JP2003262501A - Strain measuring instrument, strain suppressing device, exposure system, and method of manufacturing device - Google Patents
Strain measuring instrument, strain suppressing device, exposure system, and method of manufacturing deviceInfo
- Publication number
- JP2003262501A JP2003262501A JP2002062303A JP2002062303A JP2003262501A JP 2003262501 A JP2003262501 A JP 2003262501A JP 2002062303 A JP2002062303 A JP 2002062303A JP 2002062303 A JP2002062303 A JP 2002062303A JP 2003262501 A JP2003262501 A JP 2003262501A
- Authority
- JP
- Japan
- Prior art keywords
- strain
- transmission member
- predetermined direction
- detecting
- suppressing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 25
- 239000004065 semiconductor Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 7
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 5
- 230000001629 suppression Effects 0.000 claims 3
- 238000010586 diagram Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 230000000452 restraining effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は歪み計測装置、歪み
抑制装置、及び露光装置、並びにデバイス製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strain measuring device, a strain suppressing device, an exposure device, and a device manufacturing method.
【0002】[0002]
【従来の技術】近年、微細加工技術によって、物体、例
えば、プロセスに用いられる試料等を高精度で移動させ
る技術が求められている。例えば、半導体製造プロセス
で用いられる露光装置においては、露光線幅の微細化に
伴い、露光装置のウエハステージに求められる位置制御
精度は数nmのオーダーに達している。また、生産性の
向上の観点から、ステージの移動加速度および移動速度
は年々増大の傾向にある。2. Description of the Related Art In recent years, there has been a demand for a technique for moving an object, for example, a sample used in a process with high precision by a microfabrication technique. For example, in an exposure apparatus used in a semiconductor manufacturing process, with the miniaturization of the exposure line width, the position control accuracy required for the wafer stage of the exposure apparatus has reached the order of several nm. From the viewpoint of improving productivity, the moving acceleration and moving speed of the stage tend to increase year by year.
【0003】このような高速・高精度の位置制御を実現
するためには、ウエハステージ位置制御系のサーボ帯域
が高いことが必要である。高いサーボ帯域は目標値への
応答性が高く、外乱などの影響にも頑健なシステムを実
現する。従って、可能な限り高いサーボ帯域を実現す
る、ウエハステージ、本体構造体等の設計が行われてい
る。In order to realize such high-speed and high-precision position control, it is necessary that the wafer stage position control system has a high servo band. The high servo band has high responsiveness to the target value and realizes a system that is robust against the influence of disturbances. Therefore, the wafer stage, the main body structure, etc. are designed to realize the highest possible servo band.
【0004】図9は、従来の露光装置のウエハステージ
の構成を示す概略図である。なお、以下では基準座標系
に対する並進3軸(X,Y,Z)と並進3軸の各軸周りの
回転3軸(θx、θy、θz)を合わせて6自由度位置
と呼ぶことにする。この例を用いて、従来の位置制御系
の構成とその動作を説明する。FIG. 9 is a schematic diagram showing the structure of a wafer stage of a conventional exposure apparatus. In the description below, the three translational axes (X, Y, Z) with respect to the reference coordinate system and the three rotational axes (θx, θy, θz) around each of the translational three axes are collectively referred to as a 6-DOF position. The configuration and operation of a conventional position control system will be described using this example.
【0005】定盤41は床Fからダンパを介して支持さ
れている。Yステージ43は、定盤41に固定された固
定ガイド42に沿ってY方向に推力を発生するYリニア
モータ46により、定盤41の基準面上をY方向に移動
可能である。定盤41および固定ガイド42とYステー
ジ43との間は静圧軸受であるエアパッド44a、44
bを介してエアで結合されており非接触である。Yステ
ージ43はX方向のガイドを備えており、Yステージに
搭載されたXステージ45をX方向に案内する。また、
Yステージ43にはX方向に力を発生するXリニアモー
タ固定子が設けられ、Xステージに設けられたXリニア
モータ可動子と共に、Xステージ45をX方向に駆動さ
せる。定盤41及びXガイドとXステージ45との間は
静圧軸受であるエアパッド44cを介してエアで結合さ
れており、非接触である。The surface plate 41 is supported from the floor F via a damper. The Y stage 43 can be moved in the Y direction on the reference surface of the surface plate 41 by a Y linear motor 46 that generates thrust in the Y direction along a fixed guide 42 fixed to the surface plate 41. Air pads 44a and 44, which are hydrostatic bearings, are provided between the surface plate 41 and the fixed guide 42 and the Y stage 43.
It is connected by air through b and is non-contact. The Y stage 43 has a guide in the X direction, and guides the X stage 45 mounted on the Y stage in the X direction. Also,
The Y stage 43 is provided with an X linear motor stator that generates a force in the X direction, and drives the X stage 45 in the X direction together with the X linear motor mover provided on the X stage. The surface plate 41, the X guide, and the X stage 45 are connected by air via an air pad 44c, which is a static pressure bearing, and are not in contact with each other.
【0006】Xステージ45にはチルトステージ48が
搭載されている。チルトステージ48は不図示のリニア
モータによる推力でZ方向の移動と3軸(θx、θy、
θz)方向の回転とを行う。チルトステージ48上にウ
エハチャックを備えたステージ基板51が搭載され、被
露光体であるウエハ53を保持する。また、ステージ基
板51上にはX方向およびY方向の位置計測に用いる計
測ミラー49a、bが設けられる。A tilt stage 48 is mounted on the X stage 45. The tilt stage 48 is moved in the Z direction by a thrust force of a linear motor (not shown) and has three axes (θx, θy,
rotation in the θz) direction. A stage substrate 51 having a wafer chuck is mounted on the tilt stage 48, and holds a wafer 53, which is an exposure target. Further, on the stage substrate 51, measurement mirrors 49a and 49b used for position measurement in the X and Y directions are provided.
【0007】露光装置のステージ装置は、定盤41の基
準面に対して面内方向(X、Y、θz)および垂直(チ
ルト)方向(Z、θx、θy)の6自由度の位置決めを
行い、1チップ分の露光を行う。面内方向(X、Y、θ
z)の位置の計測は不図示のレンズ鏡筒と一体であるレ
ーザ干渉計50を用いて測定され、垂直(チルト)方向
(Z、θx、θy)の計測はレンズ鏡筒と一体のアライ
メント計測系(不図示)によりZ方向の位置と回転成分
の角度が計測される。The stage device of the exposure apparatus performs six-degree-of-freedom positioning with respect to the reference surface of the surface plate 41 in the in-plane direction (X, Y, θz) and the vertical (tilt) direction (Z, θx, θy). Exposure for one chip is performed. In-plane direction (X, Y, θ
z) position measurement is performed using a laser interferometer 50 that is integrated with a lens barrel (not shown), and measurement in the vertical (tilt) direction (Z, θx, θy) is alignment measurement integrated with the lens barrel. The position of the Z direction and the angle of the rotation component are measured by a system (not shown).
【0008】図9ではレンズ鏡筒と定盤41は一体であ
ると仮定して、レーザ干渉計50は定盤41に取り付け
られている。また、Z方向の位置計測は図示を省略して
いるが、ステージ基板もしくはウエハ上の3点をレンズ
鏡筒から計測することにより垂直(チルト)方向(Z、
θx、θy)の計測が可能である。In FIG. 9, assuming that the lens barrel and the surface plate 41 are integrated, the laser interferometer 50 is attached to the surface plate 41. Although the position measurement in the Z direction is not shown in the figure, the vertical (tilt) direction (Z,
It is possible to measure θx, θy).
【0009】ステージ43、45、チルトステージ48
のこれら6自由度位置方向への位置決めは、各XYZ軸
にサーボ系を構成することにより行われる。すなわち、
レーザ干渉計50により計測された位置情報をもとに補
償器(不図示)がXステージ45をX方向に駆動する。
XリニアモータとYステージ43をY方向に駆動するY
リニアモータ46への駆動指令値を演算し、X、Yリニ
アモータが該駆動指令値に基づいて各々Xステージ4
5、Yステージ43を駆動する。また、補償器はZ方向
の位置と回転方向(θx、θy)の角度と前記のθz方
向の計測値に応じて、チルトステージ48への駆動指令
値を演算し、リニアモータによりチルトステージ48が
駆動される。Stages 43 and 45, tilt stage 48
Positioning in the 6-DOF position direction is performed by configuring a servo system on each of the XYZ axes. That is,
A compensator (not shown) drives the X stage 45 in the X direction based on the position information measured by the laser interferometer 50.
Y for driving the X linear motor and the Y stage 43 in the Y direction
A drive command value to the linear motor 46 is calculated, and the X and Y linear motors respectively operate on the X stage 4 based on the drive command value.
5. Drive the Y stage 43. Further, the compensator calculates a drive command value to the tilt stage 48 according to the position in the Z direction, the angle in the rotation direction (θx, θy) and the measured value in the θz direction, and the tilt stage 48 is driven by the linear motor. Driven.
【0010】このように構成された従来の位置制御系に
よれば、ウエハステージは与えられた目標位置に高速・
高精度に移動させることができる。しかしながら、上記
のように構成されたウエハステージをさらに高速に動か
そうとすると、ウエハステージが持つ弾性特性に起因す
る弾性振動が発生し、位置決め精度や速度が低下するこ
とがある。このような課題を解決するために、ウエハス
テージの弾性振動の腹となるところに歪み計測装置(例
えば圧電素子センサ)を取り付け、ウエハステージの弾
性振動による歪みを計測し、逆に、またウエハステージ
の弾性振動の腹となるところに取り付けた圧電素子に通
電して力(歪)を発生させ、歪み抑制装置(例えばアク
チュエータ)として弾性振動を抑制する技術が知られて
いる。According to the conventional position control system configured as described above, the wafer stage moves at a given target position at high speed.
It can be moved with high precision. However, if the wafer stage configured as described above is attempted to move at a higher speed, elastic vibrations due to the elastic characteristics of the wafer stage may occur, and the positioning accuracy and speed may decrease. In order to solve such a problem, a strain measuring device (for example, a piezoelectric element sensor) is attached to a place where the elastic vibration of the wafer stage is located, and the strain due to the elastic vibration of the wafer stage is measured. There is known a technique for suppressing elastic vibration as a strain suppressing device (for example, an actuator) by generating a force (strain) by energizing a piezoelectric element mounted at a place where the elastic vibration antinode is provided.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、圧電素
子センサは、ウエハステージ面に接着などの手段で直接
貼り付けられるため、ウエハステージ面の弾性振動の方
向を正確に計測できないという問題がある。この点につ
いて図7を用いて説明する。図7はウエハステージのス
テージ面に圧電素子センサを直接接着した状態を示す図
である。ウエハステージが弾性振動してステージ面上に
歪みが生じると、圧電素子は下記式(1)に示すよう
に、図中のX方向、Y方向の歪み量εx、εyの和に比
例した電圧V0を出力する。このように圧電素子センサ
を直接ウエハステージ面に接着すると、圧電素子は2方
向(X方向とY方向)の歪み成分の和は計測できるが、
各々の方向の歪み成分を正確に計測できないのである。However, since the piezoelectric element sensor is directly attached to the wafer stage surface by means such as adhesion, there is a problem in that the direction of elastic vibration of the wafer stage surface cannot be accurately measured. This point will be described with reference to FIG. 7. FIG. 7 is a diagram showing a state in which the piezoelectric element sensor is directly bonded to the stage surface of the wafer stage. When the wafer stage elastically vibrates and a strain is generated on the stage surface, the piezoelectric element causes a voltage V0 proportional to the sum of strain amounts εx and εy in the X and Y directions in the figure, as shown in the following equation (1). Is output. When the piezoelectric element sensor is directly bonded to the wafer stage surface in this way, the piezoelectric element can measure the sum of strain components in two directions (X direction and Y direction).
The distortion component in each direction cannot be accurately measured.
【0012】[0012]
【数1】
また、上記圧電素子センサと同様にアクチュエータとし
て用いる場合も、圧電素子をウエハステージ面に直接貼
り付けているので、ウエハステージ面の弾性振動を正確
に抑制することは難しい。このことも図7を用いて説明
する。ウエハステージが図中のX方向に弾性振動を生じ
ているとする。この弾性振動を抑制するために圧電素子
に電圧Viを印加させたとすると、下記式(2)、式
(3)のように、X方向とY方向に同時に歪みによる力
が発生する。つまり、圧電素子はX方向のみの弾性振動
を抑制したい場合でも不要なY方向の力(歪)も発生し
てしまう。このために、圧電素子をアクチュエータとし
て用いてもウエハステージの弾性振動を高精度に低減で
きないのである。[Equation 1] Also, when the piezoelectric element is used as an actuator like the piezoelectric element sensor, it is difficult to accurately suppress the elastic vibration of the wafer stage surface because the piezoelectric element is directly attached to the wafer stage surface. This will also be described with reference to FIG. It is assumed that the wafer stage is elastically vibrating in the X direction in the figure. If a voltage Vi is applied to the piezoelectric element in order to suppress this elastic vibration, a force due to strain is simultaneously generated in the X direction and the Y direction as in the following formulas (2) and (3). In other words, the piezoelectric element also generates unnecessary force (distortion) in the Y direction even when it is desired to suppress elastic vibration only in the X direction. Therefore, even if the piezoelectric element is used as an actuator, the elastic vibration of the wafer stage cannot be reduced with high accuracy.
【0013】[0013]
【数2】
本発明は、上記の問題点に鑑みてなされたものであり、
例えば、物体に発生する歪みを正確に計測する歪み計測
装置、並びにその物体の歪みを大幅に低減する歪み抑制
装置、露光装置、デバイス製造方法の提供を目的とす
る。[Equation 2] The present invention has been made in view of the above problems,
For example, it is an object of the present invention to provide a strain measuring device that accurately measures strain generated in an object, a strain suppressing device that significantly reduces the strain of the object, an exposure device, and a device manufacturing method.
【0014】[0014]
【課題を解決するための手段】本発明の第1の側面は、
物体の歪みを計測する歪み計測装置に係り、物体に生じ
る歪みを検出する歪み検出素子と、前記物体に固定され
ると共に、前記歪み検出素子が固着されて当該物体の歪
みを当該歪み検出素子に伝達する伝達部材とを備え、前
記伝達部材は、前記物体の所定方向の歪みを前記歪み検
出素子に伝達するように前記物体に固定されることを特
徴とする。The first aspect of the present invention is as follows.
A strain measuring device for measuring a strain of an object, a strain detecting element for detecting a strain generated in an object, and a strain detecting element fixed to the object, wherein the strain detecting element is fixed to the strain detecting element. And a transmission member for transmitting, wherein the transmission member is fixed to the object so as to transmit the strain of the object in a predetermined direction to the strain detection element.
【0015】本発明の好適な実施の形態によれば、前記
伝達部材は、前記所定方向に平行な直線上の離間する2
点で前記物体に固定されている。According to a preferred embodiment of the present invention, the transmission members are spaced apart from each other on a straight line parallel to the predetermined direction.
It is fixed to the object at points.
【0016】本発明の好適な実施の形態によれば、前記
伝達部材には、前記所定方向に平行な複数のスリットが
形成されている。According to a preferred embodiment of the present invention, the transmission member is formed with a plurality of slits parallel to the predetermined direction.
【0017】本発明の好適な実施の形態によれば、前記
歪み検出素子を複数備え、当該歪み検出素子は前記所定
方向に平行な直線に重ならないように離間して配置され
ている。According to a preferred embodiment of the present invention, a plurality of the strain detecting elements are provided, and the strain detecting elements are arranged so as not to overlap a straight line parallel to the predetermined direction.
【0018】本発明の好適な実施の形態によれば、前記
伝達部材と前記物体とは、当該伝達部材に形成された台
座を介して当接している。According to a preferred embodiment of the present invention, the transmission member and the object are in contact with each other via a pedestal formed on the transmission member.
【0019】本発明の好適な実施の形態によれば、当該
歪み検出素子を複数備え、当該歪み検出素子は前記所定
方向に平行な直線と交差するように離間して配置されて
いる。According to a preferred embodiment of the present invention, a plurality of the strain detecting elements are provided, and the strain detecting elements are arranged so as to be separated from each other so as to intersect a straight line parallel to the predetermined direction.
【0020】本発明の好適な実施の形態によれば、前記
歪み検出素子は、圧電素子である。According to a preferred embodiment of the present invention, the strain detecting element is a piezoelectric element.
【0021】本発明の好適な実施の形態によれば、前記
物体は、半導体製造工程において基板又は原版を移動さ
せる移動ステージである。According to a preferred embodiment of the present invention, the object is a moving stage that moves a substrate or an original plate in a semiconductor manufacturing process.
【0022】本発明の第2の側面は、物体に発生する歪
みを抑制する歪み抑制装置に係り、前記物体に対して歪
みによる力を発生する歪み発生素子と、前記物体に固定
されると共に、前記歪み発生素子が固着されて当該歪み
発生素子の歪みによる力を前記物体に伝達する伝達部材
とを備え、前記伝達部材は、前記歪み発生素子の所定方
向の歪みによる力を前記物体に伝達するように固定され
て、当該物体の歪みを抑制することを特徴とする。A second aspect of the present invention relates to a strain suppressing device which suppresses strain generated in an object, and a strain generating element which generates a force due to strain to the object, and a strain generating element which is fixed to the object, A transmission member for transmitting the force due to the strain of the strain generation element to the object, the transmission member transmitting the force due to the strain of the strain generation element in a predetermined direction to the object. It is fixed so as to suppress the distortion of the object.
【0023】本発明の好適な実施の形態によれば、前記
伝達部材は、前記所定方向に平行な直線上の離間する2
点で前記物体に固定されている。According to a preferred embodiment of the present invention, the transmission members are spaced apart from each other on a straight line parallel to the predetermined direction.
It is fixed to the object at points.
【0024】本発明の好適な実施の形態によれば、前記
伝達部材には、前記所定方向に平行な複数のスリットが
形成されている。According to a preferred embodiment of the present invention, the transmission member is formed with a plurality of slits parallel to the predetermined direction.
【0025】本発明の好適な実施の形態によれば、前記
歪み検出素子を複数備え、当該歪み検出素子は前記所定
方向に平行な直線に重ならないように離間して配置され
ている。According to a preferred embodiment of the present invention, a plurality of the strain detecting elements are provided, and the strain detecting elements are arranged so as not to overlap a straight line parallel to the predetermined direction.
【0026】本発明の好適な実施の形態によれば、前記
伝達部材と前記物体とは、当該伝達部材に形成された台
座を介して当接している。According to a preferred embodiment of the present invention, the transmission member and the object are in contact with each other via a pedestal formed on the transmission member.
【0027】本発明の好適な実施の形態によれば、当該
歪み検出素子を複数備え、当該歪み検出素子は前記所定
方向に平行な直線と交差するように離間して配置されて
いる。According to a preferred embodiment of the present invention, a plurality of the strain detecting elements are provided, and the strain detecting elements are arranged so as to be separated from each other so as to intersect a straight line parallel to the predetermined direction.
【0028】本発明の好適な実施の形態によれば、前記
歪み検出素子は、圧電素子である。According to a preferred embodiment of the present invention, the strain detecting element is a piezoelectric element.
【0029】本発明の好適な実施の形態によれば、前記
物体は、半導体製造工程において基板又は原版を移動さ
せる移動ステージである。According to a preferred embodiment of the present invention, the object is a moving stage that moves a substrate or an original plate in a semiconductor manufacturing process.
【0030】本発明の第3の側面は、物体に生じる歪み
を検出する歪み検出素子を有する歪み計測装置の制御方
法に係り、前記物体の所定方向の歪みを前記歪み検出素
子に伝達するように前記物体に固定される伝達部材を介
して、前記物体の歪みを前記歪み検出素子に伝達するこ
とにより、当該物体に生じる歪みを検出する歪み検出工
程を含むことを特徴とする。A third aspect of the present invention relates to a method of controlling a strain measuring device having a strain detecting element for detecting strain occurring in an object, wherein strain in a predetermined direction of the object is transmitted to the strain detecting element. A strain detecting step of detecting the strain generated in the object by transmitting the strain of the object to the strain detection element via a transmission member fixed to the object is included.
【0031】本発明の第4の側面は、物体に対して歪み
による力を発生する歪み発生素子を有する歪み抑制装置
の制御方法に係り、前記歪み発生素子の所定方向の歪み
による力を前記物体に伝達するように前記物体に固定さ
れる伝達部材を介して、前記歪み発生素子の歪みによる
力を前記物体に伝達することにより、当該物体の歪みを
抑制する歪み抑制工程を含むことを特徴とする。A fourth aspect of the present invention relates to a control method of a strain suppressing device having a strain generating element for generating a force due to strain on an object, wherein the force due to the strain of the strain generating element in a predetermined direction is applied to the object. A strain suppressing step of suppressing the strain of the object by transmitting the force due to the strain of the strain generating element to the object via a transmission member fixed to the object so as to be transmitted to the object. To do.
【0032】本発明の好適な実施の形態によれば、請求
項17または請求項18に記載の制御方法により制御さ
れるステージ位置決め装置を利用してパターンを転写す
る。According to a preferred embodiment of the present invention, the pattern is transferred using a stage positioning device controlled by the control method according to claim 17 or 18.
【0033】本発明の第5の側面は、半導体デバイスの
製造方法に係り、基板に感光材を塗布する塗布工程と、
前記塗布工程で前記感光材が塗布された前記基板に請求
項19に記載の露光装置を利用してパターンを転写する
露光工程と、前記露光工程で前記パターンが転写された
前記基板の前記感光材を現像する現像工程とを有するこ
とを特徴とする。A fifth aspect of the present invention relates to a method of manufacturing a semiconductor device, which comprises a coating step of coating a substrate with a photosensitive material,
An exposure step of transferring a pattern to the substrate coated with the photosensitive material in the coating step using the exposure apparatus according to claim 19, and the photosensitive material of the substrate having the pattern transferred in the exposure step. And a developing step for developing.
【0034】[0034]
【発明の実施の形態】以下、添付図面を参照しながら本
発明の好適な実施の形態について説明する。Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
【0035】本発明は以下の実施形態に限られず、例え
ば、移動ステージは弾性特性を有する構造物の弾性歪み
計測及び弾性歪み抑制に有効である。また、例えば、半
導体露光装置に用いられるウエハステージの構造物の弾
性歪み計測及び弾性歪み抑制にも有効である。The present invention is not limited to the following embodiments, and for example, the moving stage is effective for measuring elastic strain of a structure having elastic characteristics and suppressing elastic strain. Further, for example, it is also effective for measuring elastic strain of a structure of a wafer stage used in a semiconductor exposure apparatus and suppressing elastic strain.
【0036】(第1実施形態)図1は、本発明の好適な
実施の形態に係る歪み計測装置及び/又は歪み抑制装置
の概観を示す斜視図である。所定の方向をX方向とし
て、圧電素子1の短手方向の略中心を通る長手方向に沿
う直線3a上に拘束点2、3がある。計測したい歪みの
方向もしくは発生させたい力の方向は、例えばX方向で
あるとする。この場合、圧電素子1を接着した伝達部材
4は、拘束点2及び拘束点3のみで物体面5に固定され
ている。(First Embodiment) FIG. 1 is a perspective view showing an outline of a strain measuring device and / or a strain suppressing device according to a preferred embodiment of the present invention. With the predetermined direction as the X direction, the constraint points 2 and 3 are located on a straight line 3a passing through the approximate center of the piezoelectric element 1 in the lateral direction and extending along the longitudinal direction. The direction of strain to be measured or the direction of force to be generated is, for example, the X direction. In this case, the transmission member 4 to which the piezoelectric element 1 is bonded is fixed to the object plane 5 only at the constraining points 2 and 3.
【0037】圧電素子1を歪み計測装置として使用する
場合、物体面5が弾性振動による歪みを生じたとき、弾
性歪みのY方向成分は伝達部材4には伝わらず、X方向
の歪みのみが伝達部材4に伝わり、圧電素子1によって
X方向の歪みが計測される。さらに、圧電素子1を移動
ステージ面5の弾性歪みを抑制制御する歪み抑制装置と
して使用する場合、圧電素子1に電圧を印加した際、伝
達部材4にはX、Y両方向の力が伝わるが、物体面5に
はX方向のみの力が伝わる。図8は、図1に示す歪み抑
制装置及び/又は計測装置を移動ステージに適用した一
例を示す図である。図1及び図8において、圧電素子1
は、歪み計測装置801、歪み抑制装置802として伝
達部材4を介して移動ステージ面800に取り付けられ
ている。歪み計測装置801によって計測された歪み量
に従って、移動ステージ面800の弾性振動を抑制する
ように歪み抑制装置802に電圧が印加される。このよ
うにして移動ステージ面800の弾性振動が低減される
ため、移動ステージ装置803を高速且つ高精度に位置
決めすることができる。また、本発明に係る好適な実施
の形態の歪み抑制装置及び/又は計測装置は、移動ステ
ージのみに適用が限定されるものではない。例えば、図
9に示す従来の半導体露光装置のウエハステージにも適
用することができる。図9において、レーザ干渉計50
は、定盤41に接続されている。よって定盤41の弾性
振動はレーザ干渉計50に伝わり、定盤41とレーザ干
渉計50との接続部が弾性歪みを生じるため、ウエハス
テージの位置計測が正確に行えない。この場合、定盤4
1とレーザ干渉計50との接続部に伝達部材4を介して
圧電素子1を取り付けることによって、弾性振動による
歪みを低減するといった適用も考えられる。When the piezoelectric element 1 is used as a strain measuring device, when the object surface 5 is distorted by elastic vibration, the Y-direction component of the elastic strain is not transmitted to the transmission member 4, but only the strain in the X direction is transmitted. The strain is transmitted to the member 4, and the strain in the X direction is measured by the piezoelectric element 1. Furthermore, when the piezoelectric element 1 is used as a strain suppressing device that suppresses and controls the elastic strain of the moving stage surface 5, when a voltage is applied to the piezoelectric element 1, the force in both the X and Y directions is transmitted to the transmitting member 4, A force only in the X direction is transmitted to the object plane 5. FIG. 8 is a diagram showing an example in which the strain suppressing device and / or the measuring device shown in FIG. 1 is applied to a moving stage. 1 and 8, the piezoelectric element 1
Are attached to the moving stage surface 800 via the transmission member 4 as a strain measuring device 801 and a strain suppressing device 802. According to the strain amount measured by the strain measuring device 801, a voltage is applied to the strain suppressing device 802 so as to suppress the elastic vibration of the moving stage surface 800. Since the elastic vibration of the moving stage surface 800 is reduced in this way, the moving stage device 803 can be positioned at high speed and with high accuracy. Further, the application of the strain suppressing device and / or the measuring device according to the preferred embodiment of the present invention is not limited to only the moving stage. For example, it can be applied to the wafer stage of the conventional semiconductor exposure apparatus shown in FIG. In FIG. 9, a laser interferometer 50
Are connected to the surface plate 41. Therefore, the elastic vibration of the surface plate 41 is transmitted to the laser interferometer 50, and elastic distortion occurs at the connecting portion between the surface plate 41 and the laser interferometer 50, so that the position of the wafer stage cannot be accurately measured. In this case, surface plate 4
The piezoelectric element 1 may be attached to the connecting portion between the laser interferometer 1 and the laser interferometer 50 via the transmission member 4 to reduce the distortion due to elastic vibration.
【0038】さらに、図1において、伝達部材4を物体
面5に固定する拘束点は上記の2点に限るものではな
い。図1のX軸に平行な一直線を示す点線3a上であれ
ば、無限に拘束点を設けても、歪み計測装置が計測する
移動ステージの歪みと、歪み抑制装置が弾性振動を抑制
すべく物体に与える力はX方向成分のみとなる。よっ
て、伝達部材4は、所定の方向に対して任意の間隔に配
置された1つまたは複数の拘束点を含みうる。これらの
拘束点での拘束方法としては、例えば、拘束点に設けた
穴にネジまたはピンで固定する方法がある。この固定方
法の長所は取り外しが容易であるという点である。Further, in FIG. 1, the constraint points for fixing the transmission member 4 to the object surface 5 are not limited to the above two points. On the dotted line 3a showing a straight line parallel to the X-axis of FIG. 1, even if an infinite constraint point is provided, the strain of the moving stage measured by the strain measuring device and the strain suppressing device suppress the elastic vibration of the object. The force applied to is only the X-direction component. Therefore, the transmission member 4 may include one or a plurality of constraining points arranged at arbitrary intervals with respect to the predetermined direction. As a method of restraint at these restraint points, for example, there is a method of fixing with screws or pins in holes provided at the restraint points. The advantage of this fixing method is that it is easy to remove.
【0039】(第2実施形態)図2は、本発明の第2の
好適な実施形態に係る歪み抑制装置及び/又は計測装置
の概観を示す斜視図である。所定の方向をX方向とし
て、伝達部材9の短手方向の略中心を通る長手方向に沿
う直線3aに平行な複数のスリットが形成されている。
図2に示すように、不図示の圧電素子は、X方向に溝が
形成され、Y方向に配列された複数のスリットからなる
スリット群6を有する伝達部材9上の一点鎖線部分8に
接着される。この伝達部材9は、多数の拘束点7で物体
(例えば移動ステージ)に固定される。この構成におい
て、圧電素子を歪み計測装置として使用する場合、圧電
素子はX方向の歪みは計測するが、Y方向の歪みはX軸
に平行に切られたスリット群6によって圧電素子には伝
わらないために計測されない。圧電素子を歪み抑制装置
として使用した場合も同様に、X方向のみの力を物体
(例えば移動ステージ)に与える。伝達部材9の物体
(例えば移動ステージ)への拘束点の数は、伝達部材9
上のスリットが切られていない部分であれば何点でもよ
い。(Second Embodiment) FIG. 2 is a perspective view showing an outline of a strain suppressing device and / or a measuring device according to a second preferred embodiment of the present invention. A plurality of slits are formed parallel to the straight line 3a along the longitudinal direction passing through the approximate center of the transmission member 9 in the lateral direction with the predetermined direction as the X direction.
As shown in FIG. 2, the piezoelectric element (not shown) is bonded to the alternate long and short dash line portion 8 on the transmission member 9 having the slit group 6 including the slits formed in the X direction and arranged in the Y direction. It This transmission member 9 is fixed to an object (for example, a moving stage) at a large number of constraint points 7. In this configuration, when the piezoelectric element is used as a strain measuring device, the piezoelectric element measures the strain in the X direction, but the strain in the Y direction is not transmitted to the piezoelectric element by the slit group 6 cut parallel to the X axis. Not measured because of Similarly, when the piezoelectric element is used as a strain suppressing device, a force only in the X direction is applied to the object (for example, the moving stage). The number of constraining points of the transmission member 9 to the object (for example, the moving stage) is determined by the transmission member 9
Any number of points may be used as long as the upper slit is not cut.
【0040】(第3実施形態)図3は、本発明の第3の
好適な実施形態に係る歪み抑制装置及び/又は計測装置
の概観を示す斜視図である。所定の方向をX方向とし
て、伝達部材10の短手方向の略中心を通る長手方向に
沿う直線14に重ならないように複数の歪み抑制装置及
び/又は計測装置(例えば圧電素子)が離間して配置さ
れている。図3に示したように、伝達部材10は、複数
の圧電素子12が取り付けられている。点線14上の拘
束点11で物体面、例えば、移動ステージ面13を拘束
すれば、前述の第1実施形態と同様に、これらの圧電素
子12はX方向のみの歪みを計測する歪み計測装置、ま
たはX方向のみに力を発生する歪み抑制装置となる。こ
の伝達部材10の長所は、複数の圧電素子12に分ける
ことによって点線14上にスペースを形成し、この開放
されたスペースに伝達部材10の拘束点11を形成する
ことにより、圧電素子12を移動ステージ面13へ容易
に固定できることである。特に、伝達部材10をネジで
固定する場合には、第1実施形態では物体側からネジで
固定するもしくは圧電素子1に穴をあけてネジで物体に
固定するなどの方法で行われるが、伝達部材10の場合
は、移動ステージ面13に対する固定部分が面上に開放
されていることによって、伝達部材10側から移動ステ
ージ面13にネジで固定できるようになり、取り付けが
容易になる。(Third Embodiment) FIG. 3 is a perspective view showing an outline of a strain suppressing device and / or a measuring device according to a third preferred embodiment of the present invention. A predetermined direction is defined as the X direction, and a plurality of strain suppressing devices and / or measuring devices (for example, piezoelectric elements) are spaced apart from each other so as not to overlap the straight line 14 along the longitudinal direction passing through the approximate center in the lateral direction of the transmission member 10. It is arranged. As shown in FIG. 3, a plurality of piezoelectric elements 12 are attached to the transmission member 10. If the object surface, for example, the moving stage surface 13 is constrained at the constraining point 11 on the dotted line 14, these piezoelectric elements 12 measure the strain only in the X direction, as in the first embodiment described above, Alternatively, the strain suppressing device generates a force only in the X direction. The advantage of this transmission member 10 is that it is divided into a plurality of piezoelectric elements 12 to form a space on the dotted line 14, and the restraining points 11 of the transmission member 10 are formed in this open space to move the piezoelectric element 12. That is, it can be easily fixed to the stage surface 13. Particularly, in the case of fixing the transmission member 10 with a screw, in the first embodiment, a method of fixing with a screw from the object side or a method of making a hole in the piezoelectric element 1 and fixing with a screw to the object is performed. In the case of the member 10, since the fixing portion for the moving stage surface 13 is opened on the surface, the member can be fixed to the moving stage surface 13 from the transmission member 10 side with a screw, and the mounting becomes easy.
【0041】(第4実施形態)図4、5は、本発明の第
4の好適な実施形態に係る歪み抑制装置及び/又は計測
装置の概観を示す斜視図である。伝達部材18、21と
物体、例えば移動ステージ19、24とは、伝達部材1
8、21に形成された台座18a、21aを介して当接
している。図4、5はそれぞれ、図1、3に示した第
1、第3実施形態の伝達部材4、10を改良したもので
ある。図1、3に示した伝達部材4、10は、拘束点
2、3、11付近以外にも物体、例えば移動ステージと
接している部分が多数ありうる。これによって摩擦接触
する部分が存在し、圧電素子の発生力が移動ステージ面
に伝達される際、非線形な特性が含まれる可能性があ
る。同様の問題は移動ステージの歪みを計測する場合に
も発生する。このことは、弾性振動を抑制する制御系を
組む際に制御性能が劣化するので好ましくない。一方、
図4、5に示す伝達部材18、21は拘束点16、1
7、22付近に台座18a、21aがついているため、
拘束点付近以外は移動ステージと接触しない。このこと
によって摩擦接触する部分が減少し、非線形な特性によ
って制御系の制御性能が劣化することが少なくなる。(Fourth Embodiment) FIGS. 4 and 5 are perspective views showing an outline of a strain suppressing device and / or a measuring device according to a fourth preferred embodiment of the present invention. The transmission members 18 and 21 and the object, for example, the moving stages 19 and 24 are the transmission members 1
8 and 21 are in contact with each other via pedestals 18a and 21a. 4 and 5 are improvements of the transmission members 4 and 10 of the first and third embodiments shown in FIGS. 1 and 3, respectively. The transmission members 4 and 10 shown in FIGS. 1 and 3 may have many parts in contact with an object, for example, a moving stage, in addition to the vicinity of the constraining points 2, 3, and 11. As a result, there is a portion that makes frictional contact, and when the generated force of the piezoelectric element is transmitted to the moving stage surface, there is a possibility that a non-linear characteristic is included. A similar problem occurs when measuring the distortion of the moving stage. This is not preferable because the control performance deteriorates when a control system that suppresses elastic vibration is assembled. on the other hand,
The transmission members 18 and 21 shown in FIGS.
Since pedestals 18a and 21a are attached near 7 and 22,
No contact with the moving stage except near the constraint point. As a result, the frictional contact portion is reduced, and the control performance of the control system is less likely to deteriorate due to the non-linear characteristic.
【0042】(第5実施形態)図6は、本発明の第5の
好適な実施形態に係る歪み抑制装置及び/又は計測装置
の概観を示す斜視図である。所定の方向をX方向とし
て、伝達部材26の短手方向の略中心を通る長手方向に
沿う直線30と交差するように複数の歪み検出素子が離
間して配置されている。図6に示す伝達部材26は、第
3の実施形態で説明した図3の伝達部材10と同様に、
複数の圧電素子27を用いて、物体、例えば移動ステー
ジとの拘束点部分を開放したことによって、移動ステー
ジへの取り付けを容易にするものである。この伝達部材
26が図3の伝達部材10と違う点は、圧電素子27を
複数の拘束点28の間に接着した点である。その結果、
接着する圧電素子27は発生したい力の向きと直行する
方向(図6ではY方向)に長細い形状にすることができ
る。式(2)に示したように圧電素子のX方向の発生力
はY軸方向の長さに比例する。よって、伝達部材26の
ように圧電素子27を接着するとX方向の発生力を大き
くする効果が得られる。また、この伝達部材26も第4
の実施形態で述べた図4、5のように拘束点付近に台座
を取り付ければ、非線形な特性を少なくすることがで
き、弾性歪みの制御性能が劣化することが少なくなる。(Fifth Embodiment) FIG. 6 is a perspective view showing an outline of a strain suppressing device and / or a measuring device according to a fifth preferred embodiment of the present invention. A plurality of strain detection elements are arranged apart from each other so as to intersect with a straight line 30 passing through the approximate center of the transmission member 26 in the lateral direction and extending in the longitudinal direction with the predetermined direction as the X direction. The transmission member 26 shown in FIG. 6 is similar to the transmission member 10 of FIG. 3 described in the third embodiment,
By using a plurality of piezoelectric elements 27 to open an object, for example, a constraining point portion with respect to the moving stage, attachment to the moving stage is facilitated. The difference between the transmitting member 26 and the transmitting member 10 in FIG. 3 is that the piezoelectric element 27 is bonded between the plurality of constraining points 28. as a result,
The piezoelectric element 27 to be adhered can have a slender shape in a direction (Y direction in FIG. 6) orthogonal to the direction of the force to be generated. As shown in Expression (2), the generated force in the X direction of the piezoelectric element is proportional to the length in the Y axis direction. Therefore, when the piezoelectric element 27 is bonded like the transmission member 26, the effect of increasing the generated force in the X direction can be obtained. In addition, this transmission member 26 is also the fourth
If the pedestal is attached near the restraint point as shown in FIGS. 4 and 5 described in the embodiment, non-linear characteristics can be reduced, and the elastic strain control performance is less likely to deteriorate.
【0043】次に、本発明の歪み計測装置、歪み抑制装
置を半導体デバイスの製造プロセスで用いられる露光装
置に適用した場合の実施の形態について説明する。Next, an embodiment in which the strain measuring apparatus and the strain suppressing apparatus of the present invention are applied to an exposure apparatus used in a semiconductor device manufacturing process will be described.
【0044】図10は、本発明の歪み計測装置、歪み抑
制装置を半導体デバイスの製造プロセスに適用した場合
に用いられる露光装置の概念図を示したものである。FIG. 10 is a conceptual diagram of an exposure apparatus used when the strain measuring apparatus and the strain suppressing apparatus of the present invention are applied to a semiconductor device manufacturing process.
【0045】本発明の好適な実施形態における露光装置
100は、照明光学系101、レティクル102、投影
光学系103、基板104、移動ステージ105で構成
される。照明光学系101は、例えば、エキシマレー
ザ、フッ素エキシマレーザなどを光源とした紫外光を露
光光として用いることができる。照明光学系101から
の光は、レティクル102に照射される。レティクル1
02を通った光は、投影光学系103を通して、基板1
04上に焦点を結び、基板104表面に塗布された感光
材を露光する。基板104は、本発明の歪み計測装置、
歪み抑制装置を適用した移動ステージ105を用いて所
定の位置へ移動する。The exposure apparatus 100 according to the preferred embodiment of the present invention comprises an illumination optical system 101, a reticle 102, a projection optical system 103, a substrate 104, and a moving stage 105. The illumination optical system 101 can use, for example, ultraviolet light as an exposure light using a light source such as an excimer laser or a fluorine excimer laser. The reticle 102 is irradiated with the light from the illumination optical system 101. Reticle 1
The light that has passed through 02 passes through the projection optical system 103 and the substrate 1
Focusing on 04, the photosensitive material coated on the surface of the substrate 104 is exposed. The substrate 104 is a strain measuring device of the present invention,
It moves to a predetermined position using the moving stage 105 to which the distortion suppressing device is applied.
【0046】図11は、上記の露光装置を用いた半導体
デバイスの全体的な製造プロセスのフローである。ステ
ップ1(回路設計)では半導体デバイスの回路設計を行
う。ステップ2(マスク作製)では設計した回路パター
ンに基づいてマスクを作製する。一方、ステップ3(ウ
エハ製造)ではシリコン等の材料を用いてウエハを製造
する。ステップ4(ウエハプロセス)は前工程と呼ば
れ、上記のマスクとウエハを用いて、リソグラフィ技術
によってウエハ上に実際の回路を形成する。次のステッ
プ5(組み立て)は後工程と呼ばれ、ステップ4によっ
て作製されたウエハを用いて半導体チップ化する工程で
あり、アッセンブリ工程(ダイシング、ボンディン
グ)、パッケージング工程(チップ封入)等の組み立て
工程を含む。ステップ6(検査)ではステップ5で作製
された半導体デバイスの動作確認テスト、耐久性テスト
等の検査を行う。こうした工程を経て半導体デバイスが
完成し、これを出荷(ステップ7)する。FIG. 11 is a flow chart of the overall manufacturing process of a semiconductor device using the above exposure apparatus. In step 1 (circuit design), the circuit of the semiconductor device is designed. In step 2 (mask making), a mask is made based on the designed circuit pattern. On the other hand, in step 3 (wafer manufacturing), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the mask and wafer described above. The next step 5 (assembly) is called a post-process, which is a process of forming a semiconductor chip using the wafer manufactured in step 4, and includes an assembly process (dicing, bonding), a packaging process (chip encapsulation), and the like. Including steps. In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. A semiconductor device is completed through these processes and shipped (step 7).
【0047】図12は、上記ウエハプロセスの詳細なフ
ローを示す。ステップ11(酸化)ではウエハの表面を
酸化させる。ステップ12(CVD)ではウエハ表面に
絶縁膜を成膜する。ステップ13(電極形成)ではウエ
ハ上に電極を蒸着によって形成する。ステップ14(イ
オン打込み)ではウエハにイオンを打ち込む。ステップ
15(レジスト処理)ではウエハに感光剤を塗布する。
ステップ16(露光)では上記の露光装置を用いて、ウ
エハを移動するときに生じる移動ステージの歪みを正確
に計測し、その物体の歪みを大幅に低減しながらウエハ
を精密に移動させ、回路パターンをウエハに転写する。
ステップ17(現像)では露光したウエハを現像する。
ステップ18(エッチング)では現像したレジスト像以
外の部分を削り取る。ステップ19(レジスト剥離)で
はエッチングが済んで不要となったレジストを取り除
く。これらのステップを繰り返し行うことによって、ウ
エハ上に多重に回路パターンを形成する。FIG. 12 shows a detailed flow of the wafer process. In step 11 (oxidation), the surface of the wafer is oxidized. In step 12 (CVD), an insulating film is formed on the wafer surface. In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted in the wafer. In step 15 (resist processing), a photosensitive agent is applied to the wafer.
In step 16 (exposure), the above-mentioned exposure apparatus is used to accurately measure the distortion of the moving stage that occurs when the wafer is moved, and the wafer is moved accurately while the distortion of the object is greatly reduced, and the circuit pattern Is transferred to the wafer.
In step 17 (development), the exposed wafer is developed.
In step 18 (etching), parts other than the developed resist image are removed. In step 19 (resist stripping), the resist that is no longer needed after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.
【0048】[0048]
【発明の効果】本発明によれば、例えば、物体に発生す
る歪みを正確に計測する歪み計測装置、並びにその物体
の歪みを大幅に低減する歪み抑制装置、露光装置、デバ
イス製造方法を提供することができる。According to the present invention, for example, a strain measuring apparatus for accurately measuring the strain generated in an object, a strain suppressing apparatus, an exposure apparatus, and a device manufacturing method for significantly reducing the distortion of the object are provided. be able to.
【図1】本発明の好適な実施の形態に係る歪み計測装置
及び/又は歪み抑制装置の概観を示す斜視図である。FIG. 1 is a perspective view showing an overview of a strain measuring device and / or a strain suppressing device according to a preferred embodiment of the present invention.
【図2】本発明の第2の好適な実施形態に係る歪み抑制
装置及び/又は計測装置の概観を示す斜視図である。FIG. 2 is a perspective view showing an overview of a strain suppressing device and / or a measuring device according to a second preferred embodiment of the present invention.
【図3】本発明の第3の好適な実施形態に係る歪み抑制
装置及び/又は計測装置の概観を示す斜視図である。FIG. 3 is a perspective view showing an overview of a strain suppressing device and / or a measuring device according to a third preferred embodiment of the present invention.
【図4】本発明の第4の好適な実施形態に係る歪み抑制
装置及び/又は計測装置の概観を示す斜視図である。FIG. 4 is a perspective view showing an overview of a strain suppressing device and / or a measuring device according to a fourth preferred embodiment of the present invention.
【図5】本発明の第4の好適な実施形態に係る歪み抑制
装置及び/又は計測装置の概観を示す斜視図である。FIG. 5 is a perspective view showing an overview of a strain suppressing device and / or a measuring device according to a fourth preferred embodiment of the present invention.
【図6】本発明の第5の好適な実施形態に係る歪み抑制
装置及び/又は計測装置の概観を示す斜視図である。FIG. 6 is a perspective view showing an overview of a strain suppressing device and / or a measuring device according to a fifth preferred embodiment of the present invention.
【図7】ウエハステージのステージ面に圧電素子センサ
を直接接着した状態を示す図である。FIG. 7 is a diagram showing a state in which a piezoelectric element sensor is directly bonded to a stage surface of a wafer stage.
【図8】図1に示す歪み抑制装置及び/又は計測装置を
移動ステージに適用した一例を示す図である。8 is a diagram showing an example in which the strain suppressing device and / or the measuring device shown in FIG. 1 is applied to a moving stage.
【図9】従来の半導体露光装置のウエハステージの構成
を示す概略図である。FIG. 9 is a schematic diagram showing a configuration of a wafer stage of a conventional semiconductor exposure apparatus.
【図10】本発明の歪み計測装置、歪み抑制装置を半導
体デバイスの製造プロセスに適用した場合に用いられる
露光装置の概念図である。FIG. 10 is a conceptual diagram of an exposure apparatus used when the strain measuring apparatus and the strain suppressing apparatus of the present invention are applied to a semiconductor device manufacturing process.
【図11】半導体デバイスの全体的な製造プロセスのフ
ローを示す図である。FIG. 11 is a diagram showing a flow of an overall manufacturing process of a semiconductor device.
【図12】ウエハプロセスの詳細なフローを示す図であ
る。FIG. 12 is a diagram showing a detailed flow of a wafer process.
1 圧電素子、2、3 伝達部材拘束点、3a伝達部材
中心軸線、46 伝達部材、5 物体面、6 スリット
群、7 拘束点、8 圧電素子取り付け位置、9 伝達
部材、10 伝達部材、11 拘束点、12 圧電素
子、13 移動ステージ面、14 伝達部材中心軸線、
15 圧電素子、16、17 伝達部材拘束点、18伝
達部材、19 移動ステージ面、20 伝達部材中心軸
線、21伝達部材、22 伝達部材拘束点、23 圧電
素子、24 移動ステージ面、25 伝達部材中心軸
線、26 伝達部材、27 圧電素子、28 伝達部材
拘束点、41 定盤、42 Y方向ガイド、43 Yス
テージ、44 エアパッド、45 Xステージ、46
リニアモータ、48 チルトステージ、49 ミラー、
50 レーザ干渉計、51 ステージ基板、53 ウエ
ハ、800 移動ステージ面、801 歪み抑制装置、
802 歪み計測装置、803 移動ステージ装置DESCRIPTION OF SYMBOLS 1 piezoelectric element, 2, 3 transmission member restraining point, 3a transmission member central axis line, 46 transmission member, 5 object plane, 6 slit group, 7 restraining point, 8 piezoelectric element mounting position, 9 transmission member, 10 transmission member, 11 restraint Point, 12 piezoelectric element, 13 moving stage surface, 14 transmission member central axis,
15 piezoelectric element, 16, 17 transfer member restraining point, 18 transfer member, 19 moving stage surface, 20 transfer member center axis, 21 transfer member, 22 transfer member restricting point, 23 piezoelectric element, 24 moving stage surface, 25 transfer member center Axis, 26 Transmission member, 27 Piezoelectric element, 28 Transmission member restraint point, 41 Surface plate, 42 Y direction guide, 43 Y stage, 44 Air pad, 45 X stage, 46
Linear motor, 48 tilt stage, 49 mirror,
50 laser interferometer, 51 stage substrate, 53 wafer, 800 moving stage surface, 801 strain suppressing device,
802 strain measuring device, 803 moving stage device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 堆 浩太郎 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 2F063 AA25 BA30 CA09 CA26 DA02 DC01 EC03 EC09 EC16 5F031 CA02 HA55 JA01 JA06 JA28 JA32 JA51 KA06 KA07 LA03 LA08 MA27 5F046 CC01 CC02 DB04 DB14 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kotaro 3-30-2 Shimomaruko, Ota-ku, Tokyo Non non corporation F-term (reference) 2F063 AA25 BA30 CA09 CA26 DA02 DC01 EC03 EC09 EC16 5F031 CA02 HA55 JA01 JA06 JA28 JA32 JA51 KA06 KA07 LA03 LA08 MA27 5F046 CC01 CC02 DB04 DB14
Claims (20)
って、 物体に生じる歪みを検出する歪み検出素子と、 前記物体に固定されると共に、前記歪み検出素子が固着
されて当該物体の歪みを当該歪み検出素子に伝達する伝
達部材とを備え、 前記伝達部材は、前記物体の所定方向の歪みを前記歪み
検出素子に伝達するように前記物体に固定されることを
特徴とする歪み計測装置。1. A strain measuring device for measuring a strain of an object, comprising: a strain detecting element for detecting a strain generated in an object; a strain detecting element fixed to the object; And a transmission member that transmits the strain to the strain detection element, the transmission member being fixed to the object so as to transmit the strain of the object in a predetermined direction to the strain detection element. .
直線上の離間する2点で前記物体に固定されていること
を特徴とする請求項1に記載の歪み計測装置。2. The strain measuring device according to claim 1, wherein the transmission member is fixed to the object at two points separated from each other on a straight line parallel to the predetermined direction.
な複数のスリットが形成されていることを特徴とする請
求項1に記載の歪み計測装置。3. The strain measuring device according to claim 1, wherein the transmission member is formed with a plurality of slits parallel to the predetermined direction.
検出素子は前記所定方向に平行な直線に重ならないよう
に離間して配置されていることを特徴とする請求項1に
記載の歪み計測装置。4. The strain measurement device according to claim 1, further comprising a plurality of the strain detection elements, the strain detection elements being arranged so as not to overlap a straight line parallel to the predetermined direction. apparatus.
部材に形成された台座を介して当接していることを特徴
とする請求項1乃至請求項4のいずれか1項に記載の歪
み計測装置。5. The strain according to claim 1, wherein the transmission member and the object are in contact with each other via a pedestal formed on the transmission member. Measuring device.
検出素子は前記所定方向に平行な直線と交差するように
離間して配置されていることを特徴とする請求項1に記
載の歪み計測装置。6. The strain measuring device according to claim 1, further comprising a plurality of the strain detecting elements, wherein the strain detecting elements are arranged apart from each other so as to intersect a straight line parallel to the predetermined direction. apparatus.
とを特徴とする請求項1乃至請求項6のいずれか1項に
記載の歪み計測装置。7. The strain measuring device according to claim 1, wherein the strain detecting element is a piezoelectric element.
板又は原版を移動させる移動ステージであることを特徴
とする請求項1乃至請求項7のいずれか1項に記載の歪
み計測装置。8. The strain measuring apparatus according to claim 1, wherein the object is a moving stage that moves a substrate or an original plate in a semiconductor manufacturing process.
装置であって、 前記物体に対して歪みによる力を発生する歪み発生素子
と、 前記物体に固定されると共に、前記歪み発生素子が固着
されて当該歪み発生素子の歪みによる力を前記物体に伝
達する伝達部材とを備え、 前記伝達部材は、前記歪み発生素子の所定方向の歪みに
よる力を前記物体に伝達するように固定されて、当該物
体の歪みを抑制することを特徴とする歪み抑制装置。9. A strain suppressing device that suppresses strain generated in an object, comprising: a strain generating element that generates a force due to strain on the object; and a strain generating element that is fixed to the object while the strain generating element is fixed. And a transmission member for transmitting the force due to the strain of the strain generating element to the object, the transmission member being fixed so as to transmit the force due to the strain in the predetermined direction of the strain generating element to the object, A distortion suppression device characterized by suppressing distortion of the object.
な直線上の離間する2点で前記物体に固定されているこ
とを特徴とする請求項9に記載の歪み抑制装置。10. The strain suppressing device according to claim 9, wherein the transmission member is fixed to the object at two points separated from each other on a straight line parallel to the predetermined direction.
行な複数のスリットが形成されていることを特徴とする
請求項9に記載の歪み抑制装置。11. The strain suppressing device according to claim 9, wherein the transmitting member is formed with a plurality of slits parallel to the predetermined direction.
み検出素子は前記所定方向に平行な直線に重ならないよ
うに離間して配置されていることを特徴とする請求項9
に記載の歪み抑制装置。12. A plurality of the strain detecting elements are provided, and the strain detecting elements are arranged apart from each other so as not to overlap a straight line parallel to the predetermined direction.
The strain suppression device according to item 1.
達部材に形成された台座を介して当接していることを特
徴とする請求項9乃至請求項12のいずれか1項に記載
の歪み抑制装置。13. The strain according to claim 9, wherein the transmission member and the object are in contact with each other via a pedestal formed on the transmission member. Suppressor.
み検出素子は前記所定方向に平行な直線と交差するよう
に離間して配置されていることを特徴とする請求項9に
記載の歪み抑制装置。14. The strain suppressing device according to claim 9, wherein a plurality of the strain detecting elements are provided, and the strain detecting elements are arranged so as to be separated from each other so as to intersect a straight line parallel to the predetermined direction. apparatus.
ことを特徴とする請求項9乃至請求項14のいずれか1
項に記載の歪み抑制装置。15. The strain detecting element is a piezoelectric element, and the strain detecting element is any one of claims 9 to 14.
The distortion suppression device according to the item.
基板又は原版を移動させる移動ステージであることを特
徴とする請求項9乃至請求項15のいずれか1項に記載
の歪み抑制装置。16. The distortion suppressing device according to claim 9, wherein the object is a moving stage that moves a substrate or an original plate in a semiconductor manufacturing process.
素子を有する歪み計測装置の制御方法であって、 前記物体の所定方向の歪みを前記歪み検出素子に伝達す
るように前記物体に固定される伝達部材を介して、前記
物体の歪みを前記歪み検出素子に伝達することにより、
当該物体に生じる歪みを検出する歪み検出工程を含むこ
とを特徴とする歪み計測装置の制御方法。17. A method for controlling a strain measuring device having a strain detecting element for detecting strain occurring in an object, the method being fixed to the object so as to transmit the strain of the object in a predetermined direction to the strain detecting element. By transmitting the strain of the object to the strain detection element via the transmission member,
A method of controlling a strain measuring apparatus, comprising: a strain detecting step of detecting a strain generated in the object.
歪み発生素子を有する歪み抑制装置の制御方法であっ
て、 前記歪み発生素子の所定方向の歪みによる力を前記物体
に伝達するように前記物体に固定される伝達部材を介し
て、前記歪み発生素子の歪みによる力を前記物体に伝達
することにより、当該物体の歪みを抑制する歪み抑制工
程を含むことを特徴とする歪み抑制装置の制御方法。18. A method of controlling a strain suppressing device having a strain generating element that generates a force due to strain on an object, wherein the force is transmitted to the object by the strain of the strain generating element in a predetermined direction. Control of a strain suppressing device, comprising: a strain suppressing step of suppressing the strain of the object by transmitting a force due to the strain of the strain generating element to the object via a transmission member fixed to the object. Method.
制御方法により制御されるステージ位置決め装置を利用
してパターンを転写することを特徴とする露光装置。19. An exposure apparatus, wherein a pattern is transferred using a stage positioning device controlled by the control method according to claim 17 or 18.
項19に記載の露光装置を利用してパターンを転写する
露光工程と、 前記露光工程で前記パターンが転写された前記基板の前
記感光材を現像する現像工程と、 を有することを特徴とする半導体デバイスの製造方法。20. A method of manufacturing a semiconductor device, comprising: applying a photosensitive material onto a substrate; and applying the exposure apparatus according to claim 19 to the substrate coated with the photosensitive material in the applying step. And a developing step of developing the photosensitive material on the substrate on which the pattern is transferred in the exposing step, and a developing step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002062303A JP3984841B2 (en) | 2002-03-07 | 2002-03-07 | Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002062303A JP3984841B2 (en) | 2002-03-07 | 2002-03-07 | Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003262501A true JP2003262501A (en) | 2003-09-19 |
JP2003262501A5 JP2003262501A5 (en) | 2006-12-28 |
JP3984841B2 JP3984841B2 (en) | 2007-10-03 |
Family
ID=29196141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002062303A Expired - Fee Related JP3984841B2 (en) | 2002-03-07 | 2002-03-07 | Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3984841B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007049603A1 (en) * | 2005-10-24 | 2007-05-03 | Nikon Corporation | Stage apparatus, coordinate correction method for the stage apparatus, exposure apparatus, and device production method |
JP2008258613A (en) * | 2007-04-05 | 2008-10-23 | Asml Netherlands Bv | Lithographic device and method of manufacturing the same |
WO2010005081A1 (en) * | 2008-07-10 | 2010-01-14 | 株式会社ニコン | Deformation measuring apparatus, exposure apparatus, jig for deformation measuring apparatus, position measuring method and device manufacturing method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US8681314B2 (en) | 2005-10-24 | 2014-03-25 | Nikon Corporation | Stage device and coordinate correction method for the same, exposure apparatus, and device manufacturing method |
KR101383041B1 (en) * | 2012-06-15 | 2014-04-17 | 전자부품연구원 | Board type strain gauge sensor and board body thereof |
KR101393593B1 (en) | 2012-06-15 | 2014-05-27 | (주)미래컴퍼니 | Strain gauge sensor, strain gauge sensor structure and manufacturing method thereof |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
WO2020129953A1 (en) * | 2018-12-17 | 2020-06-25 | アルプスアルパイン株式会社 | Composite piezoelectric element, tire condition measuring device, tire sensor module, tire sensor device, and piezoelectric sensor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107883887B (en) | 2016-09-30 | 2019-11-26 | 上海微电子装备(集团)股份有限公司 | A kind of optical measuring device and method |
-
2002
- 2002-03-07 JP JP2002062303A patent/JP3984841B2/en not_active Expired - Fee Related
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
WO2007049603A1 (en) * | 2005-10-24 | 2007-05-03 | Nikon Corporation | Stage apparatus, coordinate correction method for the stage apparatus, exposure apparatus, and device production method |
US8681314B2 (en) | 2005-10-24 | 2014-03-25 | Nikon Corporation | Stage device and coordinate correction method for the same, exposure apparatus, and device manufacturing method |
JP5040657B2 (en) * | 2005-10-24 | 2012-10-03 | 株式会社ニコン | Exposure apparatus, exposure method, device manufacturing method, and device assembly method |
JP2008258613A (en) * | 2007-04-05 | 2008-10-23 | Asml Netherlands Bv | Lithographic device and method of manufacturing the same |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
WO2010005081A1 (en) * | 2008-07-10 | 2010-01-14 | 株式会社ニコン | Deformation measuring apparatus, exposure apparatus, jig for deformation measuring apparatus, position measuring method and device manufacturing method |
KR101393593B1 (en) | 2012-06-15 | 2014-05-27 | (주)미래컴퍼니 | Strain gauge sensor, strain gauge sensor structure and manufacturing method thereof |
KR101383041B1 (en) * | 2012-06-15 | 2014-04-17 | 전자부품연구원 | Board type strain gauge sensor and board body thereof |
WO2020129953A1 (en) * | 2018-12-17 | 2020-06-25 | アルプスアルパイン株式会社 | Composite piezoelectric element, tire condition measuring device, tire sensor module, tire sensor device, and piezoelectric sensor |
CN113167565A (en) * | 2018-12-17 | 2021-07-23 | 阿尔卑斯阿尔派株式会社 | Composite piezoelectric element, tire condition measurement device, tire sensor module, tire sensor device, and piezoelectric sensor |
JPWO2020129953A1 (en) * | 2018-12-17 | 2021-10-14 | アルプスアルパイン株式会社 | Composite piezoelectric element, tire condition measuring device, tire sensor module, tire sensor device, and piezoelectric sensor |
JP2022159314A (en) * | 2018-12-17 | 2022-10-17 | アルプスアルパイン株式会社 | Tire sensor module, and tire sensor device |
JP7366203B2 (en) | 2018-12-17 | 2023-10-20 | アルプスアルパイン株式会社 | Tire sensor module and tire sensor device |
Also Published As
Publication number | Publication date |
---|---|
JP3984841B2 (en) | 2007-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1652003B1 (en) | Wafer table for immersion lithography | |
US7443619B2 (en) | Optical element holding apparatus, exposure apparatus and device manufacturing method | |
JP3634483B2 (en) | Stage apparatus, and exposure apparatus and device production method using the same | |
KR100383699B1 (en) | Stage apparatus, exposure apparatus, and device production method | |
JP3984841B2 (en) | Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method | |
JP2003256050A (en) | Vibration controller, vibration controlling method, exposure system and manufacturing method of device | |
US7133115B2 (en) | Positioning device, exposure apparatus using the positioning device, and device production method | |
CN105493237B (en) | Movable body apparatus, exposure apparatus, and device manufacturing method | |
JP3679767B2 (en) | Stage positioning apparatus, control method therefor, exposure apparatus, and semiconductor device manufacturing method | |
JP4386293B2 (en) | Vibration control apparatus, vibration control method, exposure apparatus, and device manufacturing method | |
US20060209283A1 (en) | Exposure apparatus and exposure method | |
US20050231141A1 (en) | Moving apparatus, exposure apparatus, and device manufacturing method | |
JP2003280744A (en) | Vibration control device and method, exposure device having the same device and manufacturing method of semiconductor device | |
US20070115451A1 (en) | Lithographic System with Separated Isolation Structures | |
JP2004111653A (en) | Positioning device, exposure device applying the locating device thereto and manufacturing method of semiconductor device | |
JP4011919B2 (en) | Moving apparatus, exposure apparatus, and semiconductor device manufacturing method | |
JPH11297613A (en) | Stage equipment, aligner using the equipment, and device-manufacturing method | |
JP2003324056A (en) | Vibration suppression device, control method therefor, aligner and method of manufacturing semiconductor device | |
JP2000223411A (en) | Positioner and aligner, and device manufacture | |
JPH09306815A (en) | Aligner and device producing method utilizing thereof | |
JP2000353736A (en) | Stage device, aligner using the same and device manufacturing method | |
JPH11297795A (en) | Stage device aligner using the same, and device manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070409 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070709 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3984841 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130713 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |