JP2003243215A - Composite magnetic material - Google Patents
Composite magnetic materialInfo
- Publication number
- JP2003243215A JP2003243215A JP2002044159A JP2002044159A JP2003243215A JP 2003243215 A JP2003243215 A JP 2003243215A JP 2002044159 A JP2002044159 A JP 2002044159A JP 2002044159 A JP2002044159 A JP 2002044159A JP 2003243215 A JP2003243215 A JP 2003243215A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic material
- composite magnetic
- atmosphere
- powder
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000696 magnetic material Substances 0.000 title claims abstract description 31
- 239000002131 composite material Substances 0.000 title claims abstract description 22
- 239000012298 atmosphere Substances 0.000 claims abstract description 31
- 238000000137 annealing Methods 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 20
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 239000006247 magnetic powder Substances 0.000 claims description 20
- 238000005121 nitriding Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000000465 moulding Methods 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 abstract description 4
- 230000002378 acidificating effect Effects 0.000 abstract 1
- 239000012299 nitrogen atmosphere Substances 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 150000004767 nitrides Chemical class 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polysiloxane Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電子機器のインダク
タ、チョークコイル、トランスその他に用いられる複合
磁性材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic material used in inductors, choke coils, transformers, etc. of electronic equipment.
【0002】[0002]
【従来の技術】電子機器の小型薄型化に伴い、これらに
用いられる部品やデバイスも小型化、薄型化することが
強く求められている。一方、CPUなどのLSIは高集
積化してきており、これに供給される電源回路には数A
〜数十Aの電流が供給されることがある。従って、これ
らに用いられるチョークコイル等のインダクタにおいて
も、小型化要求とともに、直流重畳によるインダクタン
スの低下が少ないことが必要とされている。また、使用
周波数が高周波化しており、高周波での渦電流損失の低
いことが求められる。すなわち、大電流、高周波で使用
可能であり、かつ、極力小型、薄型化したインダクタを
供給することが求められている。2. Description of the Related Art As electronic devices are made smaller and thinner, it is strongly required that parts and devices used therein be made smaller and thinner. On the other hand, LSIs such as CPUs have become highly integrated, and the power supply circuit supplied to them has several amps.
A current of several tens of amperes may be supplied. Therefore, also in inductors such as choke coils used for these, there is a demand for miniaturization and a reduction in inductance due to DC superposition is required to be small. Further, the operating frequency has become higher, and it is required that the eddy current loss at high frequency is low. That is, it is required to supply an inductor that can be used with a large current and a high frequency, and that is as small and thin as possible.
【0003】チョークコイル等インダクタに用いられる
磁性材料としてはフェライト軟磁性材料や金属磁性材料
が挙げられる。しかし、フェライト軟磁性材料は金属磁
性材料に比べ、飽和磁束密度が低いため、磁気飽和によ
るインダクタンスの低下が大きく、直流重畳特性が悪
い。そのため、通常コアの磁路を妨げる垂直方向にギャ
ップを設け、見掛けの透磁率を下げて使用することが行
われている。しかし、このようなギャップはノイズ音の
発生源となる。また、透磁率を下げても飽和磁束密度は
低いままであるため、直流重畳特性は金属磁性材料より
悪いといった問題点が有る。Ferrite soft magnetic materials and metallic magnetic materials are examples of magnetic materials used for inductors such as choke coils. However, since the ferrite soft magnetic material has a lower saturation magnetic flux density than the metal magnetic material, the inductance is largely decreased due to magnetic saturation, and the DC superposition characteristic is poor. Therefore, a gap is normally provided in the vertical direction that obstructs the magnetic path of the core, and the apparent magnetic permeability is lowered before use. However, such a gap becomes a source of noise noise. Further, since the saturation magnetic flux density remains low even if the magnetic permeability is lowered, there is a problem that the direct current superposition characteristic is worse than that of the metallic magnetic material.
【0004】一方金属磁性材料は、フェライト材料に比
べて飽和磁束密度が著しく大きく、直流重畳特性は良い
が、電気抵抗が低いため、数百kHz〜MHzの高周波
域では渦電流損失が大きくそのままでは使用できない。
そのため、粉末化したものを用い、粉末粒子間絶縁処理
を施し、加圧成形してコアとしたいわゆる圧粉磁芯とし
て使用されている。良好な磁気特性を得るためには、金
属磁性粉の充填率を高める必要があり、数ton/cm
2〜20ton/cm2での高圧成形を行う必要がある。
このとき成形時に導入される加工歪みにより磁気特性は
著しく低下する。このため磁気特性改善のため歪みの開
放を目的として成形後焼鈍が行われている。On the other hand, the metallic magnetic material has a remarkably large saturation magnetic flux density and a good direct current superposition characteristic as compared with the ferrite material, but its electric resistance is low, so that it has a large eddy current loss in a high frequency range of several hundreds kHz to MHz and remains as it is. I can not use it.
Therefore, it is used as a so-called dust core, which is made into a powder, is subjected to insulation treatment between powder particles, and is pressure-molded to form a core. In order to obtain good magnetic properties, it is necessary to increase the filling rate of the metal magnetic powder, which is several ton / cm.
It is necessary to perform high-pressure molding at 2 to 20 ton / cm 2 .
At this time, the magnetic characteristics are remarkably deteriorated by the processing strain introduced at the time of molding. Therefore, in order to improve the magnetic properties, annealing after forming is performed for the purpose of releasing strain.
【0005】[0005]
【発明が解決しようとする課題】一般的に金属材料にお
いて回復は融点の1/2以上の温度で起こる現象であ
り、Feリッチ組成の合金において歪みを十分開放する
ためには少なくとも600℃以上好ましくは700℃以
上で焼鈍する必要がある。しかしながら、従来圧粉磁芯
の絶縁結着剤として使用されるエポキシ樹脂、フェノー
ル樹脂、塩化ビニル樹脂等のほとんどの有機系樹脂は歪
みを開放するために高温熱処理を施すとその耐熱性が低
く熱分解されるために使用が不可能であり、無機系絶縁
結着剤を使用する必要がある。無機系絶縁結着剤として
は、水ガラス、ポロシロキサン樹脂(特開平6−299
114号公報)の提案がなされているが、耐熱温度は5
00℃〜600℃でありそれ以上の温度での焼鈍は困難
である。Generally, in metal materials, the recovery is a phenomenon that occurs at a temperature of ½ or more of the melting point, and at least 600 ° C. or more is preferable in order to sufficiently release the strain in an Fe-rich composition alloy. Needs to be annealed at 700 ° C. or higher. However, most organic resins such as epoxy resin, phenol resin, vinyl chloride resin, etc., which are conventionally used as insulating binders for dust cores, have low heat resistance when subjected to high temperature heat treatment to release strain. It cannot be used because it is decomposed, and it is necessary to use an inorganic insulating binder. As the inorganic insulating binder, water glass, polysiloxane resin (Japanese Patent Laid-Open No. 6-299)
No. 114) has been proposed, but the heat resistance temperature is 5
Since it is 00 ° C to 600 ° C, it is difficult to anneal at higher temperatures.
【0006】本発明は、上記従来の技術における課題を
解決し、高温での焼鈍を可能とし磁気特性の優れた複合
磁性材料を提供するものである。The present invention solves the above-mentioned problems in the prior art and provides a composite magnetic material capable of annealing at high temperature and having excellent magnetic properties.
【0007】[0007]
【課題を解決するための手段】そして、この目的を達成
するために、本発明の請求項1に記載の発明は、特に、
Siの含有量が1wt%以上8wt%以下であり、残部
がFe及び不可避な不純物からなる金属磁性粉に絶縁性
結着剤を添加し、さらに加圧成形して成形体とし、窒化
雰囲気にて熱処理した後、非酸化性雰囲気にて焼鈍した
ことを特徴とする複合磁性材料であり、この構成によ
り、高温での焼鈍を可能とし、磁気特性の優れた複合磁
性材料を提供することが可能になるという効果が得られ
る。In order to achieve this object, the invention described in claim 1 of the present invention is
The content of Si is 1 wt% or more and 8 wt% or less, the balance is added to the magnetic metal powder consisting of Fe and unavoidable impurities, the insulating binder is added, and further pressure-molded into a molded body in a nitriding atmosphere. It is a composite magnetic material characterized by being annealed in a non-oxidizing atmosphere after heat treatment. With this configuration, it is possible to perform annealing at high temperature and to provide a composite magnetic material with excellent magnetic properties. The effect of becoming
【0008】本発明の請求項2に記載の発明は、特に、
Siの含有量が1wt%以上8wt%以下であり且つ、
Al,Cr,Mo,V,Mn,Ti,Nb,Ta,Z
r,Hf,Wの群から選ばれる1種以上の元素が0.0
1wt%以上5wt%以下含まれ、Siと上記群より選
ばれた1種以上の元素の総量が1wt%以上10wt%
以下であり、残部がFeおよび不可避な不純物からなる
金属磁性粉に、絶縁性結着剤を添加し、さらに加圧成形
して成形体とし、窒化雰囲気にて熱処理した後、非酸化
性雰囲気にて焼鈍したことを特徴とする複合磁性材料で
あり、この構成により、窒化層形成効果が向上し、それ
により高温での焼鈍を可能とし、請求項1の発明よりも
さらに磁気特性の優れた複合磁性材料を提供することが
可能になるという効果が得られる。The invention according to claim 2 of the present invention is
Si content is 1 wt% or more and 8 wt% or less, and
Al, Cr, Mo, V, Mn, Ti, Nb, Ta, Z
One or more elements selected from the group consisting of r, Hf, and W are 0.0
1 wt% or more and 5 wt% or less, and the total amount of Si and one or more elements selected from the above group is 1 wt% or more and 10 wt% or more.
The following is added to the metallic magnetic powder, the balance of which is Fe and unavoidable impurities, with an insulating binder added, and further pressure-molded to obtain a molded body, which is then heat-treated in a nitriding atmosphere and then changed to a non-oxidizing atmosphere. The composite magnetic material is characterized by being annealed by means of the above-mentioned structure. With this structure, the effect of forming a nitride layer is improved, whereby annealing at a high temperature is possible, and a composite material having more excellent magnetic properties than the invention of claim 1. It is possible to provide the magnetic material.
【0009】本発明の請求項3に記載の発明は、特に、
請求項1,2記載の金属磁性粉を窒化雰囲気にて熱処理
した後、絶縁性結着剤を添加し、さらに加圧成形して成
形体とし、非酸化性雰囲気にて焼鈍したことを特徴とす
る複合磁性材料であり、この構成により、金属磁性粉を
粉末状態で熱処理を行い、その後加圧成形、焼鈍した場
合においても、請求項1,2の発明と同様の効果を得る
ことができる。The invention according to claim 3 of the present invention is
A heat treatment is applied to the metal magnetic powder according to claim 1 or 2 in a nitriding atmosphere, an insulating binder is added, and pressure molding is performed to obtain a molded body, which is annealed in a non-oxidizing atmosphere. With this structure, the same effects as those of the first and second aspects of the invention can be obtained even when the magnetic metal powder is heat-treated in a powder state and then pressure-molded and annealed.
【0010】本発明の請求項4に記載の発明は、特に、
窒化雰囲気における熱処理温度が500〜1000℃で
ある請求項1〜3のいずれか一つに記載の複合磁性材料
であり、所定の温度にて熱処理することにより、さらに
安定した窒化層を形成し、且つ磁性体の渦電流損失を小
さくすることが可能になるという効果が得られる。The invention according to claim 4 of the present invention is
The composite magnetic material according to any one of claims 1 to 3, wherein a heat treatment temperature in a nitriding atmosphere is 500 to 1000 ° C, and a more stable nitride layer is formed by heat treatment at a predetermined temperature. In addition, it is possible to obtain the effect that the eddy current loss of the magnetic material can be reduced.
【0011】本発明の請求項5に記載の発明は、特に、
非酸化性雰囲気における焼鈍温度が700〜1000℃
である請求項1〜3のいずれか一つに記載の複合磁性材
料であり、所定の温度にて焼鈍することにより、さらに
形成時における加工歪みを十分に開放し、且つ渦電流損
失を小さくすることが可能になるという効果が得られ
る。The invention according to claim 5 of the present invention is
Annealing temperature in non-oxidizing atmosphere is 700 to 1000 ° C
The composite magnetic material according to any one of claims 1 to 3, which is further annealed at a predetermined temperature to sufficiently release processing strain during formation and reduce eddy current loss. The effect that it becomes possible is obtained.
【0012】本発明の請求項6に記載の発明は、特に、
金属磁性粉の平均粒径が1〜100μmである請求項1
〜5のいずれか一つに記載の複合磁性材料であり、所定
の平均粒径とすることにより、成形密度を高くし、且つ
磁性体の渦電流損失を小さくすることが可能になるとい
う効果が得られる。The invention according to claim 6 of the present invention is
The average particle size of the metal magnetic powder is 1 to 100 μm.
The composite magnetic material according to any one of items 1 to 5, and by having a predetermined average particle diameter, it is possible to increase the molding density and reduce the eddy current loss of the magnetic material. can get.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明に用いられる金属磁性粉はSiの含
有量が1wt%以上8wt%以下であり残部がFe及び
不可避な不純物からなるものである。本発明におけるS
iの役割は以下の2点である。1点は軟磁気特性を向上
させるものであり、磁気異方性、磁歪定数を小さくし、
また電気抵抗を高め渦電流損失を低減させる効果があ
る。2点目は高温焼鈍を可能とすることである。鋭意検
討の結果、本発明における金属磁性粉を用い焼鈍前段階
とし窒化雰囲気で熱処理することにより高温焼鈍が可能
となることを見出した。理由は明確ではないが以下のよ
うに推察される。高温焼鈍時に粒子間絶縁がとれなくな
る原因として、絶縁材が金属磁性粉末と反応、拡散する
ことが考えられる。Siは窒素との親和力が強く安定な
窒化物を生成する。このため窒化雰囲気で熱処理するこ
とにより粉末表面に窒化層が形成される。形成された窒
化層は絶縁材の粉末中への拡散を抑制する。Si添加量
としては1wt%以上8wt%以下が好ましい。1wt
%より少ないと上記効果が小さく高温焼鈍することがで
きない。8wt%より多いと飽和磁化の低下が大きく直
流重畳特性が低下する。さらに、本発明における金属磁
性粉においては窒化層形成元素として窒素との親和力の
強いAl,Cr,Mo,V,Mn,Ti,Nb,Ta,
Zr,Hf,Wの群から選ばれる1種以上の元素をSi
とともに複合添加することも可能である。上記群より選
ばれた1種以上の添加量は0.01wt%以上5wt%
以下であり、且つSiとの添加総量が10wt%以下で
あることが好ましい。0.01wt%より少ないと窒化
層形成効果に乏しく、5wt%より多いと、またはSi
との総量が10wt%を超えると飽和磁化の低下が大き
く直流重畳特性が低下する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The metal magnetic powder used in the present invention has a Si content of 1 wt% or more and 8 wt% or less, and the balance of Fe and inevitable impurities. S in the present invention
The role of i is the following two points. One point is to improve the soft magnetic characteristics, reduce magnetic anisotropy and magnetostriction constant,
It also has the effect of increasing electrical resistance and reducing eddy current loss. The second point is to enable high temperature annealing. As a result of earnest studies, it was found that high temperature annealing can be performed by using the metal magnetic powder of the present invention and performing heat treatment in a nitriding atmosphere as a pre-annealing step. The reason is not clear, but it is guessed as follows. It is considered that the insulating material reacts with and diffuses with the metal magnetic powder as a cause of the loss of interparticle insulation during high temperature annealing. Si has a strong affinity with nitrogen and produces stable nitrides. Therefore, a heat treatment is performed in a nitriding atmosphere to form a nitride layer on the powder surface. The formed nitride layer suppresses the diffusion of the insulating material into the powder. The amount of Si added is preferably 1 wt% or more and 8 wt% or less. 1 wt
If it is less than%, the above effect is small and high temperature annealing cannot be performed. When it is more than 8 wt%, the saturation magnetization is largely lowered and the direct current superposition characteristic is deteriorated. Furthermore, in the metal magnetic powder of the present invention, Al, Cr, Mo, V, Mn, Ti, Nb, Ta, which have a strong affinity for nitrogen as a nitride layer forming element,
Si containing one or more elements selected from the group of Zr, Hf, and W.
It is also possible to add them together. The addition amount of one or more selected from the above group is 0.01 wt% or more and 5 wt% or more.
It is preferable that the amount is less than or equal to 10 wt%. If it is less than 0.01 wt%, the effect of forming a nitride layer is poor, and if it is more than 5 wt%, or Si
When the total amount of the above is more than 10 wt%, the saturation magnetization is greatly reduced and the direct current superposition characteristic is deteriorated.
【0014】本発明における絶縁性結着剤としては、絶
縁性の酸化物を形成するものが好ましく、シラン系、チ
タン系、クロム系等カップリング剤、シリコーン樹脂、
又SiO2,TiO2,Al2O3等酸化物粉末などが挙げ
られるが、より好ましくは安価で分散性の良い、シラン
系、チタン系、クロム系等カップリング剤、シリコーン
樹脂である。The insulating binder in the present invention is preferably one which forms an insulating oxide, such as a silane-based, titanium-based or chromium-based coupling agent, a silicone resin,
Further, oxide powders such as SiO 2 , TiO 2 , Al 2 O 3 and the like can be mentioned, but more preferable are silane-based, titanium-based, chromium-based coupling agents and silicone resins, which are inexpensive and have good dispersibility.
【0015】本発明における窒化雰囲気中熱処理は、窒
素ガス、アンモニアガス等窒化ガス雰囲気で熱処理する
ものであり、焼鈍前に行えば良く、粉末状態で行いその
後成形、焼鈍しても、又成形後行いその後焼鈍しても良
い。熱処理温度は500〜1000℃が好ましい。50
0℃より低いと窒化速度が遅く好ましくない。1000
℃を超えると、成形後窒化雰囲気中熱処理を行った場合
においては、金属磁性粉粒子間絶縁がとれなくなり渦電
流損失が大きくなる。また、粉末状態で窒化雰囲気中熱
処理を行った場合においては、処理温度が1000℃以
下ならば焼結が起こらない、もしくは若干焼結する程度
であり容易に解砕可能であるが、1000℃を超えると
焼結が進み解砕が困難となり粉末粒径が粗大化するため
渦電流損失が大となるため好ましくない。The heat treatment in the nitriding atmosphere in the present invention is a heat treatment in a nitriding gas atmosphere such as nitrogen gas or ammonia gas, and may be carried out before the annealing. It may be carried out in the powder state and thereafter, after the molding or annealing, or after the molding. It may be annealed after performing. The heat treatment temperature is preferably 500 to 1000 ° C. Fifty
If the temperature is lower than 0 ° C, the nitriding rate is slow and it is not preferable. 1000
If the temperature exceeds ℃, when heat treatment is performed in a nitriding atmosphere after molding, the insulation between the metal magnetic powder particles cannot be obtained and eddy current loss increases. Further, when heat treatment is performed in a powder state in a nitriding atmosphere, if the treatment temperature is 1000 ° C. or less, sintering does not occur or is slightly sintered, so that it can be easily crushed, but 1000 ° C. If it exceeds the above range, the sintering proceeds, the crushing becomes difficult, and the powder particle size becomes coarse, resulting in a large eddy current loss, which is not preferable.
【0016】本発明における焼鈍処理は成形時における
加工歪みを開放するためのものである。焼鈍時における
雰囲気は非酸化性であることが好ましく、アルゴンガ
ス、ヘリウムガス等不活性ガス、水素ガス等還元性ガ
ス、真空雰囲気等が挙げられる。また、窒素ガス雰囲気
においても焼鈍は可能であり、この場合窒化処理と焼鈍
処理を同じに行うことも可能である。焼鈍温度は700
〜1000℃が好ましい。700℃より低いと歪み開放
が十分でなく、1000℃より高いと金属磁性粉粒子間
絶縁がとれなくなり渦電流損失が大きくなる。The annealing treatment in the present invention is for releasing the processing strain during molding. The atmosphere during annealing is preferably non-oxidizing, and examples thereof include an inert gas such as argon gas and helium gas, a reducing gas such as hydrogen gas, and a vacuum atmosphere. Further, annealing can be performed in a nitrogen gas atmosphere, and in this case, the nitriding treatment and the annealing treatment can be performed in the same manner. Annealing temperature is 700
The temperature is preferably 1000 ° C. If the temperature is lower than 700 ° C., the strain release is not sufficient, and if the temperature is higher than 1000 ° C., the insulation between the metal magnetic powder particles cannot be obtained and the eddy current loss increases.
【0017】また、本発明に用いられる金属磁性粉の粒
子径としては1.0μm以上100μm以下が好まし
い。粉末粒子径が1.0μmより小さいと成形密度が低
くなり、透磁率が低下するため好ましくない。粉末粒子
径が100μmより大きくなると高周波での渦電流損失
が大きくなり好ましくない。さらに好ましくは50μm
以下とすることが良い。The particle size of the metal magnetic powder used in the present invention is preferably 1.0 μm or more and 100 μm or less. If the powder particle size is smaller than 1.0 μm, the molding density will be low and the magnetic permeability will be reduced, such being undesirable. If the powder particle size is larger than 100 μm, eddy current loss at high frequencies becomes large, which is not preferable. More preferably 50 μm
The following is recommended.
【0018】以下に、本発明の具体的な実施の形態につ
いて、表を用いて説明する。Specific embodiments of the present invention will be described below with reference to tables.
【0019】(実施の形態1)(表1)に示す組成に
て、平均粒径約12μmの金属磁性粉末を用意した。用
意した粉末に対しシリコーン樹脂を1.2重量部添加混
合しコンパウンドを作成した。得られたコンパウンドを
用い12ton/cm2で加圧成形を行いトロイダルコ
アを作成し、(表1)に示す条件にて窒化雰囲気中熱処
理及び焼鈍処理を行った。得られたサンプルについて直
流重畳、コア損失について評価を行った。直流重畳につ
いては、印加磁場50Oe、周波数100kHzにおけ
る透磁率をLCRメータにて測定し評価した。コア損失
は交流B−Hカーブ測定機を用いて測定周波数100k
Hz、測定磁束密度0.1Tで測定を行った。結果を
(表1)に示す。(Embodiment 1) With the composition shown in (Table 1), a metal magnetic powder having an average particle diameter of about 12 μm was prepared. 1.2 parts by weight of silicone resin was added to and mixed with the prepared powder to prepare a compound. Using the obtained compound, pressure molding was performed at 12 ton / cm 2 to prepare a toroidal core, and heat treatment and annealing treatment were performed in a nitriding atmosphere under the conditions shown in (Table 1). The obtained samples were evaluated for DC superimposition and core loss. Regarding the direct current superposition, the magnetic permeability at an applied magnetic field of 50 Oe and a frequency of 100 kHz was measured and evaluated by an LCR meter. The core loss is measured with an AC B-H curve measuring device at a frequency of 100k.
The measurement was performed at Hz and a measured magnetic flux density of 0.1T. The results are shown in (Table 1).
【0020】[0020]
【表1】 [Table 1]
【0021】(実施の形態2)実施例1にて用いた金属
磁性粉末を、(表2)に示す条件で窒化雰囲気中熱処理
を行った後、粉末に対してシランカップリング剤を1.
0重量部添加混合しコンパウンドを作成した。得られた
コンパウンドを用い12ton/cm2で加圧成形を行
いトロイダルコアを作成し、(表2)に示す条件にて焼
鈍処理を行った。得られたサンプルについて直流重畳、
コア損失について評価を行った。直流重畳については、
印加磁場50Oe、周波数100kHzにおける透磁率
をLCRメータにて測定し評価した。コア損失は交流B
−Hカーブ測定機を用いて測定周波数100kHz、測
定磁束密度0.1Tで測定を行った。結果を(表2)に
示す。(Embodiment 2) The metal magnetic powder used in Example 1 was heat-treated in a nitriding atmosphere under the conditions shown in (Table 2), and then a silane coupling agent was added to the powder.
A compound was prepared by adding 0 parts by weight and mixing. Using the obtained compound, pressure molding was performed at 12 ton / cm 2 to prepare a toroidal core, and annealing treatment was performed under the conditions shown in (Table 2). DC superimposition on the obtained sample,
The core loss was evaluated. For DC superimposition,
The magnetic permeability at an applied magnetic field of 50 Oe and a frequency of 100 kHz was measured and evaluated with an LCR meter. AC loss is core B
The measurement was performed using a -H curve measuring machine at a measurement frequency of 100 kHz and a measurement magnetic flux density of 0.1T. The results are shown in (Table 2).
【0022】[0022]
【表2】 [Table 2]
【0023】(表1)、(表2)より、Siの含有量が
1wt%以上8wt%以下であり残部がFe及び不可避
な不純物からなる金属磁性粉、またはSiの含有量が1
wt%以上8wt%以下であり且つ、Al,Cr,M
o,V,Mn,Ti,Nb,Ta,Zr,Hf,Wの群
から選ばれる1種以上の元素が0.01wt%以上5w
t%以下含まれ、Siと上記群より選ばれた1種以上の
元素の総量が1wt%以上10wt%以下であり、残部
がFeおよび不可避な不純物からなる金属磁性粉を用
い、焼鈍前に窒化雰囲気中熱処理することにより高温焼
鈍が可能であり、得られる本発明における複合軟磁性材
料は良好な直流重畳特性、低いコア損失を示すことが分
かる。From (Table 1) and (Table 2), the content of Si is 1 wt% or more and 8 wt% or less, the balance is metallic magnetic powder consisting of Fe and unavoidable impurities, or the content of Si is 1
% to 8 wt% and Al, Cr, M
0.01 wt% or more and 5 w of one or more elements selected from the group of o, V, Mn, Ti, Nb, Ta, Zr, Hf, and W
Nitrogen is annealed before annealing by using a metallic magnetic powder containing t% or less, the total amount of Si and one or more elements selected from the above group is 1 wt% or more and 10 wt% or less, and the balance being Fe and inevitable impurities. It can be seen that high temperature annealing is possible by heat treatment in an atmosphere, and the obtained composite soft magnetic material of the present invention exhibits good DC superposition characteristics and low core loss.
【0024】(実施の形態3)組成が94.9%Fe−
5.0%Si−0.1%Mnであり、(表3)に示す平
均粒径の金属磁性粉を用意した。用意した粉末に対しシ
リコーン樹脂を1.2重量部添加混合しコンパウンドを
作成した。得られたコンパウンドを用い12ton/c
m2で加圧成形を行いトロイダルコアを作成し、窒素ガ
ス中で750℃で30分熱処理した後アルゴンガス中で
900℃で30分間焼鈍を行った。得られたサンプルに
ついて初透磁率、コア損失について評価を行った。初透
磁率については、周波数100kHzにおいてLCRメ
ータにて測定し評価した。コア損失は交流B−Hカーブ
測定機を用いて測定周波数100kHz、測定磁束密度
0.1Tで測定を行った。結果を(表3)に示す。(Embodiment 3) The composition is 94.9% Fe-
A metal magnetic powder having 5.0% Si-0.1% Mn and an average particle size shown in (Table 3) was prepared. 1.2 parts by weight of silicone resin was added to and mixed with the prepared powder to prepare a compound. 12 ton / c using the obtained compound
A toroidal core was prepared by pressure molding at m 2 and heat-treated in nitrogen gas at 750 ° C. for 30 minutes, and then annealed in argon gas at 900 ° C. for 30 minutes. The obtained samples were evaluated for initial magnetic permeability and core loss. The initial permeability was measured and evaluated with an LCR meter at a frequency of 100 kHz. The core loss was measured using an AC BH curve measuring instrument at a measurement frequency of 100 kHz and a measurement magnetic flux density of 0.1T. The results are shown in (Table 3).
【0025】[0025]
【表3】 [Table 3]
【0026】(表3)より、粒径1〜100μmにおい
て、好ましくは1〜50μmにおいて低損失を示すこと
が分かる。From Table 3, it can be seen that a low loss is exhibited at a particle size of 1 to 100 μm, preferably 1 to 50 μm.
【0027】[0027]
【発明の効果】以上のように本発明は、Siの含有量が
1wt%以上8wt%以下であり、残部がFe及び不可
避な不純物からなる金属磁性粉に絶縁性結着剤を添加
し、さらに加圧して成形体とし、窒化雰囲気にて熱処理
した後、非酸化性雰囲気にて焼鈍したことを特徴とする
複合磁性材料である。As described above, according to the present invention, the content of Si is 1 wt% or more and 8 wt% or less, and the balance is added to the metallic magnetic powder consisting of Fe and unavoidable impurities, and further, The composite magnetic material is characterized in that it is pressed into a compact, heat-treated in a nitriding atmosphere, and then annealed in a non-oxidizing atmosphere.
【0028】この発明によれば、高温での焼鈍を可能と
し、磁気特性に優れた複合磁性材料を提供することが可
能となる。According to the present invention, it becomes possible to provide a composite magnetic material which can be annealed at a high temperature and has excellent magnetic characteristics.
フロントページの続き Fターム(参考) 4K018 AA26 AB01 AC01 BA15 BA16 BB04 BC01 BC28 BC29 BC30 BD01 FA08 GA02 KA44 5E041 AA02 AA19 BB03 CA02 CA03 HB11 NN01 NN04 NN06 NN18Continued front page F-term (reference) 4K018 AA26 AB01 AC01 BA15 BA16 BB04 BC01 BC28 BC29 BC30 BD01 FA08 GA02 KA44 5E041 AA02 AA19 BB03 CA02 CA03 HB11 NN01 NN04 NN06 NN18
Claims (6)
下であり残部がFe及び不可避な不純物からなる金属磁
性粉に絶縁性結着剤を添加し、さらに加圧成形して成形
体とし、窒化雰囲気にて熱処理した後、非酸化性雰囲気
にて焼鈍したことを特徴とする複合磁性材料。1. A molded body is obtained by adding an insulating binder to a metal magnetic powder having a Si content of 1 wt% or more and 8 wt% or less and the balance being Fe and inevitable impurities, and further press-molding the metal magnetic powder. A composite magnetic material characterized by being heat-treated in a nitriding atmosphere and then annealed in a non-oxidizing atmosphere.
下であり且つ、Al,Cr,Mo,V,Mn,Ti,N
b,Ta,Zr,Hf,Wの群から選ばれる1種以上の
元素が0.01wt%以上5wt%以下含まれ、Siと
上記群より選ばれた1種以上の元素の総量が1wt%以
上10wt%以下であり、残部がFe及び不可避な不純
物からなる金属磁性粉に、絶縁性結着剤を添加し、さら
に加圧成形して成形体とし、窒化雰囲気にて熱処理した
後、非酸化性雰囲気にて焼鈍したことを特徴とする複合
磁性材料。2. The content of Si is 1 wt% or more and 8 wt% or less, and Al, Cr, Mo, V, Mn, Ti, N
0.01 wt% or more and 5 wt% or less of one or more elements selected from the group of b, Ta, Zr, Hf, and W, and the total amount of Si and one or more elements selected from the above group is 1 wt% or more. An insulating binder is added to a metal magnetic powder containing 10 wt% or less and the balance being Fe and unavoidable impurities, and the mixture is pressure-molded to obtain a molded body, which is heat-treated in a nitriding atmosphere and then non-oxidizing. A composite magnetic material characterized by being annealed in an atmosphere.
囲気にて熱処理した後、絶縁性結着剤を添加し、さらに
加圧成形して成形体とし、非酸化性雰囲気にて焼鈍した
ことを特徴とする複合磁性材料。3. The magnetic metal powder according to claim 1 or 2 is heat treated in a nitriding atmosphere, an insulating binder is added, and pressure molding is performed to obtain a molded body, which is annealed in a non-oxidizing atmosphere. A composite magnetic material characterized in that
〜1000℃である請求項1〜3のいずれか一つに記載
の複合磁性材料。4. The heat treatment temperature in a nitriding atmosphere is 500.
The composite magnetic material according to claim 1, wherein the composite magnetic material has a temperature of ˜1000 ° C. 5.
0〜1000℃である請求項1〜3のいずれか一つに記
載の複合磁性材料。5. The annealing temperature in a non-oxidizing atmosphere is 70.
It is 0-1000 degreeC, The composite magnetic material as described in any one of Claims 1-3.
であることを特徴とする請求項1〜5のいずれか一つに
記載の複合磁性材料。6. The average particle size of the magnetic metal powder is 1 to 100 μm.
The composite magnetic material according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002044159A JP2003243215A (en) | 2002-02-21 | 2002-02-21 | Composite magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002044159A JP2003243215A (en) | 2002-02-21 | 2002-02-21 | Composite magnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003243215A true JP2003243215A (en) | 2003-08-29 |
Family
ID=27783652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002044159A Pending JP2003243215A (en) | 2002-02-21 | 2002-02-21 | Composite magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003243215A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007013072A (en) * | 2005-05-30 | 2007-01-18 | Mitsubishi Materials Pmg Corp | Dust core and method for manufacturing same, and reactor using same |
JP2007107031A (en) * | 2005-10-12 | 2007-04-26 | Matsushita Electric Ind Co Ltd | Method for producing composite magnetic material |
EP1918943A1 (en) * | 2005-08-25 | 2008-05-07 | Sumitomo Electric Industries, Ltd. | Soft magnetic material, powder magnetic core, method for manufacturing soft magnetic material, and method for manufacturing powder magnetic core |
EP2993672A1 (en) | 2014-09-08 | 2016-03-09 | Toyota Jidosha Kabushiki Kaisha | Powder for magnetic core, method of producing dust core, dust core, and method of producing powder for magnetic core |
JP2016058732A (en) * | 2014-09-08 | 2016-04-21 | 株式会社豊田中央研究所 | Dust core, powder for magnetic core, method for producing dust core, and method for producing powder for magnetic core |
EP3157019A1 (en) * | 2015-10-14 | 2017-04-19 | Toyota Jidosha Kabushiki Kaisha | Compressed powder core, powders for compressed powder core, and method for producing compressed powder core |
CN108057878A (en) * | 2017-12-19 | 2018-05-22 | 浙江大学 | A kind of preparation method of bivalve layer soft-magnetic composite material |
US10407763B2 (en) | 2015-04-14 | 2019-09-10 | Hyundai Motor Company | Carbon steel composition for reduced thermal strain steering rack bar and method for manufacturing same |
CN112635147A (en) * | 2020-12-09 | 2021-04-09 | 横店集团东磁股份有限公司 | Soft magnetic powder and preparation method and application thereof |
-
2002
- 2002-02-21 JP JP2002044159A patent/JP2003243215A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007013072A (en) * | 2005-05-30 | 2007-01-18 | Mitsubishi Materials Pmg Corp | Dust core and method for manufacturing same, and reactor using same |
EP1918943A1 (en) * | 2005-08-25 | 2008-05-07 | Sumitomo Electric Industries, Ltd. | Soft magnetic material, powder magnetic core, method for manufacturing soft magnetic material, and method for manufacturing powder magnetic core |
EP1918943A4 (en) * | 2005-08-25 | 2010-11-10 | Sumitomo Electric Industries | Soft magnetic material, powder magnetic core, method for manufacturing soft magnetic material, and method for manufacturing powder magnetic core |
JP2007107031A (en) * | 2005-10-12 | 2007-04-26 | Matsushita Electric Ind Co Ltd | Method for producing composite magnetic material |
JP4640097B2 (en) * | 2005-10-12 | 2011-03-02 | パナソニック株式会社 | Method for producing composite magnetic material |
CN106471588B (en) * | 2014-09-08 | 2019-05-10 | 丰田自动车株式会社 | Dust core, magnetic core powder and their manufacturing method |
EP2993672A1 (en) | 2014-09-08 | 2016-03-09 | Toyota Jidosha Kabushiki Kaisha | Powder for magnetic core, method of producing dust core, dust core, and method of producing powder for magnetic core |
JP2016058732A (en) * | 2014-09-08 | 2016-04-21 | 株式会社豊田中央研究所 | Dust core, powder for magnetic core, method for producing dust core, and method for producing powder for magnetic core |
JP2016058496A (en) * | 2014-09-08 | 2016-04-21 | 株式会社豊田中央研究所 | Dust core, powder for magnetic core, method for producing dust core, and method for producing powder for magnetic core |
CN106471588A (en) * | 2014-09-08 | 2017-03-01 | 丰田自动车株式会社 | Dust core, magnetic core powder and their manufacture method |
US10497500B2 (en) | 2014-09-08 | 2019-12-03 | Toyota Jidosha Kabuhiki Kaisha | Powder magnetic core, powder for magnetic cores, and methods of manufacturing them |
US10407763B2 (en) | 2015-04-14 | 2019-09-10 | Hyundai Motor Company | Carbon steel composition for reduced thermal strain steering rack bar and method for manufacturing same |
CN107025986A (en) * | 2015-10-14 | 2017-08-08 | 丰田自动车株式会社 | The manufacture method of dust core, dust core powder and dust core |
CN107025986B (en) * | 2015-10-14 | 2019-06-28 | 丰田自动车株式会社 | The manufacturing method of dust core, dust core powder and dust core |
JP2017076689A (en) * | 2015-10-14 | 2017-04-20 | トヨタ自動車株式会社 | Powder-compact magnetic core, powder for powder-compact magnetic core, and method for manufacturing powder-compact magnetic core |
EP3157019A1 (en) * | 2015-10-14 | 2017-04-19 | Toyota Jidosha Kabushiki Kaisha | Compressed powder core, powders for compressed powder core, and method for producing compressed powder core |
US10535454B2 (en) | 2015-10-14 | 2020-01-14 | Toyota Jidosha Kabushiki Kaisha | Compressed powder core, powders for compressed power core, and method for producing compressed powder core |
CN108057878A (en) * | 2017-12-19 | 2018-05-22 | 浙江大学 | A kind of preparation method of bivalve layer soft-magnetic composite material |
CN108057878B (en) * | 2017-12-19 | 2020-01-31 | 浙江大学 | Preparation method of double-shell-layer soft magnetic composite material |
CN112635147A (en) * | 2020-12-09 | 2021-04-09 | 横店集团东磁股份有限公司 | Soft magnetic powder and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010082486A1 (en) | Process for producing composite magnetic material, dust core formed from same, and process for producing dust core | |
JP5501970B2 (en) | Powder magnetic core and manufacturing method thereof | |
JP5022999B2 (en) | Powder magnetic core and manufacturing method thereof | |
JP5739348B2 (en) | Reactor and manufacturing method thereof | |
EP0872856A1 (en) | Magnetic core and method of manufacturing the same | |
JP2007299871A (en) | Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same | |
EP3171369B1 (en) | Magnetic core, method for producing magnetic core, and coil component | |
JP3624681B2 (en) | Composite magnetic material and method for producing the same | |
JP2001011563A (en) | Manufacture of composite magnetic material | |
JP3964213B2 (en) | Manufacturing method of dust core and high frequency reactor | |
EP2589450A1 (en) | Composite magnetic material and process for production thereof | |
JP2013098384A (en) | Dust core | |
JP5439888B2 (en) | Composite magnetic material and method for producing the same | |
WO2010038441A1 (en) | Composite magnetic material and process for producing the composite magnetic material | |
EP1598836A1 (en) | High-frequency core and inductance component using the same | |
JP2003243215A (en) | Composite magnetic material | |
JP6229166B2 (en) | Composite magnetic material for inductor and manufacturing method thereof | |
JP5063861B2 (en) | Composite dust core and manufacturing method thereof | |
JPH11260618A (en) | Composite magnetic material, its manufacture, and fe-al-si soft magnetic alloy powder used therefor | |
JP2012222062A (en) | Composite magnetic material | |
JP2009147252A (en) | Compound magnetic material and method of manufacturing thereof | |
JP5472694B2 (en) | Composite sintered body of aluminum oxide and iron, and method for producing the same | |
JP4106966B2 (en) | Composite magnetic material and manufacturing method thereof | |
WO2003060930A1 (en) | Powder magnetic core and high frequency reactor using the same | |
JP2003160847A (en) | Composite magnetic material, magnetic element using the same, and manufacture method therefor |