[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003260343A - Method for preparing emulsifying dispersion - Google Patents

Method for preparing emulsifying dispersion

Info

Publication number
JP2003260343A
JP2003260343A JP2002064046A JP2002064046A JP2003260343A JP 2003260343 A JP2003260343 A JP 2003260343A JP 2002064046 A JP2002064046 A JP 2002064046A JP 2002064046 A JP2002064046 A JP 2002064046A JP 2003260343 A JP2003260343 A JP 2003260343A
Authority
JP
Japan
Prior art keywords
dispersion
liquid
flow
plate
emulsifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002064046A
Other languages
Japanese (ja)
Other versions
JP4335493B2 (en
Inventor
Kenji Asakawa
賢司 浅川
Kenji Kubo
建二 久保
Katsutoshi Shoji
克利 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIHEI KIKO KK
Fujikin Inc
Original Assignee
TAIHEI KIKO KK
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIHEI KIKO KK, Fujikin Inc filed Critical TAIHEI KIKO KK
Priority to JP2002064046A priority Critical patent/JP4335493B2/en
Publication of JP2003260343A publication Critical patent/JP2003260343A/en
Application granted granted Critical
Publication of JP4335493B2 publication Critical patent/JP4335493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Accessories For Mixers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently prepare a uniform emulsifying liquid of a fine grain size and high concentration in a simplified process step in preparing an emulsifying dispersion and to enable a continuous large volume treatment. <P>SOLUTION: A flow-through tube type tubular emulsifying apparatus 1 formed by disposing one or more sets of static type emulsifying dispersion elements 3 combined with two plate bodies 3a and 3b drilled with a plurality of pores 4a and 4b into flow-through tubes 2 respectively in their thickness direction in such a manner that the area rate of the segments superposed with the bores 4a of the one plate body 3a on the bores 4b of the other plate body 3b attains ≤90% is used. A dispersion, dispersion medium and surfactant are supplied to the flow-through tube type tubular emulsifying apparatus and these fluids are passed at a high velocity through the bores 4a and 4b of the static type emulsifying dispersion elements 3, by which particulates are dispersed into the dispersion medium. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、分散液が分散媒中
に微粒子状に分散した乳化分散液の製造方法に関し、さ
らに詳しくは単分散のシャープな粒度分布を有する微粒
子状に分散した均一な乳化分散液を製造する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an emulsified dispersion liquid in which a dispersion liquid is dispersed in a dispersion medium in the form of fine particles, and more specifically, it is a uniform dispersion of fine particles having a monodisperse sharp particle size distribution. The present invention relates to a method for producing an emulsion dispersion.

【0002】[0002]

【従来の技術】従来の乳化方法はバッチ式で行われるの
が一般的であり、分散液と分散媒および界面活性剤を高
速撹拌機(ディゾルバー)、ホモジナイザー、ホモミク
サー等の撹拌乳化混合機へ供給し分散滴を粉砕、衝突、
せん断作用等を利用し微細化し、界面活性剤によりそれ
らの微粒子を安定化させて安定な乳化液を得ている。ま
た近年では、バッチ式に代わって、流体を連続的に供給
しながら乳化処理する連続式乳化装置も開発されてい
る。
2. Description of the Related Art Conventional emulsification methods are generally carried out in a batch system, in which a dispersion liquid, a dispersion medium and a surfactant are supplied to a stirring emulsifying mixer such as a high speed stirrer (dissolver), a homogenizer or a homomixer. Crush the dispersed droplets, collide,
A stable emulsion is obtained by micronizing using shearing action and stabilizing those fine particles with a surfactant. Further, in recent years, instead of the batch type, a continuous type emulsification device for performing an emulsification treatment while continuously supplying a fluid has been developed.

【0003】バッチ式乳化装置の一例として、特開平6
−182175号公報には、水平方向に回転可能に配置
された乳化用撹拌翼とその上部に設置された液滴を解砕
する解砕翼を備えた乳化装置により、始めに非水系物質
を加え、撹拌しながらその後水系媒体を加えて水中油滴
型の乳化液を作製する方法が開示されている。
As an example of a batch type emulsifying apparatus, Japanese Patent Application Laid-Open No. 6-58200
In Japanese Patent Laid-Open No. 182175, a non-aqueous substance is first added and stirred by an emulsifying device equipped with an emulsifying stirring blade rotatably arranged in a horizontal direction and a disintegrating blade installed above the emulsifying stirring blade. However, a method for producing an oil-in-water emulsion by adding an aqueous medium thereafter is disclosed.

【0004】また、特開平11−57437号公報に
は、内部に高速で回転する撹拌羽根を備えたライン乳化
装置を通じて水相を循環し、油相をライン乳化装置手前
に連続的に供給する事により転相を伴わない乳化液の製
造方法が開示されている。
Further, in Japanese Patent Laid-Open No. 11-57437, an aqueous phase is circulated through a line emulsifier equipped with a stirring blade which rotates at a high speed, and an oil phase is continuously supplied in front of the line emulsifier. Discloses a method for producing an emulsion without phase inversion.

【0005】一方連続式乳化装置の一例として、特許第
2515983号公報に、穿設孔を有する1枚の板より
なるオリフィスミキサーを用いて液状サイズ剤を乳化装
置が開示されている。
On the other hand, as an example of a continuous emulsifying device, Japanese Patent No. 2515983 discloses an emulsifying device for a liquid sizing agent using an orifice mixer composed of a single plate having a hole.

【0006】また、実開平6−24732号公報には、
右捻りエレメントと左捻りエレメントを軸方向に交互に
かつ隣接するエレメントの端部を交叉させて配列した静
止型混合器を用いてエマルジョン型サイズ剤を製造する
乳化装置が開示されている。
Further, Japanese Utility Model Laid-Open No. 6-24732 discloses that
Disclosed is an emulsifying apparatus for producing an emulsion-type sizing agent using a static mixer in which right-handed twisting elements and left-handed twisting elements are arranged alternately in the axial direction and the ends of adjacent elements are arranged to intersect.

【0007】さらに、その他連続式乳化装置としては、
マントンゴーリン社のコロイドミル、マイクロフルイデ
ックス社製のマイクロフルイダイザー等がある。
Further, as another continuous emulsifying apparatus,
There are colloid mills manufactured by Manton Gorin Co., Microfluidizers manufactured by Microfluidex Co., and the like.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た従来の乳化装置または乳化方法にはいずれも次のよう
な問題点があった。
However, the above-mentioned conventional emulsifying apparatus or method has the following problems.

【0009】特開平6−182175号公報に記載され
た方法では、平均粒子径が約1μmの微粒子状に分散し
た水中油滴型の乳化液を作製することは可能であるが、
乳化室の底面並びに側面との間隔をできる限り狭くした
乳化撹拌羽根を用いることが必要であり、大量処理が可
能な大型の装置を製造することは困難である。さらに本
装置による微粒子状に分散した乳化液の調整に際して
は、始めに非水系物質を加え、撹拌しながらその後徐々
に水系媒体を加えて水中油滴型の乳化液を作製するとい
う転相乳化法が必要である。この方法ではバッチ方式が
必須となると共に途中添加物の供給速度が制限されるた
め1バッチの調合に長時間を要するため生産性が劣ると
いう欠点がある。またさらに転相時には液粘度が急激に
上昇するため高トルク型の撹拌装置が必要であり装置が
高価となる欠点を有する。その上、バッチ式転相乳化法
における最大の問題は常に粒度分布が同じ微粒子状に分
散した乳化液を調整することが難しい点にあり、品質の
安定した乳化液の製造が困難である。
According to the method described in JP-A-6-182175, it is possible to prepare an oil-in-water type emulsion in which fine particles having an average particle size of about 1 μm are dispersed.
It is necessary to use an emulsifying stirring blade whose space between the bottom surface and the side surface of the emulsification chamber is as narrow as possible, and it is difficult to manufacture a large-scale apparatus capable of mass processing. Furthermore, when preparing an emulsion liquid dispersed in the form of fine particles with this device, a non-aqueous substance is added first, and then the aqueous medium is gradually added with stirring to prepare an oil-in-water type emulsion liquid. is necessary. In this method, a batch method is indispensable, and since the supply rate of the additive on the way is limited, it takes a long time to prepare one batch, and there is a drawback that productivity is deteriorated. In addition, since the liquid viscosity rapidly increases during phase inversion, a high-torque stirring device is required and the device becomes expensive. In addition, the biggest problem in the batch-type phase inversion emulsification method is that it is difficult to always prepare an emulsion having fine particles having the same particle size distribution, and it is difficult to produce an emulsion having stable quality.

【0010】特開平11−57437号公報に記載され
た技術は、ライン乳化装置が機械回転式であり、故障頻
度が高く信頼性に欠けるという欠点を有している。ライ
ン乳化装置を用いてはいるが、乳化処理はバッチ式であ
り生産性に劣る欠点を有している。
The technique described in Japanese Patent Application Laid-Open No. 11-57437 has a drawback that the line emulsification device is a mechanical rotary type, has a high failure frequency, and lacks reliability. Although a line emulsification device is used, the emulsification process is a batch type and has the drawback of poor productivity.

【0011】特許第2515983号公報に記載された
装置では、穿設孔を有する1枚の板よりなるオリフィス
ミキサーは広く生産現場において使用されているが、高
濃度の微分散化した乳化液の作製は困難である。
In the apparatus described in Japanese Patent No. 2515983, an orifice mixer consisting of a single plate having perforations is widely used in production sites, but a highly concentrated finely dispersed emulsion is prepared. It is difficult.

【0012】また、実開平6−24732号公報に記載
された位置変更型の静止型混合器では、高濃度の微分散
化した乳化液の作製は困難である。
Further, with the position-changing static mixer described in Japanese Utility Model Publication No. 6-24732, it is difficult to prepare a high-concentration finely dispersed emulsion.

【0013】さらに、その他の連続式乳化装置は、微粒
子化分散の効果はあるが、一般に500〜10,000
kg/cm2といった超高圧力が必要となるため装置が高価と
なる。しかしその割に能力が少なく経済性に劣る欠点を
有する。また貫通孔が極めて細いため運転途中で詰まる
等のトラブルが発生し易く、極めて限定された対象に対
してのみ使用されており、連続して大量処理する乳化分
散液の製造には適していない。
Further, other continuous emulsifying apparatuses generally have an effect of finely dispersing, but generally 500 to 10,000.
The equipment is expensive because ultra high pressure such as kg / cm 2 is required. However, it has a drawback that it is less economical and inferior in economic efficiency. Further, since the through-holes are extremely thin, problems such as clogging during operation are likely to occur, and they are used only for very limited objects, and are not suitable for the production of emulsion dispersion liquids for continuous large-scale processing.

【0014】この発明は、上述した技術背景に鑑み、簡
略化された工程で粒径が微細で高濃度の均一な乳化液を
効率良く製造し、かつ大量連続処理が可能となる乳化分
散液の製造方法の提供を目的とする。
In view of the above-mentioned technical background, the present invention provides an emulsion dispersion which can efficiently produce a uniform emulsion having a fine particle size and a high concentration in a simplified process, and which enables large-scale continuous processing. The purpose is to provide a manufacturing method.

【0015】[0015]

【課題を解決するための手段】この発明の乳化分散液の
製造方法は、前記目的を達成するために、流通管内部
に、それぞれ板厚方向に複数の孔部が穿設された2枚の
板体を、一方の板体の孔部が他方の板体の孔部と重なる
部分の面積率が90%以下となるように組み合わせた静
止型乳化分散エレメントが、1組以上配設されてなる流
通管式管型乳化装置を用い、前記流通管式管型乳化装置
に、乳化粒子相となる分散液、連続相となる分散媒およ
び界面活性剤を供給し、これらの流体を前記静止型乳化
分散エレメントの孔部を高速で流通させることを基本要
旨とする。
In order to achieve the above object, the method for producing an emulsified dispersion of the present invention comprises two sheets, each having a plurality of holes formed in the plate thickness direction inside the flow pipe. One or more sets of static emulsifying and dispersing elements in which plate members are combined so that the area ratio of the portion where the holes of one plate overlap the holes of the other plate are 90% or less are provided. Using a flow tube type tube emulsifying device, the flow tube type tube emulsifying device is supplied with a dispersion liquid as an emulsified particle phase, a dispersion medium as a continuous phase, and a surfactant, and these fluids are subjected to the static emulsification. The basic idea is to circulate the holes of the dispersion element at high speed.

【0016】この発明において、前記板体の孔部は、断
面形状が円形であるとともに、板厚方向の中間部に縮径
部が形成されたテーパー状となされていることが好まし
い。
In the present invention, it is preferable that the hole of the plate has a circular cross section and a tapered shape with a reduced diameter portion formed at an intermediate portion in the plate thickness direction.

【0017】前記流体を、前記孔部の最小断面積部にお
いて5m/秒以上の速度で通過させることが好ましい。
It is preferable that the fluid is passed through the minimum cross-sectional area of the hole at a speed of 5 m / sec or more.

【0018】前記2枚の板体は、板厚方向に所定距離を
隔てて組み合わされているか、あるいは板厚方向に接触
状態に組み合わされている。
The two plate bodies are combined at a predetermined distance in the plate thickness direction, or are combined in a contact state in the plate thickness direction.

【0019】また、この発明において、前記分散液が液
状非水系物質であり、前記分散媒が液状水系物質であ
り、かつ前記界面活性剤が非イオン界面活性剤および陰
イオン界面活性剤のうちの1種以上である。あるいは、
前記分散液が液状水系物質であり、前記分散媒が液状非
水系物質であり、かつ前記界面活性剤が非イオン界面活
性剤および陰イオン界面活性剤のうちの1種以上であ
る。
In the present invention, the dispersion liquid is a liquid non-aqueous substance, the dispersion medium is a liquid aqueous substance, and the surfactant is one of a nonionic surfactant and an anionic surfactant. One or more. Alternatively,
The dispersion liquid is a liquid water-based substance, the dispersion medium is a liquid non-aqueous substance, and the surfactant is one or more of a nonionic surfactant and an anionic surfactant.

【0020】前記分散媒の容量が分散液の容量以上であ
ることが好ましい。
It is preferable that the capacity of the dispersion medium is equal to or larger than the capacity of the dispersion liquid.

【0021】さらに、分散液、分散媒および界面活性剤
の少なくとも一つを大気圧下の沸点を超える温度に加熱
し、前記流通管式管型乳化装置に供給することが好まし
い。
Further, it is preferable that at least one of the dispersion liquid, the dispersion medium and the surfactant is heated to a temperature exceeding the boiling point under atmospheric pressure and supplied to the flow pipe type tube type emulsification device.

【0022】さらにまた、前記通流管式管型乳化装置を
通過した流体を再度通流管式管型乳化装置に供給するこ
ともできる。
Furthermore, the fluid that has passed through the flow-through pipe type tube emulsifying device can be supplied again to the flow-through pipe type tube emulsifying device.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施形態につい
て、図1〜図3を参照つつ詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to FIGS.

【0024】図1に示すように、本発明に用いる流通管
式管型乳化装置(1)は、流通管(2)内部に流れを遮る方向
に静止型乳化分散エレメント(3)を配設したものであ
り、この乳化装置(1)を用いて連続的に乳化分散処理を
行う。
As shown in FIG. 1, a flow tube type tube-type emulsifying apparatus (1) used in the present invention has a stationary type emulsifying and dispersing element (3) disposed inside the flow tube (2) in a direction of blocking the flow. The emulsification device (1) is used to continuously perform emulsification and dispersion treatment.

【0025】前記静止型乳化分散エレメント(3)は、そ
れぞれ板厚方向に複数の孔部(4a)(4b)が穿設された2枚
の板体(3a)(3b)により構成され、一方の板体(3a)の孔部
(4a)が他方の板体(3b)の孔部(4b)と重なる部分の面積率
が90%以下となるように組み合わされている。即ち、
2枚の板体(3a)(3b)は孔部(4a)(4b)の位置や大きさが完
全に一致するのではなく、一方の板体の孔部の開口部の
一部を他方の板体の表面が塞ぐように組み合わされてい
る。図1において、(5)は分散液、分散媒、界面活性剤
を流通管式管型乳化装置(1)に導入するための供給路で
あり、(6)は流通管式管型乳化装置(1)で処理された乳化
分散液を送出するための送出路である。
The stationary emulsifying and dispersing element (3) is composed of two plate bodies (3a) (3b) each having a plurality of holes (4a) (4b) formed in the plate thickness direction. Hole in plate (3a)
(4a) is combined so that the area ratio of the portion of the other plate (3b) overlapping the hole (4b) is 90% or less. That is,
The positions and sizes of the holes (4a) and (4b) of the two plates (3a) and (3b) do not exactly match, but a part of the opening of the hole of one plate does not match the other. It is assembled so that the surface of the plate is closed. In FIG. 1, (5) is a supply passage for introducing the dispersion liquid, the dispersion medium, and the surfactant into the flow pipe type tube emulsification device (1), and (6) is the flow pipe type pipe emulsification device ( This is a delivery path for delivering the emulsion dispersion treated in 1).

【0026】この発明において、2枚の板体(3a)(3b)の
孔部(4a)(4b)の重なる部分とは、上流側の板体(3a)の孔
部(4a)の出側開口部が下流側の板体(3b)の孔部(4b)の入
側開口部と重なる部分と定義し、開口面積に対する重な
る部分の面積の占める割合を%で表す。以下、「重なり
面積率」と省略して称する。なお、2枚の板体(3a)(3b)
は、組合せ状態において接触していることも距離(l)
を隔てていることもあるので、「重なる」とは接触状態
のみを示すのではなく、同一平面上に投影したときに重
なる状態をも示している。
In the present invention, the overlapping portion of the hole portions (4a) and (4b) of the two plate bodies (3a) and (3b) means the exit side of the hole portion (4a) of the upstream plate body (3a). The opening is defined as a portion that overlaps the inlet opening of the hole (4b) of the plate (3b) on the downstream side, and the ratio of the area of the overlapping portion to the opening area is represented by%. Hereinafter, it is abbreviated as "overlap area ratio". Two plates (3a) (3b)
Are also in contact with each other in the combined state (l)
Since they may be separated from each other, "overlapping" does not indicate only the contact state, but also indicates the overlapping state when projected on the same plane.

【0027】このような静止型乳化分散エレメント(3)
に分散液、分散媒および界面活性剤を高速度で供給する
と、これらの流体(F)は、上流側の板体(3a)におい
て、板面へ衝突するとともに、孔部(4a)(4a)…で分流さ
れる。そして、上流側孔部(4a)と下流側孔部(4b)との位
置のずれによって、流れが乱されながら下流側孔部(4b)
に分流される。下流側の板体(3b)においても衝突、分流
し、その後流体は集合する。このとき、2枚の板体(3a)
(3b)に適切に穿設された孔部(4a)(4b)と板面との作用に
より発生する液衝突に伴う液滴破壊力と、2枚の板体(3
a)(3b)のそれぞれの孔部(4a)(4b)を高速度で流体が通過
する際生じる噴流によるキャビテーション作用と、孔部
(3a)(3b)で分流される際の強いせん断力とによる分散力
および攪拌力により、連続的な乳化分散処理がなされ
る。さらに、2枚の板体(3a)(3b)が距離(l)を隔てて
組み合わされる場合は、2枚の板体(3a)(3b)間の狭い隙
間を高速度で流れる事により強いせん断力が生じて、一
層強力な分散力および攪拌力が作用する。
Such a static emulsifying and dispersing element (3)
When the dispersion liquid, the dispersion medium, and the surfactant are supplied to the plate at a high speed, these fluids (F) collide with the plate surface in the plate body (3a) on the upstream side and the holes (4a) (4a) It is divided by. Then, due to the positional deviation between the upstream side hole (4a) and the downstream side hole (4b), the flow is disturbed and the downstream side hole (4b)
Shunted to. The plate body (3b) on the downstream side also collides and splits, and then the fluid collects. At this time, two plates (3a)
The droplet breaking force due to the liquid collision generated by the action of the hole portions (4a) and (4b) appropriately formed in (3b) and the plate surface, and the two plate bodies (3
a) Cavitation action due to the jet flow generated when the fluid passes through each hole (4a) (4b) of (3b) at high speed, and the hole
(3a) The continuous emulsification and dispersion treatment is carried out by the dispersing force and the stirring force due to the strong shearing force when the flow is divided in (3b). Furthermore, when two plates (3a) (3b) are combined with a distance (l) between them, strong shear due to flowing at a high speed in a narrow gap between the two plates (3a) (3b). Forces are generated and stronger dispersive and stirring forces act.

【0028】2枚の板体(3a)(3b)の重なり面積率を90
%以下とするのは、上流側の板体(3a)の孔部(4a)を通過
した流体(F)を下流側の板体(3b)の表面に確実に衝突
させて液滴破壊力を発生させるとともに、流れを複雑化
することにより分散効果を高めるためである。上流側の
孔部(4a)と下流側の孔部(4b)が完全に一致していると、
その分散効果は大幅に低下する。特に好ましい重なり面
積率は80%以下である。また、両孔部が全く重ならな
い重なり面積率が0%の場合も本発明に含まれる。
The overlapping area ratio of the two plates (3a) and (3b) is set to 90.
% Or less means that the fluid (F) that has passed through the hole (4a) of the plate (3a) on the upstream side surely collides with the surface of the plate (3b) on the downstream side to reduce the droplet breaking force. This is because the dispersion effect is enhanced by generating the flow and complicating the flow. If the upstream hole (4a) and the downstream hole (4b) are completely aligned,
Its dispersion effect is greatly reduced. A particularly preferable overlapping area ratio is 80% or less. The present invention also includes a case where the overlapping area ratio in which both holes do not overlap at all is 0%.

【0029】前記板体(3a)(3b)の外周形状については特
に制限はないが、均質な流れを得るために、厚みが一定
で、表面が平滑な流通管(2)の形状に一致した形状のも
のが望ましい。流通管(2)として円形直管を使用する場
合は、円形の形状の板体を使用することが望ましい。ま
た、板体(3a)(3b)の厚さについては乳化分散器としての
機械強度を保持するに十分な厚さ以上であれば特に制限
はないが、通常1mm以上20mm以下の厚さの板を使
用する事が望ましい。1mm未満では孔部(4a)(4b)を設
けた場合、機械強度が不足する危険性があり、20mm
を超えると過大な装置重量のため装置費が高価となる。
The outer peripheral shape of the plate bodies (3a), (3b) is not particularly limited, but in order to obtain a uniform flow, it has a uniform thickness and has a smooth surface and conforms to the shape of the flow pipe (2). A shape is desirable. When a circular straight pipe is used as the flow pipe (2), it is desirable to use a circular plate. Further, the thickness of the plate (3a) (3b) is not particularly limited as long as it is at least a thickness sufficient to maintain the mechanical strength of the emulsifying disperser, but usually a plate having a thickness of 1 mm or more and 20 mm or less It is preferable to use. If it is less than 1 mm, the holes (4a) and (4b) may have insufficient mechanical strength.
If it exceeds, the equipment cost becomes high due to the excessive weight of the equipment.

【0030】また前記孔部についても、立体的な形状等
に特に制限はなく適宜用いることができる。図2および
図3に、2枚の板体を組み合わせた静止型乳化分散エレ
メントを例示する。
There are no particular restrictions on the three-dimensional shape or the like of the holes, and they can be appropriately used. 2 and 3 illustrate a static emulsifying and dispersing element in which two plates are combined.

【0031】図2(A)(B)(C)に示すように、静
止型乳化分散エレメント(10)は、前記流通管(2)の内径
(D)に対応する直径(D)の2枚の円形板体(10a)(10
b)を組み合わせたものである。一方の板体(10a)は、中
心から均等位置に断面形状円形の4個の孔部(11a)…が
板体の表面に対して直角に穿設されている。前記孔部(1
1a)は、いずれも板体(10a)の板厚方向で孔径(d1)が
一定の同一形状であって、孔間隔(X1)で形成されて
いる。他方の板体(10b)は、一方の板体(10a)とは、孔部
(11b)が中心から45°回転した位置に穿設されている
ことのみが異なる。従って、図2(C)に示すように、
これら2枚の板体(10a)(10b)を重ねるように組み合わせ
ると、両方の孔部(11a)(11b)は位置がずれているために
全く重ならない。即ち、前記孔部(11a)の重なり面積率
は0%である。
As shown in FIGS. 2 (A), (B) and (C), the static emulsifying and dispersing element (10) has two diameters (D) corresponding to the inner diameter (D) of the flow pipe (2). Round plate (10a) (10
It is a combination of b). On one plate (10a), four holes (11a) having a circular cross section are formed at equal positions from the center at right angles to the surface of the plate. The hole (1
1a) have the same shape in which the hole diameter (d1) is constant in the plate thickness direction of the plate body (10a), and are formed with a hole interval (X1). The other plate (10b) and the one plate (10a) are holes.
The only difference is that (11b) is provided at a position rotated by 45 ° from the center. Therefore, as shown in FIG.
When these two plate bodies (10a) and (10b) are combined so as to overlap each other, both hole portions (11a) and (11b) do not overlap at all because of their misaligned positions. That is, the overlapping area ratio of the holes (11a) is 0%.

【0032】また、図3(A)(B)(C)に示す静止
型乳化分散エレメント(20)は、2枚の円形板体(20a)(20
b)に穿設された孔部の形状と位置が、先の静止型乳化分
散エレメント(10)と異なる。
The static emulsifying and dispersing element (20) shown in FIGS. 3 (A), (B) and (C) has two circular plate members (20a) (20).
The shape and the position of the hole formed in b) are different from those of the static emulsifying and dispersing element (10).

【0033】即ち、一方の板体(20a)には、中心に1個
の孔部(21a)と、この孔部(21a)の周囲の均等位置に外接
する4個の孔部(21a')との合計5個の孔部が穿設されて
いる。他方の板体(20b)には、中心の周囲均等位置に互
いに外接する4個の孔部(21b)が穿設されている。従っ
て、孔間隔(X2)はいずれも開口直径(d3)に等し
い。
That is, one plate (20a) has one hole (21a) at the center and four holes (21a ') circumscribing evenly around the hole (21a). And a total of 5 holes are formed. The other plate (20b) is provided with four hole portions (21b) circumscribing each other at equal positions around the center. Therefore, the hole spacing (X2) is equal to the opening diameter (d3).

【0034】前記各孔部(21a)(21a')(21b)は、断面形状
が円形であり、板厚方向の中央に直径(d2)の縮径部
(22a)(22b)が形成されて、開口直径(d3)の開口部に
向かって径大となるテーパー状となされた、いわゆる杵
型構造の孔部である。前記孔部(21a)(21a')(22b)におい
て、入側および出側のテーパー部(符号なし)の板厚方
向の長さは等しく(y1)であり、縮径部(22a)(22b)の
板厚方向の長さは(y2)である。また、開口直径は入
側、出側ともに等しく(d3)である。
Each of the holes (21a) (21a ') (21b) has a circular cross-sectional shape, and a reduced diameter portion having a diameter (d2) at the center in the plate thickness direction.
The holes (22a) and (22b) are formed, and have a so-called punch-shaped structure, which is tapered so that the diameter increases toward the opening having the opening diameter (d3). In the hole portions (21a) (21a ') (22b), the lengths in the thickness direction of the taper portions (not denoted) on the inlet side and the outlet side are equal (y1), and the reduced diameter portions (22a) (22b). The length in the plate thickness direction of () is (y2). In addition, the opening diameter is the same on both the inlet side and the outlet side (d3).

【0035】そして、図3(C)に示すように、これら
2枚の板体(20a)(20b)を組み合わせると、それぞれの孔
部(21a)(21b)が孔部(21b)(21a)の中心で囲まれた正四角
形の重心点となるように互いに配置され、両方の孔部(2
1a)(21b)は部分的に重なる。これらの孔部(21a)(21a')
の重なり面積率は、中心に位置して下流側の4つの孔部
(21b)に対して重なり部分を有する孔部(21a)は72.8
%、2つの孔部(21b)に対して重なり部分を有する孔部
(21a')は36.4%である。なお、本実施形態では、中
央の孔部(21a')のみが重なり面積率が72.8%となっ
ている。しかし、同心円を描くように外側に孔部を適宜
増設していけば、板体の中央部に重なり面積率の等しい
孔部を数多く形成することができる。もとより、この発
明は孔部数を限定するものではない。
Then, as shown in FIG. 3C, when these two plate bodies (20a) (20b) are combined, the respective hole portions (21a) (21b) become hole portions (21b) (21a). They are arranged so as to be the center of gravity of a square surrounded by the center of
1a) and (21b) partially overlap. These holes (21a) (21a ')
The overlapping area ratio of the four holes on the downstream side is located in the center.
The hole (21a) having an overlapping portion with respect to (21b) is 72.8.
%, A hole having an overlapping portion with two holes (21b)
(21a ') is 36.4%. In this embodiment, only the central hole portion (21a ') overlaps, and the area ratio is 72.8%. However, if holes are appropriately added outside so as to draw concentric circles, it is possible to form a large number of holes having the same area ratio and overlapping with each other in the central portion of the plate body. Of course, the present invention does not limit the number of holes.

【0036】この発明は、孔部形状や孔部数を上記例に
限定するものではないが、分散効率および攪拌効率が優
れている点で、図3に示した杵型構造のものが好まし
い。即ち、杵型構造の孔部(21a)(21b)では流体が高速度
で流れる時、その構造により急激な縮小流れと拡大流れ
が与えられることにより、通常の衝突・せん断・噴流に
よる分散力に加え、さらにより激しい乱流による混合を
受けるため一層細かい微粒子分散体を得ることができ
る。さらにまた、穿設孔部の構造とその配置により圧力
損失を最小に抑えることができる。
Although the present invention is not limited to the shape of the holes and the number of holes in the above example, the punch-type structure shown in FIG. 3 is preferable in view of excellent dispersion efficiency and stirring efficiency. In other words, when the fluid flows at a high speed in the holes (21a) and (21b) of the punch type structure, the structure causes a rapid contraction flow and an expansion flow, which causes the normal dispersion force due to collision, shear, and jet flow. In addition, finer particle dispersions can be obtained due to the more violent turbulent mixing. Furthermore, the pressure loss can be minimized by the structure and arrangement of the drilled holes.

【0037】その他の孔部の形状としては、流通方向に
縮径されるテーパー形状、板厚方向に対して斜行する形
状等を例示できる。また、断面形状も円形、三角形、四
角形、多角形、星形、スリット状等いずれの形状であっ
ても可能である。但し、狭い粒度分布の微粒子分散体を
得るためには、円形または正多角形が望ましい。特に均
等な流れを得る事ができる円形が望ましい。さらに流路
断面全体にできる限り均等に配置した、同一寸法の複数
個の穿設孔部を設けることが望ましい。
Examples of the shape of the other holes include a tapered shape whose diameter is reduced in the flow direction and a shape which is inclined with respect to the plate thickness direction. Moreover, the cross-sectional shape may be any shape such as a circle, a triangle, a quadrangle, a polygon, a star, and a slit. However, in order to obtain a fine particle dispersion having a narrow particle size distribution, a circular or regular polygonal shape is desirable. A circular shape that can obtain a particularly uniform flow is desirable. Further, it is desirable to provide a plurality of perforation holes having the same size and arranged as evenly as possible over the entire cross section of the flow path.

【0038】また、前記孔部の寸法について穿設可能で
あれば特に制限はないが、狭い粒度分布の微粒子分散体
を得るためには、複数個の同一形状、同一寸法の孔部を
流れ断面に均等に穿設する事が望ましい。また、孔部に
おける最小断面積部の寸法が小さくなりすぎると、流体
の詰まりが生じるおそれがある。このような観点から、
例えば断面形状円形孔部の場合は直径が0.5mm以上
が望ましい。また、断面形状が三角形以上の多角形、あ
るいは星形、スリット状、その他の異形断面形状の孔部
の場合は、内部に直径0.5mm以上の円を形成できる
寸法であることが望ましい。なお、孔部の最大寸法につ
いては制限されない。
The size of the holes is not particularly limited as long as the holes can be formed, but in order to obtain a fine particle dispersion having a narrow particle size distribution, a plurality of holes having the same shape and the same size are flowed through a cross section. It is desirable to make the holes evenly. Further, if the size of the minimum cross-sectional area portion in the hole is too small, there is a possibility that fluid may be clogged. From this perspective,
For example, in the case of a circular hole having a sectional shape, the diameter is preferably 0.5 mm or more. Further, when the cross-sectional shape is a polygon having a triangular shape or more, or a hole having a star shape, a slit shape, or other irregular cross-sectional shape, it is desirable that the size is such that a circle having a diameter of 0.5 mm or more can be formed inside. The maximum size of the hole is not limited.

【0039】また上述したように、1組の2枚の板体(3
a)(3b)は、接触させて組み合わせることも、所定距離
(l)を隔てて組み合わせることもできる。後者の場
合、前記距離(l)は通常20mm以下であることが望
ましい。20mmを超えると各々の板体(3a)(3b)が独立
して作用するため2枚の板体(3a)(3b)間の流れにより生
じる液衝突に伴う液滴破壊力とせん断力による分散力を
十分に利用する事ができないため、狭い粒度分布の微粒
子分散体を得る事が出来ない。さらに2枚の板体(3a)(3
b)の間隔(l)は5mm以下であることが特に好まし
い。2枚の板体(3a)(3b)を設置する角度は流れを遮る事
ができる角度であれば特に制限はないが、通常板面が流
れに直角となる角度に設置することが望ましい。また2
枚の板体の角度は一致させる事が望ましい。
As described above, one set of two plate members (3
A) and (3b) can be combined in contact with each other or separated by a predetermined distance (l). In the latter case, it is desirable that the distance (l) is usually 20 mm or less. When the thickness exceeds 20 mm, each plate (3a) (3b) acts independently, so that the dispersion due to the droplet breaking force and the shearing force caused by the liquid collision caused by the flow between the two plates (3a) (3b) Since the force cannot be fully utilized, it is not possible to obtain a fine particle dispersion having a narrow particle size distribution. Two more plates (3a) (3
It is particularly preferable that the distance (l) in b) is 5 mm or less. The angle at which the two plates (3a) and (3b) are installed is not particularly limited as long as it can block the flow, but it is usually preferable that the plates are installed at an angle perpendicular to the flow. Again 2
It is desirable that the angles of the plates be the same.

【0040】前記流通管(2)の形状やサイズについて特
に制限はない。曲管でも直管でも使用できるが、通常直
管を使用する事が望ましい。管の断面形状は円形、四角
形、多角形のいずれでもよいが、均等な流れを得る事が
できる円形の断面構造が望ましく、内径5mm以上の円形
直管を使用することが望ましい。内径5mm未満では、均
等に孔部を配置することが困難であり、かつ孔部の面積
が少ないため処理能力が不十分である。
There is no particular limitation on the shape or size of the flow pipe (2). A curved pipe or a straight pipe can be used, but it is usually preferable to use a straight pipe. The cross-sectional shape of the pipe may be any of a circular shape, a quadrangular shape, and a polygonal shape, but a circular cross-sectional structure capable of obtaining a uniform flow is preferable, and it is preferable to use a circular straight pipe having an inner diameter of 5 mm or more. If the inner diameter is less than 5 mm, it is difficult to evenly arrange the holes and the area of the holes is small, resulting in insufficient processing capacity.

【0041】前記流通管(2)の寸法の変化に対して、孔
部(3a)(3b)の寸法を特に変更する必要はない。流通管
(2)の寸法が大きくなった場合でも、小スケール実験で
得られた最適条件の寸法、形状、配置の孔部(3a)(3b)を
使用することができる。従って、処理量を増加させたた
場合でも同一の粒度分布を有する微粒子分散体を得るこ
とができる。
It is not necessary to change the dimensions of the holes (3a) and (3b) with respect to the variation of the dimensions of the flow pipe (2). Distribution pipe
Even if the size of (2) becomes large, it is possible to use the holes (3a) (3b) of the optimum size, shape, and arrangement obtained in the small-scale experiment. Therefore, it is possible to obtain a fine particle dispersion having the same particle size distribution even when the treatment amount is increased.

【0042】また、前記流通管(2)および板体(3a)(3b)
の材質についても特に制限はない。各種鉄鋼材料やプラ
スチック材料やその他材料の中より、流体の化学的性
質、摩耗性、操作温度や圧力、製作コスト等を考慮して
選定することが望ましい。
Further, the flow pipe (2) and the plate bodies (3a) (3b)
There is no particular limitation on the material of the. It is desirable to select from various iron and steel materials, plastic materials and other materials in consideration of the chemical properties of fluid, wear resistance, operating temperature and pressure, production cost and the like.

【0043】前記流通管式管型乳化装置(1)において、
2組以上の静止型乳化分散エレメント(3)を使用する場
合は、各組間の間隔について特に制限はなく、接触させ
ても、隙間を設けても良い。また、複数の流通管式管型
乳化装置(1)を直列または並列に接続することも可能で
あるし、前記流通管式管型乳化装置(1)間にさらに混合
を主目的としたケニックス型等の混合方式の異なるの静
止型混合器を設置することも可能である。さらに、前記
通流管式管型乳化装置(1)を通過した流体を再度通流管
式管型乳化装置(1)に供給して、同じ装置で処理を重ね
ることも可能である。
In the flow pipe type tube type emulsification device (1),
When two or more sets of static emulsifying and dispersing elements (3) are used, there is no particular limitation on the interval between the sets, and they may be in contact with each other or may be provided with a gap. Further, it is also possible to connect a plurality of flow pipe type tube type emulsification device (1) in series or in parallel, the Kenix type for the purpose of further mixing between the flow pipe type pipe type emulsification device (1) It is also possible to install static mixers of different mixing methods such as. Furthermore, it is also possible to supply the fluid that has passed through the flow tube type tube emulsification device (1) again to the flow tube type tube emulsification device (1) and repeat the treatment with the same device.

【0044】この発明において、流体が孔部の最小断面
積部を通過する速度は5m/秒以上であることが望まし
い。さらに15m/秒以上であることが望ましい。本装
置は衝突・せん断・噴流による分散力を利用することに
より微粒子分散体を生成することが可能となるため、流
体を高速度で流すことが望ましい。従って、5m/秒未
満の流速では微粒子分散体を生成するに十分な乳化分散
力を得ることができない。一方、流速を上げるに従っ
て、より微細な乳化分散体を得ることができるが、10
0m/秒を超える流速になると過大な圧力損失が発生す
るため、100m/秒以下が好ましい。
In the present invention, the speed at which the fluid passes through the minimum cross-sectional area of the hole is preferably 5 m / sec or more. Further, it is desirable that the speed is 15 m / sec or more. Since this device can generate a fine particle dispersion by utilizing the dispersing force of collision, shear, and jet, it is desirable to flow the fluid at a high speed. Therefore, at a flow velocity of less than 5 m / sec, it is not possible to obtain a sufficient emulsifying / dispersing power to form a fine particle dispersion. On the other hand, as the flow rate is increased, a finer emulsified dispersion can be obtained.
When the flow velocity exceeds 0 m / sec, excessive pressure loss occurs, so 100 m / sec or less is preferable.

【0045】本発明に適用する液状非水系物質として
は、低粘度液状物、高粘度液状物、半固形物、ホットメ
ルト素材等、乳化に用いる液状水系物質に溶解しないも
のであればいずれの物質も用いることができる。例えば
炭化水素系油状物、炭化水素の変性物等の天然若しくは
合成オイル、大豆油等の植物油、スチレン、(メタ)ア
クリル酸エステル等のモノマー類、フタル酸エステル等
の可塑剤、フェノール類等の酸化防止剤、液状ゴム、液
状樹脂等およびそれらの混合物が挙げられるが、特にこ
れらに限定されるものではない。
As the liquid non-aqueous substance applicable to the present invention, any substance can be used as long as it is insoluble in a liquid aqueous substance used for emulsification, such as a low-viscosity liquid substance, a high-viscosity liquid substance, a semi-solid substance and a hot melt material. Can also be used. For example, hydrocarbon-based oils, natural or synthetic oils such as modified hydrocarbons, vegetable oils such as soybean oil, monomers such as styrene and (meth) acrylic acid ester, plasticizers such as phthalate ester, and phenols Examples thereof include antioxidants, liquid rubbers, liquid resins and the like, but are not particularly limited thereto.

【0046】これらの液状非水系物質の粘度について特
に制限はないが、乳化粒子相である分散液として使用さ
れる場合、安定な微粒子分散体を得るために、10,0
00mPa・s以下である事が望ましい。また連続相で
ある分散媒として使用される場合、5,000mPa・
s以下である事が望ましい。5,000mPa・s以上
では通常使用される運転圧力内で本静止型乳化分散エレ
メントに所望の流速で液を供給する事が困難となる。
The viscosity of these liquid non-aqueous substances is not particularly limited, but when used as a dispersion liquid which is an emulsified particle phase, in order to obtain a stable fine particle dispersion, 10,0
It is desirable that the pressure is 00 mPa · s or less. When used as a dispersion medium that is a continuous phase, 5,000 mPa ·
It is preferably s or less. If it is 5,000 mPa · s or more, it becomes difficult to supply the liquid at a desired flow rate to the static emulsifying and dispersing element within the operating pressure normally used.

【0047】一方、本発明に適用する液状水系物質とし
ては、工業用水、イオン交換水等の各種水および水を主
成分とする塩類、塩基類、無機酸類、有機酸類、アルコ
ール類等が溶解した水溶液等が挙げられる。乳化に用い
る液状非水系物質と相互に溶解しない水を主成分とする
液状物質であれば、いずれの物質も使用することができ
る。
On the other hand, as the liquid aqueous substance applied to the present invention, various kinds of water such as industrial water and ion-exchanged water, and salts containing water as a main component, bases, inorganic acids, organic acids, alcohols and the like are dissolved. An aqueous solution and the like can be mentioned. Any substance can be used as long as it is a liquid substance containing water as a main component which is insoluble in the liquid non-aqueous substance used for emulsification.

【0048】本発明に適用する界面活性剤のうち、非イ
オン界面活性剤としては、ポリオキシエチレンアルキル
エーテル類、ポリオキシエチレンアルキルフェノールエ
ーテル類、ポリオキシエチレンアルキルエステル類、ソ
ルビタンアルキルエステル類、ポリオキシエチレンソル
ビタンアルキルエステル類等およびそれらの混合物が挙
げられるが、特にこれらに限定されるものではない。ま
た、陰イオン界面活性剤としては、脂肪酸塩類、高級ア
ルコール硫酸エステル塩類、液体脂肪油硫酸エステル塩
類、脂肪族アミンおよび脂肪族アマイドの硫酸塩類、脂
肪アルコールリン酸エステル塩類、二塩基性脂肪族エス
テルのスルホン塩類、脂肪酸アミドスルホン酸塩類、ア
ルキルアリルスルホン酸塩類、ホルマリン縮合のナフタ
リンスルホン酸塩類等およびそれらの混合物が挙げられ
るが、特にこれらに限定されるものではない。
Among the surfactants applicable to the present invention, the nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, polyoxy. Examples thereof include ethylene sorbitan alkyl esters and the like, and mixtures thereof, but are not particularly limited thereto. Examples of the anionic surfactant include fatty acid salts, higher alcohol sulfate ester salts, liquid fatty oil sulfate ester salts, sulfate salts of aliphatic amines and aliphatic amides, fatty alcohol phosphate ester salts, dibasic aliphatic esters. Examples thereof include, but are not limited to, sulfonic acid salts, fatty acid amide sulfonic acid salts, alkylallyl sulfonic acid salts, formalin-condensed naphthalene sulfonic acid salts, and mixtures thereof.

【0049】さらに、複数種の界面活性剤の併用、非イ
オン界面活性剤および陰イオン界面活性剤の併用も可能
である。
Further, it is possible to use a combination of a plurality of kinds of surfactants and a combination of a nonionic surfactant and an anionic surfactant.

【0050】分散液が液状非水系物質であり、分散媒が
液状水系物質である場合、水中油滴型(O/W型)乳化
分散液の作製の場合は、界面活性剤として非イオン界面
活性剤および陰イオン界面活性剤うちの1種以上を使用
する。非イオン界面活性剤の場合は、特にHLB値が8
以上のものを使用する事が望ましい。反対に、分散液が
液状水系物質であり、分散媒が液状非水系物質である場
合、即ち油中水滴型(W/O型)乳化分散液の作製の場
合は、界面活性剤として非イオン界面活性剤および陰イ
オン界面活性剤うちの1種以上を使用する。非イオン界
面活性剤の場合は、HLB値が6以下のものを使用する
事が望ましい。また、何れの組合せの場合も、分散効率
が良い点で、前記分散媒の容量が分散液の容量以上であ
ることが好ましい。
When the dispersion is a liquid non-aqueous substance and the dispersion medium is a liquid aqueous substance, and when an oil-in-water type (O / W type) emulsion dispersion is prepared, a nonionic surfactant is used as a surfactant. One or more agents and anionic surfactants are used. In the case of nonionic surfactants, the HLB value is 8
It is desirable to use the above. On the contrary, when the dispersion is a liquid water-based substance and the dispersion medium is a liquid non-aqueous substance, that is, in the case of preparing a water-in-oil type (W / O type) emulsion dispersion, a nonionic surface active agent is used. At least one of an active agent and an anionic surfactant is used. In the case of a nonionic surfactant, it is desirable to use one having an HLB value of 6 or less. In addition, in any combination, the capacity of the dispersion medium is preferably equal to or larger than the capacity of the dispersion liquid in terms of good dispersion efficiency.

【0051】本乳化分散操作においては、分散媒、分散
液、および界面活性剤の混合方法について特に制限され
るものではない。例えば、分散媒中へ分散液と界面活性
剤を乳化分散させる方法、分散液と界面活性剤の混合液
中へ分散媒を徐徐に加えて転相乳化させる方法等各種の
乳化方法を使用する事ができる。
In this emulsification / dispersion operation, the method of mixing the dispersion medium, the dispersion liquid, and the surfactant is not particularly limited. For example, various emulsification methods such as a method of emulsifying and dispersing the dispersion liquid and the surfactant in the dispersion medium, a method of gradually adding the dispersion medium to the mixed liquid of the dispersion liquid and the surfactant and performing phase inversion emulsification are used. You can

【0052】さらに消泡剤、重合禁止剤、充填剤等乳化
操作に悪影響を及ぼさないものであれば、前記記載の液
状非水系物質、液状水系物質並びに界面活性剤に加え
て、必要に応じて適宜添加する事ができる。
In addition to the liquid non-aqueous substance, liquid aqueous substance and surfactant described above, if necessary, such as a defoaming agent, a polymerization inhibitor, and a filler, which do not adversely affect the emulsification operation, and if necessary, It can be added appropriately.

【0053】また、分散液、分散媒および界面活性剤の
少なくとも一つを大気圧下の沸点を超える温度に加熱し
た後、前記流通管式管型乳化装置に供給することが好ま
しく、分散効率を高めることができる。
Further, it is preferable to heat at least one of the dispersion liquid, the dispersion medium and the surfactant to a temperature above the boiling point under atmospheric pressure, and then to supply to the flow pipe type tube type emulsifying apparatus to improve the dispersion efficiency. Can be increased.

【0054】[0054]

【実施例】次に、本発明を実施例により詳細に説明す
る。各種の物性の測定は、下記の方法に従って行った。
また、部および%は特に記述がない場合は重量部および
重量%を意味する。 〔1〕体積平均粒子径(メディアン径)の測定;堀場製
作所製 粒度分布測定装置 LA−300で透過率85
〜95%、循環速度5,データ取り込み回数10回の条
件にて体積基準粒度分布を測定し、体積平均粒子径およ
び標準偏差を求めた。実施例中特に測定法について記述
がない場合は本測定法により求めた値を意味する。 〔2〕HLB値;メーカ記載の数値を使用した。 〔3〕粘度;B型粘度計による測定データによる。 (実施例1)図4に示す製造プロセス例−1の構成にお
いて、流通管式管型乳化装置として、図1に示す流通管
(2)の中部に、図3に示した杵型構造の孔部(21a)(21b)
が穿設された2枚の板体(20a)(20b)を組み合わせた静止
型乳化分散エレメント(20)を1組設置した。使用した各
装置の寸法は以下の通りである。
EXAMPLES Next, the present invention will be described in detail with reference to Examples. Various physical properties were measured according to the following methods.
Further, parts and% mean parts by weight and% by weight unless otherwise specified. [1] Measurement of volume average particle diameter (median diameter); transmittance of 85 with a particle size distribution measuring device LA-300 manufactured by Horiba Ltd.
The volume-based particle size distribution was measured under the conditions of ˜95%, circulation speed 5, and number of data acquisitions 10 times to determine the volume average particle diameter and standard deviation. Unless otherwise stated in the examples, the value obtained by this measuring method is meant. [2] HLB value: The numerical value described by the manufacturer was used. [3] Viscosity: Based on data measured by a B-type viscometer. (Embodiment 1) In the configuration of Manufacturing Process Example-1 shown in FIG. 4, a flow pipe shown in FIG.
In the middle of (2), the holes (21a) (21b) of the punch type structure shown in FIG.
One set of static emulsifying and dispersing element (20), which was a combination of two plate bodies (20a) and (20b) in which was drilled, was installed. The dimensions of each device used are as follows.

【0055】流通管(2)の長さ(L);150mm 流通管の内径(D);18mm 板体の間隔(l);0(接触状態) 孔部(21a)(21b)の縮径部(22a)(22b)の直径(d2);2
mm 孔部(21a)(21b)の開口直径(d3);6mm 板体(20a)(20b)の板厚(t2);5mm 孔間隔(X2);6mm 孔部(21a)(21b)のテーパー部の長さ(y1);2mm 縮径部(22a)(22b)の長さ(y2);1mm 孔部の最小断面積(縮径部(22a)(22b)の断面積);0.
126cm2 孔部の重なり面積率;72.8%(21a)、36.4%(21
a') 静止型乳化分散エレメント(20)の角度;流通方向に対し
て直角 タンクT1に分散媒として液状水系物質の25℃イオン
交換水17Lを投入し、タンクT2に分散液として液状
非水系物質の25℃白絞油(粘度 50mPa・s)1
0kgを投入した後、25℃の非イオン界面活性剤;ポ
リオキシエチレンソルビタンモノオレート(花王社製;
レオドールスーパTW−O120、HLB値;15)3
kgを加え、十分にかき混ぜ混合した。
Length of flow pipe (2) (L); 150 mm Inner diameter of flow pipe (D); 18 mm Space between plates (l); 0 (contact state) Reduced diameter of holes (21a) (21b) Diameter of (22a) (22b) (d2); 2
mm Opening diameter of hole (21a) (21b) (d3); 6mm Thickness of plate (20a) (20b) (t2); 5mm Hole interval (X2); 6mm Taper of hole (21a) (21b) Length (y1); 2 mm Length of reduced diameter portions (22a) (22b) (y2); 1 mm Minimum cross-sectional area of hole (cross-sectional area of reduced diameter portions (22a) (22b));
Overlapping area ratio of 126 cm 2 holes: 72.8% (21a), 36.4% (21
a ') Angle of the stationary emulsifying and dispersing element (20); perpendicular to the flow direction Into the tank T1, 17 L of 25 ° C. ion-exchanged water of a liquid water-based substance is charged as a dispersion medium, and in the tank T2 is a liquid non-aqueous substance as a dispersion liquid. 25 ℃ white squeezing oil (viscosity 50mPa · s) 1
After adding 0 kg, a nonionic surfactant at 25 ° C .; polyoxyethylene sorbitan monooleate (manufactured by Kao Corporation;
Leodol Super TW-O120, HLB value; 15) 3
kg was added and mixed well by stirring.

【0056】ポンプP1により7.9L/minの流量
でイオン交換水を上記乳化装置へ供給すると共にポンプ
P2により6.1L/minの流量で該白絞油と界面活
性剤混合液を同じく上記乳化装置へ供給し、O/W型乳
化分散液を作製した。この際の孔部の最小断面積部(縮
径部(22a)(22b))を通過する流速は18.5m/se
c,差圧は0.5MPaであった。
Ion-exchanged water is supplied to the emulsifying device at a flow rate of 7.9 L / min by the pump P1 and the white squeezing oil and the surfactant mixed solution are similarly emulsified at a flow rate of 6.1 L / min by the pump P2. It was supplied to the apparatus to prepare an O / W type emulsion dispersion liquid. At this time, the flow velocity passing through the minimum cross-sectional area portion (reduced diameter portions (22a) (22b)) of the hole is 18.5 m / se.
c, the differential pressure was 0.5 MPa.

【0057】作製した乳化分散液において、乳化分散粒
子の体積平均粒子径は4.1μm、標準偏差は3.1μ
mであった。 (実施例2)実施例1のポンプP1の供給流量を15.
8L/min,ポンプP2の供給流量を12.2L/min,に変
更し、その他は同一条件にて乳化分散液の作製を行っ
た。この時、孔部の最小断面積部における流速は37m
/sec、差圧は2MPaであった。
In the prepared emulsified dispersion, the emulsified dispersed particles had a volume average particle size of 4.1 μm and a standard deviation of 3.1 μm.
It was m. (Second Embodiment) The supply flow rate of the pump P1 of the first embodiment is set to 15.
8 L / min, the supply flow rate of the pump P2 was changed to 12.2 L / min, and the emulsified dispersion was prepared under the same conditions. At this time, the flow velocity in the minimum cross-sectional area of the hole is 37 m
/ Sec, the differential pressure was 2 MPa.

【0058】得られた乳化分散液の体積平均粒子径は
2.5μm、標準偏差は1.7μmであった。 (実施例3)実施例1のポンプP1の供給流量を31.
6L/min,ポンプP2の供給流量を24.4L/min,に変
更し、その他は同一条件にて乳化分散液の作製を行っ
た。この時、孔部の最小断面積部における流速は74m
/sec、差圧は6.5MPaであった。
The volume average particle diameter of the obtained emulsion dispersion was 2.5 μm and the standard deviation was 1.7 μm. (Third Embodiment) The supply flow rate of the pump P1 of the first embodiment is set to 31.
The emulsified dispersion liquid was prepared under the same conditions except that the supply flow rate of the pump P2 was changed to 6 L / min and 24.4 L / min. At this time, the flow velocity in the minimum cross-sectional area of the hole is 74 m
/ sec, the differential pressure was 6.5 MPa.

【0059】得られた乳化分散液の体積平均粒子径は
1.4μm、標準偏差は1.0μmであった。
The volume average particle diameter of the obtained emulsion dispersion was 1.4 μm, and the standard deviation was 1.0 μm.

【0060】最小断面積部における流速を上げることに
より、より微細な粒子を得ることができた。 (実施例4、5、6)実施例1の液状非水系物質の白絞
油に代え、25℃ヒマシ油(粘度700mPa・s)を
使用し、その他は実施例1、2、3各々と同一条件で乳
化分散液を作製した。各乳化分散液の体積平均粒子径お
よび標準偏差を表1に実施例1〜3の結果と併せ示す。
Finer particles could be obtained by increasing the flow velocity in the minimum cross-section area. (Examples 4, 5, and 6) Instead of the white squeezing oil of the liquid non-aqueous substance of Example 1, 25 ° C castor oil (viscosity 700 mPa · s) was used, and the others were the same as those of Examples 1, 2 and 3, respectively. An emulsion dispersion was prepared under the conditions. The volume average particle size and standard deviation of each emulsion dispersion are shown in Table 1 together with the results of Examples 1 to 3.

【0061】白絞油の場合と同じく最小断面積部におけ
る流速を上げるに従って粒子径は小さくなり、体積平均
粒子径が2μm以下の標準偏差が小さい、シャープな粒
度分布を示す安定な乳化分散液を得ることができた。 (実施例7)実施例1で使用した静止型分散エレメント
(20)に代え、図2に示した一定直径の孔部(11a)(11b)を
有する2枚の板体(10a)(10b)を組み合わせた静止型乳化
分散エレメント(10)を1組設置した。各部寸法は以下の
ごとくである。
As in the case of white squeezing oil, the particle size becomes smaller as the flow velocity in the minimum cross-section area is increased, and the standard deviation of the volume average particle size is 2 μm or less is small, and a stable emulsion dispersion having a sharp particle size distribution is obtained. I was able to get it. (Example 7) Static dispersive element used in Example 1
Instead of (20), one set of static emulsifying and dispersing element (10), which is a combination of two plate bodies (10a) and (10b) having holes (11a) and (11b) of constant diameter shown in FIG. did. The dimensions of each part are as follows.

【0062】孔間隔(x1);6mm 孔部(11a)(11b)の直径(d1);2mm 板体(10a)(10b)の板厚(t1);5mm 板体(10a)(10b)の間隔(l);2mm 静止型乳化分散エレメント(10)の角度;流通方向に対し
て直角 孔部(11a)の重なり面積率;0% その他は実施例1と同一の条件で乳化分散テストを実施
した。その際の最小断面積部における流速は18.5m
/sec、差圧は1MPaであった。得られた乳化分散
液の体積平均粒子径は5.2μm、標準偏差は4.3μ
mであった。 (実施例8)図5に示す製造プロセス例−2の構成にな
る設備を用いてテストを行った。流通管式乳化装置とし
て流通管(2)およびと静止型分散エレメント(20)は実施
例1と同一のものを使用した。
Hole spacing (x1); 6 mm Diameter of holes (11a) (11b) (d1); 2 mm Plate thickness (t1) of plates (10a) (10b); 5 mm Plates (10a) (10b) Interval (l); 2 mm Angle of static emulsifying and dispersing element (10); Overlapping area ratio of right-angled holes (11a) with respect to the flow direction; 0% Other than that, emulsifying and dispersing test was conducted under the same conditions as in Example 1. did. The flow velocity in the minimum cross-sectional area at that time is 18.5 m
/ Sec, the differential pressure was 1 MPa. The obtained emulsion dispersion has a volume average particle diameter of 5.2 μm and a standard deviation of 4.3 μm.
It was m. (Embodiment 8) A test was conducted using equipment having the configuration of Manufacturing Process Example-2 shown in FIG. As the flow pipe type emulsification device, the same flow pipe (2) and static dispersion element (20) as in Example 1 were used.

【0063】タンクT1へ分散媒として90℃イオン交
換水60Lを投入し、KOH300g加え、十分に混合
した。タンクT2へ分散液として120℃に加熱し溶解
させた、グッドイヤー社製ウイングステイL(WSL)
10kgを投入し、陰イオン界面活性剤であるオレイン
酸0.5kgを加え十分に混合した(粘度1,000m
Pa・s)。ポンプP1により9.2L/minの流量
で該イオン交換水を上記乳化装置へ供給すると共に、M
1スチームミキサーにより該イオン交換水を120℃ま
で加熱し、さらにC1冷却器にて90℃まで冷却した状
態で運転を継続し、その後ポンプP2により4.8L/
minの流量で120℃の該ウイングステイL(WS
L)−オレイン酸混合液を供給し、O/W型の乳化液を
作製した。最小断面積部における流速は18.5m/s
ec、差圧は0.5MPaであった。その結果、得られ
た乳化分散液の体積平均粒子径は1.8μm、標準偏差
は1.0μmであった。結果を表2へ記載する。
60 L of 90 ° C. ion-exchanged water was added to the tank T1 as a dispersion medium, 300 g of KOH was added, and they were sufficiently mixed. Wingstay L (WSL) manufactured by Goodyear Co., which was heated to 120 ° C. and dissolved in tank T2 as a dispersion liquid.
10 kg was added, and 0.5 kg of oleic acid as an anionic surfactant was added and mixed well (viscosity 1,000 m
Pa · s). The ion exchange water is supplied to the emulsifying device at a flow rate of 9.2 L / min by the pump P1, and M
The ion-exchanged water was heated to 120 ° C with 1 steam mixer, and the operation was continued while being cooled to 90 ° C with the C1 cooler, and then 4.8 L / with the pump P2.
The wing stay L (WS
The L) -oleic acid mixed solution was supplied to prepare an O / W type emulsion. The flow velocity in the minimum cross-section area is 18.5 m / s
ec, the differential pressure was 0.5 MPa. As a result, the volume average particle diameter of the obtained emulsion dispersion was 1.8 μm, and the standard deviation was 1.0 μm. The results are shown in Table 2.

【0064】非水系物質の融点が水系物質の大気圧下の
沸点100℃より高い場合においても、本乳化装置とス
チーム加熱器および冷却器を組み合わせることにより、
経済的に有利で、大量生産が可能な方法により乳化分散
液を作製する事ができた。 (実施例9)図6に示す製造プロセス例−3の構成にな
る設備を用いて、流通管式管型乳化装置として実施例1
と同一の流通管(2)と静止型分散エレメント(20)を使用
し、タンクT1,T2へは実施例1と同液種、同液量の
分散媒と分散液を投入した。
Even when the melting point of the non-aqueous substance is higher than the boiling point of the aqueous substance at 100 ° C. under atmospheric pressure, by combining the present emulsifying apparatus with the steam heater and cooler,
The emulsion dispersion could be prepared by a method that is economically advantageous and capable of mass production. (Embodiment 9) Using the equipment having the configuration of manufacturing process example 3 shown in FIG.
The same flow pipe (2) and static dispersion element (20) were used, and the same liquid type and the same amount of the dispersion medium and the dispersion liquid as in Example 1 were introduced into the tanks T1 and T2.

【0065】ポンプP1により該イオン交換水を31.
6L/minの流量で乳化装置を経由した後、T1へ戻
る循環運転を開始した。その後P2により該白絞油ー界
面活性剤混合液を24.4L/minの流量で乳化装置
へ供給し、乳化分散液の作製を開始した。タンクT2内
の分散液がなくなった時、P2を停止すると共にP1の
流量を56L/minへ増加し、さらに5分間T1→P
1→乳化装置→T1と循環運転を継続した後、P1を停
止し乳化分散操作を終了した。最小断面積部における流
速は74m/sec、差圧は6.5MPaであった。そ
の結果、得られた乳化分散液の体積平均粒子径は0.7
μm、標準偏差は0.24μmであった。結果を表2へ
記載する。
With the pump P1, the ion-exchanged water 31.
After passing through the emulsifier at a flow rate of 6 L / min, the circulation operation returning to T1 was started. After that, the white squeezing oil-surfactant mixed liquid was supplied to the emulsification device at a flow rate of 24.4 L / min by P2 to start preparation of the emulsified dispersion liquid. When the dispersion liquid in the tank T2 is exhausted, P2 is stopped, the flow rate of P1 is increased to 56 L / min, and T1 → P for another 5 minutes.
After continuing the circulation operation of 1 → emulsifier → T1, P1 was stopped and the emulsification / dispersion operation was completed. The flow velocity in the minimum cross-sectional area part was 74 m / sec, and the differential pressure was 6.5 MPa. As a result, the volume average particle diameter of the obtained emulsion dispersion was 0.7.
μm, and the standard deviation was 0.24 μm. The results are shown in Table 2.

【0066】繰り返し本乳化装置に通して乳化させた事
により、非常に微細な、安定な乳化液を作製することが
できた。 (実施例10)実施例1において、流通管式管型乳化装
置として流通管(2)の中央部に図3の構造の静止型乳化
分散エレメント(20)を2組互いの間隔を空けないで設置
し、その他の条件は実施例1と同一にて、乳化分散テス
トを行った。最小断面積部における流速は18.5m/
sec、差圧は0.8MPaであった。その結果、得ら
れた乳化分散液の体積平均粒子径は3.5μm、標準偏
差は2.9μmであった。結果を表2へ記載する。 (実施例11)図7に示す製造プロセス例−4の構成の
設備において、流通管式管型乳化装置として実施例1と
同一の流通管(2)および静止型乳化分散エレメント(20)
を使用して乳化分散テストを行った。
It was possible to prepare a very fine and stable emulsion by repeatedly emulsifying the emulsion through the present emulsifying apparatus. (Example 10) In Example 1, two sets of static emulsifying and dispersing elements (20) having the structure shown in FIG. 3 were provided in the center of the flow pipe (2) as a flow pipe type tube-type emulsification device without leaving a space between them. An emulsification dispersion test was performed under the same conditions as in Example 1 except that the apparatus was installed. The flow velocity in the minimum cross-section area is 18.5m /
sec, the differential pressure was 0.8 MPa. As a result, the volume average particle diameter of the obtained emulsion dispersion was 3.5 μm, and the standard deviation was 2.9 μm. The results are shown in Table 2. (Embodiment 11) In the equipment having the configuration of Manufacturing Process Example-4 shown in FIG. 7, the same flow pipe (2) and static emulsification dispersion element (20) as those of the first embodiment are used as a flow pipe type tube type emulsification device.
Was used to carry out an emulsion dispersion test.

【0067】タンクT1へ分散媒として60℃のイオン
交換水5Lを投入し、タンクT2へ分散液として60℃
のヒマシ油3kg(粘度60mPa・s)と60℃の非
イオン界面活性剤;ポリオキシエチレンソルビタンモノ
オレート(花王社製;レオドールスーパTW−O12
0、HLB値;15)0.9kgを投入し、十分にかき
混ぜ混合した。ポンプP2を起動し、タンクT2内の分
散液を14L/minの流量で乳化装置を経由してタン
クT2へ戻す循環を開始した。タンクT1の下部コック
を僅かに開け、T1内のイオン交換水1.5kgを約5
分間かけタンクT2へ添加した。途中で分散液の粘度が
上昇した後、転相が起こり、O/W型の乳化液となっ
た。さらに循環運転を継続しながら、残りのイオン交換
水3.5kgを添加し乳化分散液の作製を完了した。そ
の際の最小断面積部における流速は18.5m/se
c、差圧は1MPaであった。その結果、得られた乳化
分散液の体積平均粒子径は1.2μm、標準偏差は0.
62μmであった。結果を表2へ記載する。
5 L of 60 ° C. ion-exchanged water was added to the tank T1 as a dispersion medium, and 60 ° C. as a dispersion liquid in the tank T2.
Castor oil 3 kg (viscosity 60 mPa · s) and nonionic surfactant at 60 ° C .; polyoxyethylene sorbitan monooleate (manufactured by Kao Corporation; Leodol Super TW-O12)
0, HLB value; 15) 0.9 kg was added and thoroughly mixed by stirring. The pump P2 was started, and circulation was started in which the dispersion liquid in the tank T2 was returned to the tank T2 via the emulsifier at a flow rate of 14 L / min. Open the lower cock of the tank T1 slightly, and add 1.5 kg of ion-exchanged water in T1 to about 5
Add to tank T2 over minutes. After the viscosity of the dispersion liquid increased on the way, phase inversion occurred and the emulsion became an O / W type emulsion. While continuing the circulation operation, the remaining 3.5 kg of ion-exchanged water was added to complete the preparation of the emulsion dispersion. The flow velocity in the minimum cross-section area at that time is 18.5 m / se.
c, the differential pressure was 1 MPa. As a result, the volume average particle diameter of the obtained emulsion dispersion was 1.2 μm, and the standard deviation was 0.
It was 62 μm. The results are shown in Table 2.

【0068】なお、差圧はヒマシ油のみの循環運転時は
1MPaであったが、転相前には上昇し、転相完了後再
び1MPa前後になった。 (実施例12)実施例1と同一の設備を用いて乳化分散
テストを行った。タンクT1に分散媒として液状非水系
物質の40℃のC重油(180mPa.sec)を9L
を投入した後、非イオン界面活性剤(ポリオキシエチレ
ンノニルフェニルエーテル、EO付加モル数が3)20
0gを加え、十分にかき混ぜ、溶解させた。一方タンク
T2へは分散液として液状水系物質の40℃イオン交換
水1kgを投入した。ポンプP1により12.6L/m
inの流量でC重油と非イオン界面活性剤の混合液を乳
化装置へ供給すると共に、ポンプP2により1.4L/
minの流量でイオン交換水を乳化装置へ供給し、W/
O型の乳化分散液を作製した。その際の最小断面積部に
おける流速は18.5m/sec、差圧は1.2MPa
であった。顕微鏡写真より求めた乳化分散液の体積平均
粒子径は4.8μm、標準偏差は3.5μmであった。
結果を表2へ記載する。 (比較例1)図8に示す撹拌装置(40)を用いて乳化分散
液の作製を行った。使用した攪拌装置(40)の各寸法を以
下に示す。
The differential pressure was 1 MPa during the circulation operation of castor oil alone, but increased before the phase inversion and became around 1 MPa again after the completion of the phase inversion. (Example 12) An emulsion dispersion test was conducted using the same equipment as in Example 1. 9 L of 40 ° C. C heavy oil (180 mPa.sec) of liquid non-aqueous substance as a dispersion medium in tank T1
After adding, a nonionic surfactant (polyoxyethylene nonylphenyl ether, EO addition mole number is 3) 20
0 g was added and thoroughly stirred to dissolve. On the other hand, 1 kg of 40 ° C. ion-exchanged water, which is a liquid water-based substance, was added to the tank T2 as a dispersion liquid. 12.6 L / m by pump P1
A mixture of C heavy oil and a nonionic surfactant is supplied to the emulsification device at a flow rate of in, and 1.4 L /
Ion-exchanged water is supplied to the emulsifier at a flow rate of min, and W /
An O type emulsion dispersion was prepared. At that time, the flow velocity in the minimum cross-section area was 18.5 m / sec, and the differential pressure was 1.2 MPa.
Met. The volume average particle diameter of the emulsified dispersion liquid obtained from the micrograph was 4.8 μm, and the standard deviation was 3.5 μm.
The results are shown in Table 2. (Comparative Example 1) An emulsified dispersion was prepared using the stirring device (40) shown in FIG. The dimensions of the stirring device (40) used are shown below.

【0069】撹拌槽(41)の内径(r1);100mm 撹拌槽(41)の高さ(h1);250mm 撹拌翼(42)の種類;6枚ディスクタービン翼1段 翼径(r2):50mm、翼板寸法;長さ12mm×巾
8mm 翼セット高さ(h2);底部より12mm バッフル条件;6mm平板バッフル×4枚 分散媒の25℃イオン交換水300mLを上記撹拌槽(4
1)に添加し、500rpmの回転速度で撹拌を開始し
た。予め分散液の白絞油180gに非イオン界面活性剤
ポリオキシエチレンソルビタンモノオレート(花王社
製;レオドールスーパTW−O120、HLB値;1
5)54gを添加混合した25℃の液をゆっくりと添加
し、添加完了後700rpmに回転数を上げ、5分間撹
拌を継続した後、テストを終了した。その結果、得られ
た乳化分散液の体積平均粒子径は15.8μm、標準偏
差は26.4μmであった。結果を表3へ記載する。得
られた乳化液は不安定で、放置しておくと短期間の間に
相分離が発生した。 (比較例2)比較例1における白絞油をヒマシ油に変更
し、他は比較例1と同一条件にて乳化分散テストを実施
した。その結果、得られた乳化分散液の体積平均粒子径
は38.3μm、標準偏差は55μmであった。結果を
表3へ記載する。
Inner diameter (r1) of stirring tank (41); 100 mm Height of stirring tank (41) (h1); 250 mm Type of stirring blade (42); Six-disc turbine blade 1-stage blade diameter (r2): 50 mm , Vane size: Length 12 mm x Width 8 mm Blade set height (h2); 12 mm from bottom Baffle condition: 6 mm flat plate baffle x 4 Dispersion medium 25 ° C ion exchange water 300 mL is added to the stirring tank (4
It was added to 1) and stirring was started at a rotation speed of 500 rpm. Non-ionic surfactant polyoxyethylene sorbitan monooleate (manufactured by Kao Co .; Leodol Super TW-O120, HLB value;
5) A liquid of 25 ° C. to which 54 g was added and mixed was slowly added, and after the addition was completed, the rotation speed was increased to 700 rpm and stirring was continued for 5 minutes, and then the test was terminated. As a result, the volume average particle diameter of the obtained emulsion dispersion was 15.8 μm, and the standard deviation was 26.4 μm. The results are shown in Table 3. The obtained emulsion was unstable, and when left standing, phase separation occurred in a short period of time. (Comparative Example 2) The white squeezing oil in Comparative Example 1 was changed to castor oil, and the emulsification and dispersion test was carried out under the same conditions as in Comparative Example 1. As a result, the volume average particle diameter of the obtained emulsion dispersion was 38.3 μm, and the standard deviation was 55 μm. The results are shown in Table 3.

【0070】得られた乳化液は不安定で、放置しておく
と短期間の間に相分離が発生した。 (比較例3)比較例1と同一の撹拌槽(41)を用いて、以
下のごとく転相乳化法による実験を行った。
The obtained emulsion was unstable, and when left standing, phase separation occurred in a short period of time. Comparative Example 3 Using the same stirring tank (41) as in Comparative Example 1, an experiment by the phase inversion emulsification method was conducted as follows.

【0071】撹拌槽(41に25℃白絞油200gを添加
した後、25℃の非イオン界面活性剤 レオドールスー
パTW−O120 60gを添加し、500rpmで撹
拌を開始した。25℃イオン交換水340gの内80g
をゆっくりと添加した後、回転数を700rpmへ上
げ、5分間撹拌を継続した。
Stirring tank (200 g of white squeezing oil at 25 ° C. was added to 41, 60 g of nonionic surfactant Rheodor Super TW-O120 at 25 ° C. was added, and stirring was started at 500 rpm. 80g out of 340g
Was slowly added, the rotation speed was increased to 700 rpm, and stirring was continued for 5 minutes.

【0072】その後残りのイオン交換水260gを添加
し、添加完了後5分間撹拌を継続し、実験を終了した。
その結果、得られた乳化分散液の体積平均粒子径は1
8.3μm、標準偏差は10.9μmであった。結果を
表3へ記載する。
Thereafter, the remaining 260 g of ion-exchanged water was added, stirring was continued for 5 minutes after the addition was completed, and the experiment was terminated.
As a result, the volume average particle diameter of the obtained emulsion dispersion is 1
It was 8.3 μm and the standard deviation was 10.9 μm. The results are shown in Table 3.

【0073】得られた乳化液は不安定で、放置しておく
と短期間の間に相分離が発生した。 (比較例4)比較例3における白絞油をヒマシ油に変更
した以外は比較例3と同一条件で乳化分散テストを行っ
た。その結果、得られた乳化分散液の体積平均粒子径は
3.1μm、標準偏差は1.7μmであった。結果を表
3へ記載する。 (比較例5)実施例1における流通管式管型乳化装置と
して、孔部(21a)(21a')(21b)の位置の異なる板体(20a)
(20b)からなる1組の静止型乳化分散エレメント(20)に
代えて、同一構造の2枚の板体(20a)(20a)からなる静止
型乳化分散エレメントを使用し。即ち、孔部の重なり面
積率は100%である。その他は全て実施例1と同一条
件で乳化分散テストを実施した。
The obtained emulsion was unstable, and when left standing, phase separation occurred in a short period of time. (Comparative Example 4) An emulsion dispersion test was conducted under the same conditions as in Comparative Example 3 except that the white squeezing oil in Comparative Example 3 was changed to castor oil. As a result, the volume average particle diameter of the obtained emulsion dispersion was 3.1 μm, and the standard deviation was 1.7 μm. The results are shown in Table 3. (Comparative Example 5) As a flow tube type tube-type emulsifying apparatus in Example 1, plate bodies (20a) having different positions of the holes (21a) (21a ') (21b)
Instead of the set of static emulsifying and dispersing element (20) consisting of (20b), a static emulsifying and dispersing element consisting of two plates (20a) and (20a) of the same structure is used. That is, the overlapping area ratio of the holes is 100%. An emulsification dispersion test was conducted under the same conditions as in Example 1 except for the above.

【0074】その結果、得られた乳化分散液の体積平均
粒子径は6.5μm、標準偏差は5.7μmであった。
本例では、重なり面積率が100%であるため、標準偏
差が大きい。即ち大きな粒子を含む分散液となった。そ
のため放置しておくと短期間で少量であったが、相分離
が発生した。結果を表3へ記載する。なお、この時の孔
部の最小断面積部における流速は18.5m/sec、
差圧は0.3MPaであった。
As a result, the emulsion dispersion thus obtained had a volume average particle diameter of 6.5 μm and a standard deviation of 5.7 μm.
In this example, since the overlapping area ratio is 100%, the standard deviation is large. That is, it became a dispersion liquid containing large particles. Therefore, if left alone, the amount was small in a short period of time, but phase separation occurred. The results are shown in Table 3. At this time, the flow velocity in the minimum cross-sectional area of the hole is 18.5 m / sec,
The differential pressure was 0.3 MPa.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【表2】 [Table 2]

【0077】[0077]

【表3】 [Table 3]

【0078】[0078]

【発明の効果】以上の次第で、この発明の乳化分散液の
製造方法は、流通管内部に、それぞれ板厚方向に複数の
孔部が穿設された2枚の板体を、一方の板体の孔部が他
方の板体の孔部と重なる部分の面積率が90%以下とな
るように組み合わせた静止型乳化分散エレメントが、1
組以上配設されてなる流通管式管型乳化装置を用い、前
記流通管式管型乳化装置に、乳化粒子相となる分散液、
連続相となる分散媒および界面活性剤を供給し、これら
の流体を前記静止型乳化分散エレメントの孔部を高速で
流通させるものであるから、液衝突に伴う液滴破壊力、
噴流によるキャビテーション作用、孔部に分流される際
のせん断力による優れた分散力および攪拌力により、乳
化分散処理を行い、粒径が微細で高濃度の均一な乳化分
散液を製造することができる。しかも、処理に要する装
置は流通管内に静止型乳化分散エレメントを配設した簡
単な構造であり、かつ材料流体を高速度で流通させるだ
けの簡単な工程であるから、上記乳化分散液の大量生産
が可能である。
As described above, according to the method for producing an emulsified dispersion of the present invention, one plate is provided with two plate bodies each having a plurality of holes formed in the plate thickness direction inside the flow pipe. The static emulsifying and dispersing element in which the area ratio of the portion where the hole portion of the body overlaps the hole portion of the other plate is 90% or less is 1
Using a flow pipe type tube emulsification device which is arranged more than one set, in the flow pipe type pipe type emulsification device, a dispersion liquid which becomes an emulsified particle phase,
A continuous phase dispersion medium and a surfactant are supplied, and since these fluids are to flow through the pores of the static emulsification dispersion element at high speed, the droplet breaking force due to liquid collision,
Emulsion dispersion treatment can be performed by the cavitation action by the jet flow and the excellent dispersion force and stirring force due to the shearing force when splitting into the holes, and it is possible to produce a uniform emulsion dispersion having a fine particle size and a high concentration. . Moreover, the apparatus required for the treatment has a simple structure in which a static emulsifying and dispersing element is arranged in the flow pipe, and since it is a simple process of circulating the material fluid at a high speed, mass production of the emulsified dispersion liquid described above. Is possible.

【0079】また、前記板体の孔部が、断面形状が円形
であるとともに、板厚方向の中間部に縮径部が形成され
たテーパー状となされている場合は、流体をより激しく
乱流させ、一層細かく微粒子を分散させることができ
る。
Further, when the hole of the plate has a circular cross section and a taper shape with a reduced diameter portion formed in the middle portion in the plate thickness direction, the fluid becomes more turbulent. Thus, the fine particles can be dispersed more finely.

【0080】流体が前記孔部の最小断面積部を通過する
速度が5m/秒以上である場合は、上述した衝突・せん
断・噴流による、特に高い分散力が得られる。
When the velocity at which the fluid passes through the minimum cross-sectional area of the hole is 5 m / sec or more, a particularly high dispersion force due to the above-mentioned collision, shear, and jet flow can be obtained.

【0081】前記2枚の板体は、板厚方向に所定距離を
隔てて組み合わされている場合は、上述した衝突・せん
断・噴流による分散力に、隙間を流れる時の強いせん断
力が加わり、分散力を高めることができる。また板厚方
向に接触状態に組み合わされていても良い。
When the two plates are combined at a predetermined distance in the plate thickness direction, a strong shearing force at the time of flowing through the gap is added to the above-mentioned dispersion force due to collision, shearing, and jet flow, Dispersion power can be increased. Further, they may be combined in a contact state in the plate thickness direction.

【0082】また、この発明に好適に使用できる流体例
として、前記分散液が液状非水系物質であり、前記分散
媒が液状水系物質であり、かつ前記界面活性剤が非イオ
ン界面活性剤および陰イオン界面活性剤のうちの1種以
上を例示できる。あるいは、前記分散液が液状水系物質
であり、前記分散媒が液状非水系物質であり、かつ前記
界面活性剤が非イオン界面活性剤および陰イオン界面活
性剤のうちの1種以上を例示できる。これらの組合せに
より、粒径が微細で高濃度の均一な乳化分散液を製造す
ることができる。
As an example of a fluid that can be preferably used in the present invention, the dispersion liquid is a liquid non-aqueous substance, the dispersion medium is a liquid aqueous substance, and the surfactant is a nonionic surfactant and an anionic substance. One or more of the ionic surfactants can be exemplified. Alternatively, the dispersion liquid may be a liquid aqueous substance, the dispersion medium may be a liquid non-aqueous substance, and the surfactant may be one or more of a nonionic surfactant and an anionic surfactant. By combining these, it is possible to produce a uniform emulsion dispersion having a fine particle size and a high concentration.

【0083】前記分散媒の容量が分散液の容量以上であ
る場合には、特に粒径が微細で高濃度の均一な乳化分散
液を製造することができる。
When the volume of the dispersion medium is equal to or larger than the volume of the dispersion liquid, it is possible to produce a uniform emulsion dispersion having a particularly fine particle size and a high concentration.

【0084】さらに、分散液、分散媒および界面活性剤
の少なくとも一つを大気圧下の沸点を超える温度に加熱
した後、前記流通管式管型乳化装置に供給する場合は、
高い分散性を得て特に粒径が微細で高濃度の均一な乳化
分散液を製造することができる。
Further, when at least one of the dispersion liquid, the dispersion medium and the surfactant is heated to a temperature exceeding the boiling point under atmospheric pressure and then supplied to the flow tube type tubular emulsification apparatus,
It is possible to obtain a high dispersion and obtain a uniform emulsion dispersion having a particularly high particle size and a high concentration.

【0085】さらにまた、前記通流管式管型乳化装置を
通過した流体を再度通流管式管型乳化装置に供給する場
合も、特に粒径が微細で高濃度の均一な乳化分散液を製
造す
Furthermore, when the fluid that has passed through the flow tube type tubular emulsifying device is supplied again to the flow tube type tubular emulsifying device, a uniform emulsion dispersion having a particularly fine particle size and a high concentration is obtained. Manufacture

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の乳化分散液の製造方法に用いる流通
管式管型乳化装置の一例を示す、一部切欠斜視図であ
る。
FIG. 1 is a partially cutaway perspective view showing an example of a flow pipe type tube-type emulsification device used in a method for producing an emulsion dispersion of the present invention.

【図2】静止型乳化分散エレメントの一例を示す図であ
り、(A)は上流側の板体の平面図および2A−2A線
断面図、(B)は下流側の板体の平面図および2B−2
B線断面図、(C)は2枚の組合せ状態を示す平面図お
よび2C−2C線断面図図である。
FIG. 2 is a diagram showing an example of a static emulsifying and dispersing element, (A) is a plan view of an upstream plate and a sectional view taken along line 2A-2A, and (B) is a plan view of a downstream plate. 2B-2
The sectional view taken on the line B, (C) are a plan view and a sectional view taken on the line 2C-2C showing a combined state of the two sheets.

【図3】静止型乳化分散エレメントの他の例を示す図で
あり、(A)は上流側の板体の平面図および3A−3A
線断面図、(B)は下流側の板体の平面図および3B−
23線断面図、(C)は2枚の組合せ状態を示す平面図
および3C−3C線断面図図である。
FIG. 3 is a view showing another example of a static emulsifying and dispersing element, (A) is a plan view of an upstream plate and 3A-3A.
A line sectional view, (B) is a plan view of the plate body on the downstream side and 3B-
FIG. 23 is a sectional view taken along line 23C, and FIG. 23C is a plan view showing a combined state of two sheets and a sectional view taken along line 3C-3C.

【図4】この発明の乳化分散液の製造方法の製造プロセ
スの例−1を示すブロック図である。
FIG. 4 is a block diagram showing Example-1 of the manufacturing process of the method for manufacturing an emulsified dispersion according to the present invention.

【図5】この発明の乳化分散液の製造方法の製造プロセ
スの例−2を示すブロック図である。
FIG. 5 is a block diagram showing Example-2 of the manufacturing process of the method for manufacturing an emulsified dispersion according to the present invention.

【図6】この発明の乳化分散液の製造方法の製造プロセ
スの例−3を示すブロック図である。
FIG. 6 is a block diagram showing Example-3 of the production process of the method for producing an emulsified dispersion according to the present invention.

【図7】この発明の乳化分散液の製造方法の製造プロセ
スの例−4を示すブロック図である。
FIG. 7 is a block diagram showing Example-4 of the production process of the method for producing an emulsified dispersion according to the present invention.

【図8】乳化分散用撹拌槽を模式的に示す図である。FIG. 8 is a view schematically showing a stirring tank for emulsifying and dispersing.

【符号の説明】[Explanation of symbols]

1…流通管式管型乳化装置 2…流通管 3,10,20…静止型乳化分散エレメント 3a,3b,10a,10b,20a,20b…板体 4a,4b,11a,11b,21a,21a',21b…孔部 22a,22b…縮径部 1 ... Flow tube type tube emulsifier 2 ... Distribution pipe 3,10,20 ... Stationary emulsifying dispersion element 3a, 3b, 10a, 10b, 20a, 20b ... Plate 4a, 4b, 11a, 11b, 21a, 21a ', 21b ... hole 22a, 22b ... Reduced diameter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小路 克利 大阪府大阪市西区立売堀2丁目3番2号 Fターム(参考) 4G035 AB40 AB54 AC26 AE13 AE15 4G037 CA11 EA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsutoshi Koji             2-3-2 Selling Moat, Nishi-ku, Osaka City, Osaka Prefecture F-term (reference) 4G035 AB40 AB54 AC26 AE13 AE15                 4G037 CA11 EA01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 流通管内部に、それぞれ板厚方向に複数
の孔部が穿設された2枚の板体を、一方の板体の孔部が
他方の板体の孔部と重なる部分の面積率が90%以下と
なるように組み合わせた静止型乳化分散エレメントが、
1組以上配設されてなる流通管式管型乳化装置を用い、 前記流通管式管型乳化装置に、乳化粒子相となる分散
液、連続相となる分散媒および界面活性剤を供給し、こ
れらの流体を前記静止型乳化分散エレメントの孔部を高
速で流通させることを特徴とする乳化分散液の製造方
法。
1. A flow tube, wherein two plate members each having a plurality of holes formed in the plate thickness direction are provided in a portion where the hole of one plate overlaps the hole of the other plate. The static emulsifying and dispersing element combined so that the area ratio is 90% or less,
Using a flow tube type tube emulsification device provided with one or more sets, the flow tube type tube type emulsification device is supplied with a dispersion liquid as an emulsified particle phase, a dispersion medium as a continuous phase and a surfactant, A method for producing an emulsified dispersion, wherein these fluids are circulated at high speed through the pores of the stationary emulsion dispersion element.
【請求項2】 前記板体の孔部は、断面形状が円形であ
るとともに、板厚方向の中間部に縮径部が形成されたテ
ーパー状となされている請求項1に記載の乳化分散液の
製造方法。
2. The emulsified dispersion according to claim 1, wherein the hole of the plate has a circular cross-sectional shape and a tapered shape in which a reduced diameter portion is formed at an intermediate portion in the plate thickness direction. Manufacturing method.
【請求項3】 前記流体を、前記孔部の最小断面積部に
おいて5m/秒以上の速度で通過させる請求項1または
2に記載の乳化分散液の製造方法。
3. The method for producing an emulsified dispersion according to claim 1, wherein the fluid is passed through the minimum cross-sectional area of the hole at a speed of 5 m / sec or more.
【請求項4】 前記2枚の板体は、板厚方向に所定距離
を隔てて組み合わされている請求項1〜3のいずれかに
記載の乳化分散液の製造方法。
4. The method for producing an emulsified dispersion according to claim 1, wherein the two plate bodies are combined at a predetermined distance in the plate thickness direction.
【請求項5】 前記2枚の板体は、板厚方向に接触状態
に組み合わされている請求項1〜3のいずれかに記載の
乳化分散液の製造方法。
5. The method for producing an emulsified dispersion according to claim 1, wherein the two plates are combined in a contact state in the plate thickness direction.
【請求項6】 前記分散液が液状非水系物質であり、前
記分散媒が液状水系物質であり、かつ前記界面活性剤が
非イオン界面活性剤および陰イオン界面活性剤のうちの
1種以上である請求項1〜5のいずれかに記載の乳化分
散液の製造方法。
6. The dispersion liquid is a liquid non-aqueous substance, the dispersion medium is a liquid aqueous substance, and the surfactant is at least one of a nonionic surfactant and an anionic surfactant. The method for producing an emulsified dispersion according to any one of claims 1 to 5.
【請求項7】 前記分散液が液状水系物質であり、前記
分散媒が液状非水系物質であり、かつ前記界面活性剤が
非イオン界面活性剤および陰イオン界面活性剤のうちの
1種以上である請求項1〜5のいずれかに記載の乳化分
散液の製造方法。
7. The dispersion liquid is a liquid aqueous substance, the dispersion medium is a liquid non-aqueous substance, and the surfactant is at least one of a nonionic surfactant and an anionic surfactant. The method for producing an emulsified dispersion according to any one of claims 1 to 5.
【請求項8】 前記分散媒の容量が分散液の容量以上で
ある請求項1〜7のいずれかに記載の乳化分散液の製造
方法。
8. The method for producing an emulsified dispersion according to claim 1, wherein the capacity of the dispersion medium is not less than the capacity of the dispersion.
【請求項9】 分散液、分散媒および界面活性剤の少な
くとも一つを大気圧下の沸点を超える温度に加熱し、前
記流通管式管型乳化装置に供給する請求項1〜8のいず
れかに記載の乳化分散液の製造方法。
9. The method according to claim 1, wherein at least one of the dispersion liquid, the dispersion medium and the surfactant is heated to a temperature above the boiling point under atmospheric pressure and supplied to the flow tube type tube emulsification device. The method for producing an emulsified dispersion according to.
【請求項10】 前記通流管式管型乳化装置を通過した
流体を再度通流管式管型乳化装置に供給する請求項1〜
9に記載の乳化分散液の製造方法。
10. The fluid flowing through the flow-through tube type tube emulsification device is supplied to the flow-through tube type tube emulsification device again.
9. The method for producing an emulsified dispersion according to item 9.
JP2002064046A 2002-03-08 2002-03-08 Method for producing emulsified dispersion Expired - Fee Related JP4335493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064046A JP4335493B2 (en) 2002-03-08 2002-03-08 Method for producing emulsified dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064046A JP4335493B2 (en) 2002-03-08 2002-03-08 Method for producing emulsified dispersion

Publications (2)

Publication Number Publication Date
JP2003260343A true JP2003260343A (en) 2003-09-16
JP4335493B2 JP4335493B2 (en) 2009-09-30

Family

ID=28670980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064046A Expired - Fee Related JP4335493B2 (en) 2002-03-08 2002-03-08 Method for producing emulsified dispersion

Country Status (1)

Country Link
JP (1) JP4335493B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186026A (en) * 2003-12-26 2005-07-14 Spg Techno Kk Device and method of preparing emulsion
JP2006312165A (en) * 2005-04-08 2006-11-16 Sumitomo Chemical Co Ltd Method for producing emulsion
JP2006326484A (en) * 2005-05-26 2006-12-07 Honda Kiko Co Ltd Micro-bubbles generator
JP2006346565A (en) * 2005-06-15 2006-12-28 Spg Techno Kk Method for preparing emulsion using porous body and its apparatus
JP2007190502A (en) * 2006-01-19 2007-08-02 Taiyo:Kk Apparatus for preparing emulsion fuel, emulsifier, mixing/emulsifying unit, and method for preparing emulsion fuel
JP2008100182A (en) * 2006-10-20 2008-05-01 Hitachi Plant Technologies Ltd Emulsification apparatus and apparatus for manufacturing particulate
JP2011121038A (en) * 2009-12-10 2011-06-23 Masao Uratani Static mixer
JP2012027466A (en) * 2010-07-20 2012-02-09 Xerox Corp Continuous process for producing toner using oscillatory flow continuous reactor
JP2015027675A (en) * 2008-07-30 2015-02-12 スルザー ケムテック アクチェンゲゼルシャフト Method and apparatus for phase inversion by using stationary type mixer and coagulator
JPWO2013133209A1 (en) * 2012-03-06 2015-07-30 塩野義製薬株式会社 Emulsion preparation device and emulsion preparation method
JP2018128218A (en) * 2017-02-10 2018-08-16 テラテック株式会社 Manufacturing device, manufacturing method and supply method for emulsion fuel
CN110538626A (en) * 2019-08-28 2019-12-06 迈安德集团有限公司 Variable controllable cavitator
JP2020026478A (en) * 2018-08-10 2020-02-20 テラテック株式会社 Manufacturing apparatus of fuel oil and manufacturing method of the same
JP2020037104A (en) * 2019-09-05 2020-03-12 敦好 ▲高▼山 Atomization device
JP2020124695A (en) * 2019-02-06 2020-08-20 冷化工業株式会社 Emulsified composition manufacturing system
JP2020146678A (en) * 2019-03-12 2020-09-17 信紘科技股▲分▼有限公司 Fluid mixer
JP2022500234A (en) * 2018-09-10 2022-01-04 ケリー ルクセンブルク エス.アー.エール.エル.Kerry Luxembourg S.a.r.l. Systems and methods to produce stable, homogeneous dispersions of immiscible fluids
CN114534535A (en) * 2022-01-26 2022-05-27 淮北矿业股份有限公司 Device for quickly dissolving and turbulent flow of emulsified oil

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186026A (en) * 2003-12-26 2005-07-14 Spg Techno Kk Device and method of preparing emulsion
JP4534123B2 (en) * 2003-12-26 2010-09-01 エス・ピー・ジーテクノ株式会社 Emulsion preparation device and method
JP2006312165A (en) * 2005-04-08 2006-11-16 Sumitomo Chemical Co Ltd Method for producing emulsion
JP2006326484A (en) * 2005-05-26 2006-12-07 Honda Kiko Co Ltd Micro-bubbles generator
JP4686258B2 (en) * 2005-05-26 2011-05-25 本多機工株式会社 Micro bubble generator
JP2006346565A (en) * 2005-06-15 2006-12-28 Spg Techno Kk Method for preparing emulsion using porous body and its apparatus
JP2007190502A (en) * 2006-01-19 2007-08-02 Taiyo:Kk Apparatus for preparing emulsion fuel, emulsifier, mixing/emulsifying unit, and method for preparing emulsion fuel
JP2008100182A (en) * 2006-10-20 2008-05-01 Hitachi Plant Technologies Ltd Emulsification apparatus and apparatus for manufacturing particulate
US9452371B2 (en) 2008-07-30 2016-09-27 Sulzer Chemtec Ag Method and system for phase inversion using a static mixer/coalescer
JP2015027675A (en) * 2008-07-30 2015-02-12 スルザー ケムテック アクチェンゲゼルシャフト Method and apparatus for phase inversion by using stationary type mixer and coagulator
JP2011121038A (en) * 2009-12-10 2011-06-23 Masao Uratani Static mixer
JP2012027466A (en) * 2010-07-20 2012-02-09 Xerox Corp Continuous process for producing toner using oscillatory flow continuous reactor
JPWO2013133209A1 (en) * 2012-03-06 2015-07-30 塩野義製薬株式会社 Emulsion preparation device and emulsion preparation method
US9770695B2 (en) 2012-03-06 2017-09-26 Shionogi & Co., Ltd. Emulsion preparation device and emulsion preparation method
JP2018128218A (en) * 2017-02-10 2018-08-16 テラテック株式会社 Manufacturing device, manufacturing method and supply method for emulsion fuel
JP2020026478A (en) * 2018-08-10 2020-02-20 テラテック株式会社 Manufacturing apparatus of fuel oil and manufacturing method of the same
JP2022500234A (en) * 2018-09-10 2022-01-04 ケリー ルクセンブルク エス.アー.エール.エル.Kerry Luxembourg S.a.r.l. Systems and methods to produce stable, homogeneous dispersions of immiscible fluids
JP2020124695A (en) * 2019-02-06 2020-08-20 冷化工業株式会社 Emulsified composition manufacturing system
JP2020146678A (en) * 2019-03-12 2020-09-17 信紘科技股▲分▼有限公司 Fluid mixer
CN110538626A (en) * 2019-08-28 2019-12-06 迈安德集团有限公司 Variable controllable cavitator
CN110538626B (en) * 2019-08-28 2023-10-13 迈安德集团有限公司 Variable controllable cavitation device
JP2020037104A (en) * 2019-09-05 2020-03-12 敦好 ▲高▼山 Atomization device
JP7050256B2 (en) 2019-09-05 2022-04-08 敦好 ▲高▼山 Micronization device
CN114534535A (en) * 2022-01-26 2022-05-27 淮北矿业股份有限公司 Device for quickly dissolving and turbulent flow of emulsified oil

Also Published As

Publication number Publication date
JP4335493B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP2003260343A (en) Method for preparing emulsifying dispersion
US6443610B1 (en) Processing product components
JP5795794B2 (en) Emulsifying device for continuous production of emulsion and / or dispersion
Xu et al. Formation of monodisperse microbubbles in a microfluidic device
US20110158931A1 (en) Rotor-stator system for the production of dispersions
CN102794119B (en) Method for preparing monodisperse emulsion
WO2001045830A1 (en) Rotating membrane
Barabash et al. Theory and practice of mixing: A review
WO2012023609A1 (en) Atomization device
US7629390B2 (en) Method for preparing emulsions
Paiboon et al. Hydrodynamic control of droplet formation in narrowing jet and tip streaming regime using microfluidic flow-focusing
JP2008239902A (en) Polymer fine particle and method for producing the same
JP2008037842A (en) Method for producing ceramide microparticle dispersion
JP6598345B1 (en) Stirrer
US20200109218A1 (en) Method for producing cellulose nanofiber and apparatus for producing cellulose nanofiber
Mitkowski et al. Production of emulsion in tank mixer with sieve bottom
JP2002248328A (en) Emulsifying/dispersing device
US20110275738A1 (en) Process for producing finely divided suspensions by melt emulsification
JP2000210546A (en) Production of aqueous emulsion of rosin type compound
JP2006016495A (en) Method for supplying emulsified fuel and apparatus for the same
EP1501626B1 (en) Device and method of creating hydrodynamic cavitation in fluids
JP4972726B2 (en) Phase inversion temperature emulsification apparatus and emulsification method
CN101785979A (en) Liquid-liquid heterogeneous micromixing device
CN201618533U (en) Liquid-liquid inhomogeneous microcosmic mixing device
JP2009082832A (en) Static mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4335493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees