain slope of the optical amplifier based on the detected total optical input power as a gain slope generated by stimulated Raman scattering. It is characterized in that a correction value of the attenuation amount of the attenuator is obtained so as to have an opposite inclination.

【0031】この発明によれば、光増幅器の利得の傾き
をSRSによって発生する利得の傾きと逆の傾きを持た
せる補正値を求めて、傾きを互いに打ち消しあうように
して、各波長における利得波長特性の平坦化を図る。
According to the present invention, a correction value that causes the gain slope of the optical amplifier to have a slope opposite to the slope of the gain generated by the SRS is obtained, and the slopes cancel each other out, so that the gain wavelength at each wavelength is canceled. Aim to flatten the characteristics.

【0032】この発明の請求項8では、少なくとも3つ
の光増幅器と少なくとも1つの減衰器と分散補償型光伝
送路とが接続され、光伝送路を介して入力する光信号を
前記光増幅器で増幅するとともに、前記光信号の光パワ
ーに応じて前記減衰量を制御する光増幅装置において、
前記光伝送路への前記光信号の光パワーを検出する第1
の検出手段と、前記分散補償型光伝送路への前記光信号
の光パワーを検出する第2の検出手段と、前記検出され
た各光パワーに基づいた所定の前記減衰器の減衰量の補
正値を求める補正手段と、前記求めた補正値に基づき、
前記減衰器の減衰量を制御する制御手段とを備えたこと
を特徴とする光増幅装置が提供される。
According to claim 8 of the present invention, at least three optical amplifiers, at least one attenuator, and a dispersion-compensating optical transmission line are connected, and an optical signal input through the optical transmission line is amplified by the optical amplifier. In addition, in the optical amplification device for controlling the attenuation amount according to the optical power of the optical signal,
First for detecting the optical power of the optical signal to the optical transmission line
Detecting means, second detecting means for detecting the optical power of the optical signal to the dispersion compensating optical transmission line, and correction of a predetermined attenuation amount of the attenuator based on each of the detected optical powers. Based on the correction means for obtaining the value and the obtained correction value,
An optical amplifying device is provided, which comprises: a control unit that controls the amount of attenuation of the attenuator.

【0033】この発明によれば、光増幅部分散補償型光
伝送路が接続されている場合には、光伝送路の他に分散
補償型光伝送路への前記光信号の光パワーも検出して、
減衰器の減衰量の補正値を求め、光伝送路のSRSの影
響による伝送損失を補償している。
According to the present invention, when the dispersion compensating optical transmission line for the optical amplifier is connected, the optical power of the optical signal to the dispersion compensating optical transmission line is detected in addition to the optical transmission line. hand,
The correction value of the attenuation amount of the attenuator is obtained to compensate the transmission loss due to the influence of the SRS of the optical transmission line.

【0034】この発明の請求項9では、上記発明におい
て、前記第1の検出手段は、自装置に前記光信号を入力
させる上流側光伝送路への当該光信号のトータル光入力
パワーと、前記自装置からの前記光信号を伝搬させる下
流側光伝送路への当該光信号のトータル光入力パワーの
うち、少なくとも一方のトータル光入力パワーを検出す
ることを特徴とする。
According to a ninth aspect of the present invention, in the above invention, the first detecting means has a total optical input power of the optical signal to the upstream side optical transmission line for inputting the optical signal to its own device, and At least one total optical input power of the total optical input power of the optical signal to the downstream side optical transmission line for propagating the optical signal from the own device is detected.

【0035】この発明によれば、制御対象を上流側の光
伝送路または下流側の光伝送路によるSRSの影響によ
って発生する利得波長特性の傾きにするか、その両者に
するかによって、検出する光伝送路を決めてトータル光
入力パワーを検出する。
According to the present invention, detection is performed depending on whether the control target is the slope of the gain wavelength characteristic generated by the influence of SRS by the upstream optical transmission line or the downstream optical transmission line, or both of them. Determine the optical transmission line and detect the total optical input power.

【0036】この発明の請求項10では、上記発明にお
いて、前記第2の検出手段は、前記分散補償型光伝送路
への前記光信号のトータル光入力パワーを検出すること
を特徴とする。
According to a tenth aspect of the present invention, in the above invention, the second detecting means detects the total optical input power of the optical signal to the dispersion compensating optical transmission line.

【0037】この発明によれば、光増幅装置内に分散補
償型光伝送路が接続されている場合には、この分散補償
型光伝送路への前記光信号のトータル光入力パワーを検
出して補償対象とする。
According to the present invention, when the dispersion compensation type optical transmission line is connected in the optical amplifier, the total optical input power of the optical signal to the dispersion compensation type optical transmission line is detected. It is targeted for compensation.

【0038】この発明の請求項11では、上記発明にお
いて、前記補正手段は、前記検出された各トータル光入
力パワーに基づいて、前記光増幅器の利得の傾きを誘導
ラマン散乱によって発生する利得の傾きと逆の傾きを持
たせるように、前記減衰器の減衰量の補正値を求めるこ
とを特徴とする。
In the eleventh aspect of the present invention, in the above invention, the correction means changes the gain slope of the optical amplifier by the stimulated Raman scattering based on the detected total optical input power. It is characterized in that the correction value of the attenuation amount of the attenuator is obtained so as to have the opposite inclination.

【0039】この発明によれば、検出された各トータル
光入力パワーに基づいて、光増幅器の利得の傾きをSR
Sによって発生する利得の傾きと逆の傾きを持たせる補
正値を求めて、互いの傾きを打ち消すようにする。
According to the present invention, the slope of the gain of the optical amplifier is SR based on each detected total optical input power.
A correction value that gives an inclination opposite to the inclination of the gain generated by S is obtained, and the inclinations of the two are canceled.

【0040】この発明の請求項12では、上記発明にお
いて、前記光増幅装置は、前記検出された光パワーの情
報を送信する送信手段と、前記検出された光パワーの情
報を受信する受信手段とをさらに備えたことを特徴とす
る。
According to a twelfth aspect of the present invention, in the above invention, the optical amplifying device includes transmitting means for transmitting the information on the detected optical power and receiving means for receiving the information on the detected optical power. Is further provided.

【0041】この発明によれば、検出された光パワーの
情報を送受信する送信器と受信器を備え、他の光増幅装
置での減衰量の制御を可能にするとともに、複数段の光
増幅装置から光出力パワーの検出結果を得て減衰量の制
御を可能にする。
According to the present invention, a transmitter and a receiver for transmitting and receiving the information of the detected optical power are provided, the attenuation amount can be controlled in another optical amplifying device, and the optical amplifying device of a plurality of stages is provided. It is possible to control the attenuation by obtaining the detection result of the optical output power from.

【0042】この発明の請求項13では、光伝送路に多
段接続された光増幅装置で、前記光伝送路に伝搬される
光信号を増幅して中継する光増幅中継システムにおい
て、前記請求項5〜12に記載の光増幅装置を少なくと
も1つ備えたことを特徴とする光増幅中継システムが提
供される。
According to a thirteenth aspect of the present invention, there is provided an optical amplification repeater system for amplifying and relaying an optical signal propagating through the optical transmission line by an optical amplification device connected in multiple stages to the optical transmission line. An optical amplification repeater system comprising at least one optical amplification device according to any one of claims 1 to 12.

【0043】この発明によれば、光増幅中継システムに
請求項5〜12に記載の光増幅装置を少なくとも1つ接
続させて、各光増幅装置における光パワーの検出結果か
らSRSによって発生する利得の傾きと逆の傾きを持た
せて互いに打ち消し合うようにして利得波長特性の平坦
化を図る。
According to the present invention, at least one optical amplifying device according to any one of claims 5 to 12 is connected to the optical amplifying repeater system, and the gain generated by SRS is detected from the detection result of the optical power in each optical amplifying device. The gain wavelength characteristic is flattened by giving an inclination opposite to the inclination and canceling each other.

【0044】この発明の請求項14では、上り用と下り
用の少なくとも2本の光伝送路に多段接続された光増幅
装置で、前記光伝送路に伝搬される光信号を増幅して双
方向の光中継を行う光増幅中継システムにおいて、前記
請求項5〜12に記載の光増幅装置を少なくとも1つ備
えたことを特徴とする。
According to a fourteenth aspect of the present invention, in an optical amplifying device which is connected in multiple stages to at least two optical transmission lines for upstream and downstream, an optical signal propagated to the optical transmission line is amplified to bidirectionally. An optical amplification repeater system for performing the optical repeater according to claim 5, wherein at least one optical amplification device according to any one of claims 5 to 12 is provided.

【0045】この発明によれば、請求項5〜12に記載
の光増幅装置を少なくとも1つ接続させた上り用および
下り用の光伝送路を用いて双方向伝送を行う光増幅中継
システムを構築することで、上流側の光パワーととも
に、下流側の光パワーの検出結果も受信が可能となる。
According to the present invention, an optical amplification repeater system for performing bidirectional transmission using the upstream and downstream optical transmission lines to which at least one optical amplifying device according to claim 5 is connected is constructed. By doing so, the detection result of the optical power on the downstream side can be received together with the optical power on the upstream side.

【0046】この発明の請求項15では、上記発明にお
いて、前記請求項12の光増幅装置を備えた光増幅中継
システムでは、前記光伝送路に接続された他の光増幅装
置から前記検出された光パワーの情報を受信すると、該
光パワーに基づいた所定の前記減衰器の減衰量の補正値
を求め、該求めた補正値に基づき、前記減衰器の減衰量
を制御する。
According to a fifteenth aspect of the present invention, in the above-mentioned invention, in the optical amplification repeater system including the optical amplification device of the twelfth aspect, the optical amplification device is detected from another optical amplification device connected to the optical transmission line. When the optical power information is received, a predetermined correction value of the attenuation amount of the attenuator based on the optical power is obtained, and the attenuation amount of the attenuator is controlled based on the obtained correction value.

【0047】この発明によれば、上流、下流に関わりな
く他の光増幅装置における光出力パワーの検出結果から
SRSによって発生する利得の傾きと逆の傾きを持たせ
るように減衰器の減衰量の制御を行い、目標とする段の
光増幅器での各波長における利得が均一となる。
According to the present invention, the attenuation amount of the attenuator is adjusted so as to have a slope opposite to the slope of the gain generated by the SRS from the detection result of the optical output power in other optical amplifiers regardless of the upstream or the downstream. By controlling, the gain at each wavelength in the target stage optical amplifier becomes uniform.

【0048】[0048]

【発明の実施の形態】以下に添付図面を参照して、この
発明にかかる光増幅方法、その装置およびその装置を用
いた光増幅中継システムの好適な実施の形態を説明す
る。なお、以下の図において、図12、図13と同様の
構成部分に関しては、説明の都合上、同一符号を付記す
るものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of an optical amplification method, an apparatus therefor and an optical amplification repeater system using the apparatus according to the present invention will be described below with reference to the accompanying drawings. Note that, in the following drawings, the same components as those in FIGS. 12 and 13 are denoted by the same reference numerals for convenience of description.

【0049】(実施例1)図1は、この発明にかかる光
増幅装置の実施例1の構成を示す構成図である。この図
において、図13の従来例と異なる点は、SRSの影響
によって発生する利得波長特性の傾きを補正するため
に、光可変減衰器45の減衰量の補正値が設定されてい
る補正回路51を設けた点である。補正回路51は、こ
の利得波長特性の傾きを打ち消すために、光増幅部42
からの光出力パワーに基づいて、この利得波長特性の傾
きと逆の傾きを有する利得波長特性となる減衰量の補正
値ΔLを求め、制御回路50に出力している。制御回路
50は、この補正値ΔLと、光伝送路30からの光入力
パワーと、光伝送路30への光出力パワーとに基づいて
減衰量を求めて光可変減衰器45の減衰量Aを制御して
いる。
(Embodiment 1) FIG. 1 is a configuration diagram showing a configuration of Embodiment 1 of an optical amplifier according to the present invention. In this figure, the difference from the conventional example of FIG. 13 is that the correction circuit 51 in which the correction value of the attenuation amount of the variable optical attenuator 45 is set in order to correct the slope of the gain wavelength characteristic caused by the influence of SRS. That is the point. The correction circuit 51 uses the optical amplifier 42 in order to cancel the inclination of the gain wavelength characteristic.
On the basis of the optical output power from, the correction value ΔL of the attenuation amount that has the gain wavelength characteristic having an inclination opposite to the inclination of the gain wavelength characteristic is obtained and output to the control circuit 50. The control circuit 50 obtains the attenuation amount based on the correction value ΔL, the optical input power from the optical transmission line 30 and the optical output power to the optical transmission line 30, and determines the attenuation amount A of the optical variable attenuator 45. Have control.

【0050】すなわち、この実施例において、光可変減
衰器45の減衰量Aは、従来例と同様に、(1)式で求
まり、光増幅部41の利得G1は、(2)式で求まり、
また光増幅部42の利得G2は、(3)式で求まる。
That is, in this embodiment, the attenuation amount A of the variable optical attenuator 45 is obtained by the equation (1), and the gain G1 of the optical amplification section 41 is obtained by the equation (2), as in the conventional example.
Further, the gain G2 of the optical amplification section 42 is obtained by the equation (3).

【0051】また、光増幅部41と42の利得は、 G1+G2=C+ΔL …(6) となる。ここで、(6)式に(2)式と(3)式を代入
して、光可変減衰器45の減衰量Aを求めると、 (P2−P1)+(P4−P3)=C+ΔL (P2−P3)+(P4−P1)=C+ΔL (P2−P3)=C+ΔL−(P4−P1) したがって、(1)式からAは、 A=C+ΔL−(P4−P1)…(7) で求まる。
The gains of the optical amplifiers 41 and 42 are G1 + G2 = C + ΔL (6) Here, by substituting the equations (2) and (3) into the equation (6) to obtain the attenuation amount A of the variable optical attenuator 45, (P2-P1) + (P4-P3) = C + ΔL (P2 -P3) + (P4-P1) = C + [Delta] L (P2-P3) = C + [Delta] L- (P4-P1) Therefore, A is obtained from the equation (1) by A = C + [Delta] L- (P4-P1) ... (7).

【0052】次に、ΔLを求める。ここで、まずSRS
の影響によって発生する利得波長特性の傾きSRS(d
G/dλ)は、 SRS(dG/dλ)=4.34・(β・P0・Leff)[dB/nm] …(8) ここで、P0:光伝送路30へ入射される光信号のトー
タル光パワー[W] (図1では、P4に相当) β:このトータル光パワーが入射される光伝送路30
(種類)に依存する係数[1/W・km・nm] Leff:このトータル光パワーが入射される光伝送路
の実効長[km]となる。
Next, ΔL is obtained. Here, first SRS
Of gain wavelength characteristic SRS (d
G / dλ) is SRS (dG / dλ) = 4.34 · (β · P0 · Leff) [dB / nm] (8) where P0: total of optical signals incident on the optical transmission line 30. Optical power [W] (corresponding to P4 in FIG. 1) β: Optical transmission line 30 on which this total optical power is incident
(Type) -dependent coefficient [1 / W · km · nm] Leff: This total optical power is the effective length [km] of the incident optical transmission line.

【0053】なお、この(8)式は、ELECTRON
ICS LETTERS,16thApril 199
8,Vol.34,No.8,M.Zirngiblの
文献に記載されている。
The equation (8) is ELECTRON.
ICS LETTERS, 16 th April 199
8, Vol. 34, No. 8, M.M. Zirngibl.

【0054】次に、SRSの影響によって発生する利得
波長特性の傾きを打ち消すために、光増幅器で発生させ
る利得波長特性の傾きOFA(dG/dλ)は、このS
RSの影響によって発生する利得波長特性の傾きとは逆
の傾きとなるので、 OFA(dG/dλ)=−a・ΔL[dB/nm]…(9) ここで、a:光増幅器の設計に依存する比例係数[1/
nm] ΔL:光可変減衰器の減衰量の補正値[dB] となる。
Next, in order to cancel the slope of the gain wavelength characteristic generated by the influence of SRS, the slope OFA (dG / dλ) of the gain wavelength characteristic generated by the optical amplifier is S
Since the slope of the gain wavelength characteristic generated due to the influence of RS is the opposite slope, OFA (dG / dλ) = − a · ΔL [dB / nm] (9) where a: in the design of the optical amplifier Dependent proportionality coefficient [1 /
nm] ΔL: It becomes the correction value [dB] of the attenuation amount of the variable optical attenuator.

【0055】この(8)式と(9)式の和がゼロになる
時、光伝送路を伝送した後の各波長の利得が均一となっ
て、利得波長特性は平坦になるので、この条件における
ΔLを求めると、まず、(8)式と(9)式の和は、 SRS(dG/dλ)+OFA(dG/dλ)=4.34・(β・P0・Le ff)−a・ΔL=0 …(10) となる。
When the sum of the equations (8) and (9) becomes zero, the gain of each wavelength after being transmitted through the optical transmission line becomes uniform and the gain wavelength characteristic becomes flat. First, the sum of equations (8) and (9) is SRS (dG / dλ) + OFA (dG / dλ) = 4.34 · (β · P0 · Leff) −a · ΔL = 0 (10)

【0056】次に、ΔLは、 ΔL=4.34・(β・P0・Leff)/a …(11) で求まる。すなわち、ΔLは、光伝送路へ入射される光
信号のトータル光パワーP0と、このトータル光パワー
P0が入射される光伝送路の種類に依存する係数βと、
このトータル光パワーが入射される光伝送路の実効長と
から求まる値である。
Next, ΔL is obtained by ΔL = 4.34 · (β · P0 · Leff) / a (11). That is, ΔL is the total optical power P0 of the optical signal incident on the optical transmission line, and a coefficient β depending on the type of the optical transmission line on which the total optical power P0 is incident,
This total optical power is a value obtained from the effective length of the optical transmission line on which it is incident.

【0057】ここで、例えばa=0.02[1/n
m]、β=3.5×10-3[1/W・km・nm]、P
0=P4=+18[dBm]=0.063[W]、Le
ff=21[km]とすると、これら数値を(11)式
に代入し、光可変減衰器の減衰量の補正値ΔLを求める
と、 ΔL={4.34・(3.5×10-3・0.063・2
1)}/0.02=1[dB] となる。
Here, for example, a = 0.02 [1 / n
m], β = 3.5 × 10 −3 [1 / W · km · nm], P
0 = P4 = + 18 [dBm] = 0.063 [W], Le
If ff = 21 [km], these values are substituted into the equation (11), and the correction value ΔL of the attenuation amount of the optical variable attenuator is calculated. ΔL = {4.34 · (3.5 × 10 −3・ 0.063 ・ 2
1)} / 0.02 = 1 [dB].

【0058】また、従来例で示した条件、すなわち利得
の総和G1+G2=20[dB]、光入力パワーP1=
+2[dBm]、光出力パワーP4=+18[dBm]
とし、これらの値を(7)式に代入して、光可変減衰器
の減衰量Aを求めると、 A=C+ΔL−(P4−P1) =20+1−(18−2) =5[dB] となる。
Further, the conditions shown in the conventional example, that is, the sum of gains G1 + G2 = 20 [dB], the optical input power P1 =
+2 [dBm], optical output power P4 = + 18 [dBm]
Then, by substituting these values into the equation (7) to obtain the attenuation amount A of the optical variable attenuator, A = C + ΔL− (P4-P1) = 20 + 1− (18-2) = 5 [dB] Become.

【0059】この実施例の場合の利得波長特性は、図2
(a)〜(c)に示すようになり、またレベルダイヤグ
ラムは、図3に示すようになる。この実施例では、補正
値の減衰量だけP3の光パワーが減少するので、光増幅
部42の利得は、従来例(図3の点線部分)に比べて大
きくなる。
The gain wavelength characteristic in the case of this embodiment is shown in FIG.
(A) to (c), and the level diagram is as shown in FIG. In this embodiment, since the optical power of P3 is reduced by the amount of attenuation of the correction value, the gain of the optical amplification section 42 is larger than that of the conventional example (the dotted line portion in FIG. 3).

【0060】また、利得波長特性の傾きは、図4に示す
ように、利得の大きさによって変化している。すなわ
ち、図から解るように利得が大きくなると、その傾きは
右下がりの方に大きくなり、この利得が小さくなると、
その傾きが右上がりの方に大きくなる。
Further, the slope of the gain wavelength characteristic changes with the magnitude of the gain as shown in FIG. That is, as can be seen from the figure, when the gain increases, the slope increases to the lower right, and when this gain decreases,
The inclination increases to the right.

【0061】ここで、例えば図3に示したように、光増
幅部42の利得が大きくなると、その利得の波長特性の
傾きは、右下がりの方に大きくなる。従って、この実施
例の利得波長特性は、図2(c)に示すように、従来例
における利得波長特性よりも、右下がりの傾きになる。
Here, for example, as shown in FIG. 3, when the gain of the optical amplification section 42 increases, the slope of the wavelength characteristic of the gain increases toward the lower right. Therefore, as shown in FIG. 2C, the gain wavelength characteristic of this embodiment has a lower right slope than the gain wavelength characteristic of the conventional example.

【0062】このように、この実施例では、SRSの影
響によって発生する利得波長特性の傾きを補正するため
に、トータルの光出力パワーの検出結果から光可変減衰
器の減衰量の補正値を求めて、この利得波長特性の傾き
を打ち消すように光可変減衰器の減衰量を制御するの
で、図2(d)に示すように、光伝送路30を介した次
段の光増幅装置40の入力端での各波長における利得波
長特性の平坦化が図られ、伝送効率を向上させることが
できる。
As described above, in this embodiment, the correction value of the attenuation amount of the optical variable attenuator is obtained from the detection result of the total optical output power in order to correct the inclination of the gain wavelength characteristic caused by the influence of SRS. Then, since the attenuation amount of the optical variable attenuator is controlled so as to cancel the inclination of the gain wavelength characteristic, the input of the optical amplifying device 40 of the next stage via the optical transmission line 30 as shown in FIG. The gain wavelength characteristic at each wavelength at the end is flattened, and the transmission efficiency can be improved.

【0063】このため、この実施例では、チャネル数の
増減などによって光伝送路へ入射される光パワーが変動
しても、SRSの影響によって発生する波長多重信号の
利得の傾きを自動的に一括補正して、この波長多重信号
の利得の偏差を最小にすることができ、これにより各波
長での光パワーが均一になり、短波長側の光信号におけ
るS/Nの劣化を防ぎ、安定した光伝送を行える。
For this reason, in this embodiment, even if the optical power incident on the optical transmission line fluctuates due to an increase or decrease in the number of channels, the slope of the gain of the wavelength-division-multiplexed signal generated by the influence of the SRS is automatically collected. It is possible to correct the deviation of the gain of this wavelength-division multiplexed signal to a minimum, thereby making the optical power at each wavelength uniform, preventing S / N deterioration in the optical signal on the short wavelength side, and stabilizing the optical signal. Optical transmission is possible.

【0064】(実施例2)図5は、この発明にかかる光
増幅装置の実施例2の構成を示す構成図である。図にお
いて、この実施例の光増幅装置40では、前段の光増幅
装置40から光伝送路30を介して制御・監視信号を受
信する制御・監視信号受信回路52と、次段の光増幅装
置40へ制御・監視信号を送信する制御・監視信号送信
回路53とを備えている。
(Embodiment 2) FIG. 5 is a block diagram showing the structure of Embodiment 2 of the optical amplifier according to the present invention. In the figure, in the optical amplifying device 40 of this embodiment, a control / monitoring signal receiving circuit 52 for receiving a control / monitoring signal from the optical amplifying device 40 in the previous stage via the optical transmission line 30, and the optical amplifying device 40 in the next stage. And a control / monitoring signal transmitting circuit 53 for transmitting a control / monitoring signal.

【0065】この制御・監視信号受信回路52は、上流
側の光伝送路に入射された光出力パワーの情報を、光分
波器54を介して制御・監視信号として受信し、前段の
光増幅装置40と自装置間の光伝送路30で発生したS
RSの影響による利得の傾きと逆の傾きを持たせるよう
に、制御回路50によって光可変減衰器45の減衰量を
制御している。また、この制御・監視信号送信回路53
は、光合波器55を介して光伝送路30に入射された光
出力パワーを、図示しない次段の光増幅装置へ伝送して
いる。
The control / monitoring signal receiving circuit 52 receives the information of the optical output power incident on the upstream optical transmission line as a control / monitoring signal via the optical demultiplexer 54, and the preceding optical amplification. S generated in the optical transmission line 30 between the device 40 and the device itself
The control circuit 50 controls the attenuation amount of the variable optical attenuator 45 so as to have a slope opposite to the slope of the gain due to the influence of RS. In addition, the control / monitoring signal transmission circuit 53
Transmits the optical output power incident on the optical transmission line 30 via the optical multiplexer 55 to the optical amplifier of the next stage (not shown).

【0066】この実施例でも、実施例1と同様に、この
利得の波長特性と逆の傾きを有する利得波長特性となる
減衰量の補正値ΔLと、光伝送路30からの光入力パワ
ーと、光伝送路30への光出力パワーとに基づいて減衰
量を求めて光可変減衰器45の減衰量Aを制御してい
る。この実施例において、実施例1と異なる点は、光パ
ワーP01が前段の光増幅装置の光出力パワーであり、
(11)式のP0がこの光出力パワーP01に相当し、
補正値ΔLは、この光出力パワーP01とこのP01の
光信号が伝送される上流側の光伝送路の種類と実効長と
から導き出される。
Also in this embodiment, as in the case of the first embodiment, the correction value ΔL of the attenuation amount which gives the gain wavelength characteristic having the slope opposite to the wavelength characteristic of the gain, the optical input power from the optical transmission line 30, The attenuation amount A of the variable optical attenuator 45 is controlled by obtaining the attenuation amount based on the optical output power to the optical transmission line 30. In this embodiment, the point different from the first embodiment is that the optical power P01 is the optical output power of the optical amplification device at the preceding stage,
P0 in the equation (11) corresponds to this optical output power P01,
The correction value ΔL is derived from the optical output power P01 and the type and effective length of the upstream optical transmission line through which the optical signal of P01 is transmitted.

【0067】この実施例の場合の利得波長特性は、図6
(a),(b)に示すようになる。この実施例では、光
増幅装置40に入力する光信号の利得波長特性の傾き
が、図6(a)に示すように、右上がりに大きくなるの
で、この利得波長特性を打ち消すように光可変減衰器の
減衰量を制御する。
The gain wavelength characteristic in the case of this embodiment is shown in FIG.
As shown in (a) and (b). In this embodiment, since the slope of the gain wavelength characteristic of the optical signal input to the optical amplifying device 40 increases to the right as shown in FIG. 6A, the optical variable attenuation is performed so as to cancel this gain wavelength characteristic. Control the amount of attenuation of the vessel.

【0068】これにより、この実施例では、図6(b)
に示すように、光増幅装置40の出力端での各波長にお
ける利得が均一となり、利得波長特性の平坦化が図ら
れ、伝送効率を向上させることができ、実施例1と同様
の効果を得ることができるとともに、上流側の光伝送路
でのSRSの影響を防ぐことができ、さらに伝送効率を
向上できる。
As a result, in this embodiment, as shown in FIG.
As shown in FIG. 5, the gain at each wavelength at the output end of the optical amplifying device 40 becomes uniform, the gain wavelength characteristic is flattened, the transmission efficiency can be improved, and the same effect as that of the first embodiment is obtained. In addition, it is possible to prevent the influence of SRS on the upstream optical transmission line and further improve the transmission efficiency.

【0069】(実施例3)図7は、光増幅装置40内に
3つの光増幅部41,42,60を備えた場合の一実施
例を示す構成図である。この光増幅部41は、自動電流
制御回路(以下、「ACC」という)によって制御さ
れ、光増幅部42,60は、ALC44,61によって
制御され、多重された光信号を一括して増幅すること
で、光伝送路30の伝送損失を補償している。
(Embodiment 3) FIG. 7 is a block diagram showing an embodiment in which three optical amplifiers 41, 42, 60 are provided in the optical amplifier 40. The optical amplification section 41 is controlled by an automatic current control circuit (hereinafter referred to as “ACC”), and the optical amplification sections 42 and 60 are controlled by ALCs 44 and 61 to collectively amplify the multiplexed optical signals. Thus, the transmission loss of the optical transmission line 30 is compensated.

【0070】また、この光増幅装置40では、光増幅部
42,60間にDCF66が接続されている。そして、
この光増幅装置40では、光分波器56,57,62,
63で分波された光信号における光増幅部41の光出力
パワーP2と、光増幅部42の光入力パワーP3と、光
増幅部60の光入力パワーP5と光出力パワーP6を光
パワー検出回路58,59,64,65で検出してお
り、制御回路50は、光増幅部41の利得G1と光増幅
部42の利得G2と光増幅部60の利得G3の総和がC
+ΔLになるように、この光可変減衰器45の減衰量A
を制御している。
Further, in this optical amplifying device 40, a DCF 66 is connected between the optical amplifying parts 42 and 60. And
In this optical amplification device 40, the optical demultiplexers 56, 57, 62,
The optical output power P2 of the optical amplification section 41, the optical input power P3 of the optical amplification section 42, the optical input power P5 and the optical output power P6 of the optical amplification section 60 in the optical signal demultiplexed by 63 are detected by the optical power detection circuit. 58, 59, 64 and 65, the control circuit 50 determines that the sum of the gain G1 of the optical amplification section 41, the gain G2 of the optical amplification section 42 and the gain G3 of the optical amplification section 60 is C.
The attenuation amount A of the optical variable attenuator 45 is set so as to be + ΔL.
Are in control.

【0071】なお、この場合には、ΔLは、次段の光増
幅装置に繋がる光伝送路30に対する光可変減衰器の減
衰量の補正値であるΔL1と、DCF66に対する光可
変減衰器の減衰量の補正値であるΔL2とを合わせたΔ
L=ΔL1+ΔL2の値からなる。
In this case, ΔL is ΔL1 which is a correction value of the attenuation amount of the optical variable attenuator for the optical transmission line 30 connected to the optical amplifier of the next stage and the attenuation amount of the optical variable attenuator for the DCF 66. Δ, which is the correction value of ΔL2
It consists of the value of L = ΔL1 + ΔL2.

【0072】すなわち、光増幅部41と42と60の利
得は、 G1+G2+G3=C+ΔL …(12) となる。また、光増幅部41の利得G1は、(2)式
で、光増幅部42の利得G2は、(3)式でそれぞれも
求まっており、光増幅部60の利得G3は、光増幅部6
0の光出力パワーP6と光増幅部60の光入力パワーP
5の差 G3=P6−P5 …(13) で求まる。
That is, the gains of the optical amplifiers 41, 42 and 60 are G1 + G2 + G3 = C + ΔL (12) Further, the gain G1 of the optical amplifier 41 is obtained by the equation (2), and the gain G2 of the optical amplifier 42 is obtained by the equation (3), and the gain G3 of the optical amplifier 60 is obtained by the equation 6.
Optical output power P6 of 0 and optical input power P of the optical amplifier 60
5 difference G3 = P6-P5 (13)

【0073】ここで、(12)式に(2)式と(3)式
と(13)式を代入すると、 (P2−P1)+(P4−P3)+(P6−P5)=C
+ΔL となる。そして、上記の式から光可変減衰器45の減衰
量(P2−P3)は、 (P2−P3)=C+ΔL−(P4−P1)−(P6−P5)…(14) で求まる。従って、(1)からAは、 A=C+ΔL−(P4−P1)−(P6−P5)…(15)
Substituting equations (2), (3) and (13) into equation (12), (P2-P1) + (P4-P3) + (P6-P5) = C
It becomes + ΔL. Then, from the above equation, the attenuation amount (P2-P3) of the variable optical attenuator 45 is obtained by (P2-P3) = C + [Delta] L- (P4-P1)-(P6-P5) ... (14). Therefore, from (1) to A, A = C + ΔL- (P4-P1)-(P6-P5) ... (15)

【0074】また、この実施例では、上述した(8)式
〜(11)式に基づいて光可変減衰器の減衰量の補正値
ΔL(実際にはΔL1とΔL2を求めて加算する)を求
めることができる。すなわち、この次段の光増幅装置に
繋がる光伝送路30に対する光可変減衰器の減衰量の補
正値ΔL1は、 ΔL1=4.34・(β1・P6・Leff1)/a ここで、P6:次段の伝送路へ入射される光信号のトー
タル光パワー[W] β1:このトータル光パワーが入射される光伝送路に依
存する係数[1/(W・km・nm)] Leff1:このトータル光パワーが入射される光伝送
路の実効長[km] a:自装置の光増幅器の設計に依存する比例係数 (単位:[1/nm]) となり、また、このDCF66に対する光可変減衰器の
減衰量の補正値ΔL2は、 ΔL2=4.34・(β2・P4・Leff2)/a ここで、P4:DCFへ入射される光信号のトータル光
パワー[W] β2:このトータル光パワーが入射されるDCFに依存
する係数[1/(W・km・nm)] Leff2:このトータル光パワーが入射されるDCF
の実効長[km] となる。従って、この実施例における光可変減衰器の減
衰量の補正値ΔLは、 ΔL=ΔL1+ΔL2 =4.34・(β1・P6・Leff1)/a+4.34・(β2・P4 ・Leff2)/a =4.34・{(β1・P6・Leff1)+(β2・P4・Leff2 )}/a となる。
Further, in this embodiment, the correction value ΔL of the attenuation amount of the optical variable attenuator (actually, ΔL1 and ΔL2 are calculated and added) is calculated based on the above-mentioned expressions (8) to (11). be able to. That is, the correction value ΔL1 of the attenuation amount of the optical variable attenuator for the optical transmission line 30 connected to the optical amplifier of the next stage is ΔL1 = 4.34 · (β1 · P6 · Leff1) / a where P6: Total optical power [W] β1 of the optical signal incident on the stage transmission line β1: Coefficient [1 / (W · km · nm)] Leff1: This total light that depends on the optical transmission line on which this total optical power is incident Effective length of optical transmission line on which power is incident [km] a: Proportional coefficient (unit: [1 / nm]) depending on the design of the optical amplifier of the device itself, and attenuation of the optical variable attenuator with respect to this DCF 66 The correction value ΔL2 for the amount is ΔL2 = 4.34 · (β2 · P4 · Leff2) / a where P4: total optical power [W] β2 of the optical signal incident on the DCF: this total optical power is incident. Depends on DCF Coefficient [1 / (W · km · nm)] Leff2: DCF into which this total optical power is incident
Becomes an effective length [km]. Therefore, the correction value ΔL of the attenuation amount of the optical variable attenuator in this embodiment is ΔL = ΔL1 + ΔL2 = 4.34 · (β1 · P6 · Leff1) /a+4.34· (β2 · P4 · Leff2) / a = 4 .34 · {(β1 · P6 · Leff1) + (β2 · P4 · Leff2)} / a.

【0075】このように、この実施例では、DCFおよ
び光伝送路でのSRSの影響によって発生する利得波長
特性の傾きを補正するために、光出力パワーの検出結果
から光可変減衰器の減衰量の補正値を求めて、この利得
波長特性の傾きを打ち消すように光可変減衰器の減衰量
を制御するので、光伝送路30を介した次段の光増幅装
置40の入力端での各波長における利得が均一となり、
利得波長特性の平坦化が図られ、伝送効率を向上させる
ことができ、図1の実施例1と同様の効果を得ることが
できるとともに、DCFでのSRSの影響を防ぐことが
でき、さらに伝送効率を向上できる。
As described above, in this embodiment, in order to correct the inclination of the gain wavelength characteristic caused by the influence of the DCF and the SRS in the optical transmission line, the attenuation amount of the optical variable attenuator is detected from the detection result of the optical output power. Of the optical variable attenuator so as to cancel the inclination of the gain wavelength characteristic, the wavelength of the wavelength at the input end of the optical amplifier 40 of the next stage via the optical transmission line 30 is calculated. Gain becomes uniform,
The gain wavelength characteristic can be flattened, the transmission efficiency can be improved, the same effect as that of the first embodiment of FIG. 1 can be obtained, and the influence of SRS in the DCF can be prevented, and further transmission can be performed. The efficiency can be improved.

【0076】(実施例4)図8は、光増幅装置40内に
3つの光増幅部41,42,60を備え、かつ上流側の
光伝送路に入射された光出力パワーの情報に基づいて光
可変減衰器45の減衰量を制御する場合の一実施例を示
す構成図である。この光増幅装置40では、実施例2と
同様に、制御・監視信号受信回路52は、上流側の光伝
送路に入射された光出力パワーP06の情報を、光分波
器54を介して制御・監視信号として受信し、前段の光
増幅装置40と自装置間の光伝送路30で発生したSR
Sの影響による利得の傾きと逆の傾きを持たせるよう
に、制御回路50によって光可変減衰器45の減衰量を
制御している。また、この制御・監視信号送信回路53
は、次段の光伝送路30に入射された光出力パワーを、
図示しない次段の光増幅装置へ伝送している。なお、光
出力パワーP06は、図5の実施例2で示した光出力パ
ワーP01に相当する。
(Embodiment 4) FIG. 8 includes three optical amplifiers 41, 42, and 60 in the optical amplifier 40, and based on the information of the optical output power incident on the upstream optical transmission line. It is a block diagram which shows one Example in the case of controlling the amount of attenuation of the optical variable attenuator 45. In this optical amplifier 40, the control / monitoring signal receiving circuit 52 controls the information of the optical output power P06 incident on the upstream optical transmission line via the optical demultiplexer 54 as in the second embodiment.・ SR received as a supervisory signal and generated in the optical transmission line 30 between the optical amplification device 40 in the previous stage and the device itself
The control circuit 50 controls the attenuation amount of the variable optical attenuator 45 so as to have a slope opposite to the gain slope due to the influence of S. In addition, the control / monitoring signal transmission circuit 53
Is the optical output power incident on the optical transmission line 30 of the next stage,
It is transmitted to the optical amplifier at the next stage (not shown). The optical output power P06 corresponds to the optical output power P01 shown in the second embodiment of FIG.

【0077】制御回路50は、光増幅部41の利得G1
と光増幅部42の利得G2と光増幅部60の利得G3の
総和がC+ΔLになるように、この光可変減衰器45の
減衰量Aを制御している。なお、この場合には、ΔL
は、前段の光増幅装置に繋がる光伝送路30に対する光
可変減衰器の減衰量の補正値であるΔL1と、DCF6
6に対する光可変減衰器の減衰量の補正値であるΔL2
とを合わせたΔL=ΔL1+ΔL2の値からなる。
The control circuit 50 controls the gain G1 of the optical amplifier 41.
The attenuation amount A of the optical variable attenuator 45 is controlled so that the sum of the gain G2 of the optical amplifier 42 and the gain G3 of the optical amplifier 60 is C + ΔL. In this case, ΔL
Is a correction value ΔL1 of the attenuation amount of the optical variable attenuator for the optical transmission line 30 connected to the optical amplification device in the preceding stage, and DCF6.
ΔL2 which is the correction value of the attenuation amount of the optical variable attenuator for 6
And ΔL = ΔL1 + ΔL2.

【0078】すなわち、光増幅部41と42と60の利
得は、 G1+G2+G3=C+ΔL …(16) となる。また、光増幅部41の利得G1は、(2)式
で、光増幅部42の利得G2は、(3)式で、光増幅部
60の利得G3は、(13)式でそれぞれ求まってい
る。
That is, the gains of the optical amplifiers 41, 42 and 60 are G1 + G2 + G3 = C + ΔL (16) Further, the gain G1 of the optical amplifier 41 is obtained by the equation (2), the gain G2 of the optical amplifier 42 is obtained by the equation (3), and the gain G3 of the optical amplifier 60 is obtained by the equation (13). .

【0079】ここで、(16)式に(2)式と(3)式
と(13)式を代入すると、 (P2−P1)+(P4−P3)+(P6−P5)=C
+ΔL となる。そして、上記の式から光可変減衰器45の減衰
量(P2−P3)は、 (P2−P3)=C+ΔL−(P4−P1)−(P6−P5)…(17) で求まる。従って、(1)式から減衰量Aは、 A=C+ΔL−(P4−P1)−(P6−P5)…(18) で求まる。
Substituting equations (2), (3) and (13) into equation (16), (P2-P1) + (P4-P3) + (P6-P5) = C
It becomes + ΔL. Then, from the above formula, the attenuation amount (P2-P3) of the variable optical attenuator 45 is obtained by (P2-P3) = C + [Delta] L- (P4-P1)-(P6-P5) ... (17). Therefore, the attenuation amount A is obtained from the equation (1) by A = C + ΔL- (P4-P1)-(P6-P5) ... (18).

【0080】また、この実施例でも、上述した(8)式
〜(11)式に基づいて光可変減衰器の減衰量の補正値
ΔL(実際にはΔL1とΔL2を求めて加算する)を求
めることができる。すなわち、この次段の光増幅装置に
繋がる光伝送路30に対する光可変減衰器の減衰量の補
正値ΔL1は、 ΔL1=4.34・(β1・P06・Leff1)/a ここで、P06:前段の伝送路へ入射される光信号のト
ータル光パワー[W] β1:このトータル光パワーが入射される光伝送路に依
存する係数 [1/(W・km・nm)] Leff1:このトータル光パワーが入射される光伝送
路の実効長[km] a:自装置の光増幅器の設計に依存する比例係数 (単位:[1/nm]) となり、また、このDCF66に対する光可変減衰器の
減衰量の補正値ΔL2は、 ΔL2=4.34・(β2・P4・Leff2)/a ここで、P4:DCFへ入射される光信号のトータル光
パワー[W] β2:このトータル光パワーが入射されるDCFに依存
する係数[1/(W・km・nm)] Leff2:このトータル光パワーが入射されるDCF
の実効長[km] となる。従って、この実施例における光可変減衰器の減
衰量の補正値ΔLは、 ΔL=ΔL1+ΔL2 =4.34・(β1・P06・Leff1)/a+4.34・(β2・P 4・Leff2)/a =4.34・{(β1・P06・Leff1)+(β2・P4・Leff 2)}/a となる。
Also in this embodiment, the correction value ΔL of the attenuation amount of the optical variable attenuator (actually, ΔL1 and ΔL2 are calculated and added) is calculated based on the above-mentioned expressions (8) to (11). be able to. That is, the correction value ΔL1 of the attenuation amount of the optical variable attenuator for the optical transmission line 30 connected to the optical amplifier of the next stage is ΔL1 = 4.34 · (β1 · P06 · Leff1) / a where P06: the previous stage Optical power [W] β1: of the optical signal incident on the transmission line of the optical fiber [1:] A coefficient [1 / (W · km · nm)] Leff1: the total optical power of which the total optical power depends on the incident optical transmission line Is the effective length [km] a of the incident optical transmission line a: proportional coefficient (unit: [1 / nm]) depending on the design of the optical amplifier of the device itself, and the attenuation of the variable optical attenuator with respect to this DCF 66. Correction value ΔL2 of ΔL2 = 4.34 · (β2 · P4 · Leff2) / a where P4: total optical power [W] β2 of the optical signal incident on the DCF: this total optical power is incident. To DCF Dependent coefficient [1 / (W · km · nm)] Leff2: DCF into which this total optical power is incident
Becomes an effective length [km]. Therefore, the correction value ΔL of the attenuation amount of the optical variable attenuator in this embodiment is ΔL = ΔL1 + ΔL2 = 4.34 · (β1 · P06 · Leff1) /a+4.34· (β2 · P4 · Leff2) / a = It is 4.34 · {(β1 · P06 · Leff1) + (β2 · P4 · Leff2)} / a.

【0081】このように、この実施例では、DCFおよ
び光伝送路でのSRSの影響によって発生する利得波長
特性の傾きを補正するために、上流側の光伝送路の光出
力パワーの検出結果から光可変減衰器の減衰量の補正値
を求めて、この利得波長特性の傾きを打ち消すように光
可変減衰器の減衰量を制御するので、図5の実施例2と
同様の効果を得ることができるとともに、DCFでのS
RSの影響を防ぐことができ、さらに伝送効率を向上で
きる。
As described above, in this embodiment, in order to correct the slope of the gain wavelength characteristic caused by the influence of the DCF and the SRS in the optical transmission line, the detection result of the optical output power of the upstream optical transmission line is used. Since the correction value of the attenuation amount of the optical variable attenuator is obtained and the attenuation amount of the optical variable attenuator is controlled so as to cancel the inclination of the gain wavelength characteristic, the same effect as that of the second embodiment of FIG. 5 can be obtained. It is possible and S in DCF
The influence of RS can be prevented and the transmission efficiency can be further improved.

【0082】(実施例5)次に、図9において、前段の
光増幅装置に光可変減衰器が内蔵されていない場合につ
いて説明する。光可変減衰器を用いた制御機能は、製作
コストが高くなるので、通常では、いくつか置きに光可
変減衰器を備えた光増幅装置を設け、製作コストの低減
を図る場合がある。
(Embodiment 5) Next, referring to FIG. 9, a case will be described in which an optical variable attenuator is not incorporated in the optical amplifier of the preceding stage. Since the manufacturing cost of the control function using the variable optical attenuator is high, an optical amplifying device having an optical variable attenuator may be provided every few units to reduce the manufacturing cost.

【0083】そこで、この実施例では、制御・監視信号
受信回路52が上流側の光増幅装置70から送信される
DCF71に入射された中間光出力パワーP04と、光
伝送路30に入射された光出力パワーP06の情報を、
光分波器54を介して制御・監視信号として受信し、前
段の光増幅装置70のDCF71およびこの光増幅装置
70と自装置40間の光伝送路30で発生したSRSの
影響による利得の傾きと逆の傾きを持たせるように、制
御回路50によって光可変減衰器45の減衰量を制御し
ている。ここで、P04は、前段の光増幅装置の中間光
出力パワーであり、P06は、前段の光増幅装置の光出
力パワーである。
Therefore, in this embodiment, the control / monitor signal receiving circuit 52 makes the intermediate optical output power P04 made incident on the DCF 71 transmitted from the optical amplifier 70 on the upstream side and the light made incident on the optical transmission line 30. Output power P06 information,
It is received as a control / monitoring signal via the optical demultiplexer 54, and the gain slope due to the influence of the SRS generated in the DCF 71 of the optical amplification device 70 in the preceding stage and the optical transmission line 30 between this optical amplification device 70 and its own device 40. The control circuit 50 controls the attenuation amount of the optical variable attenuator 45 so as to have the opposite inclination. Here, P04 is the intermediate optical output power of the optical amplifier of the preceding stage, and P06 is the optical output power of the optical amplifier of the preceding stage.

【0084】この制御回路50は、光増幅部41の利得
G1と光増幅部42の利得G2と光増幅部60の利得G
3の総和がC+ΔLになるように、この光可変減衰器4
5の減衰量Aを制御している。なお、この場合には、Δ
Lは、次段の光増幅装置に繋がる光伝送路30に対する
光可変減衰器の減衰量の補正値であるΔL1と、DCF
66に対する光可変減衰器の減衰量の補正値であるΔL
2と、前段の光増幅装置70に繋がる光伝送路30に対
する光可変減衰器の減衰量の補正値であるΔL3と、前
段の光増幅装置70のDCF71に対する光可変減衰器
の減衰量の補正値であるΔL4とを合わせたΔL=ΔL
1+ΔL2+ΔL3+ΔL4の値からなる。
The control circuit 50 has a gain G1 of the optical amplifier 41, a gain G2 of the optical amplifier 42, and a gain G of the optical amplifier 60.
This optical variable attenuator 4 is set so that the sum of 3 becomes C + ΔL.
The attenuation amount A of 5 is controlled. In this case, Δ
L is a correction value of the attenuation amount of the optical variable attenuator with respect to the optical transmission line 30 connected to the optical amplifier of the next stage, ΔL1, and DCF
ΔL which is the correction value of the attenuation amount of the optical variable attenuator for 66
2, ΔL3 which is the correction value of the attenuation amount of the optical variable attenuator for the optical transmission line 30 connected to the optical amplifier device 70 of the previous stage, and the correction value of the attenuation amount of the optical variable attenuator for the DCF 71 of the optical amplifier device 70 of the previous stage. ΔL = ΔL combined with ΔL4
It consists of the value of 1 + ΔL2 + ΔL3 + ΔL4.

【0085】この実施例では、光増幅部41と42と6
0の利得は、 G1+G2+G3=C+ΔL …(19) となる。
In this embodiment, the optical amplifiers 41, 42 and 6 are used.
The gain of 0 is G1 + G2 + G3 = C + ΔL (19)

【0086】ここで、(19)式に(2)式と(3)式
と(13)式を代入すると、 (P2−P1)+(P4−P3)+(P6−P5)=C
+ΔL となる。そして、上記の式から光可変減衰器45の減衰
量(P2−P3)は、 (P2−P3)=C+ΔL−(P4−P1)−(P6−P5)…(20) で求まる。
Substituting equations (2), (3) and (13) into equation (19), (P2-P1) + (P4-P3) + (P6-P5) = C
It becomes + ΔL. Then, from the above equation, the attenuation amount (P2-P3) of the variable optical attenuator 45 is obtained by (P2-P3) = C + [Delta] L- (P4-P1)-(P6-P5) ... (20).

【0087】また、この実施例でも、上述した(8)式
〜(11)式に基づいて光可変減衰器の減衰量の補正値
ΔL(実際にはΔL1〜ΔL4を求めて加算する)を求
めることができる。すなわち、この次段の光増幅装置に
繋がる光伝送路30に対する光可変減衰器の減衰量の補
正値ΔL1は、 ΔL1=4.34・(β1・P6・Leff1)/a ここで、P6:次段の伝送路へ入射される光信号のトー
タル光パワー[W] β1:このトータル光パワーが入射される光伝送路に依
存する係数[1/(W・km・nm)] Leff1:このトータル光パワーが入射される光伝送
路の実効長[km] a:自装置の光増幅器の設計に依存する比例係数 (単位:[1/nm]) となり、また、この自装置のDCF66に対する光可変
減衰器の減衰量の補正値ΔL2は、 ΔL2=4.34・(β2・P4・Leff2)/a ここで、P4:自装置のDCFへ入射される光信号のト
ータル光パワー[W] β2:このトータル光パワーが入射されるDCFに依存
する係数[1/(W・km・nm)] Leff2:このトータル光パワーが入射されるDCF
の実効長[km] となる。
Also in this embodiment, the correction value ΔL of the attenuation amount of the optical variable attenuator (actually, ΔL1 to ΔL4 is calculated and added) is calculated based on the above-mentioned expressions (8) to (11). be able to. That is, the correction value ΔL1 of the attenuation amount of the optical variable attenuator for the optical transmission line 30 connected to the optical amplifier of the next stage is ΔL1 = 4.34 · (β1 · P6 · Leff1) / a where P6: Total optical power [W] β1 of the optical signal incident on the stage transmission line β1: Coefficient [1 / (W · km · nm)] Leff1: This total light that depends on the optical transmission line on which this total optical power is incident Effective length of optical transmission line on which power is incident [km] a: Proportional coefficient (unit: [1 / nm]) depending on the design of the optical amplifier of the own device, and variable optical attenuation for the DCF 66 of the own device The correction value ΔL2 of the attenuation amount of the container is ΔL2 = 4.34 · (β2 · P4 · Leff2) / a where P4: Total optical power [W] β2 of the optical signal incident on the DCF of the own device β2: Total optical power is incident Coefficient depending on the DCF to be generated [1 / (W · km · nm)] Leff2: DCF to which this total optical power is incident
Becomes an effective length [km].

【0088】また、前段の光増幅装置70に繋がる光伝
送路30に対する光可変減衰器の減衰量の補正値である
ΔL3は、 ΔL3=4.34・(β3・P06・Leff3)/a ここで、P06:前段の伝送路へ入射される光信号のト
ータル光パワー[W] β3:このトータル光パワーが入射される光伝送路に依
存する係数[1/(W・km・nm)] Leff3:このトータル光パワーが入射される光伝送
路の実効長[km] となり、前段の光増幅装置70のDCF71に対する光
可変減衰器の減衰量の補正値であるΔL4は、 ΔL4=4.34・(β4・P04・Leff4)/a ここで、P04:前段の光増幅装置のDCFへ入射され
る光信号のトータル光パワー[W] β4:このトータル光パワーが入射されるDCFに依存
する係数[1/(W・km・nm)] Leff4:このトータル光パワーが入射されるDCF
の実効長[km] となる。
Further, ΔL3, which is the correction value of the attenuation amount of the optical variable attenuator for the optical transmission line 30 connected to the optical amplification device 70 in the preceding stage, is ΔL3 = 4.34 · (β3 · P06 · Leff3) / a where , P06: Total optical power [W] β3 of the optical signal incident on the preceding transmission line β3: Coefficient [1 / (W · km · nm)] Leff3: which this total optical power depends on the incident optical transmission line This total optical power becomes the effective length [km] of the incident optical transmission line, and ΔL4, which is the correction value of the attenuation amount of the variable optical attenuator with respect to the DCF 71 of the optical amplifier 70 in the previous stage, is ΔL4 = 4.34 · ( β4 · P04 · Leff4) / a where P04 is the total optical power [W] of the optical signal incident on the DCF of the optical amplifier at the preceding stage [beta] 4: This total optical power is a coefficient depending on the incident DCF. 1 / (W · km · nm)] Leff4: DCF this total optical power is incident
Becomes an effective length [km].

【0089】従って、この実施例における光可変減衰器
の減衰量の補正値ΔLは、 ΔL=ΔL1+ΔL2+ΔL3+ΔL4 =4.34・(β1・P6・Leff1)/a+4.34・(β2・P4 ・Leff2)/a+4.34・(β3・P06・Leff3)/a+4.34 ・(β4・P04・Leff4)/a =4.34・{(β1・P6・Leff1)+(β2・P4・Leff2 )+(β3・P06・Leff3)+(β4・P04・Leff4)}/a となる。
Therefore, the correction value ΔL of the attenuation amount of the variable optical attenuator in this embodiment is ΔL = ΔL1 + ΔL2 + ΔL3 + ΔL4 = 4.34 · (β1 · P6 · Leff1) /a+4.34· (β2 · P4 · Leff2) / a + 4.34 · (β3 · P06 · Leff3) /a+4.34· (β4 · P04 · Leff4) / a = 4.34 · {(β1 · P6 · Leff1) + (β2 · P4 · Leff2) + (β3 · P06 · Leff3) + (β4 · P04 · Leff4)} / a.

【0090】このように、この実施例では、前段の制御
機能のない光増幅装置及び後段のプリアンプにおけるD
CFおよび光伝送路でのSRSの影響によって発生する
利得波長特性の傾きを補正するために、上流側の光伝送
路の光出力パワーの検出結果から光可変減衰器の減衰量
の補正値を求めて、この利得波長特性の傾きを打ち消す
ように、多段での光可変減衰器の減衰量を制御するの
で、上記の実施例と同様の効果を得ることができるとと
もに、複数段の光増幅装置での各波長における利得が均
一となり、利得波長特性の平坦化が可能となり、さらに
伝送効率を向上させることができる。
As described above, in this embodiment, the D in the optical amplifier device without the control function in the front stage and the D in the preamplifier in the rear stage is used.
In order to correct the slope of the gain wavelength characteristic caused by the influence of CF and the SRS in the optical transmission line, the correction value of the attenuation amount of the optical variable attenuator is obtained from the detection result of the optical output power of the upstream optical transmission line. Then, since the attenuation amount of the variable optical attenuator in multiple stages is controlled so as to cancel the inclination of the gain wavelength characteristic, it is possible to obtain the same effect as that of the above-described embodiment, and also in the optical amplifier of multiple stages. The gain at each wavelength becomes uniform, the gain wavelength characteristics can be flattened, and the transmission efficiency can be further improved.

【0091】(実施例6)次に、上述したこの発明にか
かる光増幅装置を用いた光増幅中継システムの一実施例
を図10に示す。なお、この実施例では、この発明にか
かる光可変減衰器が内蔵されていない光増幅装置70,
71とこの発明にかかる光増幅装置40が1本の光伝送
路30上に接続されているシステムが示されている。
(Sixth Embodiment) Next, FIG. 10 shows an embodiment of an optical amplification repeater system using the above-described optical amplification apparatus according to the present invention. In this embodiment, the optical amplifying device 70 which does not include the optical variable attenuator according to the present invention,
71 shows a system in which 71 and the optical amplifier 40 according to the present invention are connected on one optical transmission line 30.

【0092】このシステムでは、光増幅装置70,71
は、利得の波長特性の傾きを制御することができないの
で、そこで発生した利得の傾きも光増幅装置40で制御
している。光増幅装置70,71の光出力パワーP1
a,P1b,P2a,P2bの情報は、監視・制御信号
として各光増幅装置70,71の制御・監視信号送信回
路から光増幅装置40へ伝送される。なお、この光出力
パワーP1a,P2aは、図9に示した中間光出力パワ
ーP04に相当し、この光出力パワーP1b,P2b
は、図9に示した光出力パワーP06に相当する。
In this system, the optical amplifiers 70, 71 are
Cannot control the slope of the gain wavelength characteristic, so that the optical amplifier 40 also controls the slope of the gain generated there. Optical output power P1 of the optical amplifiers 70 and 71
The information of a, P1b, P2a, and P2b is transmitted to the optical amplification device 40 as a monitoring / control signal from the control / monitoring signal transmission circuit of each optical amplification device 70, 71. The light output powers P1a and P2a correspond to the intermediate light output power P04 shown in FIG. 9, and the light output powers P1b and P2b.
Corresponds to the optical output power P06 shown in FIG.

【0093】このシステムに用いられる光増幅装置40
は、光出力パワーの情報を伝送できる装置である必要が
あるので、図5、図8、図9に示した制御・監視信号の
送信回路と受信回路を備えたものが、構成上必須とな
る。
Optical amplifier 40 used in this system
Is required to be a device capable of transmitting the information of the optical output power, therefore, the device having the control / monitoring signal transmitting circuit and the receiving circuit shown in FIGS. 5, 8 and 9 is essential in the configuration. .

【0094】光増幅装置40の制御・監視信号送信回路
は、例えばポーリング要求などによって光増幅装置7
0,71から光出力パワーの情報を得ることができる。
他の光増幅装置から光伝送路30を介して光増幅装置4
0宛の制御・監視信号を取り込んだ光可変減衰器を有さ
ない光増幅装置では、光増幅部を経由した後、再び光伝
送路30に上記制御・監視信号を送出している。なお、
制御・監視信号は、主信号と別の波長の光信号であっ
て、かつ光増幅装置の増幅波長帯域外でも、またはこの
帯域内でも良く、例えば光増幅装置の増幅波長帯域内の
場合には、光増幅装置によって光増幅された後に送出さ
れる。
The control / monitoring signal transmission circuit of the optical amplifying device 40 uses the optical amplifying device 7 in response to a polling request, for example.
Information on the optical output power can be obtained from 0 and 71.
The optical amplifying device 4 from another optical amplifying device via the optical transmission line 30.
In the optical amplifying device which does not have the variable optical attenuator which takes in the control / monitoring signal addressed to 0, the control / monitoring signal is again sent to the optical transmission line 30 after passing through the optical amplifying section. In addition,
The control / monitoring signal is an optical signal having a wavelength different from that of the main signal, and may be outside the amplification wavelength band of the optical amplifier or within this band, for example, in the case where it is within the amplification wavelength band of the optical amplifier. , And is transmitted after being optically amplified by the optical amplifier.

【0095】このように、この実施例では、この発明に
かかる光増幅装置を少なくとも1つ接続させて光増幅中
継システムを構築するので、各光増幅装置における光パ
ワーの検出結果からSRSによって発生する利得の傾き
と逆の傾きを持たせるように光可変減衰器の減衰量を制
御でき、これにより各波長における利得の平坦化を図
り、伝送効率を向上できる。
As described above, in this embodiment, since at least one optical amplifying device according to the present invention is connected to construct an optical amplifying repeater system, SRS is generated from the detection result of the optical power in each optical amplifying device. The attenuation amount of the variable optical attenuator can be controlled so as to have a slope opposite to the slope of the gain, whereby the gain can be flattened at each wavelength and the transmission efficiency can be improved.

【0096】(実施例7)図11は、上述したこの発明
にかかる光増幅装置を用いた光増幅中継システムの他の
実施例の構成を示すシステム構成図である。図におい
て、このシステムでは、上り用および下り用の2本の光
伝送路1,2を設け、各光伝送路1,2に複数の光増幅
装置40,70〜73,80〜84をそれぞれ多段接続
させた場合を示しており、これら光増幅装置の少なくと
も1つにこの発明にかかる光増幅装置40が設けられて
いる。
(Embodiment 7) FIG. 11 is a system configuration diagram showing the configuration of another embodiment of the optical amplification repeater system using the above-described optical amplification apparatus according to the present invention. In the figure, in this system, two optical transmission lines 1 and 2 for uplink and downlink are provided, and a plurality of optical amplifiers 40, 70 to 73, 80 to 84 are respectively provided in multiple stages on each optical transmission line 1 and 2. It shows a case where they are connected, and at least one of these optical amplifying devices is provided with the optical amplifying device 40 according to the present invention.

【0097】そして、光増幅装置40の上流側にも、下
流側にも光可変減衰器を内蔵していない複数の光増幅装
置70〜73が存在する場合には、これら光増幅装置7
0〜73で発生した光出力パワーP1a〜P5a,P1
b〜P5bの情報が光増幅装置40へ伝送されている。
なお、下流側の光増幅装置72,73の光出力パワーP
4a,P4b,P5a,P5bの情報は、監視用モジュ
ールSVおよび光増幅装置82〜84を介して光増幅装
置40へ伝送されている。
If there are a plurality of optical amplifying devices 70 to 73 that do not have a variable optical attenuator on the upstream side and the downstream side of the optical amplifying device 40, these optical amplifying devices 7
Optical output powers P1a to P5a, P1 generated at 0 to 73
Information of b to P5b is transmitted to the optical amplification device 40.
The optical output power P of the optical amplifiers 72 and 73 on the downstream side is
The information of 4a, P4b, P5a, P5b is transmitted to the optical amplification device 40 via the monitoring module SV and the optical amplification devices 82 to 84.

【0098】この光増幅装置40は、これら光増幅装置
における光出力パワーの検出結果からSRSによって発
生する利得の傾きと逆の傾きを持たせるように光可変減
衰器の減衰量を制御する。
The optical amplifying device 40 controls the attenuation amount of the optical variable attenuator so as to have a slope opposite to the slope of the gain generated by the SRS from the detection result of the optical output power in these optical amplifying devices.

【0099】このように、この実施例では、この発明に
かかる光増幅装置を少なくとも1つ接続させた上り用お
よび下り用の光伝送路を有し、双方向伝送を行う光増幅
中継システムを構築するので、図10の実施例6と同様
の効果を得ることができるとともに、下流側の光パワー
の検出結果も受信できて、上下流に関わりなくSRSに
よって発生する利得の傾きと逆の傾きを持たせるように
光可変減衰器の減衰量を制御でき、目標とする段の光増
幅装置での各波長における利得が均一となり、利得波長
特性の平坦化が可能となり、さらに伝送効率を向上させ
ることができる。
As described above, in this embodiment, there is constructed an optical amplification repeater system having the upstream and downstream optical transmission lines to which at least one optical amplification device according to the present invention is connected and performing bidirectional transmission. Therefore, it is possible to obtain the same effect as that of the sixth embodiment in FIG. 10, receive the detection result of the optical power on the downstream side, and obtain the slope opposite to the slope of the gain generated by the SRS regardless of the upstream and downstream. It is possible to control the amount of attenuation of the optical variable attenuator so that it has, the gain at each wavelength in the target stage optical amplifier becomes uniform, the gain wavelength characteristics can be flattened, and the transmission efficiency is further improved. You can

【0100】この発明は、これら実施形態に限定される
ものではなく、この発明の要旨を逸脱しない範囲で種々
の変形実施が可能である。
The present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention.

【0101】[0101]

【発明の効果】以上説明したように、この発明の請求項
1では、少なくとも2つの光増幅器と少なくとも1つの
減衰器とが接続され、光伝送路を介して入力する光信号
を前記光増幅器で増幅するとともに、前記光信号の光パ
ワーを検出し、該検出した光パワーに応じて前記減衰量
を制御する光増幅方法において、前記各光増幅器の利得
の和が、光伝送路へのトータル光入力パワーに依存する
目標値になるように、前記減衰器の減衰量を制御するの
で、光パワーの検出結果からSRSによって発生する利
得の傾きと逆の傾きを持たせるように光可変減衰器の減
衰量を制御でき、各波長における利得の平坦化が図ら
れ、伝送効率を向上できる。
As described above, according to the first aspect of the present invention, at least two optical amplifiers and at least one attenuator are connected to each other, and an optical signal input through the optical transmission line is transmitted by the optical amplifier. In the optical amplification method of amplifying and detecting the optical power of the optical signal and controlling the amount of attenuation according to the detected optical power, the sum of the gains of the optical amplifiers is the total optical power to the optical transmission line. Since the attenuation amount of the attenuator is controlled so that the target value depends on the input power, the optical variable attenuator is controlled so as to have a slope opposite to the slope of the gain generated by SRS from the detection result of the optical power. The amount of attenuation can be controlled, the gain at each wavelength can be flattened, and the transmission efficiency can be improved.

【0102】また、この発明の請求項2では、光可変減
衰器の減衰量を上流側光伝送路への光信号の各波長のト
ータル光入力パワーまたは/および下流側光伝送路への
光信号の各波長のトータル光入力パワーに依存する目標
値に制御するので、利得を均一にし、安定した光伝送を
行うことができる。
According to a second aspect of the present invention, the amount of attenuation of the optical variable attenuator is set to the total optical input power of each wavelength of the optical signal to the upstream optical transmission line or / and the optical signal to the downstream optical transmission line. Since it is controlled to a target value depending on the total optical input power of each wavelength, the gain can be made uniform and stable optical transmission can be performed.

【0103】また、この発明の請求項3,4では、少な
くとも2つの光増幅器と少なくとも1つの減衰器と分散
補償型光伝送路とが接続され、光伝送路を介して入力す
る光信号を前記光増幅器で増幅するとともに、前記光信
号の光パワーを検出し、該検出した光パワーに応じて前
記減衰量を制御する光増幅方法において、各光増幅器の
利得の和が、上流側または/および下流側の光伝送路へ
のトータル光入力パワーの他に、分散補償型光伝送路へ
のトータル光入力パワーに依存する目標値になるように
するので、光パワーの検出結果からSRSによって発生
する利得の傾きと逆の傾きを持たせることができ、各波
長における光パワーを平坦にすることができる。
According to the third and fourth aspects of the present invention, at least two optical amplifiers, at least one attenuator, and a dispersion-compensating optical transmission line are connected, and an optical signal input via the optical transmission line is described above. In the optical amplification method of amplifying with an optical amplifier, detecting the optical power of the optical signal, and controlling the amount of attenuation according to the detected optical power, the sum of the gains of the optical amplifiers is upstream or / and In addition to the total optical input power to the optical transmission line on the downstream side, the target value depends on the total optical input power to the dispersion-compensated optical transmission line, so that SRS is generated from the detection result of the optical power. It is possible to have a slope opposite to the slope of gain, and it is possible to flatten the optical power at each wavelength.

【0104】また、この発明の請求項5,6では、少な
くとも2つの光増幅器と少なくとも1つの減衰器とが接
続され、光伝送路を介して入力する光信号を前記光増幅
器で増幅するとともに、前記光信号の光パワーに応じて
前記減衰量を制御する光増幅装置において、上流側また
は/および下流側の光パワーを検出し、この光パワーの
検出結果から光可変減衰器の減衰量の補正値を求めて、
光可変減衰器の減衰量を制御するので、光パワーの検出
結果からSRSによって発生する利得の傾きと逆の傾き
を持たせるように光可変減衰器の減衰量を制御して、各
波長における利得の平坦化を図り、伝送効率を向上でき
る。
According to the fifth and sixth aspects of the present invention, at least two optical amplifiers and at least one attenuator are connected, and an optical signal input via an optical transmission line is amplified by the optical amplifier, and In an optical amplification device that controls the attenuation amount according to the optical power of the optical signal, the upstream side and / or the downstream side optical power is detected, and the attenuation amount of the optical variable attenuator is corrected from the detection result of the optical power. Seeking the value,
Since the attenuation amount of the optical variable attenuator is controlled, the attenuation amount of the optical variable attenuator is controlled so as to have a slope opposite to the slope of the gain generated by SRS from the detection result of the optical power, and the gain at each wavelength is controlled. Can be flattened and the transmission efficiency can be improved.

【0105】また、この発明にかかる請求項7では、補
正手段がトータル光入力パワーに基づいて、光増幅器の
利得の傾きを誘導ラマン散乱によって発生する利得の傾
きと逆の傾きを持たせるように、減衰器の減衰量の補正
値を求めるので、この利得波長特性の傾きを互いに打ち
消しあうようになり、各波長における利得波長特性の平
坦化が図られ、伝送効率を向上できる。
According to a seventh aspect of the present invention, the correction means causes the gain slope of the optical amplifier to have a slope opposite to the slope of the gain generated by stimulated Raman scattering based on the total optical input power. Since the correction value of the attenuation amount of the attenuator is obtained, the slopes of the gain wavelength characteristics cancel each other out, the gain wavelength characteristics at each wavelength are flattened, and the transmission efficiency can be improved.

【0106】また、この発明の請求項8〜11では、分
散補償型光伝送路が接続され、光伝送路を介して入力す
る光信号を前記光増幅器で増幅するとともに、前記光信
号の光パワーに応じて前記減衰量を制御する光増幅装置
において、上流側または/および下流側の光伝送路への
光信号のトータル光入力パワーと、分散補償型光伝送路
への前記光信号のトータル光入力パワーを検出し、該検
出された各トータル光入力パワーに基づいて、光増幅器
の利得の傾きを誘導ラマン散乱によって発生する利得の
傾きと逆の傾きを持たせるように、補正値を求めて、互
いの傾きを打ち消すようにするので、光パワーの検出結
果からSRSによって発生する利得の傾きと逆の傾きを
持たせるように光可変減衰器の減衰量を制御して、各波
長における利得の平坦化を図り、伝送効率を向上でき
る。
According to the eighth to eleventh aspects of the present invention, a dispersion-compensating optical transmission line is connected, the optical signal input through the optical transmission line is amplified by the optical amplifier, and the optical power of the optical signal is increased. In the optical amplifying device for controlling the attenuation amount according to, the total optical input power of the optical signal to the upstream side and / or the downstream side optical transmission line, and the total optical input power of the optical signal to the dispersion compensation type optical transmission line The input power is detected, and a correction value is obtained based on each detected total optical input power so that the gain slope of the optical amplifier has a slope opposite to the slope of the gain generated by stimulated Raman scattering. Since the mutual inclinations are canceled out, the attenuation amount of the variable optical attenuator is controlled so as to have an inclination opposite to the inclination of the gain generated by the SRS from the detection result of the optical power, and the gain of each wavelength is controlled. Achieving tanker, the transmission efficiency can be improved.

【0107】また、この発明の請求項12では、検出さ
れた光パワーの情報を送信する送信手段と、検出された
光パワーの情報を受信する受信手段とを備えたので、他
の光増幅装置での減衰量の制御を可能にするとともに、
複数段の光増幅装置から光出力パワーの検出結果を得て
目標の段の光増幅装置での減衰量の制御を可能にする。
According to the twelfth aspect of the present invention, since the transmission means for transmitting the information on the detected optical power and the reception means for receiving the information on the detected optical power are provided, another optical amplifier device is provided. It is possible to control the amount of attenuation at
It is possible to obtain the detection result of the optical output power from the optical amplifiers of a plurality of stages and control the attenuation amount in the optical amplifiers of the target stage.

【0108】また、この発明の請求項13では、光伝送
路に多段接続された光増幅装置で、前記光伝送路に伝搬
される光信号を増幅して中継する光増幅中継システムに
おいて、請求項5〜12に記載の光増幅装置を少なくと
も1つ接続させて、各光増幅装置における光パワーの検
出結果からSRSによって発生する利得の傾きと逆の傾
きを持たせて互いに打ち消し合うようにして利得波長特
性の平坦化を図り、伝送効率を向上できる。
According to a thirteenth aspect of the present invention, there is provided an optical amplification repeater system for amplifying and relaying an optical signal propagated to the optical transmission line with an optical amplification device connected in multiple stages to the optical transmission line. At least one of the optical amplifying devices according to 5 to 12 is connected, and the gains are made to cancel each other by providing a slope opposite to the slope of the gain generated by SRS from the detection result of the optical power in each optical amplifier. The wavelength characteristics can be flattened and the transmission efficiency can be improved.

【0109】また、この発明の請求項14,15では、
上り用と下り用の少なくとも2本の光伝送路に多段接続
された光増幅装置で、前記光伝送路に伝搬される光信号
を増幅して双方向の光中継を行う光増幅中継システムに
おいて、請求項5〜12に記載の光増幅装置を少なくと
も1つ接続させた上り用および下り用の光伝送路を用い
て双方向伝送を行う光増幅中継システムを構築すること
で、上流側の光パワーとともに、下流側の光パワーの検
出結果も受信が可能となり、他の光増幅装置における光
出力パワーの検出結果からSRSによって発生する利得
の傾きと逆の傾きを持たせて互いに打ち消し合うように
して利得波長特性の平坦化を図り、伝送効率を向上でき
る。
Further, according to claims 14 and 15 of the present invention,
In an optical amplification repeater system for amplifying an optical signal propagated to the optical transmission line and performing bidirectional optical relaying, in an optical amplification device connected in multiple stages to at least two optical transmission lines for upstream and downstream. Optical power on the upstream side is constructed by constructing an optical amplification repeater system that performs bidirectional transmission using upstream and downstream optical transmission lines to which at least one optical amplification device according to claim 5 is connected. At the same time, it becomes possible to receive the detection result of the optical power on the downstream side, and the detection result of the optical output power in the other optical amplifying device has a slope opposite to the slope of the gain generated by the SRS so as to cancel each other. The gain wavelength characteristic can be flattened and the transmission efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる光増幅装置の実施例1の構成
を示す構成図である。
FIG. 1 is a configuration diagram showing a configuration of a first embodiment of an optical amplification device according to the present invention.

【図2】図1に示した各部の利得波長特性を示す特性図
である。
FIG. 2 is a characteristic diagram showing a gain wavelength characteristic of each part shown in FIG.

【図3】同じく、各部における光パワーを示すレベルダ
イヤグラムを示す図である。
FIG. 3 is a diagram similarly showing a level diagram showing the optical power in each part.

【図4】利得の大きさによって、利得波長特性の傾きが
変化することを説明するための利得波長特性を示す特性
図である。
FIG. 4 is a characteristic diagram showing a gain wavelength characteristic for explaining that the slope of the gain wavelength characteristic changes depending on the magnitude of the gain.

【図5】この発明にかかる光増幅装置の実施例2の構成
を示す構成図である。
FIG. 5 is a configuration diagram showing a configuration of a second embodiment of the optical amplifying device according to the present invention.

【図6】図5に示した各部の利得波長特性を示す特性図
である。
6 is a characteristic diagram showing a gain wavelength characteristic of each part shown in FIG.

【図7】この発明にかかる光増幅装置の実施例3の構成
を示す構成図である。
FIG. 7 is a configuration diagram showing a configuration of a third embodiment of the optical amplifying device according to the present invention.

【図8】この発明にかかる光増幅装置の実施例4の構成
を示す構成図である。
FIG. 8 is a configuration diagram showing a configuration of a fourth embodiment of the optical amplifying device according to the present invention.

【図9】この発明にかかる光増幅装置の実施例5の構成
を示す構成図である。
FIG. 9 is a configuration diagram showing a configuration of a fifth embodiment of the optical amplifying device according to the present invention.

【図10】この発明にかかる光増幅装置を用いた光増幅
中継システムの一実施例の構成を示すシステム構成図で
ある。
FIG. 10 is a system configuration diagram showing a configuration of an embodiment of an optical amplification repeater system using the optical amplification device according to the present invention.

【図11】この発明にかかる光増幅装置を用いた光増幅
中継システムの他の実施例の構成を示すシステム構成図
である。
FIG. 11 is a system configuration diagram showing the configuration of another embodiment of the optical amplification repeater system using the optical amplification device according to the present invention.

【図12】従来のWDMシステムの構成の一例を示す構
成図である。
FIG. 12 is a configuration diagram showing an example of a configuration of a conventional WDM system.

【図13】図12に示される光増幅装置の構成の一例を
示す構成図である。
13 is a configuration diagram showing an example of a configuration of the optical amplification device shown in FIG.

【図14】図13に示した各部の利得波長特性を示す特
性図である。
FIG. 14 is a characteristic diagram showing gain wavelength characteristics of each part shown in FIG.

【図15】同じく、各部における光パワーを示すレベル
ダイヤグラムを示す図である。
FIG. 15 is a diagram similarly showing a level diagram showing the optical power in each part.

【図16】光出力パワーとWDM信号の光スペクトラム
の傾きの関係を示す図である。
FIG. 16 is a diagram showing the relationship between the optical output power and the slope of the optical spectrum of a WDM signal.

【符号の説明】[Explanation of symbols]

1,2,30 光ファイバ伝送路(光伝送路) 10 送信端局装置 12,55 光合波器 13 光増幅装置 20 受信端局装置 21,40,70〜73,80〜84 光ファイバ増幅
装置(光増幅装置) 22,46,47,54,56,57,62,63 光
分波器 41,42,60 光増幅部 45 光可変減衰器 48,49 光パワー検出回路 50 制御回路 51 補正回路 52 制御・監視信号受信回路 53 制御・監視信号送信回路 58,59,64,65 光パワー検出回路 111〜11n 各光送信器 231〜23n 光受信器
1,2,30 Optical fiber transmission line (optical transmission line) 10 Transmission end station device 12,55 Optical multiplexer 13 Optical amplification device 20 Reception end station device 21, 40, 70-73, 80-84 Optical fiber amplification device ( Optical amplification device) 22, 46, 47, 54, 56, 57, 62, 63 Optical demultiplexer 41, 42, 60 Optical amplification unit 45 Optical variable attenuator 48, 49 Optical power detection circuit 50 Control circuit 51 Correction circuit 52 Control / monitor signal receiving circuit 53 Control / monitor signal transmitting circuit 58, 59, 64, 65 Optical power detection circuit 111 to 11n Optical transmitter 231 to 23n Optical receiver

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04J 14/02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H04J 14/02

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2つの光増幅器と少なくとも
1つの減衰器とが接続され、光伝送路を介して入力する
光信号を前記光増幅器で増幅するとともに、前記光信号
の光パワーを検出し、該検出した光パワーに応じて前記
減衰量を制御する光増幅方法において、 前記各光増幅器の利得の和が前記光伝送路へのトータル
光入力パワーに依存する目標値になるように、前記減衰
器の減衰量を制御する制御工程を含むことを特徴とする
光増幅方法。
1. At least two optical amplifiers and at least one attenuator are connected, the optical signal input through an optical transmission line is amplified by the optical amplifier, and the optical power of the optical signal is detected, In the optical amplification method of controlling the amount of attenuation according to the detected optical power, the attenuation is performed so that the sum of the gains of the optical amplifiers becomes a target value that depends on the total optical input power to the optical transmission line. An optical amplification method comprising a control step of controlling an attenuation amount of a container.
【請求項2】 前記制御工程では、前記光信号を入力さ
せる上流側の前記光伝送路への当該光信号のトータル光
入力パワーと、前記光信号を伝搬させる下流側の前記光
伝送路への当該光信号のトータル光入力パワーのうち、
少なくとも一方のトータル光入力パワーに依存する目標
値になるように、前記減衰器の減衰量を制御することを
特徴とする請求項1に記載の光増幅方法。
2. In the control step, the total optical input power of the optical signal to the upstream optical transmission line for inputting the optical signal and the downstream optical transmission line for propagating the optical signal are input. Of the total optical input power of the optical signal,
2. The optical amplification method according to claim 1, wherein the attenuation amount of the attenuator is controlled so that the target value depends on at least one total optical input power.
【請求項3】 少なくとも2つの光増幅器と少なくとも
1つの減衰器と分散補償型光伝送路とが接続され、光伝
送路を介して入力する光信号を前記光増幅器で増幅する
とともに、前記光信号の光パワーを検出し、該検出した
光パワーに応じて前記減衰量を制御する光増幅方法にお
いて、 前記各光増幅器の利得の和が前記光伝送路へのトータル
光入力パワーおよび前記分散補償型光伝送路へのトータ
ル光入力パワーに依存する目標値になるように、前記減
衰器の減衰量を制御する制御工程を含むことを特徴とす
る光増幅方法。
3. At least two optical amplifiers, at least one attenuator, and a dispersion compensating optical transmission line are connected, and an optical signal input via the optical transmission line is amplified by the optical amplifier and the optical signal is transmitted. In the optical amplification method for detecting the optical power of the optical amplifier and controlling the amount of attenuation according to the detected optical power, the sum of the gains of the optical amplifiers is the total optical input power to the optical transmission line and the dispersion compensation type. An optical amplification method comprising a control step of controlling the attenuation amount of the attenuator so that the target value depends on the total optical input power to the optical transmission line.
【請求項4】 前記制御工程では、前記光信号を入力さ
せる上流側の前記光伝送路への当該光信号のトータル光
入力パワーと、前記光信号を伝搬させる下流側の前記光
伝送路への当該光信号のトータル光入力パワーのうち、
少なくとも一方のトータル光入力パワーおよび前記分散
補償型光伝送路へのトータル光入力パワーに依存する目
標値になるように、前記減衰器の減衰量を制御すること
を特徴とする請求項3に記載の光増幅方法。
4. In the control step, the total optical input power of the optical signal to the upstream optical transmission line for inputting the optical signal and the downstream optical transmission line for propagating the optical signal are input. Of the total optical input power of the optical signal,
4. The attenuation amount of the attenuator is controlled so that the target value depends on at least one of the total optical input power and the total optical input power to the dispersion compensating optical transmission line. Optical amplification method.
【請求項5】 少なくとも2つの光増幅器と少なくとも
1つの減衰器とが接続され、光伝送路を介して入力する
光信号を前記光増幅器で増幅するとともに、前記光信号
の光パワーに応じて前記減衰量を制御する光増幅装置に
おいて、 前記光信号の光パワーを検出する検出手段と、 前記検出された光パワーに基づいた所定の前記減衰器の
減衰量の補正値を求める補正手段と、 前記求めた補正値に基づき、前記減衰器の減衰量を制御
する制御手段とを備えたことを特徴とする光増幅装置。
5. At least two optical amplifiers and at least one attenuator are connected to amplify an optical signal input via an optical transmission line by the optical amplifier, and according to the optical power of the optical signal, In an optical amplification device that controls an attenuation amount, a detection unit that detects an optical power of the optical signal, a correction unit that obtains a correction value of a predetermined attenuation amount of the attenuator based on the detected optical power, and An optical amplifying device comprising: a control unit that controls the attenuation amount of the attenuator based on the obtained correction value.
【請求項6】 前記検出手段は、自装置に前記光信号を
入力させる上流側の光伝送路への当該光信号のトータル
光入力パワーと、前記自装置からの前記光信号を伝搬さ
せる下流側の光伝送路への当該光信号のトータル光入力
パワーのうち、少なくとも一方のトータル光入力パワー
を検出することを特徴とする請求項5に記載の光増幅装
置。
6. The detecting means includes a total optical input power of the optical signal to an upstream optical transmission line for inputting the optical signal to the own device and a downstream side for propagating the optical signal from the own device. 6. The optical amplifying device according to claim 5, wherein at least one of the total optical input powers of the optical signals to the optical transmission line is detected.
【請求項7】 前記補正手段は、前記検出されたトータ
ル光入力パワーに基づいて、前記光増幅器の利得の傾き
を誘導ラマン散乱によって発生する利得の傾きと逆の傾
きを持たせるように、前記減衰器の減衰量の補正値を求
めることを特徴とする請求項5または6に記載の光増幅
装置。
7. The correcting means sets the slope of the gain of the optical amplifier opposite to the slope of the gain generated by stimulated Raman scattering based on the detected total optical input power. 7. The optical amplification device according to claim 5, wherein a correction value of the attenuation amount of the attenuator is obtained.
【請求項8】 少なくとも3つの光増幅器と少なくとも
1つの減衰器と分散補償型光伝送路とが接続され、光伝
送路を介して入力する光信号を前記光増幅器で増幅する
とともに、前記光信号の光パワーに応じて前記減衰量を
制御する光増幅装置において、 前記光伝送路への前記光信号の光パワーを検出する第1
の検出手段と、 前記分散補償型光伝送路への前記光信号の光パワーを検
出する第2の検出手段と、 前記検出された各光パワーに基づいた所定の前記減衰器
の減衰量の補正値を求める補正手段と、 前記求めた補正値に基づき、前記減衰器の減衰量を制御
する制御手段とを備えたことを特徴とする光増幅装置。
8. At least three optical amplifiers, at least one attenuator, and a dispersion-compensating optical transmission line are connected, and an optical signal input via the optical transmission line is amplified by the optical amplifier and the optical signal is transmitted. An optical amplifier that controls the amount of attenuation in accordance with the optical power of the optical signal,
Detecting means, second detecting means for detecting the optical power of the optical signal to the dispersion-compensating optical transmission line, and correction of a predetermined attenuation amount of the attenuator based on each of the detected optical powers. An optical amplifying device comprising: a correction unit that obtains a value; and a control unit that controls the attenuation amount of the attenuator based on the obtained correction value.
【請求項9】 前記第1の検出手段は、自装置に前記光
信号を入力させる上流側の光伝送路への当該光信号のト
ータル光入力パワーと、前記自装置からの前記光信号を
伝搬させる下流側の光伝送路への当該光信号のトータル
光入力パワーのうち、少なくとも一方のトータル光入力
パワーを検出することを特徴とする請求項8に記載の光
増幅装置。
9. The first detecting means propagates the total optical input power of the optical signal to the upstream optical transmission line for inputting the optical signal to the own device and the optical signal from the own device. 9. The optical amplifying device according to claim 8, wherein at least one of the total optical input powers of the optical signals to the downstream optical transmission line is detected.
【請求項10】 前記第2の検出手段は、前記分散補償
型光伝送路への前記光信号のトータル光入力パワーを検
出することを特徴とする請求項8に記載の光増幅装置。
10. The optical amplifying device according to claim 8, wherein the second detecting means detects a total optical input power of the optical signal to the dispersion compensation type optical transmission line.
【請求項11】 前記補正手段は、前記検出された各ト
ータル光入力パワーに基づいて、前記光増幅器の利得の
傾きを誘導ラマン散乱によって発生する利得の傾きと逆
の傾きを持たせるように、前記減衰器の減衰量の補正値
を求めることを特徴とする請求項8〜10のいずれか1
つに記載の光増幅装置。
11. The correcting means, based on each of the detected total optical input powers, causes the slope of the gain of the optical amplifier to have a slope opposite to the slope of the gain generated by stimulated Raman scattering. 11. The correction value of the attenuation amount of the attenuator is obtained, according to claim 8.
The optical amplification device described in 1.
【請求項12】 前記光増幅装置は、前記検出された光
パワーの情報を送信する送信手段と、前記検出された光
パワーの情報を受信する受信手段とをさらに備えたこと
を特徴とする請求項5〜11のいずれか1つに記載の光
増幅装置。
12. The optical amplifying device further comprises: a transmitting unit for transmitting the information on the detected optical power, and a receiving unit for receiving the information on the detected optical power. Item 12. The optical amplifier device according to any one of items 5 to 11.
【請求項13】 光伝送路に多段接続された光増幅装置
で、前記光伝送路に伝搬される光信号を増幅して中継す
る光増幅中継システムにおいて、 前記請求項5〜12に記載の光増幅装置を少なくとも1
つ備えたことを特徴とする光増幅中継システム。
13. An optical amplification repeater system for amplifying and repeating an optical signal propagating in the optical transmission line in an optical amplifier device connected in multiple stages to the optical transmission line, wherein the optical amplifier according to any one of claims 5 to 12 is used. At least one amplification device
An optical amplification repeater system that has two features.
【請求項14】 上り用と下り用の少なくとも2本の光
伝送路に多段接続された光増幅装置で、前記光伝送路に
伝搬される光信号を増幅して双方向の光中継を行う光増
幅中継システムにおいて、 前記請求項5〜12に記載の光増幅装置を少なくとも1
つ備えたことを特徴とする光増幅中継システム。
14. An optical amplifying device, which is connected in multiple stages to at least two optical transmission lines for upstream and downstream, and which amplifies an optical signal propagated to the optical transmission line to perform bidirectional optical relay. In an amplification repeater system, at least one optical amplification device according to any one of claims 5 to 12 is provided.
An optical amplification repeater system that has two features.
【請求項15】 前記請求項12の光増幅装置を備えた
光増幅中継システムでは、前記光伝送路に接続された他
の光増幅装置から前記検出された光パワーの情報を受信
すると、該光パワーに基づいた所定の前記減衰器の減衰
量の補正値を求め、該求めた補正値に基づき、前記減衰
器の減衰量を制御することを特徴とする請求項13また
は14に記載の光増幅中継システム。
15. An optical amplification repeater system including the optical amplification device according to claim 12, wherein when the information of the detected optical power is received from another optical amplification device connected to the optical transmission line, the optical amplification device The optical amplification according to claim 13 or 14, wherein a predetermined correction value of the attenuation amount of the attenuator is obtained based on power, and the attenuation amount of the attenuator is controlled based on the obtained correction value. Relay system.
JP2002062669A 2002-03-07 2002-03-07 Optical amplification method and optical amplification device Expired - Fee Related JP3923342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062669A JP3923342B2 (en) 2002-03-07 2002-03-07 Optical amplification method and optical amplification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062669A JP3923342B2 (en) 2002-03-07 2002-03-07 Optical amplification method and optical amplification device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006183923A Division JP2006287979A (en) 2006-07-03 2006-07-03 Method for light amplification, apparatus therefor, and optical-amplification relay system using the apparatus
JP2006281973A Division JP4630256B2 (en) 2006-10-16 2006-10-16 Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus

Publications (2)

Publication Number Publication Date
JP2003264511A true JP2003264511A (en) 2003-09-19
JP3923342B2 JP3923342B2 (en) 2007-05-30

Family

ID=29196332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062669A Expired - Fee Related JP3923342B2 (en) 2002-03-07 2002-03-07 Optical amplification method and optical amplification device

Country Status (1)

Country Link
JP (1) JP3923342B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042096A (en) * 2006-08-09 2008-02-21 Fujitsu Ltd Optical amplifier and light transmission system
US7400441B2 (en) 2005-02-09 2008-07-15 Fujitsu Limited Optical amplifier, optical amplification repeater and pump light supply control method
JP2010097987A (en) * 2008-10-14 2010-04-30 Fujitsu Ltd Control apparatus of optical amplifier
WO2010109810A1 (en) * 2009-03-26 2010-09-30 日本電気株式会社 Optical amplifier, control method therefor, and optical transmission system
JP2016208358A (en) * 2015-04-24 2016-12-08 富士通株式会社 Optical amplifier, optical transmission device, and optical relay device
CN109462382A (en) * 2018-10-26 2019-03-12 京信通信系统(中国)有限公司 Power amplifying system, power investigating method, device and base station equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400441B2 (en) 2005-02-09 2008-07-15 Fujitsu Limited Optical amplifier, optical amplification repeater and pump light supply control method
JP2008042096A (en) * 2006-08-09 2008-02-21 Fujitsu Ltd Optical amplifier and light transmission system
JP2010097987A (en) * 2008-10-14 2010-04-30 Fujitsu Ltd Control apparatus of optical amplifier
WO2010109810A1 (en) * 2009-03-26 2010-09-30 日本電気株式会社 Optical amplifier, control method therefor, and optical transmission system
JP2010232341A (en) * 2009-03-26 2010-10-14 Nec Corp Optical amplifier apparatus and method of controlling the same, and optical transmission system
JP2016208358A (en) * 2015-04-24 2016-12-08 富士通株式会社 Optical amplifier, optical transmission device, and optical relay device
CN109462382A (en) * 2018-10-26 2019-03-12 京信通信系统(中国)有限公司 Power amplifying system, power investigating method, device and base station equipment
CN109462382B (en) * 2018-10-26 2022-07-29 京信网络系统股份有限公司 Power amplification system, power measurement and control method, device and base station equipment

Also Published As

Publication number Publication date
JP3923342B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
EP1215527B1 (en) Light amplifier using raman amplification and control method thereof
US6462861B2 (en) Optical amplifying apparatus and optical communication system
US6359726B1 (en) Wavelength division multiplexing optical amplifier with function of gain-equalizing and optical communication system
JP4665344B2 (en) Optical transmission device that compensates for inter-wavelength level deviation and optical SN deviation
JP4686906B2 (en) Wavelength multiplexing optical transmission equipment
JP2000269578A (en) Method and device for light amplification and its system
EP1298764B1 (en) Device and method for optical amplification
US7119950B2 (en) Amplification method and optical amplifier for wavelength division multiplexed signal light
JP4630256B2 (en) Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus
JP3923342B2 (en) Optical amplification method and optical amplification device
EP1180861A2 (en) Optical Wavelength Division Multiplexed transmission system
JP4234382B2 (en) Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus
US7280762B1 (en) Optical communication system having dynamic gain equalization
JP2003152645A (en) Method and device for removing noise light by utilizing induced brilliant scattering and optical transmission system
US6646792B2 (en) Light amplifier and light transmission system using the same
JP2006287979A (en) Method for light amplification, apparatus therefor, and optical-amplification relay system using the apparatus
JP2003258346A (en) Light amplifier and attenuation adjusting method
KR20040010125A (en) Optical transmission system
US20040028416A1 (en) Optical transmission system
US7042632B2 (en) Raman amplifier
JP3609968B2 (en) Optical amplifier
JP2008153558A (en) Light transmission system and its signal spectrum correction method
JP2004296581A (en) Light amplifier and its controlling method
US8385743B2 (en) Channel allocation method for multi-channel optical transmission and optical transmission system utilizing the method
JP5064619B2 (en) Optical transmission equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R151 Written notification of patent or utility model registration

Ref document number: 3923342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees