[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003254899A - Biological light measuring apparatus - Google Patents

Biological light measuring apparatus

Info

Publication number
JP2003254899A
JP2003254899A JP2002058825A JP2002058825A JP2003254899A JP 2003254899 A JP2003254899 A JP 2003254899A JP 2002058825 A JP2002058825 A JP 2002058825A JP 2002058825 A JP2002058825 A JP 2002058825A JP 2003254899 A JP2003254899 A JP 2003254899A
Authority
JP
Japan
Prior art keywords
measurement
light
signal
variation
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002058825A
Other languages
Japanese (ja)
Inventor
Fumio Kawaguchi
文男 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002058825A priority Critical patent/JP2003254899A/en
Publication of JP2003254899A publication Critical patent/JP2003254899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological light measuring apparatus capable of highly accurately measuring very small variations in a flow of blood. <P>SOLUTION: A signal processing part of the biological light measuring apparatus creates a matrix arithmetic expression, on measurement signals acquired at every point of measurement, with measured values and coefficients of variation after correction as variables on the basis of a relational expression between the points of measurement and the coefficients of variation limited to related locations of light irradiation and locations of detection (402) to determine a coefficient (g) of variation with a minimum absolute value of the measured values after correction by the method of least squares (403). The coefficient (g) of variation is used to compute an optimally corrected measured value from the relational expression (404). By this, it is possible to acquire signals from which the effects of the coefficients of variation limited to the locations of light irradiation and the locations of detection are precluded regardless of the types of variations. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は生体内部の情報を
光を用いて計測する生体光計測装置に関し、特に複数の
計測位置からの検出光を用いて、これら計測位置を含む
領域の計測を行う生体光計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body light measuring apparatus for measuring information inside a living body by using light, and particularly, by using detection light from a plurality of measuring positions, measuring an area including these measuring positions. The present invention relates to a biological light measuring device.

【0002】[0002]

【従来の技術】生体光計測装置は、光源から特定波長の
光を被検体に照射し、被検体を透過した光或いは被検体
で反射した光を受光素子で検出し、その光量から血液循
環、血行動態、ヘモグロビン変化などの生体情報を得る
装置である。近年、光ファイバを利用して、複数の計測
位置を含む領域を検査し、その領域についての生体情
報、具体的にはヘモグロビン動向を画像として表示する
ようにした光トポグラフィ装置が提案され、実用化され
ている(特開平9-98972号、特開平9-149903号など)。
2. Description of the Related Art A biological light measuring apparatus irradiates a subject with light of a specific wavelength from a light source, detects light transmitted through the subject or light reflected by the subject with a light receiving element, and circulates blood according to the amount of light. It is a device that obtains biological information such as hemodynamics and hemoglobin changes. In recent years, an optical topography device has been proposed, which uses an optical fiber to inspect an area including a plurality of measurement positions and displays biological information about the area, specifically, hemoglobin trends as an image, and put it into practical use. (JP-A-9-98972, JP-A-9-149903, etc.).

【0003】このような生体光計測装置の臨床応用とし
て、例えば頭部を計測対象とした脳内ヘモグロビン変化
の活性化状態及び局所的な脳内出血の測定等が挙げられ
る。脳内のヘモグロビン変化に関連して、運動、感覚さ
らには思考に及ぶ高次脳機能等を計測することも可能で
ある。これら計測は、光照射及び検出のための複数の光
ファイバ先端を所定の配列に配置したプローブを被検者
に装着することにより行われる。
Clinical applications of such a biological optical measuring device include, for example, measurement of activation state of hemoglobin change in the brain and measurement of local intracerebral hemorrhage in which the head is measured. It is also possible to measure higher brain functions such as movement, sensation, and thinking in relation to changes in hemoglobin in the brain. These measurements are performed by mounting a probe in which a plurality of optical fiber tips for light irradiation and detection are arranged in a predetermined array on a subject.

【0004】[0004]

【発明が解決しようとする課題】このような生体光計測
装置を用いた脳機能計測は、脳活動に伴う微小な血流変
化による光学変化を計測するものであるため、計測系の
微小な変動や頭皮へのプローブ接触の変化による光学変
化の影響を受けやすく、それによって計測信号の精度が
低下するという問題があった。
Brain function measurement using such a biological optical measuring device measures optical changes due to minute blood flow changes associated with brain activity, and therefore minute changes in the measurement system. There is a problem that it is easily affected by optical changes due to changes in probe contact with the skin and the scalp, which reduces the accuracy of measurement signals.

【0005】また計測信号に混入する変動誤差の原因
は、例えば光源であるレーザー光の変動やプローブの位
置ずれ、接触状態の変化など種々であり、これらの影響
を全体として低減することは困難であった。そこで本発
明は、被検者の動きや計測装置の変動の影響を排除し、
高精度の脳機能計測を行うことが可能な生体光計測装置
を提供することを目的とする。
Further, there are various causes of the fluctuation error mixed in the measurement signal, for example, fluctuations in the laser light as the light source, displacement of the probe, changes in the contact state, etc., and it is difficult to reduce these effects as a whole. there were. Therefore, the present invention eliminates the influence of the movement of the subject and the fluctuation of the measuring device,
An object of the present invention is to provide a biological optical measurement device capable of performing highly accurate brain function measurement.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の生体光計測装置では、計測される信号が特
定の光照射位置と受光位置の変動率の影響を受けること
を利用し、複数の計測信号値とこれら変動率との関連性
を利用して、光照射位置と受光位置に限定される変動誤
差を算出し、変動誤差の影響を排除した計測信号を得
る。
In order to achieve the above object, in the biological optical measuring device of the present invention, it is utilized that the measured signal is affected by the fluctuation rate of a specific light irradiation position and a specific light receiving position, Utilizing the relationship between the plurality of measurement signal values and these fluctuation rates, the fluctuation error limited to the light irradiation position and the light receiving position is calculated, and the measurement signal excluding the influence of the fluctuation error is obtained.

【0007】即ち、本発明の生体光計測装置は、被検体
の複数の光照射位置に光を照射するための光源部と、前
記複数の光照射位置に対し所定の位置に配置された複数
の検出位置で、前記被検体からの透過光を受光し、複数
の計測位置の計測信号に変換する光計測部と、前記光計
測部からの計測信号を処理し、前記複数の計測位置を含
む領域の生体情報を得る信号処理部とを備えた生体光計
測装置において、前記信号処理部は、前記複数の計測信
号に含まれる、光照射位置と検出位置に限定される変動
誤差の相関に基き、前記変動誤差を算出し、前記計測信
号を補正する手段を備えたことを特徴とする。
That is, the living body light measuring apparatus of the present invention comprises a light source unit for irradiating a plurality of light irradiation positions of a subject with light, and a plurality of light source units arranged at predetermined positions with respect to the plurality of light irradiation positions. At the detection position, the transmitted light from the subject is received and an optical measurement unit that converts the measurement signals from a plurality of measurement positions and a measurement signal from the optical measurement unit is processed, and an area including the plurality of measurement positions. In the biological optical measurement device having a signal processing unit for obtaining biological information, the signal processing unit is included in the plurality of measurement signals, based on the correlation of fluctuation errors limited to the light irradiation position and the detection position, A means for calculating the variation error and correcting the measurement signal is provided.

【0008】具体的には、補正する手段は、補正後の信
号値及び変動誤差を変数とする行列演算式を作成し、補
正後の信号値の絶対値を最小にする変動誤差を算出す
る。変動誤差の算出方法としては、例えば、最小二乗法
を用いることができる。
More specifically, the correcting means creates a matrix operation formula having the corrected signal value and the fluctuation error as variables, and calculates the fluctuation error that minimizes the absolute value of the corrected signal value. As a method of calculating the variation error, for example, the least square method can be used.

【0009】このような本発明の生体光計測装置によれ
ば、光源部の光強度の変動や、被検体の動きによる光照
射位置や検出位置の位置ずれや、接触面の微小な変化な
ど、光照射位置と検出位置に限定される変動誤差を排除
することができ、これにより脳機能に伴う微小な血流変
動を高精度で計測することができる。
According to the living body light measuring apparatus of the present invention as described above, the fluctuation of the light intensity of the light source unit, the displacement of the light irradiation position and the detection position due to the movement of the subject, the slight change of the contact surface, etc. It is possible to eliminate a fluctuation error limited to the light irradiation position and the detection position, and thus it is possible to measure a minute blood flow fluctuation associated with brain function with high accuracy.

【0010】また本発明の生体光計測装置は、光照射位
置と検出位置に限定される変動誤差を、補正後の信号値
の絶対値を最小にするように決定するので、光の周波数
特性や変動誤差の種類によらず補正を行うことができ
る。
Further, since the biological light measuring device of the present invention determines the variation error limited to the light irradiation position and the detection position so as to minimize the absolute value of the corrected signal value, the frequency characteristic of light and Correction can be performed regardless of the type of fluctuation error.

【0011】[0011]

【発明の実施の形態】以下、本発明の生体光計測装置
を、図面に示す実施形態に基づきさらに説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The biological optical measurement device of the present invention will be further described below based on the embodiments shown in the drawings.

【0012】図1は、本発明の生体光計測装置の全体概
要を示す図である。この生体光計測装置は、所定の波長
の光を被検体9の検査部位に照射するための光源部10
と、被検体の検査部位を透過した光或いは検査部位で反
射、散乱した光(以下、まとめて透過光という)を検出
する受光素子を備えた光計測部20と、光計測部20からの
信号に基づき血中ヘモグロビン量などを表す生体信号を
作成し、画像化し表示する信号処理部30とを備えてい
る。
FIG. 1 is a diagram showing an overall outline of a biological optical measurement device of the present invention. This biological light measuring device is a light source unit 10 for irradiating the inspection site of the subject 9 with light of a predetermined wavelength.
And a signal from the optical measurement unit 20 having a light receiving element for detecting light transmitted through the inspection region of the subject or light reflected and scattered at the inspection region (hereinafter collectively referred to as transmitted light). And a signal processing unit 30 that creates a biological signal that represents the amount of hemoglobin in blood based on the above, and displays it as an image.

【0013】光源部10は、複数(図では4つ)の光モジ
ュール11からなり、各光モジュール11は、可視光から赤
外の波長領域内の所定の波長、例えば780nmや830nmの二
波長の光を放射する二個の半導体レーザを備えている。
また光源部10は、発振周波数の異なる複数の発振器で構
成される発振部12を備えている。これにより半導体レー
ザに、それぞれ異なる変調を与える。尚、光源としては
半導体レーザの代わりに発光ダイオードを用いても良
い。また使用する波長も上記の二波長に限らず、計測す
べき対象(通常、酸素化ヘモグロビン、脱酸素化ヘモグ
ロビンであるが、それ以外の化学種も対象となる)に応
じて波長を異ならせても良い。
The light source unit 10 is composed of a plurality of (four in the figure) optical modules 11, and each optical module 11 has a predetermined wavelength within a wavelength range from visible light to infrared, for example, two wavelengths of 780 nm and 830 nm. It is equipped with two semiconductor lasers that emit light.
The light source unit 10 also includes an oscillating unit 12 including a plurality of oscillators having different oscillating frequencies. This gives different modulations to the semiconductor lasers. A light emitting diode may be used as the light source instead of the semiconductor laser. The wavelengths used are not limited to the above two wavelengths, and the wavelengths may be changed according to the object to be measured (usually oxygenated hemoglobin and deoxygenated hemoglobin, but other chemical species are also targeted). Is also good.

【0014】二波長の半導体レーザを用いた光モジュー
ル11の構成を図2に示す。図示するように、光モジュー
ル11は二個の半導体レーザ13a、13b(a、bは二波長の光
に対応する)と、その駆動回路14a、14bと、集光レンズ
15と、光ファイバ16、光結合器17と、光ファイバ18とを
備えている。半導体レーザ13a、13bは、駆動回路14a、1
4bにより直流バイアス電流が印加されるとともに発振器
12によりそれぞれ異なる周波数が印加されることによ
り、それぞれ異なる周波数で変調された光を放射する。
尚、本実施形態では、正弦波によるアナログ変調として
いるが、それぞれ異なる時間間隔の矩形波によるデジタ
ル変調を用いても良い。
FIG. 2 shows the configuration of an optical module 11 using a two-wavelength semiconductor laser. As shown in the figure, the optical module 11 includes two semiconductor lasers 13a and 13b (a and b correspond to light of two wavelengths), their drive circuits 14a and 14b, and a condenser lens.
15, an optical fiber 16, an optical coupler 17, and an optical fiber 18. The semiconductor lasers 13a and 13b include drive circuits 14a and 1b.
DC bias current is applied by 4b and oscillator
When the different frequencies are applied by 12, the lights modulated at the different frequencies are emitted.
In the present embodiment, analog modulation is performed using a sine wave, but digital modulation using rectangular waves with different time intervals may be used.

【0015】半導体レーザ13a、13bからの光は、それぞ
れ集光レンズ15により光ファイバ16に導入され、さらに
光結合器17により二波長の光を混合して1本の照射用光
ファイバ18に導入される。即ち、各光モジュール11毎
に、それぞれ異なる周波数で変調された二波長の光が照
射用光ファイバ18に導入される。
Lights from the semiconductor lasers 13a and 13b are introduced into an optical fiber 16 by a condenser lens 15, respectively, and lights of two wavelengths are mixed by an optical coupler 17 and introduced into one irradiation optical fiber 18. To be done. That is, the two wavelengths of light modulated at different frequencies are introduced into the irradiation optical fiber 18 for each optical module 11.

【0016】照射用光ファイバ18と受光用光ファイバ19
の先端は、被検者9に装着するために、例えばプラスチ
ック製の装着具(プローブ)に固定される。プローブに
はこれら光ファイバ先端が係合するソケットが形成され
ており、その先端をソケットに係合することにより光フ
ァイバ先端を所定の配列となるように配置できる。
Irradiating optical fiber 18 and receiving optical fiber 19
The tip of is fixed to a mounting tool (probe) made of, for example, plastic for mounting on the subject 9. The probe is formed with a socket with which these optical fiber tips are engaged, and by engaging the tip with the socket, the optical fiber tips can be arranged in a predetermined arrangement.

【0017】先端の配列の一例を図3に示す。この例で
は、白丸で示す4本の照射用光ファイバ18の先端と、黒
丸で示す5本の受光用光ファイバ19の先端とが交互に正
方格子の交点に配置している。照射用光ファイバ18先端
から、その照射位置によって周波数が異なる二波長の光
が照射され、被検者9の頭部表面で反射或いは透過した
光は、照射用光ファイバ18に隣接する受光用光ファイバ
19で検出されることになる。従って、光計測では、互い
に隣接する照射用光ファイバ18と受光用光ファイバ19と
の間の点を計測していることになり、この間の点が計測
点となる。図示する例では、同図(b)に1〜12の番
号で示すように、12の計測点が存在する。尚、図3で
は3×3の正方格子の交点に光ファイバ先端を配置した
例を示したが、マトリックスサイズはこれに限定されず
4×4、5×5などを採用しても良い。
An example of the arrangement of the tips is shown in FIG. In this example, the tips of the four irradiation optical fibers 18 indicated by white circles and the tips of the five light receiving optical fibers 19 indicated by black circles are alternately arranged at the intersections of the square lattice. From the tip of the irradiation optical fiber 18, two wavelengths of light having different frequencies depending on the irradiation position are irradiated, and the light reflected or transmitted by the head surface of the subject 9 is the light for reception adjacent to the irradiation optical fiber 18. fiber
It will be detected at 19. Therefore, in the optical measurement, the points between the irradiation optical fiber 18 and the light receiving optical fiber 19 which are adjacent to each other are measured, and the points between these points are the measurement points. In the illustrated example, there are 12 measurement points as indicated by the numbers 1 to 12 in FIG. Although FIG. 3 shows an example in which the optical fiber tip is arranged at the intersection of a 3 × 3 square lattice, the matrix size is not limited to this, and 4 × 4, 5 × 5 or the like may be adopted.

【0018】光計測部20は、図1に示すように、各受光
用光ファイバ19に接続され、受光用光ファイバ19が誘導
する光を光量に対応する電気信号に変換するフォトダイ
オード等の光電変換素子21と、光電変換素子21からの電
気信号を入力し、照射位置及び波長に対応した変調信号
を選択的に検出するためのロックインアンプ等の変調信
号検出回路22と、変調信号検出回路22からの信号をA/D
変換するA/D変換器23とを備えている。
As shown in FIG. 1, the optical measuring section 20 is connected to each light receiving optical fiber 19 and is a photoelectric device such as a photodiode for converting the light guided by the light receiving optical fiber 19 into an electric signal corresponding to the amount of light. A conversion element 21, a modulation signal detection circuit 22 such as a lock-in amplifier for inputting an electric signal from the photoelectric conversion element 21, and selectively detecting a modulation signal corresponding to an irradiation position and a wavelength, and a modulation signal detection circuit. A / D signal from 22
And an A / D converter 23 for conversion.

【0019】光電変換素子21としては光電子増倍管を用
いても良い。またフォトダイオード21を用いる場合に
は、高感度な光計測が実現できるアバランシェフォトダ
イオードが好適である。変調信号検出回路22は、照射位
置と波長に対応した変調信号を選択的に検出するもの
で、図示する実施形態のようにアナログ変調の場合には
ロックインアンプ22を使用する。デジタル変調の場合に
はデジタルフィルターやデジタルシグナルプロセッサを
用いる。またこの実施形態では照射光として二波長の光
を用い、12の計測点が存在するので、計測する信号数
(チャンネル数)は24であり、ロックインアンプモジュ
ールとして合計24個のロックインアンプを備える。計測
チャンネル毎に検出された信号はA/D変換器23でデジ
タル信号に変換され、信号処理部30に送られる。
A photomultiplier tube may be used as the photoelectric conversion element 21. When the photodiode 21 is used, an avalanche photodiode that can realize highly sensitive optical measurement is suitable. The modulation signal detection circuit 22 selectively detects the modulation signal corresponding to the irradiation position and the wavelength, and uses the lock-in amplifier 22 in the case of analog modulation as in the illustrated embodiment. In the case of digital modulation, a digital filter or digital signal processor is used. Further, in this embodiment, since light of two wavelengths is used as irradiation light and there are 12 measurement points, the number of signals to be measured (the number of channels) is 24, and a total of 24 lock-in amplifiers are used as lock-in amplifier modules. Prepare The signal detected for each measurement channel is converted into a digital signal by the A / D converter 23 and sent to the signal processing unit 30.

【0020】信号処理部30は、光計測部20からの信号を
処理し、血中ヘモグロビンの変化量や変化量に含まれる
種々の誤差を補正する計算等を行う演算部31と、演算部
31の演算結果や演算に必要なデータなどを記憶する記憶
部32と、計測信号のタイムコースや演算結果であるトポ
グラフィ画像を表示する表示部33とを備えている。
The signal processing unit 30 processes the signal from the optical measuring unit 20, and performs a calculation for correcting the change amount of blood hemoglobin and various errors included in the change amount, and a calculation unit 31.
A storage unit 32 for storing the calculation result of 31 and data necessary for the calculation, and a display unit 33 for displaying the time course of the measurement signal and the topography image as the calculation result are provided.

【0021】次に信号処理部30の演算部31における信号
の補正処理について図4を参照して説明する。これらの
補正処理手順は予めプログラムとして信号処理部30に組
み込まれている。尚、以下の説明では、計測信号のうち
一波長の信号について説明するが他の波長の信号につい
ても同様の手順で補正処理を行う。
Next, the signal correction processing in the arithmetic unit 31 of the signal processing unit 30 will be described with reference to FIG. These correction processing procedures are incorporated in the signal processing unit 30 in advance as programs. In the following description, one wavelength signal of the measurement signals will be described, but correction processing is performed for signals of other wavelengths in the same procedure.

【0022】まず、光計測部20から信号処理部30に入力
される計測信号S1〜S12の信号値と、外部要因による
変動率とを含む関係式から、行列演算式を算出する(ス
テップ401、402)。外部要因としては光源部10の光強度
の変動や計測プローブ(光ファイバ)先端の接触位置や
角度の変動等があり、これら外部要因による変動率は計
測プローブに限定される変動であり、この変動率をg1
〜g9で表す。一つの計測信号を考えたとき、その信号
は光照射位置及び検出位置の各1点からの影響を受ける
ため、これら外部要因の影響を取り除いた脳機能による
変動成分ST1〜ST12は、次式(1)で表すことができ
る。
First, a matrix arithmetic expression is calculated from a relational expression including the signal values of the measurement signals S1 to S12 input from the optical measuring unit 20 to the signal processing unit 30 and the variation rate due to external factors (step 401, 402). External factors include variations in the light intensity of the light source unit 10 and variations in the contact position and angle of the tip of the measurement probe (optical fiber). The rate of variation due to these external factors is limited to the measurement probe. Rate is g1
~ G9. When one measurement signal is considered, the signal is affected by each one of the light irradiation position and the detection position. It can be represented by 1).

【0023】[0023]

【数1】 式中、iは1〜12の計測チャンネル番号であり、n、mはS
iが関連する格子点の番号である。この式(1)の対数
をとると、
[Equation 1] In the formula, i is the measurement channel number from 1 to 12, and n and m are S
i is the number of the associated grid point. Taking the logarithm of this equation (1),

【数2】 となり、これをさらに[Equation 2] And this

【数3】 に置き換えると、これらの変数を用いた行列演算式
(4)ができる。
[Equation 3] Substituting into, the matrix operation formula (4) using these variables is created.

【0024】[0024]

【数4】 式(4)中、Aは格子点と計測点の関係から導き出され
るマトリックスで、1と0を要素とする。具体的には、
図5に示すように、一つの計測点の計測信号をそれと関
連する二つの格子点の変動率につなげるための、サイズ
12×9(計測点数×格子点数)のマトリックスであ
る。式(4)中のXは、補正後の計測値の対数を示して
いる。
[Equation 4] In Expression (4), A is a matrix derived from the relationship between the grid points and the measurement points, and has 1 and 0 as elements. In particular,
As shown in FIG. 5, it is a matrix of size 12 × 9 (the number of measurement points × the number of grid points) for connecting the measurement signal of one measurement point to the variation rate of the two grid points associated therewith. X in the equation (4) indicates the logarithm of the measured value after correction.

【0025】次に、この行列演算式をもとに補正が最適
になされた場合の変動率gの対数z(log(g))を求め
る。即ち、補正が最適になされている場合、Xはzを変
数とするときにその絶対値最小を示すことになる。そこ
でXの二乗値を計算し、最小二乗法で最適なZを求め
る。こうして求めたzから変動率gを求め(ステップ40
3)、これを用いて、式(2)を計算すると最適な補正
の行われた計測値Stiが求まる(ステップ404)。
Next, the logarithm z (log (g)) of the fluctuation rate g when the correction is optimized is calculated based on this matrix calculation formula. That is, when the correction is optimized, X indicates the minimum absolute value when z is a variable. Therefore, the square value of X is calculated, and the optimum Z is obtained by the least square method. The variation rate g is obtained from z thus obtained (step 40
3) By using this, the equation (2) is calculated to obtain the optimum corrected measured value Sti (step 404).

【0026】このように本実施形態によれば、各光照射
位置及び検出位置に限定した変動率の相関を利用して、
最適な補正を行うことができる変動率を見出しているの
で、計測値の周波数特性や変動の種類によらず、最適な
補正が行われた計測値を求めることができる。
As described above, according to the present embodiment, the correlation of the fluctuation rates limited to the respective light irradiation positions and detection positions is utilized,
Since the variation rate that can be optimally corrected is found, the optimally corrected measured value can be obtained regardless of the frequency characteristic of the measured value and the type of variation.

【0027】尚、上記実施形態では最小二乗法によって
最適な補正項を求める場合を説明したが、最適な補正項
を求める数学的手法は各プローブの独立した変位を求め
る手法であれば最小二乗法に限らず採用することができ
る。
In the above embodiment, the case where the optimum correction term is obtained by the least square method has been described. However, the mathematical method for obtaining the optimum correction term is the least square method as long as it is a method for obtaining independent displacement of each probe. It can be adopted without limitation.

【0028】このように補正した計測信号をもとに、例
えば酸素化ヘモグロビン濃度変化、脱酸素化ヘモグロビ
ン濃度変化、全ヘモグロビン濃度変化を計算し(図4、
ステップ405)、通常の生体光計測における信号処理と
同様に、例えば時系列的な変化を表示するタイムコース
のグラフとして表示したり、計測点毎のヘモグロビン変
化量を等高線状の線画やそれに彩色した画像(トポグラ
フィ画像)として表示することができる。また濃度変化
の数値から、脳機能について種々の判定を行うことも可
能である。
Based on the measurement signals thus corrected, for example, changes in oxygenated hemoglobin concentration, changes in deoxygenated hemoglobin concentration, and changes in total hemoglobin concentration are calculated (FIG. 4, FIG.
Step 405), as in the case of signal processing in normal biological light measurement, for example, it is displayed as a time-course graph displaying time-series changes, or the hemoglobin change amount at each measurement point is contour-lined or colored. It can be displayed as an image (topography image). It is also possible to make various determinations on brain function from the numerical value of the change in concentration.

【0029】[0029]

【発明の効果】本発明によれば、脳機能に伴う微小な血
流変化を高精度で計測することが可能な生体光計測装置
が提供される。また本発明によれば、変動誤差の種類に
拘わりなく変動誤差の影響を最小にした計測を行うこと
ができる。
According to the present invention, there is provided a living body optical measurement system capable of measuring minute changes in blood flow associated with brain function with high accuracy. Further, according to the present invention, it is possible to perform the measurement with the influence of the variation error minimized regardless of the type of the variation error.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用される生体光計測装置の概要を示
す図
FIG. 1 is a diagram showing an outline of a biological optical measurement device to which the present invention is applied.

【図2】光モジュールの詳細を示す図FIG. 2 is a diagram showing details of an optical module.

【図3】光照射位置と検出位置との配列の一例を示す図FIG. 3 is a diagram showing an example of an array of light irradiation positions and detection positions.

【図4】信号処理部が行う補正処理手順の一例を示す図FIG. 4 is a diagram showing an example of a correction processing procedure performed by a signal processing unit.

【図5】信号処理部が行う補正処理で使用する行列演算
式の一例を示す図
FIG. 5 is a diagram showing an example of a matrix arithmetic expression used in a correction process performed by a signal processing unit.

【符号の説明】[Explanation of symbols]

10・・・光源部、18・・・照射用光ファイバ、19・・・
受光用光ファイバ、20・・・光計測部、30・・・信号処
理部、31・・・演算部
10 ... Light source part, 18 ... Irradiation optical fiber, 19 ...
Optical fiber for receiving light, 20 ... Optical measuring unit, 30 ... Signal processing unit, 31 ... Calculation unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検体の複数の光照射位置に光を照射す
るための光源部と、前記複数の光照射位置に対し所定の
位置に配置された複数の検出位置で、前記被検体からの
透過光を受光し、複数の計測位置の計測信号に変換する
光計測部と、前記光計測部からの計測信号を処理し、前
記複数の計測位置を含む領域の生体情報を得る信号処理
部とを備えた生体光計測装置において、 前記信号処理部は、前記複数の計測信号に含まれる、光
照射位置と検出位置に限定される変動誤差の相関に基
き、前記変動誤差を算出し、前記計測信号を補正する手
段を備えたことを特徴とする生体光計測装置。
1. A light source unit for irradiating light to a plurality of light irradiation positions of a subject, and a plurality of detection positions arranged at predetermined positions with respect to the plurality of light irradiation positions. An optical measurement unit that receives transmitted light and converts it into a measurement signal at a plurality of measurement positions, and a signal processing unit that processes the measurement signal from the light measurement unit and obtains biological information of a region including the plurality of measurement positions. In the biological optical measurement device comprising, the signal processing unit is included in the plurality of measurement signals, based on the correlation of the fluctuation error limited to the light irradiation position and the detection position, calculates the fluctuation error, the measurement A living body optical measurement device comprising means for correcting a signal.
【請求項2】 前記補正する手段は、補正後の信号値及
び変動誤差を変数とする行列演算式を作成し、補正後の
信号値の絶対値を最小にする変動誤差を算出することを
特徴とする請求項1記載の生体光計測装置。
2. The correcting means creates a matrix arithmetic expression having the corrected signal value and the fluctuation error as variables, and calculates the fluctuation error that minimizes the absolute value of the corrected signal value. The biological optical measurement device according to claim 1.
【請求項3】 前記変動誤差を最小二乗法により算出す
ることを特徴とする請求項2に記載の生体光計測装置。
3. The biological optical measurement device according to claim 2, wherein the variation error is calculated by a least square method.
JP2002058825A 2002-03-05 2002-03-05 Biological light measuring apparatus Pending JP2003254899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058825A JP2003254899A (en) 2002-03-05 2002-03-05 Biological light measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002058825A JP2003254899A (en) 2002-03-05 2002-03-05 Biological light measuring apparatus

Publications (1)

Publication Number Publication Date
JP2003254899A true JP2003254899A (en) 2003-09-10

Family

ID=28668691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058825A Pending JP2003254899A (en) 2002-03-05 2002-03-05 Biological light measuring apparatus

Country Status (1)

Country Link
JP (1) JP2003254899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401360A (en) * 2021-06-16 2021-09-17 电子科技大学 Aero-engine turbine disc temperature measuring device based on multiband optical radiation temperature measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401360A (en) * 2021-06-16 2021-09-17 电子科技大学 Aero-engine turbine disc temperature measuring device based on multiband optical radiation temperature measurement

Similar Documents

Publication Publication Date Title
US6542763B1 (en) Optical measurement equipment and recording medium and optical measurement method
TWI468688B (en) Optical sensor for determining the concentration of an analyte
JP5693548B2 (en) apparatus
EP1327418B1 (en) Organism optical measurement instrument
US7884933B1 (en) Apparatus and method for determining analyte concentrations
CN110123339B (en) Noninvasive blood glucose measuring device and method
JP2003194714A (en) Measuring apparatus for blood amount in living-body tissue
JPH09122128A (en) Measurement condition reproducing tool, measurement condition reproducing method and biological information utilizing the same
KR102002589B1 (en) Frequency domian based multi-wavelength bio-signal analysing apparatus and method thereof
US7725145B2 (en) Biological photometric device
WO2000034761A1 (en) Optical measurement device
JP5466389B2 (en) Biological light measurement apparatus and measurement noise estimation method
EP3773204B1 (en) Frequency domain diffuse optical spectroscopy and optical detector calibration method
EP2502567A1 (en) Organism light measuring device and method for displaying information relating to necessity/unnecessity of replacement of light-emitting part
JP7370539B2 (en) Bilirubin concentration measurement system
JP2003254899A (en) Biological light measuring apparatus
US8292809B2 (en) Detecting chemical components from spectroscopic observations
US20050277817A1 (en) Noninvasive measurement system for monitoring activity condition of living body
JP2000023947A (en) Biological light measuring method
JP4356954B2 (en) Biological light measurement device
JP4071506B2 (en) Biological light measurement device
JP4722556B2 (en) Biological light measurement device
JP2001321360A (en) Organism measuring device
JP2004350863A (en) Calibration method and calibrator for scattering/absorbing body measuring device, and scattering/absorbing body measuring system using the same
JP2007111461A (en) Bio-optical measurement apparatus