[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003128785A - Flame-retardant thermosetting resin composition, and prepreg, electrical insulation film, laminated board, resin-coated metallic foil and multilayer wiring board each using the same, and method for producing them - Google Patents

Flame-retardant thermosetting resin composition, and prepreg, electrical insulation film, laminated board, resin-coated metallic foil and multilayer wiring board each using the same, and method for producing them

Info

Publication number
JP2003128785A
JP2003128785A JP2001322377A JP2001322377A JP2003128785A JP 2003128785 A JP2003128785 A JP 2003128785A JP 2001322377 A JP2001322377 A JP 2001322377A JP 2001322377 A JP2001322377 A JP 2001322377A JP 2003128785 A JP2003128785 A JP 2003128785A
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
group
resin
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001322377A
Other languages
Japanese (ja)
Inventor
Takayuki Sueyoshi
隆之 末吉
Nobuyuki Ogawa
信之 小川
Kenji Tanaka
賢治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001322377A priority Critical patent/JP2003128785A/en
Publication of JP2003128785A publication Critical patent/JP2003128785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a flame-retardant thermosetting resin composition having excellent dielectric properties, high heat resistance and impact resistance and good moldability by flame retarding a cyanate resin with excellent dielectric properties without using any bromine-based flame retardant, and to provide resin films, resin-coated metallic films and multilayer printed wiring boards each using the composition so as to be compatible with a tendency toward higher frequency. SOLUTION: This flame-retardant thermosetting resin composition comprises (A) a bifunctional cyanate ester compound and (B) a phosphorus compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、難燃性熱硬化性樹
脂組成物並びに該組成物を用いたプリプレグ、積層板、
樹脂フィルム、樹脂付き金属箔及び多層配線板とその製
造方法に関する。
TECHNICAL FIELD The present invention relates to a flame-retardant thermosetting resin composition, and a prepreg, a laminate, and a prepreg using the composition.
TECHNICAL FIELD The present invention relates to a resin film, a resin-coated metal foil, a multilayer wiring board, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年のプリント基板においては、信号伝
播遅延時間の短縮及び誘電体損失の低減を目的として、
使用される樹脂の低誘電率化が要求されてきている。こ
のような要求から、プリント配線板用材料として誘電特
性に優れるシアネート樹脂が用いられるようになってき
ており、各社からシアネート樹脂をプリント配線板用材
料として利用する方法が提案されている。
2. Description of the Related Art In recent printed circuit boards, in order to shorten the signal propagation delay time and the dielectric loss,
There is a demand for a resin having a low dielectric constant. Due to these requirements, cyanate resins having excellent dielectric properties have been used as materials for printed wiring boards, and various companies have proposed methods of using cyanate resins as materials for printed wiring boards.

【0003】樹脂をプリント配線板用材料として用いる
には、難燃性を付与する必要があり、通常は高い難燃性
を有する臭素化合物が用いられている。例えば、特公平
4−24370では臭素化ビスフェノールAおよび臭素
化ビスフェノールAのヒドロキシエーテル、特開平2−
286723では臭素化フェノールノボラックのグリシ
ジルエーテル、特開平5−339342では臭素化ビス
フェノールAグリシジルエーテル、特開平7−2070
22では臭素化マレイミド類、特開2000−9593
8ではシアネートエステル化合物と反応性を有さない添
加型の臭素化合物が用いられている。このような臭素化
合物は高い難燃性を有するが、近年、環境対応としてこ
のような臭素系難燃剤を用いずに難燃化した材料が求め
られている。
In order to use a resin as a material for a printed wiring board, it is necessary to impart flame retardancy, and usually a bromine compound having high flame retardancy is used. For example, JP-B-4-24370 discloses a brominated bisphenol A and a hydroxy ether of brominated bisphenol A.
286723, brominated phenol novolac glycidyl ether, JP-A-5-339342 discloses brominated bisphenol A glycidyl ether, JP-A-7-2070.
No. 22, brominated maleimides, JP-A-2000-9593.
In No. 8, an addition type bromine compound having no reactivity with the cyanate ester compound is used. Although such a bromine compound has high flame retardancy, in recent years, a material made flame-retardant without using such a brominated flame retardant has been required as an environmental measure.

【0004】難燃性エポキシ樹脂に使用される、臭素化
合物に代わる難燃剤としては、まず、水酸化アルミニウ
ムや水酸化マグネシウムのような金属水酸化物が挙げら
れる。しかし、金属酸化物の配合は、先述したように誘
電特性、耐熱性、耐衝撃性および成形性の低下という問
題を潜在的に抱えている。また、トリフェニルフォスフ
ェートやレゾルシノールビス(ジフェニルフォスフェー
ト)のようなリン化合物も臭素化合物に代わる難燃剤と
して、エポキシ樹脂にしばしば配合される。しかしなが
ら、これらのリン化合物は大量に配合すると、耐熱性、
耐湿性、吸水性などを低下させる場合が多い。また、一
般的に多層配線板材料として用いられるエポキシ樹脂に
対しては難燃効果の低い場合が多く、リン化合物のみで
難燃化することは困難であるため、多層プリント配線板
用途のエポキシ樹脂組成物の難燃化においては、金属水
酸化物とリン化合物とを併用する手法が多く用いられて
いた。
The flame retardants used in flame-retardant epoxy resins instead of bromine compounds include metal hydroxides such as aluminum hydroxide and magnesium hydroxide. However, the compounding of metal oxides has a potential problem of deterioration of dielectric properties, heat resistance, impact resistance and moldability as described above. Phosphorus compounds such as triphenyl phosphate and resorcinol bis (diphenyl phosphate) are also often added to epoxy resins as flame retardants replacing bromine compounds. However, if these phosphorus compounds are blended in a large amount, heat resistance,
In many cases, moisture resistance and water absorption are reduced. In addition, since the flame-retardant effect is often low with respect to the epoxy resin that is generally used as a multilayer wiring board material, it is difficult to make it flame-retardant only with a phosphorus compound. A method of using a metal hydroxide and a phosphorus compound in combination has been often used for flame retarding the composition.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、誘電
特性に優れるシアネート樹脂を臭素系難燃剤を用いずに
難燃化した誘電特性、耐熱性、耐衝撃性、成形性に優れ
る樹脂組成物を用いて高周波化に対応可能な樹脂フィル
ム、樹脂付き金属箔及び多層プリント配線板を提供する
ことである。
An object of the present invention is to make a cyanate resin having excellent dielectric properties flame-retardant without using a brominated flame retardant, and to obtain a resin composition having excellent dielectric properties, heat resistance, impact resistance and moldability. The object is to provide a resin film, a metal foil with resin, and a multilayer printed wiring board which can be used for high frequencies by using a product.

【0006】[0006]

【課題を解決するための手段】本発明は以下に記載の各
事項に関する。 (1) (A)二価のシアネートエステル化合物と、(B)リン
化合物からなる難燃性熱硬化性樹脂組成物。 (2) (A)二価のシアネートエステル化合物が一般式
[1]:
The present invention relates to the items described below. (1) A flame-retardant thermosetting resin composition comprising a divalent cyanate ester compound (A) and a phosphorus compound (B). (2) The divalent cyanate ester compound (A) has the general formula [1]:

【化7】 (式中、Rは、[Chemical 7] (In the formula, R 1 is

【化8】 を表し;RおよびRは、たがいに同一でも異なって
いてもよく、水素原子またはメチル基を表す。)で示さ
れるシアネートエステル化合物である(1)に記載の熱
硬化性樹脂組成物。
[Chemical 8] R 2 and R 3, which may be the same or different, each represent a hydrogen atom or a methyl group. ] The thermosetting resin composition as described in (1) which is a cyanate ester compound shown by these.

【0007】(3) (B)リン化合物がシアネートエステル化合物と反応す
る官能基を有する(1)または(2)に記載の熱硬化性
樹脂組成物。 (4)リン化合物のシアネートエステル化合物と反応す
る官能基がフェノール性水酸基である、(3)に記載の
熱硬化性樹脂組成物。 (5)フェノール性水酸基を有するリン化合物が式
[2]あるいは式[3]:
(3) The thermosetting resin composition as described in (1) or (2), wherein the phosphorus compound (B) has a functional group that reacts with the cyanate ester compound. (4) The thermosetting resin composition according to (3), wherein the functional group that reacts with the cyanate ester compound of the phosphorus compound is a phenolic hydroxyl group. (5) The phosphorus compound having a phenolic hydroxyl group is represented by the formula [2] or the formula [3]:

【化9】 [Chemical 9]

【化10】 (式中Rは、水素原子、アルキル基、シクロアルキル
基、アリール基、アラールキル基を表す。)で示される
リン化合物である(4)に記載の熱硬化性樹脂組成物。
[Chemical 10] (In the formula, R 4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group.) The thermosetting resin composition according to (4), which is a phosphorus compound.

【0008】(6) (B)リン化合物のシアネートエステル化合物と反応す
る官能基がエポキシ基である、(3)に記載の熱硬化性
樹脂組成物。 (7)エポキシ基を有するリン化合物がフェノール性水
酸基を有するリン化合物とエポキシ樹脂とを反応させる
ことにより得られる(6)に記載の熱硬化性樹脂組成
物。
(6) The thermosetting resin composition according to (3), wherein the functional group which reacts with the cyanate ester compound of the phosphorus compound (B) is an epoxy group. (7) The thermosetting resin composition according to (6), which is obtained by reacting a phosphorus compound having an epoxy group with a phosphorus compound having a phenolic hydroxyl group and an epoxy resin.

【0009】(8)フェノール性水酸基を有するリン化
合物が式[2]又は式[3]:
(8) The phosphorus compound having a phenolic hydroxyl group is represented by the formula [2] or the formula [3]:

【化11】 [Chemical 11]

【化12】 (式中Rは、水素原子、アルキル基、シクロアルキル
基、アリール基、アラールキル基を表す。)で示される
リン化合物である(7)に記載の熱硬化性樹脂組成物。 (9)フェノール性水酸基と反応させるエポキシ樹脂
が、多官能エポキシ樹脂である(7)または(8)に記
載の熱硬化性樹脂組成物。
[Chemical 12] (In the formula, R 4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group.) The thermosetting resin composition according to (7), which is a phosphorus compound. (9) The thermosetting resin composition according to (7) or (8), wherein the epoxy resin reacted with the phenolic hydroxyl group is a polyfunctional epoxy resin.

【0010】(10)熱硬化性樹脂組成物がさらに、リ
ン含有エポキシ樹脂以外のエポキシ樹脂、フェノール樹
脂、アルキド樹脂、ポリエステル樹脂、ポリイミド樹
脂、ポリウレタン樹脂、シリコーン樹脂、ビスマレイミ
ド樹脂、ビニル樹脂、ベンゾシクロブテン樹脂からなる
群より選ばれる熱硬化性樹脂を含む熱硬化性樹脂組成物
である(1)〜(9)のいずれかに記載の熱硬化性樹脂
組成物。 (11)熱硬化性樹脂がリン含有エポキシ樹脂以外のエ
ポキシ樹脂である(10)に記載の難燃性熱硬化性樹脂
組成物。 (12)熱硬化性樹脂がビフェニル骨格を有するエポキ
シ樹脂である(10)に記載の熱硬化性樹脂組成物。
(10) The thermosetting resin composition further comprises epoxy resin other than phosphorus-containing epoxy resin, phenol resin, alkyd resin, polyester resin, polyimide resin, polyurethane resin, silicone resin, bismaleimide resin, vinyl resin, benzo. The thermosetting resin composition according to any one of (1) to (9), which is a thermosetting resin composition containing a thermosetting resin selected from the group consisting of cyclobutene resins. (11) The flame-retardant thermosetting resin composition according to (10), wherein the thermosetting resin is an epoxy resin other than the phosphorus-containing epoxy resin. (12) The thermosetting resin composition according to (10), wherein the thermosetting resin is an epoxy resin having a biphenyl skeleton.

【0011】(13)熱硬化性樹脂組成物がさらに、フ
ッ素樹脂、ポリフェニレンエーテル、変性ポリフェニレ
ンエーテル、ポリフェニレンスルフィド、ポリカーボネ
ート、ポリエーテルイミド、ポリエーテルエーテルケト
ン、ポリアリレートからなる群より選ばれる熱可塑性樹
脂を含む熱硬化性樹脂組成物である、(1)〜(12)
のいずれかに記載の熱硬化性樹脂組成物。 (14)熱可塑性樹脂がポリフェニレンエーテルおよび
変性ポリフェニレンエーテルである(13)に記載の熱
硬化性樹脂組成物。 (15)ポリフェニレンエーテルおよび変性ポリフェニ
レンエーテルがポリ(2,6−ジメチル−1,4−フェ
ニレン)エーテル、ポリ(2,6−ジメチル−1,4−
フェニレン)エーテルとポリスチレンのアロイ化ポリ
マ、ポリ(2,6−ジメチル−1,4−フェニレン)エ
ーテルとスチレン−ブタジエンコポリマのアロイ化ポリ
マ、ポリ(2,6−ジメチル−1,4−フェニレン)エ
ーテルとスチレン−無水マレイン酸コポリマのアロイ化
ポリマ、ポリ(2,6−ジメチル−1,4−フェニレ
ン)エーテルとポリアミドのアロイ化ポリマ、ポリ
(2,6−ジメチル−1,4−フェニレン)エーテルと
スチレン−ブタジエン−アクリロニトリルコポリマのア
ロイ化ポリマからなる群より選ばれる(14)記載の熱
硬化性樹脂組成物。
(13) The thermosetting resin composition is further a thermoplastic resin selected from the group consisting of fluororesins, polyphenylene ethers, modified polyphenylene ethers, polyphenylene sulfides, polycarbonates, polyetherimides, polyetheretherketones and polyarylates. (1) to (12), which is a thermosetting resin composition containing
The thermosetting resin composition according to any one of 1. (14) The thermosetting resin composition according to (13), wherein the thermoplastic resin is polyphenylene ether and modified polyphenylene ether. (15) The polyphenylene ether and modified polyphenylene ether are poly (2,6-dimethyl-1,4-phenylene) ether and poly (2,6-dimethyl-1,4-).
Alloyed polymer of phenylene) ether and polystyrene, Alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer, poly (2,6-dimethyl-1,4-phenylene) ether And an alloyed polymer of styrene-maleic anhydride copolymer, poly (2,6-dimethyl-1,4-phenylene) ether and an alloyed polymer of polyamide, poly (2,6-dimethyl-1,4-phenylene) ether. The thermosetting resin composition according to (14), which is selected from the group consisting of alloyed polymers of styrene-butadiene-acrylonitrile copolymer.

【0012】(16)熱硬化性樹脂組成物中のシアナト
基とフェノール性水酸基の当量比(シアナト基/フェノ
ール性水酸基)が100/5から100/100であ
る、(1)〜(15)に記載の熱硬化性樹脂組成物。 (17)熱硬化性樹脂組成物中のシアナト基とエポキシ
基の当量比が100/20から100/100である、
(1)〜(16)のいずれかに記載の熱硬化性樹脂組成
物。 (18)熱硬化性樹脂組成物中にシアネートエステル化
合物とポリフェニレンエーテルを含み、シアネートエス
テル化合物とポリフェニレンエーテルの重量比(シアネ
ートエステル化合物/ポリフェニレンエーテル)が10
0/5から100/200である、(1)〜(17)の
いずれかに記載の熱硬化性樹脂組成物。
(16) In (1) to (15), the equivalent ratio of cyanato group to phenolic hydroxyl group (cyanato group / phenolic hydroxyl group) in the thermosetting resin composition is 100/5 to 100/100. The thermosetting resin composition described. (17) The equivalent ratio of the cyanato group to the epoxy group in the thermosetting resin composition is 100/20 to 100/100.
The thermosetting resin composition according to any one of (1) to (16). (18) The thermosetting resin composition contains a cyanate ester compound and a polyphenylene ether, and the weight ratio of the cyanate ester compound and the polyphenylene ether (cyanate ester compound / polyphenylene ether) is 10
The thermosetting resin composition according to any one of (1) to (17), which is 0/5 to 100/200.

【0013】(19)(1)〜(18)のいずれかに記
載の熱硬化性樹脂組成物を、基材に含浸又は塗工してな
るプリプレグ。 (20)(19)に記載のプリプレグを用いて積層形成
してなる積層板。 (21)(1)〜(18)のいずれかに記載の熱硬化性
樹脂組成物を、支持フィルムに塗布して得られる樹脂フ
ィルム。 (22)(1)〜(18)のいずれかに記載の熱硬化性
樹脂組成物を金属箔に塗布して得られる樹脂付き金属
箔。 (23)(1)〜(18)のいずれかに記載の熱硬化性
樹脂組成物からなる絶縁層を有する多層配線板。
(19) A prepreg obtained by impregnating or coating a base material with the thermosetting resin composition according to any one of (1) to (18). (20) A laminated plate formed by laminating the prepreg according to (19). (21) A resin film obtained by applying the thermosetting resin composition according to any one of (1) to (18) to a support film. (22) A resin-coated metal foil obtained by applying the thermosetting resin composition according to any one of (1) to (18) to a metal foil. (23) A multilayer wiring board having an insulating layer made of the thermosetting resin composition according to any one of (1) to (18).

【0014】(24)内層回路板の回路面上に(21)
に記載の樹脂フィルムを積層・一体化して絶縁樹脂層と
し、該絶縁樹脂層上に回路を形成することを特徴とする
多層配線板の製造方法。 (25)内層回路板の回路面上に(22)に記載の樹脂
付き金属箔を積層・一体化して、該樹脂付き金属箔由来
する金属層に回路加工を施すことを特徴とする多層配線
板の製造方法。
(24) On the circuit surface of the inner layer circuit board (21)
A method for manufacturing a multilayer wiring board, comprising: laminating and integrating the resin films according to 1. to form an insulating resin layer, and forming a circuit on the insulating resin layer. (25) A multilayer wiring board, characterized in that the metal foil with resin according to (22) is laminated and integrated on a circuit surface of an inner layer circuit board, and a metal layer derived from the metal foil with resin is subjected to circuit processing. Manufacturing method.

【0015】[0015]

【発明の実施の形態】本発明者らは、シアネート樹脂の
難燃化に対して、リン化合物の配合が特に有効であり、
これにより優れた誘電特性を有する熱硬化性樹脂組成物
が得られることを見出した。難燃化のために必要なリン
化合物の配合量は、エポキシ樹脂の難燃化の場合に比べ
て少量でよいため、エポキシ樹脂の場合に見られるよう
な物性の低下は、最小限に抑制することが可能である。
また、金属水酸化物を併用しなくとも難燃化が可能であ
り、これにより、誘電特性、耐熱性、耐衝撃性、成形性
が良好な熱硬化性樹脂組成物を提供することができる。
このように、シアネート樹脂の難燃化において、リン化
合物が特に高い効果をもたらす原因として、シアネート
樹脂が窒素原子を含んでいることが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that the addition of a phosphorus compound is particularly effective for making a cyanate resin flame-retardant.
It has been found that a thermosetting resin composition having excellent dielectric properties can be obtained by this. Since the compounding amount of the phosphorus compound required for flame retardation may be smaller than that for the case of making the epoxy resin flame-retardant, the deterioration of physical properties as seen in the case of the epoxy resin is suppressed to a minimum. It is possible.
Further, flame retardation can be achieved without using metal hydroxide together, and thus a thermosetting resin composition having good dielectric properties, heat resistance, impact resistance, and moldability can be provided.
As described above, the reason why the phosphorus compound exerts a particularly high effect in making the cyanate resin flame-retardant is that the cyanate resin contains a nitrogen atom.

【0016】本発明で使用される(A)二価のシアネー
トエステル化合物は、1分子中にシアナト基を2個有す
るものであり、例えば前記一般式[1]に示した化合物
を使用することができる。一般式[1]で示される化合
物としては、例えば、2,2−ビス(4−シアナトフェ
ニル)プロパン、ビス(4−シアナトフェニル)エタ
ン、2,2−ビス(3,5−ジメチル−4−シアナトフ
ェニル)メタン、2,2−ビス(4−シアナトフェニ
ル)−1,1,1,3,3,3−ヘキサフルオロプロパ
ン、α,α’−ビス(4−シアナトフェニル)−m−ジ
イソプロピルベンゼン等が挙げられる。その中でも、
2,2−ビス(4−シアナトフェニル)プロパンは硬化
物の誘電特性と硬化性のバランスが特に良好であり、コ
スト的にも安価であるため好ましい。またシアネートエ
ステル化合物は、1種類を単独で用いてもよく、2種類
以上を混合して用いてもよい。また、ここで用いられる
シアネートエステル化合物は予め一部が三量体や五量体
にオリゴマー化されていても構わない。上記シアネート
エステル化合物の好ましい配合割合は、樹脂組成物中の
全固形分に対し15〜80重量%の範囲であり、より好
ましい配合割合は20〜60重量%の範囲であり、特に
好ましい配合割合は25〜40重量%である。シアネー
トエステル化合物の配合割合が15重量%を下回ると、
耐熱性及び耐溶剤性の低下が見られ、シアネートエステ
ル化合物の配合割合が80重量%を上回ると、硬化物に
おける耐衝撃性の低下が見られる。
The divalent cyanate ester compound (A) used in the present invention has two cyanato groups in one molecule. For example, the compound represented by the above general formula [1] can be used. it can. Examples of the compound represented by the general formula [1] include 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, and 2,2-bis (3,5-dimethyl-). 4-cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, α, α′-bis (4-cyanatophenyl) -M-diisopropylbenzene and the like. Among them,
2,2-bis (4-cyanatophenyl) propane is preferable because it has a particularly good balance between the dielectric properties and the curability of the cured product and is inexpensive in cost. The cyanate ester compounds may be used alone or in combination of two or more. Further, a part of the cyanate ester compound used here may be previously oligomerized to a trimer or a pentamer. A preferable blending ratio of the cyanate ester compound is in the range of 15 to 80% by weight, more preferable blending ratio is in the range of 20 to 60% by weight, and a particularly preferable blending ratio is based on the total solid content in the resin composition. It is 25 to 40% by weight. If the compounding ratio of the cyanate ester compound is less than 15% by weight,
The heat resistance and the solvent resistance decrease, and when the compounding ratio of the cyanate ester compound exceeds 80% by weight, the impact resistance of the cured product decreases.

【0017】本発明で使用される(B)リン化合物とし
ては、トリフェニルフォスフェート、トリクレジルフォ
スフェート、トリキシレニルフォスフェート、トリエチ
ルフォスフェート、クレジルジフェニルフォスフェー
ト、キシレニルジフェニルフォスフェート、クレジルビ
ス(ジ2,6-キシレニル)フォスフェート、2-エチルヘ
キシルジフェニルフォスフェート、ジメチルメチルフォ
スフェートなどのリン酸エステル単量体、レゾルシノー
ルビス(ジフェニル)フォスフェート、ビスフェノールA
ビス(ジフェニル)フォスフェート、ビスフェノールAビ
ス(ジクレジル)フォスフェート、レゾルシノールAビス
(ジ2,6-キシレニル)フォスフェートなどのリン酸エ
ステル縮合体、水酸基、カルボキシル基、アミノ基、ビ
ニル基などの反応性基を有するリン化合物、一般式
[2]〜[4]のようなリン化合物、一般式[2]〜
[4]のようなリン化合物と多官能性エポキシ樹脂をあ
らかじめ反応させたエポキシ基を有するリン化合物など
を使用できる。上記リン化合物の好ましい配合割合は、
樹脂組成物中の全固形分に対しリン原子が0.2〜3.0
重量%の範囲であり、より好ましい配合割合は0.5〜
2.0重量%の範囲であり、特に好ましい配合割合は
0.8〜1.2重量%である。リン原子の配合割合が0.
2重量%を下回ると難燃性が得られない。また、3.0
重量%を上回ると、耐熱性、耐湿性の低下が見られる。
Examples of the phosphorus compound (B) used in the present invention include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, triethyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate. , Cresyl bis (di2,6-xylenyl) phosphate, 2-ethylhexyl diphenyl phosphate, phosphoric acid ester monomers such as dimethyl methyl phosphate, resorcinol bis (diphenyl) phosphate, bisphenol A
Bis (diphenyl) phosphate, bisphenol A bis (dicresyl) phosphate, resorcinol A bis
Phosphate ester condensates such as (di2,6-xylenyl) phosphate, phosphorus compounds having a reactive group such as a hydroxyl group, a carboxyl group, an amino group and a vinyl group, as in general formulas [2] to [4] Phosphorus compound, general formula [2]-
A phosphorus compound having an epoxy group obtained by previously reacting a phosphorus compound such as [4] with a polyfunctional epoxy resin can be used. The preferred blending ratio of the phosphorus compound is
The phosphorus atom is 0.2 to 3.0 with respect to the total solid content in the resin composition.
It is in the range of% by weight, and a more preferable blending ratio is 0.5-
It is in the range of 2.0% by weight, and a particularly preferable blending ratio is 0.8 to 1.2% by weight. The compounding ratio of phosphorus atoms is 0.
If it is less than 2% by weight, flame retardancy cannot be obtained. Also, 3.0
When it exceeds the weight%, heat resistance and moisture resistance are deteriorated.

【0018】[0018]

【化13】 [Chemical 13]

【0019】これらのリン化合物の中でも、シアナト基
と反応する反応性官能基を有するリン化合物は、配線板
製造工程における薬液の汚染や、成型時におけるリン化
合物の揮発などの懸念がないため、特に有用である。こ
こで、シアナト基と反応する反応性官能基とは積層板を
作る工程における温度、すなわち60〜300℃、好ま
しくは100〜180℃の範囲で前記シアネート化合物
のシアナト基との反応が進行する官能基を指し、具体的
には、シアナト基、フェノール性水酸基、アルコール性
水酸基、アミノ基、エポキシ基、マレイミド基、カルボ
キシル基などシアネートエステル化合物と反応する官能
基である。反応性官能基は化合物中に少なくとも1個以
上含まれていることが好ましい。シアネートエステル化
合物と反応する官能基の中でもフェノール性水酸基とエ
ポキシ基は、シアネートエステル化合物との反応性が高
いため特に好ましい。このようなフェノール性水酸基を
有するリン化合物としては、一般式[2]や[3]で示
されるHCA−HQ(三光化学株式会社製)が市販され
ているのでこれを用いることができる。フェノール性水
酸基を有する化合物を用いた場合、シアナト基とフェノ
ール性水酸基の割合(シアナト基/フェノール性水酸
基)を5/100から100/100とすることによ
り、難燃性と耐熱性のバランスに優れた樹脂を得ること
ができる。上記フェノール性水酸基を有するリン化合物
の好ましい配合割合は、シアナト基とフェノール性水酸
基の割合(シアナト基/フェノール性水酸基)が5/1
00〜100/100の範囲であり、より好ましい配合
割合は20/100〜60/100の範囲であり、特に
好ましい配合割合は30/100〜40/100であ
る。フェノール性水酸基とシアナト基の配合割合が5/
100を下回ると難燃性が得られない。また、100/
100を上回ると、耐熱性、耐湿性の低下が見られる。
Among these phosphorus compounds, a phosphorus compound having a reactive functional group that reacts with a cyanato group is not particularly concerned because there is no concern about chemical solution contamination in the wiring board manufacturing process or volatilization of the phosphorus compound during molding. It is useful. Here, the reactive functional group that reacts with the cyanato group means a function in which the reaction with the cyanato group of the cyanate compound proceeds at a temperature in the step of forming a laminate, that is, in the range of 60 to 300 ° C, preferably 100 to 180 ° C. A group, specifically, a functional group that reacts with a cyanate ester compound such as a cyanato group, a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, an epoxy group, a maleimide group, and a carboxyl group. It is preferable that at least one reactive functional group is contained in the compound. Among the functional groups that react with the cyanate ester compound, the phenolic hydroxyl group and the epoxy group are particularly preferable because they have high reactivity with the cyanate ester compound. As such a phosphorus compound having a phenolic hydroxyl group, HCA-HQ (manufactured by Sanko Chemical Co., Ltd.) represented by the general formulas [2] and [3] is commercially available, and thus it can be used. When a compound having a phenolic hydroxyl group is used, by setting the ratio of cyanato group to phenolic hydroxyl group (cyanato group / phenolic hydroxyl group) from 5/100 to 100/100, an excellent balance between flame retardancy and heat resistance is achieved. A resin can be obtained. The phosphorus compound having a phenolic hydroxyl group is preferably mixed in a ratio of cyanato group to phenolic hydroxyl group (cyanato group / phenolic hydroxyl group) of 5/1.
It is in the range of 100 to 100/100, more preferably in the range of 20/100 to 60/100, and particularly preferably in the range of 30/100 to 40/100. Mixing ratio of phenolic hydroxyl group and cyanato group is 5 /
If it is less than 100, flame retardancy cannot be obtained. Also, 100 /
When it exceeds 100, heat resistance and moisture resistance are deteriorated.

【0020】また、エポキシ基を有するリン化合物もシ
アネートエステル化合物との反応性が高いため有用であ
る。エポキシ基を有するリン化合物としては、式[2]
や式[3]に示したフェノール性水酸基を有するリン化
合物と多官能性エポキシ樹脂を予め反応させた、リン原
子を樹脂骨格中に含むリン含有エポキシ樹脂などが挙げ
られる。このようなリン含有エポキシ樹脂のうち市販さ
れているものとしては、ZX−1548(東都化成株式
会社製商品名)等があり、容易に入手できるためこれを
使用しても良い。
A phosphorus compound having an epoxy group is also useful because it has a high reactivity with a cyanate ester compound. The phosphorus compound having an epoxy group is represented by the formula [2]
And a phosphorus-containing epoxy resin containing a phosphorus atom in the resin skeleton, which is obtained by previously reacting a phosphorus compound having a phenolic hydroxyl group represented by the formula [3] with a polyfunctional epoxy resin. Among such phosphorus-containing epoxy resins, ZX-1548 (trade name manufactured by Tohto Kasei Co., Ltd.) and the like are commercially available and may be used because they are easily available.

【0021】リン化合物中にシアナト基と反応する官能
基を含む場合、反応によりシアネート樹脂骨格中にリン
原子が導入される。この反応は溶液中で行なっても良
い。また、混合物をフィルムや金属箔に塗布する際に行
なっても良いし、混合物を基板に積層した後の熱硬化の
際に行なっても良い。反応は通常60〜300℃の範囲
で行う。溶液中であらかじめ反応させる場合、溶媒とし
ては、主としてベンゼン、トルエン、キシレン、トリメ
チルベンゼンのような芳香族炭化水素系溶媒が用いられ
るがこれに限定されるものではない。反応系の粘度を調
整する場合や、あらかじめ溶解させる熱可塑性樹脂の溶
解性を向上させる場合には、ケトン系溶媒、エーテル系
溶媒、アルコール系溶媒、エーテルアルコール系溶媒ま
たはアミド系溶媒のような反応に不活性な溶媒を併用し
ても良い。反応時間は、反応系の濃度、触媒量などによ
って適宜調整することができる。なお、溶液中で反応さ
せる場合は、溶液の粘度が大きくなって取扱いが困難に
なることを防ぐために、転化率(シアネート化合物にお
ける反応の進行度)を制御することが好ましい。転化率
の制御にはモノマー濃度の変化から求められるモノマー
転化率(T)あるいは、官能基濃度の変化から求めら
れる官能基の転化率(T)を指標として用いることが
できる。モノマー転化率(T)はGC、GPCなどか
ら求められ、本発明においては0≦T≦60%とする
ことが好ましい。なお、GPCで測定する場合のモノマ
ー転化率(T)は、次式であらわされる。
When the phosphorus compound contains a functional group which reacts with a cyanato group, the reaction introduces a phosphorus atom into the cyanate resin skeleton. This reaction may be performed in solution. Further, it may be carried out when the mixture is applied to a film or a metal foil, or may be carried out during thermosetting after the mixture is laminated on a substrate. The reaction is usually performed in the range of 60 to 300 ° C. When the reaction is carried out in advance in a solution, an aromatic hydrocarbon solvent such as benzene, toluene, xylene and trimethylbenzene is mainly used as the solvent, but the solvent is not limited thereto. When adjusting the viscosity of the reaction system or when improving the solubility of the thermoplastic resin to be dissolved in advance, a reaction such as a ketone solvent, an ether solvent, an alcohol solvent, an ether alcohol solvent or an amide solvent. An inert solvent may be used together therewith. The reaction time can be appropriately adjusted depending on the concentration of the reaction system, the amount of catalyst and the like. When the reaction is carried out in a solution, it is preferable to control the conversion rate (progress of reaction in the cyanate compound) in order to prevent the solution from becoming too viscous and difficult to handle. To control the conversion rate, the monomer conversion rate ( TM ) obtained from the change in the monomer concentration or the functional group conversion rate ( TF ) obtained from the change in the functional group concentration can be used as an index. The monomer conversion rate (T M ) is obtained from GC, GPC, etc., and in the present invention, it is preferable that 0 ≦ T M ≦ 60%. The monomer conversion rate ( TM ) when measured by GPC is represented by the following equation.

【数1】T=100×(S−S)/S:反応前のモノマー由来のピーク面積 S:測定時(時間t)におけるモノマー由来のピーク
面積
## EQU1 ## T M = 100 × (S 0 −S t ) / S 0 S 0 : Peak area derived from monomer before reaction S t : Peak area derived from monomer at the time of measurement (time t)

【0022】また、官能基の転化率(T)はIR、N
MR、DSCなどから求められ、本発明においては0≦
≦40%とすることが好ましい。なお、IRで測定
する場合のモノマー転化率(T)は、次式であらわさ
れる。
The conversion rate (T F ) of the functional group is IR, N
Calculated from MR, DSC, etc., and in the present invention, 0 ≦
It is preferable that T F ≦ 40%. The monomer conversion rate (T F ) when measured by IR is represented by the following equation.

【数2】T=100×(A−A)/A:反応前のシアナト基由来の吸光度 A:測定時(時間t)におけるシアナト基由来の吸光
[Number 2] T F = 100 × (A 0 -A t) / A 0 A 0: before reaction cyanato group derived from the absorbance A t: absorbance from cyanato group at the time of measurement (time t)

【0023】また、上記の樹脂骨格中にリン原子を有す
る難燃性シアネート樹脂を含む熱硬化性組成物に、さら
に熱硬化性樹脂の1種類以上を配合しても良い。熱硬化
性樹脂としてはエポキシ樹脂、フェノール樹脂、アルキ
ド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリウレ
タン樹脂、シリコーン樹脂、ビスマレイミド樹脂、ビニ
ル樹脂、ベンゾシクロブテン樹脂などが例示される。
Further, one or more thermosetting resins may be further added to the thermosetting composition containing the flame-retardant cyanate resin having a phosphorus atom in the resin skeleton. Examples of the thermosetting resin include epoxy resin, phenol resin, alkyd resin, polyester resin, polyimide resin, polyurethane resin, silicone resin, bismaleimide resin, vinyl resin and benzocyclobutene resin.

【0024】特にエポキシ樹脂を混合した場合は、硬化
物の耐湿性が大きく向上するため好ましく、エポキシ樹
脂としてはビスフェノールA型エポキシ樹脂、ビスフェ
ノールF型エポキシ樹脂、ビスフェノールS型エポキシ
樹脂、フェノールノボラック型エポキシ樹脂、アルキル
フェノールノボラック型エポキシ樹脂、ビフェニル型エ
ポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペン
タジエン骨格を有するエポキシ樹脂、フェノール類とフ
ェノール性水酸基を有する芳香族アルデヒドとの縮合物
のエポキシ化物、トリグリシジルイソシアヌレート、脂
環式エポキシ樹脂、樹脂骨格中にリン原子を有するリン
含有エポキシ樹脂などを単独で、または2種以上を組み
合わせて使用することができる。エポキシ樹脂を配合す
ると誘電特性、難燃性、Tg等の物性が低下する傾向が
あるが、YX4000H(ジャパンエポキシレジン株式
会社製商品名)などのようなビフェニル骨格を有するエ
ポキシ樹脂を用いると、前記のような物性の低下が抑え
られるため好ましい。また、樹脂骨格中にリン原子を含
むリン含有エポキシ樹脂を用いて、さらに難燃性を向上
させることもできる。このようなリン含有エポキシ樹脂
として、式[2]に示したフェノール性水酸基を有する
リン化合物と多官能性エポキシ樹脂を予め反応させた、
リン原子を樹脂骨格中に含むリン含有エポキシ樹脂等が
挙げられる。このうち、ZX−1548(東都化成株式
会社製)等は市販されており、容易に入手できるためこ
れを使用しても良い。上記エポキシ化合物の好ましい配
合割合は、エポキシ基のシアナト基に対する比(エポキ
シ基/シアナト基)が10/100〜200/100の
範囲であり、より好ましい配合割合は30/100〜1
00/100の範囲であり、特に好ましい配合割合は6
0/100〜80/100である。エポキシ基とシアナ
ト基の配合割合が10/100を下回ると耐湿性が得ら
れない。また、200/100を上回ると、誘電特性、
Tg、難燃性の低下が見られる。
Particularly, when an epoxy resin is mixed, the moisture resistance of the cured product is greatly improved, which is preferable. As the epoxy resin, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a phenol novolac type epoxy resin is used. Resin, alkylphenol novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, epoxy resin having dicyclopentadiene skeleton, epoxidized product of condensation product of phenol and aromatic aldehyde having phenolic hydroxyl group, triglycidyl isocyanurate The alicyclic epoxy resin, the phosphorus-containing epoxy resin having a phosphorus atom in the resin skeleton and the like can be used alone or in combination of two or more kinds. When an epoxy resin is blended, the dielectric properties, flame retardancy, and physical properties such as Tg tend to deteriorate, but when an epoxy resin having a biphenyl skeleton such as YX4000H (trade name of Japan Epoxy Resin Co., Ltd.) is used, It is preferable because the deterioration of physical properties as described above can be suppressed. Further, it is possible to further improve the flame retardancy by using a phosphorus-containing epoxy resin containing a phosphorus atom in the resin skeleton. As such a phosphorus-containing epoxy resin, a phosphorus compound having a phenolic hydroxyl group represented by the formula [2] is previously reacted with a polyfunctional epoxy resin,
Examples thereof include phosphorus-containing epoxy resins containing a phosphorus atom in the resin skeleton. Among these, ZX-1548 (manufactured by Tohto Kasei Co., Ltd.) and the like are commercially available and can be easily obtained, and thus may be used. A preferable blending ratio of the epoxy compound is such that the ratio of epoxy group to cyanato group (epoxy group / cyanato group) is in the range of 10/100 to 200/100, and more preferable blending ratio is 30/100 to 1
It is in the range of 00/100, and a particularly preferable mixing ratio is 6
It is 0/100 to 80/100. Moisture resistance cannot be obtained when the mixing ratio of the epoxy group and the cyanato group is less than 10/100. If it exceeds 200/100, the dielectric characteristics,
A decrease in Tg and flame retardance is seen.

【0025】本発明の熱硬化性樹脂組成物に、さらに熱
可塑性樹脂の1種類以上を配合しても良い。熱可塑性樹
脂としては、フッ素樹脂、ポリフェニレンエーテル、変
性ポリフェニレンエーテル、ポリフェニレンスルフィ
ド、ポリカーボネート、ポリエーテルイミド、ポリエー
テルエーテルケトン、ポリアリレートなどが例示され
る。そのうち、ポリフェニレンエーテルおよび変性ポリ
フェニレンエーテルを配合すると、硬化物の誘電特性お
よび硬化物の耐衝撃性が向上するのでさらに好ましい。
ポリフェニレンエーテルおよび変性ポリフェニレンエー
テルとしては、例えば、ポリ(2,6−ジメチル−1,
4−フェニレン)エーテル、ポリ(2,6−ジメチル−
1,4−フェニレン)エーテルとポリスチレンのアロイ
化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレ
ン)エーテルとスチレン−ブタジエンコポリマのアロイ
化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレ
ン)エーテルとスチレン−無水マレイン酸コポリマのア
ロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェ
ニレン)エーテルとポリアミドのアロイ化ポリマ、ポリ
(2,6−ジメチル−1,4−フェニレン)エーテルと
スチレン−ブタジエン−アクリロニトリルコポリマのア
ロイ化ポリマなどが挙げられる。ポリフェニレンエーテ
ルを用いる場合の配合量は、誘電特性と耐熱性のバラン
スの良い樹脂が得られることから、シアネート化合物と
ポリフェニレンエーテルの重量比(ポリフェニレンエー
テル/シアネート化合物)を5/100から200/1
00とすることが好ましい。上記ポリフェニレンエーテ
ルおよび変性ポリフェニレンエーテルの好ましい配合割
合は、シアネートエステル化合物に対するポリフェニレ
ンエーテルおよび変性ポリフェニレンエーテルの重量比
(ポリフェニレンエーテル/シアネート化合物)が5/
100〜200/100の範囲であり、より好ましい配
合割合は10/100〜100/100の範囲であり、
特に好ましい配合割合は30/100〜70/100で
ある。シアネートエステル化合物に対するポリフェニレ
ンエーテルおよび変性ポリフェニレンエーテルの重量比
が5/100を下回ると、耐衝撃性および誘電特性が低
下する。また、200/100を上回ると、耐熱性の低
下が見られる。
The thermosetting resin composition of the present invention may further contain one or more thermoplastic resins. Examples of the thermoplastic resin include fluororesin, polyphenylene ether, modified polyphenylene ether, polyphenylene sulfide, polycarbonate, polyetherimide, polyetheretherketone, and polyarylate. Among them, it is more preferable to blend the polyphenylene ether and the modified polyphenylene ether because the dielectric properties of the cured product and the impact resistance of the cured product are improved.
Examples of the polyphenylene ether and modified polyphenylene ether include poly (2,6-dimethyl-1,
4-phenylene) ether, poly (2,6-dimethyl-
Alloyed polymer of 1,4-phenylene) ether and polystyrene, Alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer, poly (2,6-dimethyl-1,4) Alloyed polymers of phenylene) ether and styrene-maleic anhydride copolymer, alloyed polymers of poly (2,6-dimethyl-1,4-phenylene) ether and polyamide, poly (2,6-dimethyl-1,4-) Examples include alloyed polymers of phenylene) ether and styrene-butadiene-acrylonitrile copolymer. When polyphenylene ether is used, the compounding amount of the polyphenylene ether / cyanate compound is from 5/100 to 200/1 because a resin having a good balance of dielectric properties and heat resistance can be obtained.
It is preferably set to 00. A preferable blending ratio of the polyphenylene ether and the modified polyphenylene ether is such that the weight ratio (polyphenylene ether / cyanate compound) of the polyphenylene ether and the modified polyphenylene ether to the cyanate ester compound is 5 /.
It is in the range of 100 to 200/100, more preferably in the range of 10/100 to 100/100,
A particularly preferable mixing ratio is 30/100 to 70/100. If the weight ratio of the polyphenylene ether and the modified polyphenylene ether to the cyanate ester compound is less than 5/100, the impact resistance and the dielectric properties are deteriorated. Further, when it exceeds 200/100, heat resistance is deteriorated.

【0026】硬化反応を促進させるために、硬化触媒や
硬化促進剤を入れても良い。硬化触媒としては、マンガ
ン、鉄、コバルト、ニッケル、銅、亜鉛等の金属類が用
いられ、具体的には、2−エチルヘキサン酸塩、ナフテ
ン酸塩、オクチル酸塩等の有機金属塩及びアセチルアセ
トン錯体などの有機金属錯体として用いられる。これら
は、単独で使用しても良いし、二種類以上を混合して使
用しても良い。硬化促進剤としてはフェノール類を使用
することが好ましく、ノニルフェノール、パラクミルフ
ェノールなどの単官能フェノールや、ビスフェノール
A、ビスフェノールF、ビスフェノールSなどの二官能
フェノールあるいはフェノールノボラック、クレゾール
ノボラックなどの多官能フェノールなどを用いることが
できる。これらは、単独で使用しても良いし、二種類以
上を混合して使用しても良い。
A curing catalyst or a curing accelerator may be added to accelerate the curing reaction. As the curing catalyst, metals such as manganese, iron, cobalt, nickel, copper and zinc are used, and specifically, organic metal salts such as 2-ethylhexanoate, naphthenate and octylate and acetylacetone. It is used as an organometallic complex such as a complex. These may be used alone or in combination of two or more. Phenols are preferably used as the curing accelerator, monofunctional phenols such as nonylphenol and paracumylphenol, bifunctional phenols such as bisphenol A, bisphenol F and bisphenol S, or polyfunctional phenols such as phenol novolac and cresol novolac. Etc. can be used. These may be used alone or in combination of two or more.

【0027】また、本発明の熱硬化性樹脂組成物に無機
フィラーを混合しても良い。無機フィラーとしては、ア
ルミナ、水酸化アルミニウム、水酸化マグネシウム、ク
レー、タルク、三酸化アンチモン、五酸化アンチモン、
酸化亜鉛、溶融シリカ、ガラス粉、石英粉、シラスバル
ーンなどが挙げられる。これら無機フィラーは単独で使
用しても良いし、2種類以上を混合して使用しても良
い。
Further, an inorganic filler may be mixed with the thermosetting resin composition of the present invention. As the inorganic filler, alumina, aluminum hydroxide, magnesium hydroxide, clay, talc, antimony trioxide, antimony pentoxide,
Examples thereof include zinc oxide, fused silica, glass powder, quartz powder, and shirasu balloon. These inorganic fillers may be used alone or in combination of two or more.

【0028】本発明の熱硬化性樹脂組成物を樹脂ワニス
として用いるために、有機溶媒を加えても良い。有機溶
媒としては、通常、主としてベンゼン、トルエン、キシ
レン、トリメチルベンゼンのような芳香族炭化水素系溶
媒が用いられる。ワニスの粘度を調整する場合や、あら
かじめ溶解させる熱可塑性樹脂の溶解性を向上させる場
合には、必要に応じて、アセトン、メチルエチルケト
ン、メチルイソブチルケトンのようなケトン系溶媒;テ
トラヒドロフランのようなエーテル系溶媒;イソプロパ
ノール、ブタノールのようなアルコール系溶媒;2−メ
トキシエタノール、2−ブトキシエタノールのようなエ
ーテルアルコール系溶媒;N−メチルピロリドン、N,
N−ジメチルホルムアミド、N,N−ジメチルアセトア
ミドのようなアミド系溶媒などを、適宜、併用しても良
い。プリプレグを作製する場合におけるワニス中の溶媒
量は20〜80重量%の範囲とするのが好ましく、ま
た、ワニスの粘度は50〜300cPの範囲とするのが
好ましい。また、樹脂フィルム及び樹脂付き銅箔を作成
する場合は、ワニス中の溶媒量は20〜80重量%の範
囲とするのが好ましく、ワニスの粘度は100〜500
cPの範囲とするのが好ましい。
An organic solvent may be added in order to use the thermosetting resin composition of the present invention as a resin varnish. As the organic solvent, usually an aromatic hydrocarbon solvent such as benzene, toluene, xylene, or trimethylbenzene is mainly used. When adjusting the viscosity of the varnish or when improving the solubility of the thermoplastic resin to be dissolved in advance, if necessary, a ketone solvent such as acetone, methyl ethyl ketone or methyl isobutyl ketone; an ether solvent such as tetrahydrofuran Solvent; alcohol solvent such as isopropanol and butanol; ether alcohol solvent such as 2-methoxyethanol and 2-butoxyethanol; N-methylpyrrolidone, N,
An amide-based solvent such as N-dimethylformamide or N, N-dimethylacetamide may be appropriately used in combination. The solvent amount in the varnish when producing the prepreg is preferably in the range of 20 to 80% by weight, and the viscosity of the varnish is preferably in the range of 50 to 300 cP. When a resin film and a resin-coated copper foil are prepared, the amount of solvent in the varnish is preferably in the range of 20 to 80% by weight, and the viscosity of the varnish is 100 to 500.
It is preferably in the range of cP.

【0029】本発明の樹脂組成物並びに該組成物を用い
たプリプレグ、積層板、樹脂フィルム、樹脂付き銅箔
は、プリント配線板用材料として特に有用である。本発
明の熱硬化性樹脂組成物を用いたプリプレグは従来、一
般的に行われている製造法をそのまま適用することがで
きる。すなわち、本発明のプリプレグは本発明の熱硬化
性樹脂組成物を基材に含浸又は塗工してなるものであ
り、基材としては各種の電気絶縁材料用積層板に用いら
れている周知のものが使用できる。基材の材質の例とし
ては、Eガラス,Dガラス,Sガラス又はQガラス等の
無機物繊維、ポリイミド、ポリエステル又はテトラフル
オロエチレン等の有機繊維、及びそれらの混合物等が挙
げられる。これらの基材は、例えば織布、不織布、ロー
ビンク、チョップドストランドマット、サーフェシング
マット等の形状を有するが、材質及び形状は、目的とす
る成形物の用途や性能により選択され必要により単独も
しくは2種類以上の材質及び形状からの使用が可能であ
る。基材の厚みには特に制限はないが、通常0.03〜
0.5mm程度のものを使用し、シランカップリング剤
等で表面処理したものや機械的に開繊処理を施したもの
は耐熱性や耐湿性、加工性の面から好適である。通常、
該基材に対する樹脂組成物の付着量が、乾燥後のプリプ
レグの樹脂含有率で20〜90重量%となるように基材
に含浸又は塗工した後、通常100〜200℃の温度で
1〜30分加熱乾燥し、半硬化状態(Bステージ状態)
のプリプレグを得る。
The resin composition of the present invention and the prepreg, laminate, resin film and copper foil with resin using the composition are particularly useful as a material for printed wiring boards. For the prepreg using the thermosetting resin composition of the present invention, the manufacturing method which has been conventionally generally used can be applied as it is. That is, the prepreg of the present invention is obtained by impregnating or coating a base material with the thermosetting resin composition of the present invention, and as the base material, a well-known material used for various electrically insulating material laminates is known. Things can be used. Examples of the material of the base material include inorganic fibers such as E glass, D glass, S glass or Q glass, organic fibers such as polyimide, polyester or tetrafluoroethylene, and a mixture thereof. These base materials have shapes such as woven cloth, non-woven cloth, robink, chopped strand mat, surfacing mat, and the like, and the material and shape are selected depending on the intended use and performance of the molded product, and may be used alone or as needed. It is possible to use materials and shapes of more than one type. The thickness of the base material is not particularly limited, but is usually 0.03 to
Those having a surface treatment with a silane coupling agent or the like or those subjected to mechanical fiber opening treatment using a material having a thickness of about 0.5 mm are suitable in terms of heat resistance, moisture resistance, and workability. Normal,
After the base material is impregnated or coated so that the amount of the resin composition adhered to the base material is 20 to 90% by weight in terms of the resin content of the prepreg after drying, the temperature is usually 1 to 1 Heat dried for 30 minutes, semi-cured state (B stage state)
Get the prepreg of.

【0030】前述の本発明のプリプレグを用いて積層成
形することにより積層板を作製することができる。積層
成形は一般的な方法をそのまま適用することができ、例
えば本発明のプリプレグを通常1〜20枚重ね、その片
面もしくは両面に銅やアルミニウム等の金属箔を配置し
た構成で加熱加圧により成形することにより金属張積層
板とすることができる。金属箔は配線板材料用途で用い
られているものであれば特に制限はない。成形条件とし
ては通常の電気絶縁材料用積層板及び多層板の手法が適
用でき、例えば多段プレス、多段真空プレス、連続成
形、オートクレーブ成形機等を使用し、通常、温度10
0〜250℃、圧力2〜100kg/cm2、加熱時間
0.1〜5時間の範囲で成形する。
A laminated board can be produced by laminating and molding using the above-mentioned prepreg of the present invention. A general method can be applied as it is to the lamination molding. For example, 1 to 20 sheets of the prepreg of the present invention are usually laminated, and a metal foil such as copper or aluminum is arranged on one side or both sides of the prepreg to form by heating and pressing. By doing so, a metal-clad laminate can be obtained. The metal foil is not particularly limited as long as it is used for wiring board material applications. As a molding condition, a usual method for a laminated plate and a multilayer plate for electric insulating materials can be applied. For example, a multi-stage press, a multi-stage vacuum press, continuous molding, an autoclave molding machine, etc. are used, and a temperature of 10
Molding is performed at 0 to 250 ° C., pressure of 2 to 100 kg / cm 2, and heating time of 0.1 to 5 hours.

【0031】本発明の熱硬化性樹脂組成物を用いた樹脂
フィルムは従来、一般的に行われている製造法をそのま
ま適用して製造することができる。例えば、本発明の熱
硬化性樹脂組成物を支持フィルムに塗工して樹脂フィル
ムとすることができる。支持フィルムとしては各種の樹
脂フィルムに用いられている周知のものが使用でき、例
えば、ポリエチレン、ポリ塩化ビニルなどのポリオレフ
ィン系フィルム、ポリエチレンテレフタレートなどのポ
リエステル系フィルムなどが例示される。樹脂フィルム
は支持フィルムに樹脂ワニスを塗布し、その後、加熱な
らびに乾燥させることにより得られるが、加熱、乾燥条
件は、100〜200℃の温度で1〜30分とするのが
適当である。これらの支持フィルムには、マット処理、
コロナ処理、離型処理などの表面処理が施されてあって
もよい。通常、支持フィルムの厚みは10〜150μm
が一般的である。また、樹脂組成物の厚みは10〜15
0μmが一般的である。加熱、乾燥後の樹脂組成物中に
おける残留溶剤量は、0.2〜10%程度が適当であ
る。上記のようにして得られた樹脂フィルムは加圧、加
熱条件下で基板上にラミネートまたはプレスにより積層
し、支持フィルムを剥離した後、加熱硬化させる。その
後、後述する多層プリント配線板製造工程を経て、多層
プリント配線板とする。
The resin film using the thermosetting resin composition of the present invention can be manufactured by directly applying the manufacturing method generally used in the past. For example, the thermosetting resin composition of the present invention can be applied to a support film to form a resin film. As the support film, known ones used for various resin films can be used, and examples thereof include polyolefin films such as polyethylene and polyvinyl chloride, and polyester films such as polyethylene terephthalate. The resin film can be obtained by applying a resin varnish to a support film and then heating and drying it. The heating and drying conditions are preferably 100 to 200 ° C. and 1 to 30 minutes. These support films have a matte treatment,
Surface treatment such as corona treatment and release treatment may be applied. Usually, the thickness of the supporting film is 10 to 150 μm.
Is common. The thickness of the resin composition is 10 to 15
0 μm is common. The amount of residual solvent in the resin composition after heating and drying is preferably about 0.2 to 10%. The resin film obtained as described above is laminated on a substrate by laminating or pressing under pressure and heating conditions, and after peeling the supporting film, it is heat-cured. Then, a multilayer printed wiring board is manufactured through the multilayer printed wiring board manufacturing process described below.

【0032】本発明の多層プリント配線板用樹脂付き金
属箔は、従来、一般的に行われている製造法をそのまま
適用することができる。すなわち、本発明の樹脂付き金
属箔は本発明の熱硬化性樹脂組成物を金属箔に塗工して
なるものである。金属箔としては各種の樹脂付き金属箔
に用いられている周知のものが使用でき、例えば、銅
箔、アルミニウム箔、ニッケル箔、支持金属箔をエッチ
ングや引き剥がしにより除去できる極薄金属箔などが例
示される。樹脂付き金属箔は金属箔に樹脂ワニスを塗布
し、その後、加熱ならびに乾燥させることにより得られ
るが、加熱、乾燥条件は、100〜200℃の温度で1
〜30分とするのが適当である。通常、金属箔の厚みは
10〜50μmが一般的であるが、極薄金属箔を用いる
と、金属箔の厚みが1〜10μmの樹脂付き金属箔が得
られる。また、樹脂組成物の厚みは10〜150μmが
一般的である。加熱、乾燥後の樹脂組成物中における残
留溶剤量は、0.2〜10%程度が適当である。上記の
ようにして得られた樹脂付きは加圧、加熱条件下で基板
上にラミネートまたはプレスにより積層し、加熱硬化さ
せる。その後、後述する多層プリント配線板製造工程を
経て、多層プリント配線板とする。
For the resin-coated metal foil for a multilayer printed wiring board according to the present invention, a manufacturing method which has been conventionally generally used can be applied as it is. That is, the metal foil with resin of the present invention is obtained by coating the metal foil with the thermosetting resin composition of the present invention. As the metal foil, well-known ones used for various resin-coated metal foils can be used, for example, copper foil, aluminum foil, nickel foil, ultrathin metal foil capable of removing supporting metal foil by etching or peeling, and the like. It is illustrated. The resin-coated metal foil can be obtained by applying a resin varnish to the metal foil and then heating and drying it. The heating and drying conditions are 100 to 200 ° C.
Appropriately 30 minutes. Generally, the thickness of the metal foil is generally 10 to 50 μm, but when an ultrathin metal foil is used, a resin-coated metal foil having a metal foil thickness of 1 to 10 μm can be obtained. The thickness of the resin composition is generally 10 to 150 μm. The amount of residual solvent in the resin composition after heating and drying is preferably about 0.2 to 10%. The resin-coated product obtained as described above is laminated on a substrate by laminating or pressing under pressure and heating conditions and heat-cured. Then, a multilayer printed wiring board is manufactured through the multilayer printed wiring board manufacturing process described below.

【0033】次に本発明の熱硬化性樹脂組成物並びに該
組成物から得られる樹脂フィルムを用いた多層プリント
配線板の製造法について説明する。まず、本発明の熱硬
化性樹脂組成物をパターン加工された内層回路基板上に
積層する。その方法は本樹脂組成物の有機溶媒ワニスを
内層回路基板に塗布し、乾燥後、加熱硬化させるか、ま
たは本発明の樹脂組成物からなる樹脂フィルムを用い
て、加圧、加熱条件下で基板上にラミネートまたはプレ
スし、支持フィルムを剥離した後、加熱硬化させる。な
お、内層回路基板としてはガラスエポキシ基板、金属基
板、ポリエステル基板、ポリイミド基板、BTレジン基
板、熱硬化型PPE基板などを使用することができ、回
路表面は予め粗化処理されてあっても良い。加熱硬化の
条件は120℃以上、好ましくは170〜220℃の温
度で、通常15〜300分、好ましくは60〜150分
かければ十分である。上記のように基板上に本発明の樹
脂組成物を積層し硬化させた後、ドリルおよび/または
レーザー穴あけを行ない、スルーホールやバイアホール
を形成させる。レーザー穴明け機には、炭酸ガスレーザ
ー、YAGレーザー、エキシマレーザーなどを用いるこ
とができる。その後、サンドブラスト処理、プラズマ処
理、過マンガン酸塩や重クロム酸塩などの酸化剤を用い
た薬品処理などを行なって、表面を粗化する。この工程
では、ドリル及びレーザー穴あけを行なった際に発生し
た樹脂残さも同時に除去される。さらに無電解銅めっ
き、金属蒸着、スパッタリング、イオンプレーティング
などの手法を用いて内層と外層の電気的導通を得た後
は、通常のビルドアップ配線板における回路形成方法を
用いて、積層した本発明の熱硬化性樹脂組成物の表面に
回路形成を行う。
Next, a method for producing a multilayer printed wiring board using the thermosetting resin composition of the present invention and the resin film obtained from the composition will be described. First, the thermosetting resin composition of the present invention is laminated on a patterned inner layer circuit board. The method is to apply an organic solvent varnish of the present resin composition to an inner layer circuit board, and after drying and curing by heating, or using a resin film made of the resin composition of the present invention, pressurization, the substrate under heating conditions. The support film is laminated or pressed on the top, and the support film is peeled off, followed by heat curing. As the inner layer circuit board, a glass epoxy board, a metal board, a polyester board, a polyimide board, a BT resin board, a thermosetting PPE board, or the like can be used, and the circuit surface may be preliminarily roughened. . The conditions for heat curing are 120 ° C. or higher, preferably 170 to 220 ° C., and usually 15 to 300 minutes, preferably 60 to 150 minutes are sufficient. After laminating and curing the resin composition of the present invention on the substrate as described above, drilling and / or laser drilling is performed to form through holes and via holes. A carbon dioxide laser, a YAG laser, an excimer laser, etc. can be used for a laser drilling machine. After that, sandblasting, plasma treatment, chemical treatment using an oxidizing agent such as permanganate or dichromate is performed to roughen the surface. In this step, resin residues generated during drilling and laser drilling are also removed at the same time. After obtaining electrical continuity between the inner layer and the outer layer using a technique such as electroless copper plating, metal deposition, sputtering, or ion plating, the layers are laminated using the circuit forming method for a normal build-up wiring board. A circuit is formed on the surface of the thermosetting resin composition of the invention.

【0034】本発明の樹脂付き金属箔を使用する場合
は、以下の工程を経て、多層プリント配線板を製造す
る。まず、樹脂付き金属箔を加圧、加熱条件下で基板上
にラミネートあるいはプレスし加熱硬化させる。その
後、使用する金属箔が薄い場合は、金属箔と樹脂を同時
に穴あけできる。この場合、金属箔表面は、粗化処理さ
れてあってもよい。使用する金属箔が厚い場合は、コン
フォーマルマスク法あるいはラージウインド法を用いて
窓穴を形成した後、レーザー穴あけを行う。穴あけ後
は、先に記述したような樹脂残さの除去を行ない、内層
と外層の電気的導通を得た後、通常のビルドアップ配線
板における回路形成方法を用いて、積層した本発明の熱
硬化性樹脂組成物の表面に回路形成を行う。
When the metal foil with resin of the present invention is used, the multilayer printed wiring board is manufactured through the following steps. First, a resin-coated metal foil is laminated or pressed on a substrate under pressure and heating conditions and cured by heating. After that, when the metal foil used is thin, the metal foil and the resin can be punched at the same time. In this case, the surface of the metal foil may be roughened. When the metal foil used is thick, laser drilling is performed after forming a window hole using the conformal mask method or the large window method. After drilling, the resin residue is removed as described above to obtain electrical continuity between the inner layer and the outer layer, and then the heat-cured layer of the present invention is laminated using the circuit forming method in a normal build-up wiring board. A circuit is formed on the surface of the resin composition.

【0035】[0035]

【実施例】以下に実施例及び比較例を示して本発明を具
体的に説明するが、本発明はこれに限定されるものでは
ない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0036】(実施例1)温度計、冷却管、攪拌装置を
備えた1リットルの4つ口セパラブルフラスコに、トル
エン100gと2,2−ビス(4−シアナトフェニル)
プロパン(ArocyB−10、旭チバ株式会社製商品
名)100g、芳香族縮合リン酸エステル(PX−20
0、大八化学工業株式会社製)19.4gを投入後、ナ
フテン酸マンガン(Mn含有量=6重量%、日本化学産
業株式会社製)の17%トルエン希釈溶液0.1gを添
加し、105℃で4時間重合させた。得られた樹脂組成
物を銅箔(GTS−12、古河サーキットフォイル株式
会社製)に塗布し、155℃で10分間乾燥させた後、
樹脂面を貼り合わせ200℃で90分、圧力2.0MP
aでプレスして樹脂硬化物を作製した。銅箔をエッチン
グ後、樹脂硬化物の1GHzにおける比誘電率及び誘電
正接をヒューレットパッカード株式会社製インピーダン
ス−マテリアルアナライザHP4291Bで測定したと
ころ、比誘電率は2.89、誘電正接は0.0052で
あった。硬化物の伸び率は島津製作所株式会社製オート
グラフAC−100Cで測定した。サンプルは幅10m
m、長さ60mmとし、引っ張り速度は5mm/min
とした。これより硬化物の伸び率は1.5%と求められ
た。
(Example 1) 100 g of toluene and 2,2-bis (4-cyanatophenyl) were placed in a 1-liter 4-neck separable flask equipped with a thermometer, a condenser and a stirrer.
Propane (Arocy B-10, trade name of Asahi Ciba Co., Ltd.) 100 g, aromatic condensed phosphoric acid ester (PX-20
0, manufactured by Daihachi Chemical Industry Co., Ltd.), and then added with 0.1 g of a 17% toluene dilute solution of manganese naphthenate (Mn content = 6% by weight, manufactured by Nippon Kagaku Sangyo Co., Ltd.). Polymerization was carried out at ℃ for 4 hours. The obtained resin composition was applied to a copper foil (GTS-12, manufactured by Furukawa Circuit Foil Co., Ltd.) and dried at 155 ° C. for 10 minutes,
90 minutes at 200 ℃, the pressure is 2.0MP
A cured resin was produced by pressing at a. After etching the copper foil, the relative dielectric constant and dielectric loss tangent of the resin cured product at 1 GHz were measured with an impedance-material analyzer HP 4291B manufactured by Hewlett Packard Co., and the relative dielectric constant was 2.89 and the dielectric loss tangent was 0.0052. It was The elongation of the cured product was measured with an autograph AC-100C manufactured by Shimadzu Corporation. Sample width is 10m
m, length 60 mm, pulling speed 5 mm / min
And From this, the elongation of the cured product was determined to be 1.5%.

【0037】(実施例2)温度計、冷却管、攪拌装置を
備えた1リットルの4つ口セパラブルフラスコに、トル
エン100gと2,2−ビス(4−シアナトフェニル)
プロパン(ArocyB−10、旭チバ株式会社製商品
名)100g、一般式[2]の9,10−ジヒドロ−9
−オキサ−10−ホスファフェナントレン−10−オキ
サイド(HCA−HQ、三光化学株式会社製)18.8
gを投入後、ナフテン酸マンガン(Mn含有量=6重量
%、日本化学産業株式会社製)の17%トルエン希釈溶
液0.1gを添加し105℃で4時間重合させ、本発明
の樹脂骨格中にリン原子を有するシアネート樹脂を得
た。重合前はHCA−HQが溶媒に溶解せず溶液は白濁
していたが、重合後の溶液は透明になっていた。このこ
とから、HCA−HQとシアネートエステル化合物が反
応し、樹脂骨格中にリン原子が導入されていると推定で
きる。得られた樹脂組成物を用い、実施例1と同様の条
件で樹脂硬化物を作製した。実施例1と同様にして測定
した樹脂硬化物の1GHzにおける比誘電率は2.9
3、誘電正接は0.0057であった。また、実施例1
と同様にして測定した樹脂硬化物の伸び率は1.3%で
あった。
(Example 2) 100 g of toluene and 2,2-bis (4-cyanatophenyl) were placed in a 1-liter 4-neck separable flask equipped with a thermometer, a cooling tube and a stirrer.
Propane (Arocy B-10, product name of Asahi Ciba Co., Ltd.) 100 g, 9,10-dihydro-9 of general formula [2]
-Oxa-10-phosphaphenanthrene-10-oxide (HCA-HQ, Sanko Chemical Co., Ltd.) 18.8
After adding g, 0.1 g of a 17% toluene dilute solution of manganese naphthenate (Mn content = 6% by weight, manufactured by Nippon Kagaku Sangyo Co., Ltd.) was added and polymerized at 105 ° C. for 4 hours to give a resin skeleton of the present invention. A cyanate resin having a phosphorus atom was obtained. Before the polymerization, HCA-HQ was not dissolved in the solvent and the solution was cloudy, but the solution after the polymerization was transparent. From this, it can be inferred that HCA-HQ and the cyanate ester compound have reacted to introduce a phosphorus atom into the resin skeleton. A resin cured product was produced under the same conditions as in Example 1 using the obtained resin composition. The relative permittivity at 1 GHz of the resin cured product measured in the same manner as in Example 1 was 2.9.
3, the dielectric loss tangent was 0.0057. In addition, Example 1
The elongation percentage of the cured resin product measured in the same manner as above was 1.3%.

【0038】(実施例3)温度計、冷却管、攪拌装置を
備えた1リットルの4つ口セパラブルフラスコに、トル
エン183gとポリフェニレンエーテル樹脂(PKN4
752、日本ジーイープラスチックス株式会社製商品
名)50gを投入し、80℃に加熱し攪拌溶解した。次
に2,2−ビス(4−シアナトフェニル)プロパン(A
rocyB−10、旭チバ株式会社製商品名)100
g、一般式[2]の9,10−ジヒドロ−9−オキサ−
10−ホスファフェナントレン−10−オキサイド(H
CA−HQ、三光化学株式会社製)18.8gを投入
後、ナフテン酸マンガン(Mn含有量=6重量%、日本
化学産業株式会社製)の17%トルエン希釈溶液0.1
gを添加し105℃で4時間重合させた。重合前はHC
A−HQが溶媒に溶解せず、溶液は白濁していたが、重
合後の溶液は透明になっていた。このことから、HCA
−HQとシアネートエステル化合物が反応し、樹脂骨格
中にリン原子が導入されていると推定できる。得られた
樹脂組成物を用い、実施例1と同様の条件で樹脂硬化物
を作製した。実施例1と同様にして測定した樹脂硬化物
の1GHzにおける比誘電率は2.49、誘電正接は
0.0035であった。また、実施例1と同様にして測
定した樹脂硬化物の伸び率は6.5%であった。
(Example 3) In a 1 liter 4-neck separable flask equipped with a thermometer, a condenser and a stirrer, 183 g of toluene and polyphenylene ether resin (PKN4) were used.
752, trade name of Nippon GE Plastics Co., Ltd.) (50 g) was added, and the mixture was heated to 80 ° C. and dissolved by stirring. Next, 2,2-bis (4-cyanatophenyl) propane (A
rocyB-10, product name manufactured by Asahi Ciba Co., Ltd.) 100
g, 9,10-dihydro-9-oxa-of the general formula [2]
10-phosphaphenanthrene-10-oxide (H
CA-HQ, manufactured by Sanko Chemical Co., Ltd.) 18.8 g, and then a 17% toluene diluted solution of manganese naphthenate (Mn content = 6 wt%, manufactured by Nippon Kagaku Sangyo Co., Ltd.) 0.1
g was added and polymerized at 105 ° C. for 4 hours. HC before polymerization
A-HQ was not dissolved in the solvent and the solution was cloudy, but the solution after polymerization was transparent. From this, HCA
It can be inferred that —HQ and the cyanate ester compound react to introduce a phosphorus atom into the resin skeleton. A resin cured product was produced under the same conditions as in Example 1 using the obtained resin composition. The resin cured product measured in the same manner as in Example 1 had a relative dielectric constant at 1 GHz of 2.49 and a dielectric loss tangent of 0.0035. Further, the elongation percentage of the cured resin product measured in the same manner as in Example 1 was 6.5%.

【0039】(実施例4)温度計、冷却管、攪拌装置を
備えた1リットルの4つ口セパラブルフラスコに、トル
エン183gとポリフェニレンエーテル樹脂(PKN4
752、日本ジーイープラスチックス株式会社製商品
名)50gを投入し、80℃に加熱し攪拌溶解した。次
に2,2−ビス(4−シアナトフェニル)プロパン(A
rocyB−10、旭チバ株式会社製商品名)100
g、一般式[2]の9,10−ジヒドロ−9−オキサ−
10−ホスファフェナントレン−10−オキサイド(H
CA−HQ、三光化学株式会社製)18.8gを投入
後、ナフテン酸マンガン(Mn含有量=6重量%、日本
化学産業株式会社製)の17%トルエン希釈溶液0.1
gを添加し105℃で4時間重合させた。重合前はHC
A−HQが溶媒に溶解せず、溶液は白濁していたが、重
合後の溶液は透明になっていた。このことから、HCA
−HQとシアネートエステル化合物が反応し、樹脂骨格
中にリン原子が導入されていると推定できる。溶液を室
温まで冷却し、ビフェニル骨格を有するエポキシ樹脂
(YX4000H、エポキシシェルレジン株式会社製)
93.4gを加えた。得られた樹脂組成物を用い、実施
例1と同様の条件で樹脂硬化物を作製した。実施例1と
同様にして測定した樹脂硬化物の1GHzにおける比誘
電率は2.65、誘電正接は0.0068であった。ま
た、実施例1と同様にして測定した樹脂硬化物の伸び率
は6.2%であった。
Example 4 In a 1-liter four-necked separable flask equipped with a thermometer, a cooling tube, and a stirrer, 183 g of toluene and polyphenylene ether resin (PKN4) were used.
752, trade name of Nippon GE Plastics Co., Ltd.) (50 g) was added, and the mixture was heated to 80 ° C. and dissolved by stirring. Next, 2,2-bis (4-cyanatophenyl) propane (A
rocyB-10, product name manufactured by Asahi Ciba Co., Ltd.) 100
g, 9,10-dihydro-9-oxa-of the general formula [2]
10-phosphaphenanthrene-10-oxide (H
CA-HQ, manufactured by Sanko Chemical Co., Ltd.) 18.8 g, and then a 17% toluene diluted solution of manganese naphthenate (Mn content = 6 wt%, manufactured by Nippon Kagaku Sangyo Co., Ltd.) 0.1
g was added and polymerized at 105 ° C. for 4 hours. HC before polymerization
A-HQ was not dissolved in the solvent and the solution was cloudy, but the solution after polymerization was transparent. From this, HCA
It can be inferred that —HQ and the cyanate ester compound react to introduce a phosphorus atom into the resin skeleton. The solution is cooled to room temperature and an epoxy resin having a biphenyl skeleton (YX4000H, manufactured by Epoxy Shell Resin Co., Ltd.)
93.4 g was added. A resin cured product was produced under the same conditions as in Example 1 using the obtained resin composition. The relative permittivity at 1 GHz of the resin cured product measured in the same manner as in Example 1 was 2.65, and the dielectric loss tangent was 0.0068. Further, the elongation percentage of the cured resin product measured in the same manner as in Example 1 was 6.2%.

【0040】(実施例5)温度計、冷却管、攪拌装置を
備えた1リットルの4つ口セパラブルフラスコに、トル
エン183gとポリフェニレンエーテル樹脂(PKN4
752、日本ジーイープラスチックス株式会社製商品
名)50gを投入し、80℃に加熱し攪拌溶解した。次
に2,2−ビス(4−シアナトフェニル)プロパン(A
rocyB−10、旭チバ株式会社製商品名)100
g、一般式[2]の9,10−ジヒドロ−9−オキサ−
10−ホスファフェナントレン−10−オキサイド(H
CA−HQ、三光化学株式会社製)18.8gを投入
後、ナフテン酸マンガン(Mn含有量=6重量%、日本
化学産業株式会社製)の17%トルエン希釈溶液0.1
gを添加し105℃で4時間重合させた。重合前はHC
A−HQが溶媒に溶解せず、溶液は白濁していたが、重
合後の溶液は透明になっていた。このことから、HCA
−HQとシアネートエステル化合物が反応し、樹脂骨格
中にリン原子が導入されていると推定できる。溶液を室
温まで冷却し、ビフェニル骨格を有するエポキシ樹脂
(YX4000H、エポキシシェルレジン株式会社製)
69.7g、リン含有エポキシ樹脂(ZX−1548‐
4、東都化成株式会社製)48.6gを加えた。得られ
た樹脂組成物を用い、実施例1と同様の条件で樹脂硬化
物を作製した。実施例1と同様にして測定した樹脂硬化
物の1GHzにおける比誘電率は2.61、誘電正接は
0.0063であった。また、実施例1と同様にして測
定した樹脂硬化物の伸び率は5.8%であった。
(Embodiment 5) To a 1-liter four-necked separable flask equipped with a thermometer, a condenser and a stirrer, 183 g of toluene and polyphenylene ether resin (PKN4)
752, trade name of Nippon GE Plastics Co., Ltd.) (50 g) was added, and the mixture was heated to 80 ° C. and dissolved by stirring. Next, 2,2-bis (4-cyanatophenyl) propane (A
rocyB-10, product name manufactured by Asahi Ciba Co., Ltd.) 100
g, 9,10-dihydro-9-oxa-of the general formula [2]
10-phosphaphenanthrene-10-oxide (H
CA-HQ, manufactured by Sanko Chemical Co., Ltd.) 18.8 g, and then a 17% toluene diluted solution of manganese naphthenate (Mn content = 6 wt%, manufactured by Nippon Kagaku Sangyo Co., Ltd.) 0.1
g was added and polymerized at 105 ° C. for 4 hours. HC before polymerization
A-HQ was not dissolved in the solvent and the solution was cloudy, but the solution after polymerization was transparent. From this, HCA
It can be inferred that —HQ and the cyanate ester compound react to introduce a phosphorus atom into the resin skeleton. The solution is cooled to room temperature and an epoxy resin having a biphenyl skeleton (YX4000H, manufactured by Epoxy Shell Resin Co., Ltd.)
69.7 g, phosphorus-containing epoxy resin (ZX-1548-
4 manufactured by Tohto Kasei Co., Ltd.) 48.6 g was added. A resin cured product was produced under the same conditions as in Example 1 using the obtained resin composition. The relative permittivity at 1 GHz of the resin cured product measured in the same manner as in Example 1 was 2.61, and the dielectric loss tangent was 0.0063. Further, the elongation percentage of the resin cured product measured in the same manner as in Example 1 was 5.8%.

【0041】(比較例1)温度計、冷却管、攪拌装置を
備えた1リットルの4つ口セパラブルフラスコに、トル
エン100gと2,2−ビス(4−グリシジルフェニ
ル)プロパン(DER331L、ダウケミカル日本株式
会社製)100g、芳香族縮合リン酸エステル(PX−
200、大八化学工業株式会社製)19.4gを投入
後、エポキシ硬化触媒(キュアゾール2MZ−CNS、
四国化成工業株式会社製)の10%DMF希釈溶液1g
を添加し105℃で4時間重合させた。得られた樹脂組
成物を用い、実施例1と同様の条件で樹脂硬化物を作製
した。実施例1と同様にして測定した樹脂硬化物の1G
Hzにおける比誘電率は3.54、誘電正接は0.01
7であった。また、実施例1と同様にして測定した樹脂
硬化物の伸び率は2.2%であった。
(Comparative Example 1) 100 g of toluene and 2,2-bis (4-glycidylphenyl) propane (DER331L, Dow Chemical Co., Ltd.) were placed in a 1-liter four-neck separable flask equipped with a thermometer, a cooling tube and a stirrer. Made in Japan) 100 g, aromatic condensed phosphoric acid ester (PX-
200, manufactured by Daihachi Chemical Industry Co., Ltd.), and after being charged with 19.4 g, an epoxy curing catalyst (Curesol 2MZ-CNS,
Shikoku Kasei Co., Ltd.) 10% DMF diluted solution 1 g
Was added and polymerized at 105 ° C. for 4 hours. A resin cured product was produced under the same conditions as in Example 1 using the obtained resin composition. 1G of a resin cured product measured in the same manner as in Example 1
The relative dielectric constant at Hz is 3.54 and the dielectric loss tangent is 0.01
It was 7. Further, the elongation percentage of the cured resin product measured in the same manner as in Example 1 was 2.2%.

【0042】(比較例2)温度計、冷却管、攪拌装置を
備えた1リットルの4つ口セパラブルフラスコに、トル
エン100gと2,2−ビス(4−シアナトフェニル)
プロパン(ArocyB−10、旭チバ株式会社製商品
名)100gを投入後、ナフテン酸マンガン(Mn含有
量=6重量%、日本化学産業株式会社製)の17%トル
エン希釈溶液0.1gを添加し105℃で4時間重合さ
せた。その後、水酸化アルミニウム(CL−303、住
友化学株式会社製)を120g配合し、毎分1500回
転で30分間ビーズミル処理を行った。得られた樹脂組
成物を用い、実施例1と同様の条件で樹脂硬化物を作製
した。実施例1と同様にして測定した樹脂硬化物の1G
Hzにおける比誘電率は3.74、誘電正接は0.01
9であった。また、実施例1と同様にして測定した樹脂
硬化物の伸び率は0.3%であった。
Comparative Example 2 100 g of toluene and 2,2-bis (4-cyanatophenyl) were placed in a 1-liter 4-neck separable flask equipped with a thermometer, a cooling tube and a stirrer.
After adding 100 g of propane (Arocy B-10, trade name manufactured by Asahi Ciba Co., Ltd.), 0.1 g of a 17% toluene diluted solution of manganese naphthenate (Mn content = 6 wt%, manufactured by Nippon Kagaku Sangyo Co., Ltd.) was added. Polymerization was carried out at 105 ° C. for 4 hours. Then, 120 g of aluminum hydroxide (CL-303, manufactured by Sumitomo Chemical Co., Ltd.) was blended, and a bead mill treatment was performed at 1500 rpm for 30 minutes. A resin cured product was produced under the same conditions as in Example 1 using the obtained resin composition. 1G of a resin cured product measured in the same manner as in Example 1
The relative permittivity at Hz is 3.74 and the dielectric loss tangent is 0.01
It was 9. The elongation percentage of the cured resin product measured in the same manner as in Example 1 was 0.3%.

【0043】(実施例6)実施例1で得られた樹脂組成
物を厚さ0.1mmのEガラスクロスに含浸塗工し、1
55℃で10分間加熱乾燥して樹脂含有量55%のプリ
プレグを得た。次にこのプリプレグを4枚重ね、銅箔
(GTS−12、古河サーキットフォイル株式会社製)
を上下に配置し、200℃で90分間、圧力2.0MP
aでプレスを行い、積層板を得た。銅箔をエッチング
後、ガラスクロスを含む樹脂硬化物の1GHzにおける
比誘電率及び誘電正接をヒューレットパッカード株式会
社製インピーダンス−マテリアルアナライザHP429
1Bで測定したところ、比誘電率は3.58、誘電正接
は0.0060だった。耐燃性試験には、表面の銅箔を
エッチングしたものを用い、試験条件はUL―94に準
拠した。その結果、最大燃焼時間6.5秒、平均燃焼時
間3.3秒となり、V−0を達成した。また、積層板を
5cm角に切断し、288℃でのはんだ耐熱性をフロー
ト法により評価(n=8)したところ、平均して195
秒でふくれが発生した。
Example 6 An E glass cloth having a thickness of 0.1 mm was impregnated and coated with the resin composition obtained in Example 1 to obtain 1
It was heated and dried at 55 ° C. for 10 minutes to obtain a prepreg having a resin content of 55%. Next, 4 sheets of this prepreg were stacked and copper foil (GTS-12, manufactured by Furukawa Circuit Foil Co., Ltd.)
Placed at the top and bottom, and pressure at 2.0MP for 90 minutes at 200MP
Pressing was carried out at a to obtain a laminated plate. After etching the copper foil, the relative dielectric constant and dielectric loss tangent at 1 GHz of the resin cured product containing glass cloth were measured by Hewlett-Packard Co. Impedance-Material Analyzer HP429.
When measured with 1B, the relative dielectric constant was 3.58 and the dielectric loss tangent was 0.0060. For the flame resistance test, a copper foil on the surface was used for etching, and the test conditions were based on UL-94. As a result, the maximum burning time was 6.5 seconds, the average burning time was 3.3 seconds, and V-0 was achieved. Further, when the laminated plate was cut into 5 cm squares and the solder heat resistance at 288 ° C. was evaluated by the float method (n = 8), the average was 195.
Blistering occurred in seconds.

【0044】(実施例7)実施例2で得られた樹脂組成
物を実施例6と同様の方法でプリプレグとし、次いで積
層板とした。実施例6と同様にしてガラスクロスを含む
樹脂硬化物の1GHzにおける誘電特性を評価したとこ
ろ、比誘電率は3.62、誘電正接は0.0064を示
した。実施例6と同様に耐燃性試験を行ったところ、最
大燃焼時間7.2秒、平均燃焼時間3.4秒となり、V
−0を達成した。また、実施例6と同様にはんだ耐熱性
を評価したところ、平均して205秒でふくれが発生し
た。
Example 7 The resin composition obtained in Example 2 was made into a prepreg by the same method as in Example 6 and then made into a laminated plate. When the dielectric properties at 1 GHz of the resin cured product containing the glass cloth were evaluated in the same manner as in Example 6, the relative dielectric constant was 3.62 and the dielectric loss tangent was 0.0064. When a flame resistance test was conducted in the same manner as in Example 6, the maximum burning time was 7.2 seconds and the average burning time was 3.4 seconds.
Achieved -0. When the solder heat resistance was evaluated in the same manner as in Example 6, swelling occurred on average in 205 seconds.

【0045】(実施例8)実施例3で得られた樹脂組成
物を実施例6と同様の方法でプリプレグとし、次いで積
層板とした。実施例6と同様にしてガラスクロスを含む
樹脂硬化物の1GHzにおける誘電特性を評価したとこ
ろ、比誘電率は3.28、誘電正接は0.0044を示
した。実施例6と同様に耐燃性試験を行ったところ、最
大燃焼時間8.6秒、平均燃焼時間4.6秒となり、V
−0を達成した。また、実施例6と同様にはんだ耐熱性
を評価したところ、平均して195秒でふくれが発生し
た。
Example 8 The resin composition obtained in Example 3 was made into a prepreg by the same method as in Example 6 and then made into a laminated plate. When the dielectric properties at 1 GHz of the resin cured product containing the glass cloth were evaluated in the same manner as in Example 6, the relative dielectric constant was 3.28 and the dielectric loss tangent was 0.0044. When a flame resistance test was conducted in the same manner as in Example 6, the maximum burning time was 8.6 seconds and the average burning time was 4.6 seconds.
Achieved -0. When the solder heat resistance was evaluated in the same manner as in Example 6, swelling occurred on average in 195 seconds.

【0046】(実施例9)実施例3で得られた樹脂組成
物を実施例6と同様の方法でプリプレグとし、次いで積
層板とした。実施例6と同様にしてガラスクロスを含む
樹脂硬化物の1GHzにおける誘電特性を評価したとこ
ろ、比誘電率は3.44、誘電正接は0.0074を示
した。実施例6と同様に耐燃性試験を行ったところ、最
大燃焼時間12.5秒、平均燃焼時間6.5秒となり、
V−1を達成した。また、実施例6と同様にはんだ耐熱
性を評価したところ、300秒以上もふくれは確認され
なかった。
(Example 9) The resin composition obtained in Example 3 was made into a prepreg by the same method as in Example 6 and then made into a laminated plate. When the dielectric properties at 1 GHz of the resin cured product containing the glass cloth were evaluated in the same manner as in Example 6, the relative dielectric constant was 3.44 and the dielectric loss tangent was 0.0074. When a flame resistance test was conducted in the same manner as in Example 6, the maximum burning time was 12.5 seconds and the average burning time was 6.5 seconds.
Achieved V-1. Further, when the solder heat resistance was evaluated in the same manner as in Example 6, no blistering was observed for 300 seconds or longer.

【0047】(実施例10)実施例4で得られた樹脂組
成物を実施例6と同様の方法でプリプレグとし、次いで
積層板とした。実施例6と同様にしてガラスクロスを含
む樹脂硬化物の1GHzにおける誘電特性を評価したと
ころ、比誘電率は3.42、誘電正接は0.0076を
示した。実施例6と同様に耐燃性試験を行ったところ、
最大燃焼時間6.3秒、平均燃焼時間2.4秒となり、
V−0を達成した。また、実施例6と同様にはんだ耐熱
性を評価したところ、300秒以上もふくれは確認され
なかった。
Example 10 The resin composition obtained in Example 4 was made into a prepreg by the same method as in Example 6 and then a laminated plate. When the dielectric properties of the resin cured product containing the glass cloth at 1 GHz were evaluated in the same manner as in Example 6, the relative dielectric constant was 3.42 and the dielectric loss tangent was 0.0076. When a flame resistance test was conducted in the same manner as in Example 6,
Maximum burning time 6.3 seconds, average burning time 2.4 seconds,
Achieved V-0. Further, when the solder heat resistance was evaluated in the same manner as in Example 6, no blistering was observed for 300 seconds or longer.

【0048】(比較例3)比較例1で得られた樹脂組成
物を実施例6と同様の方法でプリプレグとし、次いで積
層板とした。実施例6と同様にしてガラスクロスを含む
樹脂硬化物の1GHzにおける誘電特性を評価したとこ
ろ、比誘電率は4.12、誘電正接は0.0182を示
した。実施例6と同様に耐燃性試験を行ったところ、サ
ンプルは全焼してしまった。また、実施例6と同様には
んだ耐熱性を評価したところ、平均して180秒でふく
れが発生した。
Comparative Example 3 The resin composition obtained in Comparative Example 1 was made into a prepreg by the same method as in Example 6 and then made into a laminated plate. When the dielectric properties of the resin cured product containing the glass cloth at 1 GHz were evaluated in the same manner as in Example 6, the relative dielectric constant was 4.12 and the dielectric loss tangent was 0.0182. When a flame resistance test was conducted in the same manner as in Example 6, the sample was completely burned. Further, when the solder heat resistance was evaluated in the same manner as in Example 6, swelling occurred in 180 seconds on average.

【0049】(比較例4)比較例1で得られた樹脂組成
物を実施例6と同様の方法でプリプレグとし、次いで積
層板とした。実施例6と同様にしてガラスクロスを含む
樹脂硬化物の1GHzにおける誘電特性を評価したとこ
ろ、比誘電率は4.12、誘電正接は0.0182を示
した。実施例6と同様に耐燃性試験を行ったところ、。
また、実施例6と同様にはんだ耐熱性を評価したとこ
ろ、300秒以上もふくれは確認されなかった。
Comparative Example 4 The resin composition obtained in Comparative Example 1 was made into a prepreg by the same method as in Example 6 and then made into a laminated plate. When the dielectric properties of the resin cured product containing the glass cloth at 1 GHz were evaluated in the same manner as in Example 6, the relative dielectric constant was 4.12 and the dielectric loss tangent was 0.0182. When a flame resistance test was conducted in the same manner as in Example 6 ,.
Further, when the solder heat resistance was evaluated in the same manner as in Example 6, no blistering was observed for 300 seconds or longer.

【0050】(実施例11)実施例1で得られた樹脂組
成物を銅箔(GTS−12、古河サーキットフォイル株
式会社製)に塗布し、155℃で10分間乾燥させ樹脂
付き銅箔とした。樹脂の厚さはおよそ80μmとした。
溶融粘度は、樹脂付き銅箔から樹脂を剥離させ、厚さ約
1mmの円盤状に成型したものをサンプルとした。測定
には、レオメトリックファーイースト株式会社製レオメ
ータARESを用い、昇温速度は5℃/min、加振周
波数は1MHzとした。これにより、溶融粘度は320
Pa・sと測定された。耐燃性試験には、ハロゲンフリ
ー積層板(MCL−RO−67G、日立化成工業株式会
社製)の表面の銅箔をエッチングしたものに樹脂付き銅
箔を積層し、次いで表面の銅をエッチングしたものを用
いた。試験条件はUL―94に準拠した。その結果、最
大燃焼時間は7.9秒、平均燃焼時間は4.5秒とな
り、V―0を達成した。はんだ耐熱性試験には、ハロゲ
ンフリー積層板(MCL−RO−67G、日立化成工業
株式会社製)の表面の銅箔を酸化還元処理したものに樹
脂付き銅箔を積層したものを用いた。このサンプルを5
cm角に切断し、288℃でのはんだ耐熱性をフロート
法により評価(n=8)したところ、平均して185秒
でふくれが発生した。さらにこのサンプルの銅箔をエッ
チング後、平山製作所(株)製PCT(Presure
Cooker Test)装置を用いて耐PCT性
(試験条件121℃、2気圧、相対湿度100%)を調
べたところ、約2時間の処理により基板表面にふくれが
発生していることを目視で確認した。
(Example 11) The resin composition obtained in Example 1 was applied to a copper foil (GTS-12, manufactured by Furukawa Circuit Foil Co., Ltd.) and dried at 155 ° C for 10 minutes to give a resin-coated copper foil. . The thickness of the resin was about 80 μm.
The melt viscosity was measured by peeling the resin from the resin-coated copper foil and molding it into a disk shape having a thickness of about 1 mm. A rheometer ARES manufactured by Rheometric Far East Co., Ltd. was used for the measurement, and the temperature rising rate was 5 ° C./min and the vibration frequency was 1 MHz. This gives a melt viscosity of 320
It was measured as Pa · s. In the flame resistance test, a halogen-free laminated plate (MCL-RO-67G, manufactured by Hitachi Chemical Co., Ltd.) was etched with copper foil on the surface and laminated with resin-coated copper foil, and then copper was etched on the surface. Was used. The test condition was based on UL-94. As a result, the maximum burning time was 7.9 seconds, the average burning time was 4.5 seconds, and V-0 was achieved. For the solder heat resistance test, a halogen-free laminated plate (MCL-RO-67G, manufactured by Hitachi Chemical Co., Ltd.) was used which was obtained by subjecting the copper foil on the surface to oxidation-reduction treatment and laminating a resin-coated copper foil. This sample is 5
When cut into cm squares and evaluated the solder heat resistance at 288 ° C. by a float method (n = 8), blistering occurred on average in 185 seconds. After etching the copper foil of this sample, PCT (Presure) manufactured by Hirayama Seisakusho Co., Ltd.
The PCT resistance (test conditions: 121 ° C., 2 atmospheric pressure, relative humidity: 100%) was examined using a Cooker Test) device, and it was confirmed visually that blistering had occurred on the substrate surface after about 2 hours of treatment. .

【0051】(実施例12)実施例2で得られた樹脂組
成物を実施例11と同様の方法で樹脂付き銅箔とした。
実施例11と同様にして溶融粘度を測定したところ、3
40Pa・sであった。実施例11と同様にして耐燃性
試験を行ったところ、最大燃焼時間8.1秒、平均燃焼
時間3.2秒となり、V−0を達成した。また、実施例
11と同様にはんだ耐熱性を評価したところ、平均して
215秒でふくれが発生した。さらに、実施例11と同
様に耐PCT性を評価したところ、約2時間の処理によ
り基板表面にふくれが発生していることを目視で確認し
た。
(Example 12) The resin composition obtained in Example 2 was used as a resin-coated copper foil in the same manner as in Example 11.
When the melt viscosity was measured in the same manner as in Example 11, it was 3
It was 40 Pa · s. When a flame resistance test was conducted in the same manner as in Example 11, the maximum combustion time was 8.1 seconds, the average combustion time was 3.2 seconds, and V-0 was achieved. Further, when the solder heat resistance was evaluated in the same manner as in Example 11, swelling occurred in 215 seconds on average. Furthermore, when the PCT resistance was evaluated in the same manner as in Example 11, it was visually confirmed that swelling had occurred on the substrate surface after the treatment for about 2 hours.

【0052】(実施例13)実施例3で得られた樹脂組
成物を実施例11と同様の方法で樹脂付き銅箔とした。
実施例11と同様にして溶融粘度を測定したところ、9
20Pa・sであった。実施例11と同様にして耐燃性
試験を行ったところ、最大燃焼時間7.6秒、平均燃焼
時間3.6秒となり、V−0を達成した。また、実施例
11と同様にはんだ耐熱性を評価したところ、平均して
220秒でふくれが発生した。さらに、実施例11と同
様に耐PCT性を評価したところ、約2時間の処理によ
り基板表面にふくれが発生していることを目視で確認し
た。
Example 13 The resin composition obtained in Example 3 was used as a resin-coated copper foil in the same manner as in Example 11.
When the melt viscosity was measured in the same manner as in Example 11, it was 9
It was 20 Pa · s. When a flame resistance test was conducted in the same manner as in Example 11, the maximum combustion time was 7.6 seconds, the average combustion time was 3.6 seconds, and V-0 was achieved. Further, when the solder heat resistance was evaluated in the same manner as in Example 11, swelling occurred in 220 seconds on average. Furthermore, when the PCT resistance was evaluated in the same manner as in Example 11, it was visually confirmed that swelling had occurred on the substrate surface after the treatment for about 2 hours.

【0053】(実施例14)実施例4で得られた樹脂組
成物を実施例11と同様の方法で樹脂付き銅箔とした。
実施例11と同様にして溶融粘度を測定したところ、7
90Pa・sであった。実施例11と同様にして耐燃性
試験を行ったところ、最大燃焼時間14.8秒、平均燃
焼時間7.2秒となり、V−1を達成した。また、実施
例11と同様にはんだ耐熱性を評価したところ、300
秒以上もふくれが発生しなかった。さらに、実施例11
と同様に耐PCT性を評価したところ、300時間以上
の処理でもふくれは発生しなかった。
Example 14 The resin composition obtained in Example 4 was used as a resin-coated copper foil in the same manner as in Example 11.
When the melt viscosity was measured in the same manner as in Example 11, it was 7
It was 90 Pa · s. When a flame resistance test was conducted in the same manner as in Example 11, the maximum combustion time was 14.8 seconds, the average combustion time was 7.2 seconds, and V-1 was achieved. Further, when the solder heat resistance was evaluated in the same manner as in Example 11, it was 300
No blistering occurred for more than a second. Furthermore, Example 11
When the PCT resistance was evaluated in the same manner as above, no blistering occurred even after the treatment for 300 hours or longer.

【0054】(実施例15)実施例5で得られた樹脂組
成物を実施例11と同様の方法で樹脂付き銅箔とした。
実施例11と同様にして溶融粘度を測定したところ、9
80Pa・sであった。実施例11と同様にして耐燃性
試験を行ったところ、最大燃焼時間5.4秒、平均燃焼
時間2.2秒となり、V−0を達成した。また、実施例
11と同様にはんだ耐熱性を評価したところ、300秒
以上もふくれが発生しなかった。さらに、実施例11と
同様に耐PCT性を評価したところ、300時間以上の
処理でもふくれは発生しなかった。
(Example 15) The resin composition obtained in Example 5 was used as a resin-coated copper foil in the same manner as in Example 11.
When the melt viscosity was measured in the same manner as in Example 11, it was 9
It was 80 Pa · s. When a flame resistance test was conducted in the same manner as in Example 11, the maximum combustion time was 5.4 seconds, the average combustion time was 2.2 seconds, and V-0 was achieved. When the solder heat resistance was evaluated in the same manner as in Example 11, no blistering occurred for 300 seconds or longer. Furthermore, when the PCT resistance was evaluated in the same manner as in Example 11, no blistering occurred even after the treatment for 300 hours or longer.

【0055】(比較例5)比較例1で得られた樹脂組成
物を実施例11と同様の方法で樹脂付き銅箔とした。実
施例11と同様にして溶融粘度を測定したところ、35
0Pa・sであった。実施例11と同様にして耐燃性試
験を行ったところ、サンプルは全焼してしまった。ま
た、実施例11と同様にはんだ耐熱性を評価したとこ
ろ、300秒以上もふくれが発生しなかった。さらに、
実施例11と同様に耐PCT性を評価したところ、30
0時間以上の処理でもふくれは発生しなかった。
(Comparative Example 5) The resin composition obtained in Comparative Example 1 was used as a resin-coated copper foil in the same manner as in Example 11. When the melt viscosity was measured in the same manner as in Example 11, it was found to be 35.
It was 0 Pa · s. When a flame resistance test was conducted in the same manner as in Example 11, the sample was completely burned. When the solder heat resistance was evaluated in the same manner as in Example 11, no blistering occurred for 300 seconds or longer. further,
When the PCT resistance was evaluated in the same manner as in Example 11, it was 30.
No blistering occurred even after treatment for 0 hours or more.

【0056】(比較例6)比較例2で得られた樹脂組成
物を実施例11と同様の方法で樹脂付き銅箔とした。実
施例11と同様にして溶融粘度を測定したところ、36
40Pa・sであった。実施例11と同様にして耐燃性
試験を行ったところ、最大燃焼時間6.2秒、平均燃焼
時間2.6秒となり、V−0を達成した。サンプルは全
焼してしまった。また、実施例11と同様にはんだ耐熱
性を評価したところ、平均して25秒でふくれが発生し
た。さらに、実施例11と同様に耐PCT性を評価した
ところ、約2時間の処理により基板表面にふくれが発生
していることを目視で確認した。
(Comparative Example 6) The resin composition obtained in Comparative Example 2 was used as a resin-coated copper foil in the same manner as in Example 11. When the melt viscosity was measured in the same manner as in Example 11, it was found to be 36.
It was 40 Pa · s. When a flame resistance test was conducted in the same manner as in Example 11, the maximum combustion time was 6.2 seconds, the average combustion time was 2.6 seconds, and V-0 was achieved. The sample is completely burned. When the solder heat resistance was evaluated in the same manner as in Example 11, swelling occurred in 25 seconds on average. Furthermore, when the PCT resistance was evaluated in the same manner as in Example 11, it was visually confirmed that swelling had occurred on the substrate surface after the treatment for about 2 hours.

【0057】表1に実施例1〜4および比較例1で得ら
れた樹脂組成物の組成および硬化物の誘電特性を示し
た。表2に実施例1〜4および比較例1で得られた樹脂
組成物を用いて積層板を作製した場合の評価結果を示し
た。表3に実施例1〜4および比較例1で得られた樹脂
組成物を用いて樹脂付き銅箔を作製した場合の評価結果
を示した。
Table 1 shows the compositions of the resin compositions obtained in Examples 1 to 4 and Comparative Example 1 and the dielectric properties of the cured products. Table 2 shows the evaluation results in the case of producing a laminated board using the resin compositions obtained in Examples 1 to 4 and Comparative Example 1. Table 3 shows the evaluation results when resin-coated copper foils were produced using the resin compositions obtained in Examples 1 to 4 and Comparative Example 1.

【0058】比較例1のようにエポキシ樹脂にリン化合
物を配合した場合、比誘電率および誘電正接が大きく、
また、比較例3や比較例5に示したように難燃性が低い
ため、多層プリント配線板用材料として適さないことが
確認された。また、比較例2のようにシアネート樹脂に
水酸化アルミニウムを配合した場合もやはり比誘電率お
よび誘電正接が大きく、伸び率も低下していた。比較例
4および比較例5からは、多層プリント配線板用材料と
した場合の難燃性は確保されているが、はんだ耐熱性、
溶融粘度が上昇することがわかった。伸び率の低下は耐
衝撃性の低下に、また、溶融粘度の上昇は成形性の低下
につながる可能性が高い。これに対し、実施例1のよう
にシアネート樹脂骨格中にリン原子を導入した樹脂組成
物は、優れた誘電特性を示した。また、実施例6や実施
例11のように配線板材料として用いた場合も良好な難
燃性を示し、耐熱性、耐衝撃性、成形性の低下も見られ
なかった。このことから、本発明による樹脂組成物が非
常に有用であることが示された。実施例2、実施例7、
実施例12では、シアネートエステル化合物と反応性の
高いフェノール性水酸基を有するリン化合物を用いて難
燃化を試みた。この場合も、優れた誘電特性を示し、耐
熱性、耐衝撃性、成形性を低下させることなく、難燃化
することができた。この樹脂硬化物においては、リン原
子がシアネート樹脂骨格中に導入されるため、配線板製
造工程における薬液の汚染や、成型時におけるリン化合
物の揮発などの懸念がなく特に有用である。実施例3、
実施例8、実施例13は樹脂骨格中にリン原子を導入し
た樹脂組成物に変性ポリフェニレンエーテル樹脂を加え
たものである。この場合、比誘電率は2.49、誘電正
接は0.0035となり、より誘電特性に優れる樹脂組
成物を得ることができるのに加え、樹脂硬化物の伸び率
が大きく上昇し、耐衝撃性が向上していると考えられ
る。また、配線板材料としての難燃性も確保されている
ことを確認した。実施例4、実施例9、実施例14は、
ビフェニル型エポキシ樹脂であるYX4000Hを配合
した熱硬化性樹脂組成物であるが、これは、実施例1
1、実施例12、実施例13で課題となっていたはんだ
耐熱性と耐PCT性を改良する目的で発明したものであ
る。この場合、誘電特性および難燃性に若干の低下が見
られるものの、耐PCT性及びはんだ耐熱性が向上し、
配線板用材料として適している。実施例5、実施例1
0、実施例15のように、エポキシ樹脂としてリン含有
エポキシ樹脂とビフェニル型エポキシ樹脂を併用した熱
硬化性樹脂組成物では、難燃性が向上し、誘電特性、は
んだ耐熱性、耐PCT性などの諸特性も良好である。
When a phosphorus compound was blended with the epoxy resin as in Comparative Example 1, the relative dielectric constant and dielectric loss tangent were large,
Further, as shown in Comparative Examples 3 and 5, the flame retardance was low, and it was confirmed that the material was not suitable as a material for a multilayer printed wiring board. Further, when aluminum hydroxide was blended with the cyanate resin as in Comparative Example 2, the relative permittivity and dielectric loss tangent were also large, and the elongation was also low. From Comparative Example 4 and Comparative Example 5, although flame retardancy is ensured when the material is used for a multilayer printed wiring board, solder heat resistance,
It was found that the melt viscosity increased. There is a high possibility that a decrease in elongation will lead to a decrease in impact resistance, and an increase in melt viscosity will result in a decrease in moldability. On the other hand, the resin composition in which a phosphorus atom was introduced into the cyanate resin skeleton as in Example 1 exhibited excellent dielectric properties. Also, when used as a wiring board material as in Examples 6 and 11, good flame retardancy was exhibited, and no deterioration in heat resistance, impact resistance, or moldability was observed. From this, it was shown that the resin composition according to the present invention is very useful. Example 2, Example 7,
In Example 12, flame retardation was attempted by using a phosphorus compound having a phenolic hydroxyl group that is highly reactive with a cyanate ester compound. In this case as well, excellent dielectric properties were exhibited, and flame retardancy could be achieved without lowering heat resistance, impact resistance, and moldability. Since phosphorus atoms are introduced into the cyanate resin skeleton in this cured resin product, there is no concern about contamination of the chemical liquid in the wiring board manufacturing process or volatilization of the phosphorus compound during molding, which is particularly useful. Example 3,
In Examples 8 and 13, modified polyphenylene ether resin was added to a resin composition having a phosphorus atom introduced into the resin skeleton. In this case, the relative dielectric constant was 2.49 and the dielectric loss tangent was 0.0035, and it is possible to obtain a resin composition having more excellent dielectric properties, and in addition, the elongation rate of the cured resin material is greatly increased and the impact resistance is improved. Is considered to have improved. It was also confirmed that flame retardancy as a wiring board material was secured. Example 4, Example 9, and Example 14
This is a thermosetting resin composition containing YX4000H which is a biphenyl type epoxy resin.
It was invented for the purpose of improving the solder heat resistance and the PCT resistance, which were the problems in the first, the twelfth and the thirteenth embodiments. In this case, although the dielectric properties and flame retardance are slightly lowered, the PCT resistance and solder heat resistance are improved,
Suitable as a wiring board material. Example 5, Example 1
0, as in Example 15, a thermosetting resin composition in which a phosphorus-containing epoxy resin and a biphenyl type epoxy resin are used together as an epoxy resin has improved flame retardancy, and has dielectric properties, solder heat resistance, PCT resistance, etc. The various properties of are also good.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【発明の効果】本発明の熱硬化性樹脂組成物並びに該組
成物を用いたプリプレグ、積層板、樹脂フィルム、樹脂
付き金属箔を用いることにより、コンピュータの高速化
や高周波関連機器の低損失化に適した多層プリント配線
板を臭素系難燃剤を用いずに製造することが可能とな
る。
EFFECT OF THE INVENTION By using the thermosetting resin composition of the present invention and a prepreg, a laminated plate, a resin film and a metal foil with resin using the composition, the speed of a computer and the loss of high frequency related equipment can be reduced. It is possible to manufacture a multilayer printed wiring board suitable for the above without using a brominated flame retardant.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 71/12 C08L 71/12 5E346 79/04 79/04 Z 101/00 101/00 H05K 1/03 610 H05K 1/03 610K 610L 610M 610N 3/46 3/46 T Fターム(参考) 4F072 AB04 AB05 AB07 AB09 AB28 AB29 AC02 AC15 AD13 AD33 AD37 AD38 AD41 AD42 AD43 AD45 AD46 AD47 AG03 AH25 AH31 AJ04 AK02 AL13 4F100 AB01B AB17 AB33B AK01A AK12A AK17A AK33A AK41A AK43A AK45A AK46A AK49A AK51A AK52A AK53A AK54A AK56A AK57A AK73A AK74A AL05A BA02 BA07 EH46B GB43 JB13A JJ07 JJ07A YY00A 4J002 AA01X BF00X BH02X BK00X CC03X CD02X CD03X CD05X CD06X CD11X CD14X CF00X CF01X CF16X CF28X CG00X CH07X CH09X CK02X CM02W CM04X CN01X CP03X FD010 FD150 GF00 GQ01 4J036 AA01 CB11 CB21 CC02 JA08 4J043 QC23 SA13 SB01 TA03 TA38 TA71 TA79 TB01 UA131 UA141 UA142 UA252 UA742 UB011 UB021 UB061 VA021 VA051 WA01 WA25 XA14 XB21 ZA13 ZA46 ZB50 ZB59 5E346 AA12 CC08 CC32 DD03 DD12 DD15 DD32 EE33 FF01 GG13 GG15 GG27 GG28 HH18 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08L 71/12 C08L 71/12 5E346 79/04 79/04 Z 101/00 101/00 H05K 1/03 610 H05K 1/03 610K 610L 610M 610N 3/46 3/46 TF Term (reference) 4F072 AB04 AB05 AB07 AB09 AB28 AB29 AC02 AC15 AD13 AD33 AD37 AD38 AD41 AD42 AD43 AD45 AD46 AD47 AG03 AH25 AH31 AJ04 AK02B13A17B33B01B01B33B01B17B33B01B17A33B01A33B01A33B01B17A33B01B33A01B01B17A33B01B17A33B01B17A33A01B01B17B33B01B01A33B01B01B33B01B01B01B01B01B01B01B01B01B01B01B01B01B01B01B01B01B01B01B33B01B0117B01B13B01B01B01B01B01B01B13B01B01B01B13B01B13B01B01B13B01B01B01B13B17B01B01B01B01B13B17B01B13B17B01B13B17B01B01B13BH17KH. AK12A AK17A AK33A AK41A AK43A AK45A AK46A AK49A AK51A AK52A AK53A AK54A AK56A AK57A AK73A AK74A AL05A BA02 BA07 EH46B GB43 JB13A JJ07 JJ07A YY00A 4J002 AA01X BF00X BH02X BK00X CC03X CD02X CD03X CD05X CD06X CD11X CD14X CF00X CF01X CF16X CF28X CG00X CH07X CH09X CK02X CM02W CM04X CN01X CP03X FD010 FD150 GF00 GQ01 4J036 AA01 CB11 CB21 CC02 JA08 4J043 QC23 SA13 SB01 TA03 T A38 TA71 TA79 TB01 UA131 UA141 UA142 UA252 UA742 UB011 UB021 UB061 VA021 VA051 WA01 WA25 XA14 XB21 ZA13 ZA46 ZB50 ZB59 5E346 AA12 CC08 CC32 DD03 DD12 DD15 DD32 EE33 FF01 GG13 GG28H15GG

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 (A)二価のシアネートエステル化合物
と、(B)リン化合物からなる難燃性熱硬化性樹脂組成
物。
1. A flame-retardant thermosetting resin composition comprising a divalent cyanate ester compound (A) and a phosphorus compound (B).
【請求項2】 (A)二価のシアネートエステル化合物
が一般式[1]: 【化1】 (式中、Rは、 【化2】 を表し;RおよびRは、たがいに同一でも異なって
いてもよく、水素原子またはメチル基を表す。)で示さ
れるシアネートエステル化合物である請求項1に記載の
熱硬化性樹脂組成物。
2. A divalent cyanate ester compound (A) is represented by the general formula [1]: (In the formula, R 1 is R 2 and R 3, which may be the same or different, each represent a hydrogen atom or a methyl group. The thermosetting resin composition according to claim 1, which is a cyanate ester compound represented by the formula (1).
【請求項3】 (B)リン化合物がシアネートエステル
化合物と反応する官能基を有する請求項1又は請求項2
のいずれかに記載の熱硬化性樹脂組成物。
3. The method according to claim 1, wherein the phosphorus compound (B) has a functional group that reacts with the cyanate ester compound.
The thermosetting resin composition according to any one of 1.
【請求項4】 リン化合物のシアネートエステル化合物
と反応する官能基がフェノール性水酸基である、請求項
3に記載の熱硬化性樹脂組成物。
4. The thermosetting resin composition according to claim 3, wherein the functional group that reacts with the cyanate ester compound of the phosphorus compound is a phenolic hydroxyl group.
【請求項5】 フェノール性水酸基を有するリン化合物
が式[2]あるいは式[3]: 【化3】 【化4】 (式中Rは、水素原子、アルキル基、シクロアルキル
基、アリール基、アラールキル基を表す。)で示される
リン化合物である請求項4に記載の熱硬化性樹脂組成
物。
5. A phosphorus compound having a phenolic hydroxyl group is represented by the formula [2] or the formula [3]: [Chemical 4] The thermosetting resin composition according to claim 4, which is a phosphorus compound represented by the formula (wherein R 4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group).
【請求項6】 (B)リン化合物のシアネートエステル
化合物と反応する官能基がエポキシ基である、請求項3
に記載の熱硬化性樹脂組成物。
6. The epoxy group is a functional group that reacts with the cyanate ester compound of the phosphorus compound (B).
The thermosetting resin composition according to.
【請求項7】 エポキシ基を有するリン化合物がフェノ
ール性水酸基を有するリン化合物とエポキシ樹脂とを反
応させることにより得られる請求項6に記載の熱硬化性
樹脂組成物。
7. The thermosetting resin composition according to claim 6, wherein the phosphorus compound having an epoxy group is obtained by reacting a phosphorus compound having a phenolic hydroxyl group with an epoxy resin.
【請求項8】 フェノール性水酸基を有するリン化合物
が式[2]又は式[3]: 【化5】 【化6】 (式中Rは、水素原子、アルキル基、シクロアルキル
基、アリール基、アラールキル基を表す。)で示される
リン化合物である請求項7に記載の熱硬化性樹脂組成
物。
8. A phosphorus compound having a phenolic hydroxyl group is represented by the formula [2] or the formula [3]: [Chemical 6] The thermosetting resin composition according to claim 7, which is a phosphorus compound represented by the formula (wherein R 4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group).
【請求項9】 フェノール性水酸基と反応させるエポキ
シ樹脂が、多官能エポキシ樹脂である請求項7又は請求
項8に記載の熱硬化性樹脂組成物。
9. The thermosetting resin composition according to claim 7, wherein the epoxy resin reacted with the phenolic hydroxyl group is a polyfunctional epoxy resin.
【請求項10】 熱硬化性樹脂組成物がさらに、リン含
有エポキシ樹脂以外のエポキシ樹脂、フェノール樹脂、
アルキド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポ
リウレタン樹脂、シリコーン樹脂、ビスマレイミド樹
脂、ビニル樹脂、ベンゾシクロブテン樹脂からなる群よ
り選ばれる熱硬化性樹脂を含む熱硬化性樹脂組成物であ
る請求項1〜9のいずれかに記載の熱硬化性樹脂組成
物。
10. The thermosetting resin composition further comprises an epoxy resin other than a phosphorus-containing epoxy resin, a phenol resin,
A thermosetting resin composition containing a thermosetting resin selected from the group consisting of alkyd resins, polyester resins, polyimide resins, polyurethane resins, silicone resins, bismaleimide resins, vinyl resins and benzocyclobutene resins. 9. The thermosetting resin composition according to any one of 9 above.
【請求項11】 熱硬化性樹脂がリン含有エポキシ樹脂
以外のエポキシ樹脂である請求項10に記載の難燃性熱
硬化性樹脂組成物。
11. The flame-retardant thermosetting resin composition according to claim 10, wherein the thermosetting resin is an epoxy resin other than the phosphorus-containing epoxy resin.
【請求項12】 熱硬化性樹脂がビフェニル骨格を有す
るエポキシ樹脂である請求項10に記載の熱硬化性樹脂
組成物。
12. The thermosetting resin composition according to claim 10, wherein the thermosetting resin is an epoxy resin having a biphenyl skeleton.
【請求項13】 熱硬化性樹脂組成物がさらに、フッ素
樹脂、ポリフェニレンエーテル、変性ポリフェニレンエ
ーテル、ポリフェニレンスルフィド、ポリカーボネー
ト、ポリエーテルイミド、ポリエーテルエーテルケト
ン、ポリアリレートからなる群より選ばれる熱可塑性樹
脂を含む熱硬化性樹脂組成物である、請求項1〜12の
いずれかに記載の熱硬化性樹脂組成物。
13. The thermosetting resin composition further comprises a thermoplastic resin selected from the group consisting of fluororesin, polyphenylene ether, modified polyphenylene ether, polyphenylene sulfide, polycarbonate, polyetherimide, polyetheretherketone and polyarylate. The thermosetting resin composition according to claim 1, which is a thermosetting resin composition containing the thermosetting resin composition.
【請求項14】 熱可塑性樹脂がポリフェニレンエーテ
ルおよび変性ポリフェニレンエーテルである請求項13
に記載の熱硬化性樹脂組成物。
14. The thermoplastic resin is polyphenylene ether and modified polyphenylene ether.
The thermosetting resin composition according to.
【請求項15】 ポリフェニレンエーテルおよび変性ポ
リフェニレンエーテルがポリ(2,6−ジメチル−1,
4−フェニレン)エーテル、ポリ(2,6−ジメチル−
1,4−フェニレン)エーテルとポリスチレンのアロイ
化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレ
ン)エーテルとスチレン−ブタジエンコポリマのアロイ
化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレ
ン)エーテルとスチレン−無水マレイン酸コポリマのア
ロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェ
ニレン)エーテルとポリアミドのアロイ化ポリマ、ポリ
(2,6−ジメチル−1,4−フェニレン)エーテルと
スチレン−ブタジエン−アクリロニトリルコポリマのア
ロイ化ポリマからなる群より選ばれる請求項14に記載
の熱硬化性樹脂組成物。
15. The polyphenylene ether and modified polyphenylene ether are poly (2,6-dimethyl-1,
4-phenylene) ether, poly (2,6-dimethyl-
Alloyed polymer of 1,4-phenylene) ether and polystyrene, Alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer, poly (2,6-dimethyl-1,4) Alloyed polymers of phenylene) ether and styrene-maleic anhydride copolymer, alloyed polymers of poly (2,6-dimethyl-1,4-phenylene) ether and polyamide, poly (2,6-dimethyl-1,4-) The thermosetting resin composition according to claim 14, which is selected from the group consisting of alloyed polymers of phenylene) ether and styrene-butadiene-acrylonitrile copolymer.
【請求項16】 熱硬化性樹脂組成物中のシアナト基と
フェノール性水酸基の当量比(シアナト基/フェノール
性水酸基)が100/5から100/100である、請
求項1〜15に記載の熱硬化性樹脂組成物。
16. The heat according to claim 1, wherein the equivalent ratio of the cyanato group to the phenolic hydroxyl group (cyanato group / phenolic hydroxyl group) in the thermosetting resin composition is 100/5 to 100/100. Curable resin composition.
【請求項17】 熱硬化性樹脂組成物中のシアナト基と
エポキシ基の当量比が100/20から100/100
である、請求項1〜16のいずれかに記載の熱硬化性樹
脂組成物。
17. The equivalent ratio of cyanato group to epoxy group in the thermosetting resin composition is 100/20 to 100/100.
The thermosetting resin composition according to any one of claims 1 to 16, which is
【請求項18】 熱硬化性樹脂組成物中にシアネートエ
ステル化合物とポリフェニレンエーテルを含み、シアネ
ートエステル化合物とポリフェニレンエーテルの重量比
(シアネートエステル化合物/ポリフェニレンエーテ
ル)が100/5から100/200である、請求項1
〜17のいずれかに記載の熱硬化性樹脂組成物。
18. The thermosetting resin composition contains a cyanate ester compound and a polyphenylene ether, and the weight ratio of the cyanate ester compound and the polyphenylene ether (cyanate ester compound / polyphenylene ether) is 100/5 to 100/200. Claim 1
The thermosetting resin composition according to any one of 1 to 17.
【請求項19】 請求項1〜18のいずれかに記載の熱
硬化性樹脂組成物を、基材に含浸又は塗工してなるプリ
プレグ。
19. A prepreg obtained by impregnating or coating a substrate with the thermosetting resin composition according to any one of claims 1 to 18.
【請求項20】 請求項19に記載のプリプレグを用い
て積層形成してなる積層板。
20. A laminated plate formed by laminating using the prepreg according to claim 19.
【請求項21】 請求項1〜18のいずれかに記載の熱
硬化性樹脂組成物を、支持フィルムに塗布して得られる
樹脂フィルム。
21. A resin film obtained by applying the thermosetting resin composition according to any one of claims 1 to 18 to a support film.
【請求項22】 請求項1〜18のいずれかに記載の熱
硬化性樹脂組成物を金属箔に塗布して得られる樹脂付き
金属箔。
22. A resin-coated metal foil obtained by applying the thermosetting resin composition according to claim 1 to a metal foil.
【請求項23】 請求項1〜18のいずれかに記載の熱
硬化性樹脂組成物からなる絶縁層を有する多層配線板。
23. A multilayer wiring board having an insulating layer made of the thermosetting resin composition according to claim 1.
【請求項24】 内層回路板の回路面上に請求項21に
記載の樹脂フィルムを積層・一体化して絶縁樹脂層と
し、該絶縁樹脂層上に回路を形成することを特徴とする
多層配線板の製造方法。
24. A multilayer wiring board, characterized in that the resin film according to claim 21 is laminated and integrated on a circuit surface of an inner layer circuit board to form an insulating resin layer, and a circuit is formed on the insulating resin layer. Manufacturing method.
【請求項25】 内層回路板の回路面上に請求項22に
記載の樹脂付き金属箔を積層・一体化して、該樹脂付き
金属箔由来する金属層に回路加工を施すことを特徴とす
る多層配線板の製造方法。
25. A multilayer comprising the resin-coated metal foil according to claim 22 laminated and integrated on a circuit surface of an inner layer circuit board, and the metal layer derived from the resin-coated metal foil is subjected to circuit processing. Wiring board manufacturing method.
JP2001322377A 2001-10-19 2001-10-19 Flame-retardant thermosetting resin composition, and prepreg, electrical insulation film, laminated board, resin-coated metallic foil and multilayer wiring board each using the same, and method for producing them Pending JP2003128785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001322377A JP2003128785A (en) 2001-10-19 2001-10-19 Flame-retardant thermosetting resin composition, and prepreg, electrical insulation film, laminated board, resin-coated metallic foil and multilayer wiring board each using the same, and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001322377A JP2003128785A (en) 2001-10-19 2001-10-19 Flame-retardant thermosetting resin composition, and prepreg, electrical insulation film, laminated board, resin-coated metallic foil and multilayer wiring board each using the same, and method for producing them

Publications (1)

Publication Number Publication Date
JP2003128785A true JP2003128785A (en) 2003-05-08

Family

ID=19139435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001322377A Pending JP2003128785A (en) 2001-10-19 2001-10-19 Flame-retardant thermosetting resin composition, and prepreg, electrical insulation film, laminated board, resin-coated metallic foil and multilayer wiring board each using the same, and method for producing them

Country Status (1)

Country Link
JP (1) JP2003128785A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524265A (en) * 2007-04-11 2010-07-15 ワールド プラパティーズ、 インコーポレイテッド Circuit material, multilayer circuit, and method for manufacturing the same
WO2011106125A1 (en) * 2010-02-26 2011-09-01 Hexcel Corporation Thermoplastic-toughened cyanate ester resin composites with low heat release properties
CN102597089A (en) * 2009-08-28 2012-07-18 帕克电气化学有限公司 Thermosetting resin compositions and articles
JP2013040284A (en) * 2011-08-17 2013-02-28 Dic Corp Curable resin composition, cured product thereof, and printed wiring board
CN103304809A (en) * 2013-06-20 2013-09-18 苏州生益科技有限公司 Halogen-free flame-retardant prepolymer and prepreg and laminated board made from same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524265A (en) * 2007-04-11 2010-07-15 ワールド プラパティーズ、 インコーポレイテッド Circuit material, multilayer circuit, and method for manufacturing the same
CN102597089A (en) * 2009-08-28 2012-07-18 帕克电气化学有限公司 Thermosetting resin compositions and articles
WO2011106125A1 (en) * 2010-02-26 2011-09-01 Hexcel Corporation Thermoplastic-toughened cyanate ester resin composites with low heat release properties
US8283408B2 (en) 2010-02-26 2012-10-09 Hexcel Corporation Thermoplastic-toughened cyanate ester resin composites with low heat release properties
CN102770482A (en) * 2010-02-26 2012-11-07 赫克塞尔公司 Thermoplastic-toughened cyanate ester resin composites with low heat release properties
RU2561990C2 (en) * 2010-02-26 2015-09-10 Хексел Корпорейшн Composites based on cyanate ester resin with thermoplast-improved impact strength with low heat release characteristics
JP2013040284A (en) * 2011-08-17 2013-02-28 Dic Corp Curable resin composition, cured product thereof, and printed wiring board
CN103304809A (en) * 2013-06-20 2013-09-18 苏州生益科技有限公司 Halogen-free flame-retardant prepolymer and prepreg and laminated board made from same
CN103304809B (en) * 2013-06-20 2015-09-23 苏州生益科技有限公司 A kind of Halogen-free flame-retardant prepolymer and the prepreg using it to make and veneer sheet

Similar Documents

Publication Publication Date Title
JP2006131743A (en) Thermosetting resin composition and prepreg and metal-clad laminate and printed wiring board using the same
JP6726877B2 (en) Metal foil with resin, laminated board, printed wiring board and multilayer printed wiring board
JP2005248147A (en) Thermosetting resin composition, and prepreg, metal-laminated lamination plate and printed wire board using the same
JP2005272722A (en) Thermosetting resin composition, resin film and product
JP2011006683A (en) Thermosetting resin composition and prepreg, metal-clad laminate, printed wiring board using the same
JP5114816B2 (en) Siloxane-modified cyanate resin composition, and adhesive film, metal foil with resin, and multilayer printed wiring board using the same
JP2011202175A (en) Siloxane-modified cyanate resin composition, adhesive film using the same, resin coated metal foil and multilayered printed wiring board
TW201841977A (en) Non-migratory, high-melting/softening polymeric phosphorus-containing flame retardant for printed wiring boards
JP2005281673A (en) Thermosetting resin composition, resin film and product
JP2003128753A (en) Flame-retardant thermosetting resin composition, prepreg, laminate, insulating film, metal foil with resin and multilayered wiring board and method for producing the board
KR102671536B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
KR101708146B1 (en) Thermoplastic resin composition for high frequency having low permittivity, prepreg and copper clad laminate using the same
JP2003128928A (en) Flame-retardant thermosetting resin composition, prepreg, laminate board, insulation film, resin-coated metal foil and multilayered wiring board, and method for manufacturing the same
JP2003128784A (en) Flame-retardant thermosetting resin composition, prepreg, electrical insulation film, laminated board, resin-coated metallic foil and multilayer wiring board, and method for producing them
JP2006291098A (en) Thermosetting resin composition and prepreg, metal-coated laminate board and wiring board using the same
JP2003128785A (en) Flame-retardant thermosetting resin composition, and prepreg, electrical insulation film, laminated board, resin-coated metallic foil and multilayer wiring board each using the same, and method for producing them
JP2004182816A (en) Flame-retardant thermosetting resin composition, use thereof and manufacturing method therefor
JP3261076B2 (en) Modified cyanate ester-based curable resin composition for laminate, prepreg and laminate using the same
JP3719833B2 (en) Modified cyanate ester resin film and method for producing the same
JPH0579686B2 (en)
JP2001019844A (en) Curable polyphenylene ether resin composition
JP2013256663A (en) Thermosetting resin composition, prepreg obtained using the same, metal clad laminate, and wiring board
JP3382508B2 (en) Modified cyanate ester resin varnish for printed wiring boards and method for producing the same
JP2004307761A (en) Thermosetting resin composition, and prepreg, metal-clad laminate and printed wiring board all using the same
JP2004091683A (en) Thermosetting resin composition, prepreg obtained using the same, laminated board, resin film, metal foil with resin, multi-layered printed wiring board and method for manufacturing multi-layered wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041015

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060824

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A02 Decision of refusal

Effective date: 20070118

Free format text: JAPANESE INTERMEDIATE CODE: A02