JP2003262692A - Boiling water reactor fuel assembly and determination method for fuel arrangement in the fuel assembly - Google Patents
Boiling water reactor fuel assembly and determination method for fuel arrangement in the fuel assemblyInfo
- Publication number
- JP2003262692A JP2003262692A JP2002062917A JP2002062917A JP2003262692A JP 2003262692 A JP2003262692 A JP 2003262692A JP 2002062917 A JP2002062917 A JP 2002062917A JP 2002062917 A JP2002062917 A JP 2002062917A JP 2003262692 A JP2003262692 A JP 2003262692A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- rod
- assembly
- rods
- fuel assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、沸騰水型原子炉に
用いる燃料集合体に関するものである。TECHNICAL FIELD The present invention relates to a fuel assembly used in a boiling water reactor.
【0002】[0002]
【従来の技術】沸騰水型原子炉における燃料集合体の設
計分野においては、ウラン235で代表される核分裂性
物質の平均濃縮度を増加し、反応度を増大させることで
平均取出燃焼度を増大させることのできる、より経済性
の高い燃料集合体の開発が進められている。2. Description of the Related Art In the field of designing fuel assemblies in boiling water reactors, the average enrichment of fissionable materials represented by uranium 235 is increased and the reactivity is increased to increase the average extraction burnup. The development of a more economical fuel assembly that can be carried out is underway.
【0003】燃料集合体の平均濃縮度を高めた場合、運
転中においては反応度ミスマッチの増大等により、最大
線出力密度や最小限界出力比といった熱的運転余裕が小
さくなり、また、低温時においては燃料集合体の反応度
の増大により、原子炉停止余裕が小さくなるといった問
題が生じる。When the average enrichment of the fuel assembly is increased, the thermal operation margin such as the maximum linear power density and the minimum limit power ratio becomes small due to an increase in reactivity mismatch during operation, and at the time of low temperature. Causes a problem that the reactor shutdown margin becomes smaller due to the increase in the reactivity of the fuel assembly.
【0004】更に、燃料集合体の平均濃縮度を高める
と、中性子スペクトルが硬くなる結果、ボイド反応度係
数は負側に大きくなる。このため、運転中では、ボイド
率の低い燃料下部に比べ、ボイド率の高い燃料上部の反
応度が低下することから、軸方向出力分布は高濃縮度化
に伴い、より下部に歪む傾向となる。燃料下部の出力の
増大は、最大線出力密度の増大を伴い、熱的運転余裕が
小さくなる。Furthermore, if the average enrichment of the fuel assembly is increased, the neutron spectrum becomes harder, and as a result, the void reactivity coefficient becomes larger on the negative side. For this reason, during operation, the reactivity of the upper part of the fuel with a high void ratio is lower than that of the lower part of the fuel with a low void ratio, so that the axial output distribution tends to distort to the lower part as the enrichment increases. . The increase in the power under the fuel is accompanied by an increase in the maximum linear power density, and the thermal operation margin is reduced.
【0005】一方、燃料棒複数本相当の領域を占める太
径水ロッドは、大きな面積を持つ非沸騰領域を形成する
ため、軸方向の水対ウラン比の軸方向変化が小さくな
り、軸方向出力分布の平坦化を図ることができ、この結
果、最大線出力密度の増大を抑えることができる。On the other hand, the large-diameter water rod occupying a region corresponding to a plurality of fuel rods forms a non-boiling region having a large area, so that the axial change of the water-uranium ratio in the axial direction becomes small and the axial output The distribution can be flattened, and as a result, an increase in maximum line power density can be suppressed.
【0006】また、燃料集合体は、熱的運転余裕が確保
できるよう、燃料棒ごとに濃締度分布を持たせることで
燃料集合体の半径方向における燃料棒の相対出力(燃料
棒局所ピーキング)を必要以上に大きくしない設計が施
される。Further, in the fuel assembly, the relative output of the fuel rods in the radial direction of the fuel assembly (fuel rod local peaking) is provided by providing each fuel rod with a dense distribution so as to secure a thermal operation margin. Designed to not be larger than necessary.
【0007】一方、核燃料物質がウランの場合、製造工
程における臨界安全上の観点から取り扱い可能な濃縮度
は5wt%以下である。このため、高濃縮度化を図るに
つれ、濃縮度分布によって燃料棒局所ピーキングを小さ
くするには自ずと限界が生じている。また、取り扱える
濃縮度に上限がない場合であっても、燃料棒の濃縮度分
布は複雑化し、製造コストを高める。On the other hand, when the nuclear fuel material is uranium, the handleable enrichment is 5 wt% or less from the viewpoint of criticality safety in the manufacturing process. Therefore, as the concentration is increased, the distribution of the concentration naturally has a limit in reducing the local peaking of the fuel rods. Further, even if there is no upper limit to the enrichment that can be handled, the enrichment distribution of the fuel rods becomes complicated and the manufacturing cost is increased.
【0008】ところで、9行9列乃至10行10列の燃
料棒格子配列を有する燃料集合体(それぞれ9×9燃
料、10×10燃料という。)は、先行する8×8燃料
よりも燃料棒本数が20%乃至40%以上多い。このた
め、燃料棒1本当たりの熱負荷が低減し、熱的運転余裕
が増すこととなり、この分だけ燃料棒局所ピーキングを
大きくできる。By the way, a fuel assembly having a fuel rod lattice array of 9 rows 9 columns to 10 rows 10 columns (referred to as 9 × 9 fuel and 10 × 10 fuel, respectively) is more fuel rod than the preceding 8 × 8 fuel. The number is 20% to 40% or more. For this reason, the heat load per fuel rod is reduced, and the thermal operation margin is increased, and the fuel rod local peaking can be increased correspondingly.
【0009】しかし、燃料棒数の増加は摩擦圧損を高め
る方向にあり、チャンネル水力学的安定性が悪化する。
このため9×9燃料や10×10燃料に用いる燃料棒に
は、燃料集合体の発熱有効長と等しい有効長を持つ標準
燃料棒の他に、標準燃料棒よりも燃料有効長の短い部分
長燃料棒を必要に応じて複数本採用する従来技術があ
る。部分長燃料棒の採用は、燃料有効長上部の二相圧損
を小さくしチャンネル水力学的安定性の悪化を抑制する
のに役立つ。However, the increase in the number of fuel rods tends to increase the friction pressure loss, and the channel hydraulic stability deteriorates.
Therefore, in the fuel rods used for 9 × 9 fuel and 10 × 10 fuel, in addition to the standard fuel rod having an effective length equal to the effective heat generation length of the fuel assembly, a partial length having a shorter active fuel length than the standard fuel rod is used. There is a conventional technique that employs a plurality of fuel rods as needed. The adoption of the partial length fuel rod helps to reduce the two-phase pressure drop in the upper part of the active fuel length and suppress the deterioration of the channel hydraulic stability.
【0010】[0010]
【発明が解決しようとする課題】ところで、部分長燃料
棒は、その他の標準燃料棒よりも燃料棒が短いため、集
合体の上部断面は、燃料棒が抜けた部分(空隙部)が形
成されることになる。原子炉の出力運転中においては、
気液混合流が下部から上部に向かって流れるが、部分長
燃料棒は途中から空隙部に取って代わるため、上部側で
は流体の新たな横流れが発生する。空隙部は抵抗が少な
くなるため空隙部における冷却材流量は増加し、一方で
その他の領域の流量は低下する傾向を持つ。これは、燃
料棒の沸騰遷移の起こりやすさに影響を与える。沸騰遷
移は、燃料集合体の上部側で起こりやすい。一般に、空
隙部に近接する燃料棒は、その他の領域よりも多くの冷
却材があるため沸騰遷移に至る限界出力は向上する、一
方、その他の領域は冷却材不足となり限界出力は低下す
る傾向を持つ。By the way, since the partial length fuel rod has a shorter fuel rod than the other standard fuel rods, the upper cross section of the assembly has a portion (void) where the fuel rod is removed. Will be. During power output operation of the reactor,
The gas-liquid mixed flow flows from the lower part to the upper part, but since the partial length fuel rod replaces the void part in the middle, a new lateral flow of fluid is generated on the upper part side. Since the resistance in the voids decreases, the coolant flow rate in the voids increases, while the flow rates in other regions tend to decrease. This affects the likelihood of boiling transitions in the fuel rods. The boiling transition is likely to occur on the upper side of the fuel assembly. In general, the fuel rods near the voids have more coolant than other regions, so the limit output to the boiling transition is improved, while in other regions, the coolant output becomes insufficient and the limit output tends to decrease. To have.
【0011】而して、出力の高まりやすい燃料棒の限界
出力を向上させることができれば、燃料集合体としての
限界出力は向上する。Thus, if the limit output of the fuel rod whose output tends to increase can be improved, the limit output of the fuel assembly can be improved.
【0012】本発明は、部分長燃料棒を有する燃料集合
体に対し、高濃縮度化を阻害することなく、また、核熱
水力特性に係る運転特性の悪化を招くことなく、沸騰遷
移に至る限界出力の向上をなす沸騰水型原子炉用燃料集
合体を得ることを目的とする。The present invention allows a fuel assembly having a partial length fuel rod to undergo boiling transition without impairing the enrichment and without deteriorating the operating characteristics related to nuclear thermal-hydraulic characteristics. An object of the present invention is to obtain a fuel assembly for a boiling water nuclear reactor, which can improve the limit output.
【0013】[0013]
【課題を解決するための手段】請求項1に記載された発
明に係る沸騰水型原子炉用燃料集合体は、核燃料物質の
酸化物よりなる燃料ペレットを燃料被覆管内に充填した
燃料棒群が9行9列以上の正方格子配列に規則正しく配
置されると共に、前記燃料棒複数本相当の領域を占める
太径水ロッドを備えた沸騰水型原子炉用燃料集合体であ
って、前記燃料棒は、前記燃料集合体の燃料有効長と等
しい燃料有効長を持つ標準燃料棒と、標準燃料棒よりも
燃料有効長が短く、上部領域において燃料棒が欠落した
空隙領域を持つ部分長燃料棒とからなり、前記燃料集合
体の前記上部領域に位置する少なくとも一部の横断面に
おいて可燃性毒物を含まない最高濃縮度である全ての燃
料棒には、前記横断面において可燃性毒物含有燃料棒
か、あるいは前記空隙領域の何れかが、縦又は横方向の
少なくとも一方向で隣接しているものである。The fuel assembly for a boiling water nuclear reactor according to the invention described in claim 1 comprises a fuel rod group in which a fuel pellet made of an oxide of a nuclear fuel material is filled in a fuel cladding tube. A fuel assembly for a boiling water reactor, which is regularly arranged in a square lattice array of 9 rows and 9 columns or more and has large diameter water rods occupying an area corresponding to the plurality of fuel rods, wherein the fuel rods are A standard fuel rod having a fuel active length equal to the fuel active length of the fuel assembly, and a partial length fuel rod having a void active region having a shorter fuel active length than the standard fuel rod and lacking the fuel rod in the upper region. In all fuel rods having the highest enrichment containing no burnable poison in at least a partial cross section located in the upper region of the fuel assembly, the burnable poison-containing fuel rod in the cross section is Or the sky One of regions are those that are adjacent in at least one direction of the longitudinal or transverse direction.
【0014】請求項2に記載された発明に係る沸騰水型
原子炉用燃料集合体は、請求項1に記載の上部領域に位
置する横断面において、可燃性毒物を含まない全ての燃
料棒は、集合体のコーナ及びコーナ付近を除いて最高濃
縮度であるものである。In the boiling water reactor fuel assembly according to the second aspect of the present invention, all the fuel rods containing no combustible poison in the cross section located in the upper region of the first aspect are , The highest concentration except for the corners of the aggregate and the vicinity of the corners.
【0015】請求項3に記載された発明に係る沸騰水型
原子炉用燃料集合体は、請求項1又は2に記載の部分長
燃料棒の少なくとも半数以上が、最外周か、あるいは前
記太径水ロッドに隣接する位置にあるものである。In the fuel assembly for a boiling water reactor according to the third aspect of the present invention, at least half of the partial length fuel rods according to the first or second aspect are at the outermost periphery or have the large diameter. It is located adjacent to the water rod.
【0016】請求項4に記載された発明に係る沸騰水型
原子炉用燃料集合体内の燃料棒配置の決定法は、請求項
1〜3の何れかに記載された燃料集合体内の燃料棒配置
の決定法において、集合体のコーナの燃料棒及びコーナ
燃料棒近傍の最外周燃料棒の一部を除いて最高濃縮度燃
料棒を仮配置し、全ての最高濃縮度燃料棒が、前記横断
面において縦又は横方向の少なくとも一方向において可
燃性毒物含有燃料棒か部分長燃料棒に少なくとも1本隣
接するように、最高濃縮度燃料棒の一部を可燃性毒物含
有燃料棒に置換配置する方法である。According to the invention as set forth in claim 4, the method for determining the fuel rod arrangement in the fuel assembly for a boiling water reactor is the fuel rod arrangement in the fuel assembly as set forth in any one of claims 1 to 3. In the method of determining, the maximum enrichment fuel rods are temporarily arranged except for some of the fuel rods at the corners of the assembly and the outermost peripheral fuel rods in the vicinity of the corner fuel rods, and all the highest enrichment fuel rods have the above-mentioned cross section. Of at least one burnable poison-bearing fuel rod or part-length fuel rod adjacent to the burnable poison-bearing fuel rod in at least one of the longitudinal or horizontal directions in the above Is.
【0017】[0017]
【発明の実施の形態】本発明においては、沸騰遷移が起
こる燃料集合体の上部領域に位置する横断面に着目し
た。燃料棒の沸騰遷移の起こりやすさは、前述のような
部分長燃料棒の影響の他に、燃料棒の出力に依存する。
即ち、沸騰遷移は、自身の燃料捧の出力が低いほど、ま
た、隣接する燃料棒の出力が小さいほど起こりにくいと
言うことに着目した。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, attention was paid to the cross section located in the upper region of the fuel assembly where the boiling transition occurs. The likelihood of boiling transition of the fuel rod depends on the output of the fuel rod in addition to the influence of the partial length fuel rod as described above.
That is, it was noted that the boiling transition is less likely to occur as the output of the fuel rod itself is smaller and the output of the adjacent fuel rod is smaller.
【0018】具体的には、本発明では、燃料集合体の上
部領域に位置する横断面において可燃性毒物を含まない
最高濃縮度である全ての燃料棒には、前記横断面におい
て可燃性毒物含有燃料棒か、あるいは空隙領域の何れか
が、縦又は横方向の少なくとも一方向で隣接しているも
のである。これにより、高濃縮度化を阻害することな
く、また、核熱水力特性に係る運転特性の悪化を招くこ
となく、沸騰遷移に至る限界出力の向上を達成すること
ができる。Specifically, in the present invention, all the fuel rods having the highest enrichment without combustible poisons in the cross section located in the upper region of the fuel assembly contain the combustible poisons in the cross section. Either the fuel rods or the void regions are adjacent in at least one of the longitudinal or lateral directions. As a result, it is possible to achieve an increase in the limit output up to the boiling transition without impeding the increase in the degree of enrichment and without deteriorating the operating characteristics related to the nuclear thermal hydraulic characteristics.
【0019】即ち、高濃縮度化のためには、上部領域に
対しても多数本の最高濃縮度の燃料棒を用いる必要があ
るが、特に、現行のように取り扱いウラン濃縮度に5wt
%以下の制約がある場合、最高濃縮度の燃料棒をさらに
多用することは避けられない。この場合、最高濃縮度燃
料棒の燃料棒出力は高まり、沸騰遷移に至る限界出力の
低下が懸念される。That is, in order to increase the enrichment, it is necessary to use a large number of fuel rods having the highest enrichment even in the upper region.
If there is a constraint of less than%, it is unavoidable to use more fuel rods with the highest enrichment. In this case, the fuel rod output of the highest enrichment fuel rod is increased, and there is a concern that the limit output leading to boiling transition may be reduced.
【0020】これを回避するためには、最高濃縮度燃料
棒には、出力の小さい燃料棒や空隙領域を隣接させれば
よい。そこで、本発明の燃料集合体では、上部領域にお
いて、可燃性毒物を含まない最高濃縮度燃料棒は全て、
縦又は横方向の少なくとも一方向において可燃性毒物を
含む燃料棒か、あるいは前記空隙領域の何れかと隣接さ
せる。In order to avoid this, the fuel rod having a small output and the void region may be adjacent to the highest enrichment fuel rod. Therefore, in the fuel assembly of the present invention, in the upper region, all the highest enrichment fuel rods containing no combustible poison are
Adjacent to either the fuel rod containing the burnable poison in at least one of the longitudinal or lateral directions, or the void area.
【0021】これにより、最高濃縮度燃料棒の限界出力
は向上し、ひいては燃料集合体の限界出力特性が向上す
る。なお、最高濃縮度燃料棒に隣接して最高濃縮度未満
の燃料棒を配置する場合は、その周辺の中性子スペクト
ルを軟化させる方向となり、結果、最高濃縮度燃料棒自
体の出力はむしろ増大してしまうため期待する効果は得
られない。As a result, the limit output of the highest enrichment fuel rod is improved, and thus the limit output characteristic of the fuel assembly is improved. If a fuel rod with a concentration less than the maximum enrichment is arranged adjacent to the fuel rod with the highest enrichment, the neutron spectrum around the fuel rod will tend to be softened, and as a result, the output of the fuel rod with the highest enrichment will increase rather. Because it ends up, the expected effect cannot be obtained.
【0022】一般に、経済性の観点からは可燃性毒物は
サイクル末期でちょうど中性子吸収効果がなくなる程度
に添加しておくことが望ましいとされている。一方、安
全性の観点からはサイクル末期においても充分な停止余
裕を確保しなければならない。このため、特に停止余裕
に寄与の大きい燃料集合体の上部領域においては、サイ
クル末期であっても中性子吸収効果が完全に消滅しない
程度に可燃性毒物を予め添加しておく必要がある。この
ように実際にはサイクル末期であっても中性子吸収効果
の残留があるため、本発明の燃料集合体は、これが未燃
焼の燃料集合体、つまり新燃料として炉心内に装荷され
た場合、運転サイクル初期から末期に亘り限界出力を向
上させることができる。尚、運転中燃料集合体の限界出
力が小さくなるのは、余剰反応度が高く制御棒の挿入量
が多くなる分、炉心内の出力分布の歪みが大きくなる運
転サイクル初期から中期にかけてである。Generally, from the viewpoint of economic efficiency, it is considered desirable to add the burnable poison to the extent that the neutron absorption effect is lost at the end of the cycle. On the other hand, from the viewpoint of safety, it is necessary to secure a sufficient stop margin even at the end of the cycle. Therefore, particularly in the upper region of the fuel assembly that greatly contributes to the stop margin, it is necessary to add the burnable poison in advance to the extent that the neutron absorption effect does not completely disappear even at the end of the cycle. As described above, since the neutron absorption effect remains in practice even at the end of the cycle, the fuel assembly of the present invention operates when it is loaded into the core as an unburned fuel assembly, that is, a new fuel. The limit output can be improved from the beginning of the cycle to the end. It should be noted that the limit output of the fuel assembly during operation becomes small from the early stage to the middle stage of the operation cycle where the distortion of the power distribution in the core becomes large as the excess reactivity becomes high and the amount of control rods inserted becomes large.
【0023】また、本発明では、好ましくは、上部領域
に位置する横断面において、可燃性毒物を含まない全て
の燃料棒には、集合体のコーナ及びコーナ付近の最外周
位置を除いて最高濃縮度の燃料棒を配する。これによ
り、さらなる高濃縮度化に寄与することができる。Further, in the present invention, preferably, in the cross section located in the upper region, all the fuel rods containing no combustible poisons have the highest concentration except the corners of the assembly and the outermost peripheral positions near the corners. Distribute the fuel rod of the degree. This can contribute to a higher degree of concentration.
【0024】更に、部分長燃料棒の一部、好ましくは、
少なくとも半数以上を最外周に配置したり、前記太径水
ロッドに隣接させて配置した方が、最高濃縮度未満の燃
料棒及び可燃性毒物を含む燃料棒の本数は少なくてすむ
利点がある。Further, a portion of the partial length fuel rod, preferably
Placing at least half of the fuel rods on the outermost periphery or adjacent to the large diameter water rods has an advantage that the number of fuel rods having a concentration less than the maximum enrichment and fuel rods containing burnable poisons can be small.
【0025】[0025]
【実施例】(実施例1)図1は本発明の燃料集合体の一
実施例の横断面構成を示す説明図である。9×9燃料構
造で、中央部には燃料棒7本分の水ロッド領域が確保さ
れている。ここには、例えば太径の水ロッド2本を配置
することができる。各升目は燃料棒に対応する。番号は
濃縮度のレベルで、1、2、3・・の順に濃縮度が高い
ことを示す。つまり1は最高濃縮度である。図には濃縮
度番号1についてはハッチングを施した。Gは可燃性毒
物であるガドリニア入り燃料棒である。また、Pは部分
長燃料棒であり、本発明で着目している上部領域におい
てはこの部分は空隙部となる。本例は、部分長燃料棒を
第2層目に8本配置した場合である。(Embodiment 1) FIG. 1 is an explanatory view showing a cross-sectional structure of an embodiment of a fuel assembly of the present invention. With a 9 × 9 fuel structure, a water rod area for seven fuel rods is secured in the central portion. Two large-diameter water rods can be arranged here, for example. Each square corresponds to a fuel rod. The numbers indicate the levels of enrichment, indicating that the enrichment is higher in the order of 1, 2, 3 ... That is, 1 is the highest enrichment. In the figure, the enrichment number 1 is hatched. G is a fuel rod containing gadolinia which is a burnable poison. Further, P is a partial length fuel rod, and this portion becomes a void in the upper region of interest in the present invention. In this example, eight partial length fuel rods are arranged in the second layer.
【0026】図1より分かるとおり、最高濃縮度の燃料
棒は、縦又は横方向の少なくとも一方向において、ガド
リニア入り燃料棒か、部分長燃料棒と隣接している。こ
れにより、全ての最高濃縮度燃料棒の限界出力特性は改
善される。なお、コーナ四隅(1a及び対称位置)と、
これに隣接する最外周燃料棒(2a及び対称位置)につ
いては、もともと出力が高まりやすい位置であるため、
最高濃縮度未満の燃料棒を配置している。さらにその隣
に位置する最外周の燃料棒(3a及び対称位置)につい
ても、濃縮度を下げ、自身の出力を低下させることで限
界出力の悪化を防止している。As can be seen from FIG. 1, the highest enrichment fuel rods are adjacent to the gadolinia-containing fuel rods or the partial length fuel rods in at least one longitudinal or transverse direction. This improves the critical power characteristics of all highest enrichment fuel rods. In addition, corner four corners (1a and symmetrical position),
The outermost peripheral fuel rods (2a and symmetrical positions) adjacent to this are positions where the output is likely to increase, so
Fuel rods below maximum enrichment are placed. Further, with respect to the outermost fuel rods (3a and symmetrical positions) located next to it, the enrichment is reduced and the output of the fuel rod itself is reduced to prevent the deterioration of the limit output.
【0027】(実施例2)図2は本発明の燃料集合体の
別の実施例の横断面構成を示す説明図である。本例も9
×9燃料構造で、実施例1と同じく中央部には燃料棒7
本分の水ロッド領域を有するが、部分長燃料棒の本数と
配置が異なる。部分長燃料棒は最外周各辺の中心に4
本、水ロッドに隣接して2本を配置した。最外周に部分
長燃料棒を配置することは、水ロッド周りに部分長燃料
棒を配置した場合以上に、停止余裕の向上やボイド係数
の緩和が期待できる。実施例1と同様、全ての最高濃縮
度燃料棒は、縦又は横方向の少なくとも一方向におい
て、ガドリニア入り燃料棒か部分長燃料棒と隣接してい
る。(Embodiment 2) FIG. 2 is an explanatory view showing the cross-sectional structure of another embodiment of the fuel assembly of the present invention. This example is also 9
With a × 9 fuel structure, fuel rods 7 are provided in the central portion as in the first embodiment
Although it has water rod regions for the number of rods, the number and arrangement of the partial length fuel rods are different. Part length fuel rod is 4 at the center of each side of the outermost circumference.
Book, two were placed adjacent to the water rod. Arranging the partial length fuel rods on the outermost circumference can be expected to improve the stop margin and alleviate the void coefficient more than when the partial length fuel rods are arranged around the water rod. As in Example 1, all the highest enrichment fuel rods are adjacent to the gadolinia-filled fuel rods or the partial length fuel rods in at least one longitudinal or transverse direction.
【0028】(実施例3)図3は本発明の燃料集合体の
更に別の実施例の横断面構成を示す説明図である。本例
は、10×10燃料構造で、中央部には燃料棒9本分の
水ロッド領域が確保されている。ここには例えば角型の
形状を持つ水ロッド1本を配することができる。部分長
燃料棒は第2層目に8本、水ロッドに隣接した周りに4
本配置した。10×10燃料の場合、燃料棒表面積が増
えた分、熱的余裕が増大することから、燃料棒の相対出
力はある程度高めても問題ない。このため、本実施例で
は、ガドリニアを含まない燃料棒は、コーナ四隅以外は
全て最高濃縮度として、平均濃縮度を高めることに重点
を置いている。一方で、第2層目にはガドリニア入り燃
料棒を多く配置し、最外周燃料棒の限界出力特性が過度
に悪化するのを防いでいる。先の実施例と同様に、全て
の最高濃縮度燃料棒は、縦又は横方向の少なくとも一方
向において、ガドリニア入り燃料棒か部分長燃料棒と隣
接している。(Embodiment 3) FIG. 3 is an explanatory view showing a cross sectional structure of still another embodiment of the fuel assembly of the present invention. This example has a 10 × 10 fuel structure, and a water rod region for nine fuel rods is secured in the central portion. Here, for example, one water rod having a rectangular shape can be arranged. 8 partial length fuel rods in the second layer, 4 adjacent to the water rods
The book is arranged. In the case of 10 × 10 fuel, since the thermal margin increases as the surface area of the fuel rod increases, there is no problem even if the relative output of the fuel rod is increased to some extent. Therefore, in this embodiment, all the fuel rods not containing gadolinia have the highest enrichment except for the four corners, and emphasis is placed on increasing the average enrichment. On the other hand, many gadolinia-containing fuel rods are arranged in the second layer to prevent the critical output characteristics of the outermost peripheral fuel rods from being excessively deteriorated. As with the previous embodiment, all high enrichment fuel rods are adjacent to gadolinia-filled fuel rods or partial length fuel rods in at least one longitudinal or transverse direction.
【0029】(実施例4)図4は本発明の燃料集合体の
更に別の実施例の横断面構成を示す説明図である。本例
は、実施例3と同様な10×10燃料構造であるが、部
分長燃料棒は全部で14本とし、最外周各辺に2本ず
つ、コーナ部に2本及び水ロッドに隣接して4本を配置
した。本構成により、高濃縮度化を補償するだけの、大
きな停止余裕の改善とボイド係数の絶対値の低減が期待
できる。(Embodiment 4) FIG. 4 is an explanatory view showing a cross sectional structure of still another embodiment of the fuel assembly of the present invention. This example has a 10 × 10 fuel structure similar to that of Example 3, except that there are 14 partial length fuel rods in total, two on each side of the outermost periphery, two on the corners and adjacent to the water rod. I arranged four of them. With this configuration, it is possible to expect a large improvement in the stop margin and a reduction in the absolute value of the void coefficient, which only compensates for the high enrichment.
【0030】ガドリニア入り燃料棒の配置は以下の方法
で決定した。まずコーナの燃料棒を除いて最高濃縮度燃
料棒を配置し、全ての最高濃縮度燃料棒が、縦又は横方
向の少なくとも一方向においてガドリニア入り燃料棒か
部分長燃料棒に少なくとも1本隣接するように、最高濃
縮度燃料棒の一部をガドリニア入り燃料棒に置換すると
いった方法である。先の実施例も同様であるが、本発明
は、このように極めて簡単な方法により所定の条件を満
たす構成とすることができる。尚、この方法は先の実施
例1〜3においても同様に適用できることは言うまでも
ない。The arrangement of the fuel rods with gadolinia was determined by the following method. First, the highest enrichment fuel rods are arranged except for the corner fuel rods, and all the highest enrichment fuel rods are adjacent to at least one gadolinia-containing fuel rod or partial length fuel rod in at least one longitudinal or lateral direction. As described above, a part of the highest enrichment fuel rod is replaced with a fuel rod containing gadolinia. Although the same applies to the previous embodiment, the present invention can be configured to satisfy a predetermined condition by such an extremely simple method. Needless to say, this method can be similarly applied to the first to third embodiments.
【0031】以上のように、本発明によれば、高濃縮度
化やその他の運転特性に対して犠牲を払うことなく、ま
た、燃料棒配置を複雑化することなく、出力が高く沸騰
遷移の起こりやすい最高濃縮度の燃料棒の限界出力を向
上させることができ、ひいては燃料集合体の限界出力特
性を改善することができるため、熱的運転余裕に優れた
高燃焼度化に好適な燃料集合体を提供できる。As described above, according to the present invention, the output is high and the boiling transition is suppressed without sacrificing the enrichment and other operating characteristics and without complicating the fuel rod arrangement. Since it is possible to improve the limit output of the fuel rod with the highest enrichment that is likely to occur, and eventually improve the limit output characteristics of the fuel assembly, a fuel assembly suitable for high burnup with excellent thermal operation margin. Can provide the body.
【0032】[0032]
【発明の効果】本発明は以上説明した通り、部分長燃料
棒を有する燃料集合体に対し、高濃縮度化を阻害するこ
となく、また、核熱水力特性に係る運転特性の悪化を招
くことなく、沸騰遷移に至る限界出力の向上をなす沸騰
水型原子炉用燃料集合体を得ることができるという効果
がある。尚、これまでの説明は、核燃料物質としてウラ
ンを例に示したが、本発明はその他の可燃性毒物や核物
質燃料物質に適用しても効果が失われることはない。そ
の他の核燃料物質としてはプルトニウム等が考えられる
が、この場合、ウラン濃縮度はプルトニウム富化度と読
み替えて適用するだけでよい。As described above, the present invention does not impair the enrichment of the fuel assembly having the partial length fuel rods and causes deterioration of the operating characteristics relating to the nuclear thermal hydraulic characteristics. It is possible to obtain a boiling water reactor fuel assembly that improves the limit output up to the boiling transition. In the above description, uranium was taken as an example of the nuclear fuel substance, but the present invention does not lose its effect even when applied to other combustible poisons and nuclear fuel substances. Other nuclear fuel materials may include plutonium, but in this case, the uranium enrichment need only be read as plutonium enrichment.
【図1】本発明の燃料集合体の一実施例の横断面構成を
示す説明図である。FIG. 1 is an explanatory view showing a cross-sectional configuration of an embodiment of a fuel assembly of the present invention.
【図2】本発明の燃料集合体の別の実施例の横断面構成
を示す説明図である。FIG. 2 is an explanatory view showing a cross-sectional structure of another embodiment of the fuel assembly of the present invention.
【図3】本発明の燃料集合体の更に別の実施例の横断面
構成を示す説明図である。FIG. 3 is an explanatory view showing a cross-sectional configuration of still another embodiment of the fuel assembly of the present invention.
【図4】本発明の燃料集合体の更に別の実施例の横断面
構成を示す説明図である。FIG. 4 is an explanatory view showing a cross-sectional configuration of still another embodiment of the fuel assembly of the present invention.
1…最高濃縮度の燃料棒、 2…2番目に高い濃縮度の燃料棒、 3…3番目に高い濃縮度の燃料棒、 4…4番目に高い濃縮度の燃料棒、 G…ガドリニア入り燃料棒、 P…部分長燃料棒、 1 ... Highest enrichment fuel rod, 2 ... the fuel rod with the second highest concentration, 3 ... the fuel rod with the third highest concentration, 4 ... the fourth highest fuel rod enrichment, G ... Fuel rod with gadolinia, P ... Partial length fuel rod,
Claims (4)
トを燃料被覆管内に充填した燃料棒群が9行9列以上の
正方格子配列に規則正しく配置されると共に、前記燃料
棒複数本相当の領域を占める太径水ロッドを備えた沸騰
水型原子炉用燃料集合体であって、 前記燃料棒は、前記燃料集合体の燃料有効長と等しい燃
料有効長を持つ標準燃料棒と、標準燃料棒よりも燃料有
効長が短く、上部領域において燃料棒が欠落した空隙領
域を持つ部分長燃料棒とからなり、 前記燃料集合体の前記上部領域に位置する少なくとも一
部の横断面において可燃性毒物を含まない最高濃縮度で
ある全ての燃料棒には、前記横断面において可燃性毒物
含有燃料棒か、あるいは前記空隙領域の何れかが、縦又
は横方向の少なくとも一方向で隣接していることを特徴
とする沸騰水型原子炉用燃料集合体。1. A fuel rod group in which a fuel pellet made of an oxide of a nuclear fuel material is filled in a fuel cladding tube is regularly arranged in a square lattice array of 9 rows and 9 columns, and an area corresponding to the plurality of fuel rods is formed. A fuel assembly for a boiling water reactor, comprising a large diameter water rod occupying, wherein the fuel rod is a standard fuel rod having a fuel active length equal to the fuel active length of the fuel assembly, and a standard fuel rod Also has a short active fuel length and has a partial length fuel rod having a void region where the fuel rod is missing in the upper region, and contains burnable poison in at least a part of the cross section located in the upper region of the fuel assembly. Not all fuel rods with the highest enrichment are characterized in that in the cross-section either the burnable poison-bearing fuel rod or the void region is adjacent in at least one longitudinal or lateral direction. When Boiling water reactor fuel assembly that.
て、可燃性毒物を含まない全ての燃料棒は、集合体のコ
ーナ及びコーナ付近を除いて最高濃縮度であることを特
徴とする請求項1記載の沸騰水型原子炉用燃料集合体。2. The cross-section located in the upper region is characterized in that all fuel rods which do not contain burnable poison have the highest enrichment except at and near the corners of the assembly. The fuel assembly for a boiling water reactor described.
が、最外周か、あるいは前記太径水ロッドに隣接する位
置にあることを特徴とする請求項1又は2記載の沸騰水
型原子炉用燃料集合体。3. The boiling water reactor according to claim 1, wherein at least half of the partial length fuel rods are located at the outermost periphery or at a position adjacent to the large diameter water rod. Fuel assembly.
集合体内の燃料棒配置の決定法において、 集合体のコーナ及びコーナ付近の燃料棒を除いて最高濃
縮度燃料棒を仮配置し、 全ての最高濃縮度燃料棒が、前記横断面において縦又は
横方向の少なくとも一方向において可燃性毒物含有燃料
棒か部分長燃料棒に少なくとも1本隣接するように、最
高濃縮度燃料棒の一部を可燃性毒物含有燃料棒に置換配
置することを特徴とする沸騰水型原子炉用燃料集合体内
の燃料棒配置の決定法。4. The method for determining the fuel rod arrangement in a fuel assembly according to any one of claims 1 to 3, wherein the highest enrichment fuel rod is temporarily arranged except for the corners of the assembly and the fuel rods near the corners. However, all the highest enrichment fuel rods should be adjacent to at least one burnable poison-bearing fuel rod or partial length fuel rod in at least one longitudinal or transverse direction in the cross section. A method for determining the arrangement of fuel rods in a fuel assembly for a boiling water reactor, characterized in that a part of the fuel rods is replaced with burnable poison-containing fuel rods.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002062917A JP2003262692A (en) | 2002-03-08 | 2002-03-08 | Boiling water reactor fuel assembly and determination method for fuel arrangement in the fuel assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002062917A JP2003262692A (en) | 2002-03-08 | 2002-03-08 | Boiling water reactor fuel assembly and determination method for fuel arrangement in the fuel assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003262692A true JP2003262692A (en) | 2003-09-19 |
Family
ID=29196447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002062917A Pending JP2003262692A (en) | 2002-03-08 | 2002-03-08 | Boiling water reactor fuel assembly and determination method for fuel arrangement in the fuel assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003262692A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012141207A (en) * | 2010-12-28 | 2012-07-26 | Global Nuclear Fuel-Japan Co Ltd | Method for predicting boiling transition location in axial direction |
JP2014119287A (en) * | 2012-12-13 | 2014-06-30 | Nuclear Fuel Ind Ltd | Set of fuel assemblies for boiling-water reactor, and reactor core of boiling-water reactor |
-
2002
- 2002-03-08 JP JP2002062917A patent/JP2003262692A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012141207A (en) * | 2010-12-28 | 2012-07-26 | Global Nuclear Fuel-Japan Co Ltd | Method for predicting boiling transition location in axial direction |
JP2014119287A (en) * | 2012-12-13 | 2014-06-30 | Nuclear Fuel Ind Ltd | Set of fuel assemblies for boiling-water reactor, and reactor core of boiling-water reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4970871B2 (en) | Boiling water type light water reactor core | |
JP4559957B2 (en) | Reactor with fuel assembly and core loaded with this fuel assembly | |
JP3292587B2 (en) | Fuel assembly | |
JPH04303799A (en) | Fuel assembly | |
JP2003262692A (en) | Boiling water reactor fuel assembly and determination method for fuel arrangement in the fuel assembly | |
JP6258625B2 (en) | Fuel assemblies for boiling water reactors | |
JP2007225624A (en) | Reactor core | |
JP3514869B2 (en) | Fuel assemblies for boiling water reactors | |
JPH1082879A (en) | Nuclear reactor core | |
JPS62194494A (en) | Fuel aggregate | |
JP4351798B2 (en) | Fuel assemblies and reactors | |
JP4713224B2 (en) | Boiling water reactor fuel assembly set and core | |
JP3692136B2 (en) | Nuclear reactor core | |
JP2972177B2 (en) | Fuel element and fuel assembly for thermal neutron reactor | |
JP3075749B2 (en) | Boiling water reactor | |
JP3916807B2 (en) | MOX fuel assembly | |
JP3894784B2 (en) | Fuel loading method for boiling water reactor | |
JP3051762B2 (en) | Nuclear fuel assembly | |
JP3572048B2 (en) | Fuel assemblies and reactor cores | |
JP3779299B2 (en) | Nuclear reactor core | |
JPH0816711B2 (en) | Fuel assembly | |
JP3347137B2 (en) | Fuel assemblies and boiling water reactor cores | |
JPS6247115Y2 (en) | ||
JPH07111468B2 (en) | Fuel assembly for nuclear reactor | |
JPH0376875B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040826 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070822 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071212 |