[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003127681A - Hybrid vehicle drive structure with transmission - Google Patents

Hybrid vehicle drive structure with transmission

Info

Publication number
JP2003127681A
JP2003127681A JP2001323578A JP2001323578A JP2003127681A JP 2003127681 A JP2003127681 A JP 2003127681A JP 2001323578 A JP2001323578 A JP 2001323578A JP 2001323578 A JP2001323578 A JP 2001323578A JP 2003127681 A JP2003127681 A JP 2003127681A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
transmission
vehicle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001323578A
Other languages
Japanese (ja)
Other versions
JP3893938B2 (en
JP2003127681A5 (en
Inventor
Masakiyo Kojima
正清 小島
Toshibumi Takaoka
俊文 高岡
Yutaka Taga
豊 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001323578A priority Critical patent/JP3893938B2/en
Priority to US10/261,411 priority patent/US7223200B2/en
Priority to CA002548815A priority patent/CA2548815C/en
Priority to CA2704804A priority patent/CA2704804C/en
Priority to CA2704802A priority patent/CA2704802C/en
Priority to CA2632448A priority patent/CA2632448C/en
Priority to CA002406817A priority patent/CA2406817C/en
Priority to CA2704805A priority patent/CA2704805A1/en
Priority to ES04028726T priority patent/ES2308093T3/en
Priority to EP04028725A priority patent/EP1514716B1/en
Priority to ES02023460T priority patent/ES2269583T3/en
Priority to DE60223850T priority patent/DE60223850T2/en
Priority to DE60227711T priority patent/DE60227711D1/en
Priority to EP04028726A priority patent/EP1520743B1/en
Priority to DE60214104T priority patent/DE60214104T2/en
Priority to EP02023460A priority patent/EP1304248B1/en
Priority to ES04028725T priority patent/ES2294422T3/en
Priority to KR10-2002-0064574A priority patent/KR100501062B1/en
Priority to CNB021471347A priority patent/CN1286681C/en
Publication of JP2003127681A publication Critical patent/JP2003127681A/en
Publication of JP2003127681A5 publication Critical patent/JP2003127681A5/ja
Application granted granted Critical
Publication of JP3893938B2 publication Critical patent/JP3893938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Retarders (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a second motor generator MG2 from being large and to obtain required axle torque characteristics against speed while properly maintaining the fuel consumption of an internal combustion engine, in hybrid vehicle drive structure in which an output shaft of the internal combustion engine is connected to a first motor generator and a wheel drive shaft through a power distribution mechanism, and a second motor generator is connected to the wheel drive shaft. SOLUTION: Transmissions (100, 101, 102) are provided at least either at the middle of a wheel drive shaft or at the middle of the connection of the second motor generator to the wheel drive shaft.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関と電動機
の組合せにより車輪を駆動するハイブリッド車の駆動構
造に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid vehicle drive structure in which wheels are driven by a combination of an internal combustion engine and an electric motor.

【0002】[0002]

【従来の技術】近年、ますます高まりつつある大気環境
保全と燃料資源の節約の重要性の認識の下に、内燃機関
と電動機の組合せにより車輪が駆動されるハイブリッド
車が脚光を浴びてきている。多様な回転数と駆動トルク
の組合せが求められる自動車の車輪を内燃機関と電動機
により駆動する場合に、その駆動態様をどのようにする
かについては、種々の態様が可能であろうが、自動車は
元来専ら内燃機関のみによって駆動されてきたものであ
り、また自動車の分野に於けるハイブリッド車は、従来
の内燃機関のみによる駆動の一部を状況が許す限り電動
駆動にて置き換えることから出発しているので、ハイブ
リッド車といえども、内燃機関のみによる駆動が可能と
なっていることは当然と考えられている。特開平11−
198669には、内燃機関のクランク軸に第一の電動
発電機を直列に接続して内燃機関または電動機のいずれ
か一方または両方により駆動される動力軸を構成し、か
かる動力軸と第二の電動発電機の出力軸とをそれぞれ遊
星歯車機構のリングギヤとサンギヤとに接続して組み合
わせ、遊星歯車機構のキャリアを出力軸として、これに
変速機を接続してなるハイブリッド車駆動構造が示され
ている。かかるハイブリッド車駆動構造によれば、内燃
機関のみを原動機として働かせても、変速機の変速機能
を得て、従来の内燃機関車と同様に自動車に求められる
多様な運行態様に対応できる。これは上記の如きハイブ
リッド車の由来を反映する一つの典型であると思われ
る。
2. Description of the Related Art In recent years, hybrid vehicles in which wheels are driven by a combination of an internal combustion engine and an electric motor have been in the limelight in recognition of the increasing importance of environmental protection and fuel resource saving. . When driving the wheels of an automobile, which require various combinations of rotational speed and driving torque, by an internal combustion engine and an electric motor, various driving modes may be possible. Originally, it was driven exclusively by an internal combustion engine, and hybrid vehicles in the field of automobiles started by replacing some conventional internal combustion engine-only drive with electric drive as far as the situation allows. Therefore, it is considered natural that even a hybrid vehicle can be driven only by the internal combustion engine. JP-A-11-
In 198669, a first motor / generator is connected in series to a crankshaft of an internal combustion engine to form a power shaft driven by either or both of the internal combustion engine and the electric motor. A hybrid vehicle drive structure is shown in which an output shaft of a generator is connected to and combined with a ring gear and a sun gear of a planetary gear mechanism, and a carrier of the planetary gear mechanism is used as an output shaft and a transmission is connected to the carrier. . According to such a hybrid vehicle drive structure, even if only the internal combustion engine is used as a prime mover, the shift function of the transmission is obtained, and it is possible to cope with various operating modes required for a vehicle, like a conventional internal combustion engine vehicle. This seems to be one of the typical examples reflecting the origin of the hybrid vehicle as described above.

【0003】しかし、一方、自動車の原動機として内燃
機関と電動機とを組み合わせる機会に、車輪に求められ
る回転数対駆動トルクと内燃機関より得られる回転数対
駆動トルクの間の乖離に起因する内燃機関出力軸と車軸
の間の回転数の差を電動機により差動的に吸収し、内燃
機関出力軸と車軸の間に従来から必要とされていた変速
機を無くすことが本件出願人と同一人により提案され
た。添付の図1は、そのようなハイブリッド車の駆動構
造を示す概略図である。
On the other hand, however, on the occasion of combining an internal combustion engine and an electric motor as a prime mover of an automobile, the internal combustion engine is caused by the difference between the rotational speed required for the wheels and the driving torque and the rotational speed obtained from the internal combustion engine versus the driving torque. By the same person as the applicant of the present application, it is possible to differentially absorb the difference in rotation speed between the output shaft and the axle by the electric motor and eliminate the transmission that has been conventionally required between the internal combustion engine output shaft and the axle. was suggested. FIG. 1 attached herewith is a schematic view showing a drive structure of such a hybrid vehicle.

【0004】図1に於いて、1は内燃機関であり、図に
は示されていない車体に取り付けられている。2はその
出力軸(クランク軸)である。3は遊星歯車装置であ
り、4はそのサンギヤ、5はリングギヤ、6はプラネタ
リピニオン、7はキャリアである。クランク軸2はキャ
リア7に連結されている。8は第一の電動発電機(MG
1)であり、コイル9と回転子10と有し、回転子10
はサンギヤ4と連結されている。コイル9は車体より支
持されている。リングギヤ5にはプロペラ軸11の一端
が連結されている。かくして、遊星歯車装置3は、内燃
機関の出力軸2に現れる内燃機関の出力を第一の電動発
電機3と車輪駆動軸をなすプロペラ軸11とに分配する
動力分配機構を構成している。プロペラ軸11の途中に
は第二の電動発電機(MG2)12が連結されている。
第二の電動発電機12はコイル13と回転子14と有
し、コイル13は車体より支持されている。プロペラ軸
11に対する回転子14の連結は任意の構造であってよ
いが、図示の例では、プロペラ軸11に設けられた歯車
15に回転子14により支持されて回転する歯車16が
噛み合う構造とされている。プロペラ軸11の他端はデ
ィファレンシャル装置17を介して一対の車軸18に連
結されている。車軸18の各々には車輪19が取り付け
られている。
In FIG. 1, reference numeral 1 denotes an internal combustion engine, which is mounted on a vehicle body (not shown). Reference numeral 2 is its output shaft (crank shaft). 3 is a planetary gear device, 4 is its sun gear, 5 is a ring gear, 6 is a planetary pinion, and 7 is a carrier. The crankshaft 2 is connected to the carrier 7. 8 is the first motor generator (MG
1), which has the coil 9 and the rotor 10, and the rotor 10
Is connected to the sun gear 4. The coil 9 is supported by the vehicle body. One end of a propeller shaft 11 is connected to the ring gear 5. Thus, the planetary gear device 3 constitutes a power distribution mechanism that distributes the output of the internal combustion engine, which appears on the output shaft 2 of the internal combustion engine, to the first motor generator 3 and the propeller shaft 11 that serves as a wheel drive shaft. A second motor generator (MG2) 12 is connected in the middle of the propeller shaft 11.
The second motor generator 12 has a coil 13 and a rotor 14, and the coil 13 is supported by the vehicle body. The connection of the rotor 14 to the propeller shaft 11 may have any structure, but in the illustrated example, the structure is such that the gear 15 provided on the propeller shaft 11 meshes with the rotating gear 16 supported by the rotor 14. ing. The other end of the propeller shaft 11 is connected to a pair of axles 18 via a differential device 17. Wheels 19 are attached to each of the axles 18.

【0005】図示の駆動構造に於いて、クランク軸2の
回転とキャリア7の回転とは同じであり、今この回転数
をNcで表すものとする。また第一の電動発電機8の回
転とサンギヤ4の回転とは同じであり、今この回転数を
Nsで表すものとする。一方、リングギヤ5の回転と第
二の電動発電機12の回転と車輪19の回転とは互いに
対応し、最終的には車速に対応するものであるが、それ
ぞれの回転数は歯車15と16の間の歯数の比、ディフ
ァレンシャル装置17に於ける減速比、およびタイヤ径
によって異なる。しかし、今ここでは便宜上これらの部
分の回転数をリングギヤ5の回転数にて代表するものと
し、それをNrとする。そうすると、内燃機関と二つの
電動発電機とを遊星歯車装置にて図示の如く組み合わせ
たハイブリッド車駆動構造に於ける内燃機関と二つの電
動発電機MG1、MG2の回転数Nc、Ns、Nrの間
の関係は、遊星歯車装置の原理に基づき、図2に示す線
図により表される。図にてρはリングギヤの歯数に対す
るサンギヤの歯数である(ρ<1)。Ncは機関回転数
により定まり、Nrは車速により定まるので、Nsは機
関回転数と車速の如何により Ns=(1+1/ρ)Nc−(1/ρ)Nr として定まる。
In the illustrated drive structure, the rotation of the crankshaft 2 and the rotation of the carrier 7 are the same, and this rotation speed is now represented by Nc. Further, the rotation of the first motor generator 8 and the rotation of the sun gear 4 are the same, and this rotation speed is now represented by Ns. On the other hand, the rotation of the ring gear 5, the rotation of the second motor generator 12, and the rotation of the wheels 19 correspond to each other and finally correspond to the vehicle speed, but the respective rotation speeds are those of the gears 15 and 16. It depends on the ratio of the number of teeth between them, the speed reduction ratio in the differential device 17, and the tire diameter. However, here, for the sake of convenience, the rotational speed of these portions is represented by the rotational speed of the ring gear 5, and is represented by Nr. Then, between the internal combustion engine and the two motor generators MG1, MG2 in the hybrid vehicle drive structure in which the internal combustion engine and the two motor generators are combined by a planetary gear device as shown in the drawing, between the rotational speeds Nc, Ns, Nr. The relationship is expressed by the diagram shown in FIG. 2 based on the principle of the planetary gear device. In the figure, ρ is the number of teeth of the sun gear with respect to the number of teeth of the ring gear (ρ <1). Since Nc is determined by the engine speed and Nr is determined by the vehicle speed, Ns is determined as Ns = (1 + 1 / ρ) Nc− (1 / ρ) Nr depending on the engine speed and the vehicle speed.

【0006】一方、キャリアとサンギヤとリングギヤの
トルクをTc、Ts、Trとすると、これらは Ts:Tc:Tr=ρ/(1+ρ):1:1/(1+
ρ) の比にて互いに平衡し、従ってまた、これら3要素のい
ずれかがトルクを発生しあるいは吸収するときには、上
記の平衡が成り立つまで相互間にトルクのやりとりが行
なわれる。
On the other hand, if the torques of the carrier, sun gear, and ring gear are Tc, Ts, and Tr, these are Ts: Tc: Tr = ρ / (1 + ρ): 1: 1 / (1+
When a ratio of ρ) balances each other, and thus any of these three elements produces or absorbs torque, torque is exchanged between them until the above balance is established.

【0007】以上の如き駆動構造を備えたハイブリッド
車に於いて、内燃機関、MG1、MG2の作動は、図に
は示されていない車輌運転制御装置により、運転者から
の運転指令と車輌の運行状態とに基づいて制御される。
即ち、車輌運転制御装置はマイクロコンピュータを備
え、運転者からの運転指令と種々のセンサにより検出さ
れる車輌の運行状態とに基づいて目標車速および目標車
輪駆動トルクを計算すると共に、蓄電装置の充電状態に
基づいて蓄電装置に許される電流出力あるいは蓄電装置
の充電のために必要な発電量を計算し、これらの計算結
果に基づいて、内燃機関を休止を含む如何なる運転状態
にて運転すべきか、またMG1およびMG2をいかなる
電動状態あるいは発電状態にて運転すべきかを計算し、
その計算結果に基づいて内燃機関、MG1、MG2の作
動を制御する。
In the hybrid vehicle having the above-described drive structure, the internal combustion engines, MG1 and MG2 are operated by a vehicle operation control device (not shown) from the driver and operation of the vehicle. It is controlled based on the state and.
That is, the vehicle operation control device includes a microcomputer, calculates the target vehicle speed and the target wheel drive torque based on the operation command of the driver and the operation state of the vehicle detected by various sensors, and charges the power storage device. Based on the state, calculate the current output allowed for the power storage device or the amount of power generation required for charging the power storage device, and based on these calculation results, what operating state should the internal combustion engine operate in, including stoppage, In addition, calculate what kind of electric or electric power generation state MG1 and MG2 should be operated in,
The operation of the internal combustion engine, MG1 and MG2 is controlled based on the calculation result.

【0008】[0008]

【発明が解決しようとする課題】以上の如く内燃機関の
出力軸が動力分配機構を経て第一の電動発電機と車輪駆
動軸とに連結され、該車輪駆動軸に第二の電動発電機が
連結されたハイブリッド車駆動構造によれば、図2より
理解される通り、内燃機関出力軸の回転数Ncと車速に
対応する回転数Nrの各々の値およびその間の相対関係
は、その変化を第一の電動発電機の回転数Nsにて吸収
することにより大幅に変えることができるので、かかる
ハイブリッド車駆動構造に於いては、これまで変速機は
不要とされていた。即ち、動力分配機構の調節次第で、
NcとNrの間の関係を自由に変えることができ、また
停車中(Nr=0)であっても機関運転(Nc>0)す
ること、逆に、前進中(Nr>0)であっても機関停止
(Nc=0)すること、あるいは機関の運転または停止
(Nc≧0)にかかわらず後進(Nr<0)することが
できる。
As described above, the output shaft of the internal combustion engine is connected to the first motor / generator and the wheel drive shaft through the power distribution mechanism, and the wheel drive shaft is provided with the second motor / generator. According to the connected hybrid vehicle drive structure, as can be understood from FIG. 2, the respective values of the rotation speed Nc of the internal combustion engine output shaft and the rotation speed Nr corresponding to the vehicle speed and the relative relationship between them show the change. Since it can be drastically changed by absorbing the rotation speed Ns of one motor-generator, the transmission has not been required in the hybrid vehicle drive structure. That is, depending on the adjustment of the power distribution mechanism,
It is possible to freely change the relationship between Nc and Nr, and to operate the engine (Nc> 0) even when the vehicle is stopped (Nr = 0), and conversely, when the vehicle is moving forward (Nr> 0). Also, the engine can be stopped (Nc = 0), or it can be moved backward (Nr <0) regardless of whether the engine is running or stopped (Nc ≧ 0).

【0009】しかし、MG2の回転数は車速の如何によ
って左右され、蓄電装置の充電度は車速とは一応無関係
であるため、MG2が蓄電装置の充電のための発電機と
して作動するには大きな制約がある。そこで蓄電装置の
充電は専らMG1に頼ることとなり、逆に車輪の電動駆
動は専らMG2に頼ることとなる。そのため変速機を備
えない上記の如きハイブリッド車駆動構造に於いて、低
車速領域にても必要に応じて高い車輪駆動トルクを得る
ことができる車輌運転性能を確保しておくためには、畢
竟MG2は大型化せざるを得ない。
However, the number of revolutions of MG2 depends on the vehicle speed, and the degree of charge of the power storage device is irrelevant to the vehicle speed. Therefore, MG2 has a large limitation in operating as a generator for charging the power storage device. There is. Therefore, charging of the power storage device depends exclusively on MG1, and conversely, electric drive of the wheels depends exclusively on MG2. Therefore, in the hybrid vehicle drive structure as described above, which is not provided with a transmission, in order to secure the vehicle driving performance capable of obtaining a high wheel drive torque as necessary even in the low vehicle speed range, the quality MG2 Is inevitably larger.

【0010】これを車速に対する車軸トルクの能力特性
線図で示せば、図3の通りである。即ち、今、車輌の内
燃機関を広い車速域に亙って高燃費にて運転し、しかも
車輌の車速対車軸トルク性能として望まれる限界性能と
して線Aにて示す如き性能を車輌に持たせようとすれ
ば、高燃費を得る内燃機関の車速対車軸トルク性能は領
域Bの如くほぼ平らになるので、残りを専らMG2にて
補わなければならず、その車速対車軸トルク性能は領域
Cを賄うものでなければなない。そのためMG2は低回
転速度にて高トルクを発生することができるよう、それ
相当の大型のものとされなければならない。
This is shown in FIG. 3 as a performance characteristic diagram of axle torque with respect to vehicle speed. That is, now, the internal combustion engine of the vehicle should be operated with high fuel efficiency over a wide range of vehicle speeds, and the vehicle should have the performance shown by line A as the limit performance desired as the vehicle speed vs. axle torque performance. Then, since the vehicle speed versus axle torque performance of the internal combustion engine that obtains high fuel consumption becomes almost flat as in region B, the rest must be compensated exclusively with MG2, and the vehicle velocity versus axle torque performance covers region C. Must be something. Therefore, the MG2 must be large enough to generate high torque at a low rotation speed.

【0011】しかし、図3を吟味すれば、領域Cの深さ
は領域Bの深さに対比して些か深すぎるのではないかと
の疑問がもたれる。これは、観点を変えれば、内燃機関
と第一および第二の電動発電機なる三つの原動装置の大
きさの相対的釣合い、特に内燃機関と第二の電動発電機
の大きさの釣合いの問題である。本発明は、かかる疑問
に端を発し、この点に関し上記の如きハイブリッド車輌
駆動構造を更に改良することを課題としている。
However, when examining FIG. 3, it is doubted that the depth of the region C is a little too deep as compared with the depth of the region B. From a different point of view, this is a problem of the relative balance between the sizes of the internal combustion engine and the three prime movers, that is, the first and second motor-generators, and particularly the size balance between the internal combustion engine and the second motor-generator. Is. The present invention originates from such a question, and an object of this point is to further improve the hybrid vehicle drive structure as described above.

【0012】[0012]

【課題を解決するための手段】かかる課題を解決するも
のとして、本発明は、内燃機関の出力軸が動力分配機構
を経て第一の電動発電機と車輪駆動軸とに連結され、該
車輪駆動軸に第二の電動発電機が連結されたハイブリッ
ド車駆動構造に於いて、前記車輪駆動軸の途中または該
車輪駆動軸への前記第二の電動発電機の連結の途中の少
なくとも一方に変速機を設けたことを特徴とするハイブ
リッド車駆動構造を提案するものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an output shaft of an internal combustion engine, which is connected to a first motor / generator and a wheel drive shaft through a power distribution mechanism to drive the wheel. In a hybrid vehicle drive structure in which a second motor / generator is connected to a shaft, a transmission is provided at least in the middle of the wheel drive shaft or in the middle of connection of the second motor / generator to the wheel drive shaft. The present invention proposes a hybrid vehicle drive structure characterized by the provision of.

【0013】尚、電動発電機なる語は、電動機および発
電機の両機能を有する手段を指すが、本願発明は、内燃
機関の出力軸が動力分配機構を経て第一の電動発電機と
車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発
電機が連結されたハイブリッド車駆動構造の、短期的車
輌駆動性能に関するものであり、換言すれば、車輌のハ
イブリッド駆動における内燃機関駆動と、電動駆動と、
蓄電装置に対する自己充電作用の相互関係が関与する長
期的車輌駆動性能に関するものではないので、本願発明
の作用および効果に関する限り、第一および第二の電動
発電機は、いずれも単なる電動機であってよいものであ
る。確かに、実働する車輌駆動装置としては、既に記し
た通り、第二の電動発電機は専ら電動機として作動せざ
るを得ず(しかし発電機として作動することも可能)、
従って長期的に作動可能な車輌駆動装置を構成するため
には、第一の電動発電機は発電機能を有している必要が
あるが、この必要性は本願発明の技術的思想とは関係な
いことである。従って、本発明の構成に於いて、電動発
電機と記載された手段は、発電機能を有しない電動機を
その均等物として含むものとする。
The term "motor generator" refers to means having both functions of an electric motor and a generator. In the present invention, however, the output shaft of the internal combustion engine passes through the power distribution mechanism to drive the first motor generator and the wheels. The present invention relates to a short-term vehicle drive performance of a hybrid vehicle drive structure in which a second motor / generator is connected to a shaft and the wheel drive shaft is connected, in other words, to an internal combustion engine drive in a hybrid drive of the vehicle. , Electric drive,
As far as the operation and effect of the present invention are concerned, both the first and second motor-generators are mere electric motors because they are not related to the long-term vehicle driving performance in which the mutual relationship of the self-charging action on the power storage device is involved. It's good. Certainly, as a vehicle drive device that actually works, as already mentioned, the second motor generator has to operate exclusively as an electric motor (but it can also operate as a generator),
Therefore, in order to construct a vehicle drive device that can operate for a long period of time, the first motor generator must have a power generation function, but this need is not related to the technical idea of the present invention. That is. Therefore, in the configuration of the present invention, the means described as a motor generator includes a motor having no power generation function as its equivalent.

【0014】上記の如きハイブリッド車駆動構造に於い
て、前記変速機は前記車輪駆動軸の途中に前記第二の電
動発電機の連結部より前記内燃機関の側に設けられてよ
い。
In the hybrid vehicle drive structure as described above, the transmission may be provided on the side of the internal combustion engine with respect to the connecting portion of the second motor generator in the middle of the wheel drive shaft.

【0015】あるいはまた、上記の如きハイブリッド車
駆動構造に於いて、前記変速機は前記車輪駆動軸の途中
に前記第二の電動発電機の連結部より前記内燃機関とは
隔たる側に設けられてよい。
Alternatively, in the hybrid vehicle drive structure as described above, the transmission is provided in the middle of the wheel drive shaft on the side separated from the internal combustion engine with respect to the connecting portion of the second motor generator. You may

【0016】更に、上記の如きハイブリッド車駆動構造
に於いて、前記変速機は後進段を含んでいてよい。この
場合、ハイブリッド車駆動構造は、更に、前記変速機の
後進段による車輌後進駆動と前記動力分配機構の調節に
よる車輌後進駆動との間の選択を行う手段を含んでいて
よい。
Further, in the hybrid vehicle drive structure as described above, the transmission may include a reverse gear. In this case, the hybrid vehicle drive structure may further include means for selecting between vehicle reverse drive by the reverse stage of the transmission and vehicle reverse drive by adjusting the power distribution mechanism.

【0017】[0017]

【発明の作用及び効果】上記の如く内燃機関の出力軸が
動力分配機構を経て第一の電動発電機と車輪駆動軸とに
連結され、該車輪駆動軸に第二の電動発電機が連結され
たハイブリッド車駆動構造に於いて、前記車輪駆動軸の
途中または該車輪駆動軸への前記第二の電動発電機の連
結の途中の少なくとも一方に変速機が設けられれば、低
車速にて高車軸トルクが求められたとき、該変速機が前
記車輪駆動軸の途中であって前記第二の電動発電機の連
結部より内燃機関の側に設けられていれば、前記動力分
配機構を調節して内燃機関の回転数を車速に対比して高
め、該変速機の減速比を高めることにより、求められた
高車軸トルクのより多くを内燃機関により賄い、前記第
二の電動発電機に求めるトルクを減じてことなくこの要
求に応ずることができ、また該変速機が前記車輪駆動軸
の途中であって前記第二の電動発電機の連結部より内燃
機関とは隔たる側に設けられていれば、前記動力分配機
構を調節して内燃機関の回転数を車速に対比して高め、
該変速機の減速比を高めることにより、この高められた
減速比にて車輪を内燃機関と前記第二の電動発電機との
共働により駆動し、第二の電動発電機に求めるトルクを
減じてこの要求に応ずることができ、また該変速機が前
記車輪駆動軸への前記第二の電動発電機の連結の途中に
設けられていれば、前記動力分配機構の調節の如何に拘
らず前記第二の電動発電機より得られる車輪駆動トルク
を該変速機の減速比を高めることにより増大し、前記第
二の電動発電機を程々の大きさにしておいてもこの要求
に応ずることができ、かくして内燃機関と第一および第
二の電動発電機の三者の相対的大きさに好ましい釣合い
を保ち、内燃機関を常に高燃費にて運転しつつ、図3の
線Aにより示されている如き車速対車軸トルク性能を得
ることができる。
As described above, the output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft via the power distribution mechanism, and the wheel drive shaft is connected to the second motor generator. In the hybrid vehicle drive structure, if the transmission is provided at least in the middle of the wheel drive shaft or the connection of the second motor / generator to the wheel drive shaft, the high axle at a low vehicle speed. When the torque is obtained, if the transmission is provided on the side of the internal combustion engine with respect to the connecting portion of the second motor generator in the middle of the wheel drive shaft, the power distribution mechanism is adjusted. By increasing the number of revolutions of the internal combustion engine relative to the vehicle speed and increasing the reduction ratio of the transmission, the internal combustion engine can cover more of the required high axle torque, and the torque required for the second motor generator can be obtained. To meet this demand without diminishing If the transmission is provided in the middle of the wheel drive shaft and on the side separated from the internal combustion engine with respect to the connecting portion of the second motor generator, the internal combustion engine is adjusted by adjusting the power distribution mechanism. Increase engine speed relative to vehicle speed,
By increasing the reduction ratio of the transmission, the wheels are driven by the cooperation of the internal combustion engine and the second motor / generator at the increased reduction ratio to reduce the torque required for the second motor / generator. If the transmission is provided in the middle of the connection of the second motor / generator to the wheel drive shaft, the transmission can be adjusted regardless of the adjustment of the power distribution mechanism. The wheel drive torque obtained from the second motor / generator can be increased by increasing the reduction ratio of the transmission, and even if the second motor / generator is made to have a moderate size, it is possible to meet this requirement. Thus, while maintaining a favorable balance between the relative sizes of the internal combustion engine and the first and second motor-generators, the internal combustion engine is always operated at high fuel efficiency, as shown by the line A in FIG. Such vehicle speed versus axle torque performance can be obtained.

【0018】更に、上記の如きハイブリッド車駆動構造
に於いて、変速機が後進段を含むよう構成されていれ
ば、車輌の後進に際して、動力分配機構を調節しなくて
も、変速機を後進段に切り替えることにより容易に車輌
の後進が可能となる。この場合、更に変速機の後進段に
よる車輌後進駆動と動力分配機構の調節による車輌後進
駆動との間の選択を行う手段が設けられていれば、特に
坂道での登り後進や駆動輪が窪みに陥没したときのよう
に高い車軸トルクによる車輌後進が必要なときには、変
速機の後進段による車輌後進駆動を選択することにより
十分な駆動トルクにてそれに対処し、通常の平地での車
輌後進のように左程の車軸トルクが必要とされないとき
には、動力分配機構の調節による車輌後進駆動を選択す
ることにより変速機切換え操作のない速やかな後進を達
成することができる。
Further, in the hybrid vehicle drive structure as described above, if the transmission is configured to include the reverse gear, the gear can be moved to the reverse gear without adjusting the power distribution mechanism during the reverse movement of the vehicle. By switching to, it is possible to easily reverse the vehicle. In this case, if means is provided for selecting between reverse drive of the vehicle by the reverse gear of the transmission and reverse drive of the vehicle by adjusting the power distribution mechanism, in particular, if the vehicle is climbing backward on a slope or the drive wheels are depressed. When it is necessary to drive the vehicle backwards with a high axle torque, such as when the vehicle is sunk, it is possible to handle it with sufficient driving torque by selecting the vehicle reverse driving with the reverse gear of the transmission, and it is possible to reverse the vehicle on a normal level. When the axle torque to the left is not required, by selecting the vehicle reverse drive by adjusting the power distribution mechanism, it is possible to achieve quick reverse without transmission change operation.

【0019】更にまた、上記の変速機はそれ自身既に種
々の態様にて公知のオーバドライブ段を最高速段とする
ものであってもよく、それによってハイブリッド車に於
いても車輌高速運転に対し内燃機関の運転を従来のオー
バドライブ付き内燃機関車に於けると同様に最適化する
ことができる。
Furthermore, the above-described transmission may itself be the one in which the known overdrive stage is already the maximum speed in various modes, so that even in a hybrid vehicle, high speed operation of the vehicle is possible. The operation of the internal combustion engine can be optimized as in a conventional internal combustion engine with overdrive.

【0020】[0020]

【発明の実施の形態】図4、図5、図6は、図1に示す
如く内燃機関の出力軸が動力分配機構を経て第一の電動
発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二
の電動発電機が連結されたハイブリッド車駆動構造に、
本発明により変速機を組み込む三つの実施例を示す図1
と同様の概略図である。図4、図5、図6に於いて、図
1に示す部分に対応する部分は対応する符号により示さ
れている。
4, 5, and 6, the output shaft of an internal combustion engine is connected to a first motor / generator and a wheel drive shaft through a power distribution mechanism, as shown in FIG. In the hybrid vehicle drive structure in which the second motor generator is connected to the drive shaft,
FIG. 1 shows three embodiments incorporating a transmission according to the invention.
It is a schematic diagram similar to. 4, 5, and 6, parts corresponding to the parts shown in FIG. 1 are indicated by corresponding reference numerals.

【0021】図4に示す第一の実施例に於いては、変速
機100は車輪駆動軸の途中であって第二の電動発電機
MG2の連結部より内燃機関の側に設けられており、図
1についての説明の文言でいえば、車輪駆動軸の一部を
なすプロペラ軸11の一部であってMG2の連結部をな
す歯車15よりも内燃機関の側に設けられている。変速
機100は2段ないし3段のものであってよく、更に後
進段を含むものであってよい。そのような変速機は既に
公知の技術により種々の態様にて得られるが、前進3段
と後進段を有するものについてその一例を解図的に示せ
ば、図7の通りである。
In the first embodiment shown in FIG. 4, the transmission 100 is provided in the middle of the wheel drive shaft and closer to the internal combustion engine than the connecting portion of the second motor generator MG2. In terms of the description of FIG. 1, it is a part of the propeller shaft 11 that forms a part of the wheel drive shaft, and is provided closer to the internal combustion engine than the gear 15 that forms a connecting portion of the MG 2. The transmission 100 may have two or three gears, and may further include a reverse gear. Although such a transmission can be obtained in various modes by a known technique, an example of a transmission having three forward gears and a reverse gear is schematically shown in FIG.

【0022】図7に於いて、20、22、24、26は
一つの遊星歯車機構を構成するサンギヤ、リングギヤ、
プラネタリピニオン、キャリアであり、また21、2
3、25、27は他の一つの遊星歯車機構を構成するサ
ンギヤ、リングギヤ、プラネタリピニオン、キャリアで
あり、28(C1)、29(C2)はクラッチであり、
30(B1)、31(B2)はブレーキであり、32
(F1)はワンウェイクラッチである。そしてこれらの
回転要素が、33を入力軸とし、34を出力軸として、
その間に図示の如く組み合わされていると、クラッチC
1が係合されることにより減速比が最も大きい第1速段
が達成され、クラッチC1とブレーキB1とが係合され
ることにより減速比が中程の第2速段が達成され、クラ
ッチC1とC2とが係合されることにより減速比が最も
小さい(減速比=1)第3速段が達成され、クラッチC
2とブレーキB2とが係合されることにより後進段が達
成される。
In FIG. 7, reference numerals 20, 22, 24 and 26 designate a sun gear, a ring gear and a planetary gear mechanism, respectively.
Planetary pinion, carrier, also 21, 2
3, 25 and 27 are sun gears, ring gears, planetary pinions and carriers that constitute another planetary gear mechanism, and 28 (C1) and 29 (C2) are clutches,
30 (B1) and 31 (B2) are brakes, 32
(F1) is a one-way clutch. These rotary elements have 33 as an input shaft and 34 as an output shaft,
In the meantime, if it is combined as shown, the clutch C
The first speed stage having the largest reduction ratio is achieved by engaging 1 and the second speed stage having an intermediate reduction ratio is achieved by engaging the clutch C1 and the brake B1. And C2 are engaged, the third speed ratio having the smallest reduction ratio (reduction ratio = 1) is achieved, and the clutch C
The reverse gear is achieved by the engagement of 2 and the brake B2.

【0023】図4の実施例に於いて、変速機100が3
段の変速を与えるようになっているとすると、車速対車
軸トルクの能力特性線図は、かかる変速機がない場合の
図3に対比して、図8の如く変更される。この線図に於
いて、領域B1、B2、B3が、それぞれ変速機を第1
速段、第2速段、第3速段にすることにより主として内
燃機関(場合によって内燃機関およびMG1)によって
賄われる領域であり、残る領域Cが第二の電動発電機M
G2によって賄われる領域である。図8より、MG2に
求められる最大トルクが、図3の場合に比して大幅に低
減されることが理解されよう。
In the embodiment of FIG. 4, the transmission 100 has three
Assuming that gear shifting is applied, the performance characteristic diagram of vehicle speed versus axle torque is changed as shown in FIG. 8 in comparison with FIG. 3 in the case where such a transmission is not provided. In this diagram, areas B1, B2, and B3 respectively represent the first transmission.
The region C that is mainly covered by the internal combustion engine (in some cases, the internal combustion engine and MG1) by setting the speed, the second speed, and the third speed, and the remaining region C is the second motor generator M
This is an area covered by G2. It will be understood from FIG. 8 that the maximum torque required for MG2 is significantly reduced as compared with the case of FIG.

【0024】図5に示す第二の実施例に於いては、変速
機101は車輪駆動軸の途中であって第二の電動発電機
MG2の連結部より内燃機関とは隔たる側に設けられて
おり、図1についての説明の文言でいえば、車輪駆動軸
の一部をなすプロペラ軸11の一部であってMG2の連
結部をなす歯車15よりも内燃機関とは隔たる側に設け
られている。変速機101もまた2段ないし3段のもの
であってよく、更に後進段を含むものであってよく、図
7に示す如きものであってよい。
In the second embodiment shown in FIG. 5, the transmission 101 is provided in the middle of the wheel drive shaft and on the side separated from the internal combustion engine with respect to the connecting portion of the second motor generator MG2. In terms of the description of FIG. 1, a part of the propeller shaft 11 forming a part of the wheel drive shaft is provided on the side farther from the internal combustion engine than the gear 15 forming the connecting part of the MG2. Has been. The transmission 101 may also have two or three gears, may further include a reverse gear, and may be as shown in FIG.

【0025】図5の実施例に於いて、変速機101が3
段の変速を与えるようになっているとすると、車速対車
軸トルクの能力特性線図は、かかる変速機がない場合の
図3に比して、図9の如く変更される。この線図に於い
ては、領域B1+C1、B2+C2、B3+C3が、そ
れぞれ変速機を第1速段、第2速段、第3速段にするこ
とにより主として内燃機関(場合によって内燃機関およ
びMG1)およびMG2によって賄われる領域である。
この場合にも、図9より分かる通り、MG2に求められ
る最大トルクは、図3の場合に比して大幅に低減され
る。
In the embodiment of FIG. 5, the transmission 101 has three
Assuming that the gear shift is applied, the performance characteristic diagram of vehicle speed versus axle torque is changed as shown in FIG. 9 as compared with FIG. 3 in the case where such a transmission is not provided. In this diagram, the regions B1 + C1, B2 + C2, B3 + C3 mainly represent the internal combustion engine (in some cases, the internal combustion engine and MG1) by setting the transmission to the first speed, the second speed, and the third speed, respectively. This is an area covered by MG2.
Also in this case, as can be seen from FIG. 9, the maximum torque required for MG2 is significantly reduced as compared with the case of FIG.

【0026】図6に示す第3の実施例に於いては、変速
機102は車輪駆動軸への第二の電動発電機MG2の連
結の途中に設けられており、図1についての説明の文言
でいえば、車輪駆動軸の一部をなすプロペラ軸11への
MG2の連結部に設けられている。変速機102もまた
2段ないし3段のものであってよい。この場合、MG2
の逆転駆動は電気回路の切換えにより簡単に行なえるの
で、変速機102には後進段はなくてもよい。しかし、
変速機102もまた後進段を備えていてもよく、図7に
示す如きものであってよい。
In the third embodiment shown in FIG. 6, the transmission 102 is provided in the middle of the connection of the second motor generator MG2 to the wheel drive shaft, and the description of FIG. In other words, it is provided at the connecting portion of the MG 2 to the propeller shaft 11 that forms a part of the wheel drive shaft. The transmission 102 may also have two or three gears. In this case, MG2
Since the reverse rotation drive can be easily performed by switching the electric circuit, the transmission 102 does not need to have the reverse gear. But,
The transmission 102 may also include a reverse gear and may be as shown in FIG.

【0027】図6の実施例に於いて、変速機102が3
段の変速を与えるようになっているとすると、車速対車
軸トルクの能力特性線図は、かかる変速機がない場合の
図3に比して、図10の如く変更される。この線図に於
いては、領域Bが主として内燃機関(場合によって内燃
機関およびMG1)によって賄われる領域であり、領域
C1、C2、C3が、それぞれ変速機を第1速段、第2
速段、第3速段にすることによりMG2によって賄われ
る領域である。図10に於いて、領域C1は内燃機関に
より領域Bに相当するトルクを得た上でMG2の出力ト
ルクを第1速段の変速機により増大したトルクを加算す
ることにより賄えるトルク領域を示す。領域C2、C3
も同様のことを示す。図10より分かる通り、MG2自
身に求められる最大トルクは、図3の場合に比して大幅
に低減される。
In the embodiment of FIG. 6, the transmission 102 has three
Assuming that gear shifting is applied, the performance characteristic diagram of vehicle speed versus axle torque is changed as shown in FIG. 10 as compared with FIG. 3 in the case where such a transmission is not provided. In this diagram, the region B is a region mainly covered by the internal combustion engine (in some cases, the internal combustion engine and MG1), and the regions C1, C2, and C3 respectively set the transmission to the first speed and the second speed.
This is an area covered by MG2 by setting the speed and the third speed. In FIG. 10, a region C1 shows a torque region in which the torque corresponding to the region B is obtained by the internal combustion engine and then the output torque of the MG2 is added by the torque increased by the first gear transmission. Area C2, C3
Also shows the same thing. As can be seen from FIG. 10, the maximum torque required for MG2 itself is significantly reduced as compared with the case of FIG.

【0028】尚、図8〜図10は、上記の通り車速対車
軸トルクの座標系で見て主として内燃機関(場合によっ
て内燃機関およびMG1)および第二の電動発電機MG
2により賄うことができるトルクの大きさを車速に対し
て示す能力特性線図であり、かかる変速機付きハイブリ
ッド車駆動構造に於いては変速線図でない。即ち、図4
および図5の実施例に於いて、車軸トルクに対する要求
が低い場合にも、車速が低車速から高車速へと増大する
につれて、変速機は必ず第1速段から第2速段、第3速
段へと切り換えられることを意味するものではない。こ
れらの実施例に於いて、平地での通常の車輌発進時の如
くさしたる高車軸トルクが必要とされないときには、変
速機を第3速段に設定したままとして動力分配機構の制
御により図3の領域Bを用い、第2速段、第1速段は、
それぞれ要求車軸トルクが増大したときあるいはシフト
レバーが2位置、L位置へ切り換えられることに応じて
使用されるようにしてよい。
8 to 10, the internal combustion engine (in some cases, internal combustion engine and MG1) and the second motor generator MG are mainly viewed in the coordinate system of vehicle speed versus axle torque as described above.
2 is a performance characteristic diagram showing the amount of torque that can be covered by 2 with respect to vehicle speed, and is not a gear shift diagram in such a hybrid vehicle drive structure with a transmission. That is, FIG.
In the embodiment of FIG. 5, even when the demand for the axle torque is low, as the vehicle speed increases from the low vehicle speed to the high vehicle speed, the transmission always has the first speed, the second speed, and the third speed. It does not mean that it is possible to switch to a tier. In these embodiments, when a high axle torque is not required, which is the case when the vehicle is normally started on level ground, the transmission is set to the third speed and the power distribution mechanism is controlled to control the region shown in FIG. B, the second speed and the first speed are
Each may be used when the required axle torque increases or when the shift lever is switched to the 2 position and the L position.

【0029】また、以上のいずれの実施例においても、
車輌を後進駆動することは、図2で見てNrを負の値に
することであり、それには内燃機関が運転されているか
(Nc>0)いないか(Nc=0)にかかわらず、MG
2の回転数Nrが所望の負の値になるよう、内燃機関回
転数Ncに応じてMG1の回転数NsおよびMG2の回
転数Nrを調整することにより達成される。かかるMG
1およびMG2の回転数の調整制御は、無段で迅速に行
なえるが、この場合、車輌を後進駆動するトルクは電動
発電機のみによってしか賄えないので、得られる後進駆
動トルクの大きさは限られる。これに対し、変速機が図
4または5に示す実施例における如く車輪駆動軸の途中
に設けられていて後進段を備えているときには、これを
後進段に切り換えて内燃機関によりに車輪を後進駆動す
るようにすれば、変速機の切換えに幾分かの時間を要す
るが、大きな駆動トルクにて車輌を後進駆動することが
できる。そこで、図には示されていないが、変速機の後
進段による車輌後進駆動と動力分配機構の調節による車
輌後進駆動との間の選択を行う手段が設けられていれ
ば、車輌後進駆動に要する駆動トルクの大きさに応じて
適宜両者間の選択を行ってより適切な車輌運転を行うこ
とができる。かかる選択を行う手段は、現今のコンピュ
ータを備えた車輌運転制御装置によれば、ほとんどソフ
トウェア的に達成される。
In any of the above embodiments,
Driving the vehicle in the reverse direction is to make Nr a negative value as seen in FIG. 2, regardless of whether the internal combustion engine is operating (Nc> 0) or not (Nc = 0).
This is achieved by adjusting the rotation speed Ns of MG1 and the rotation speed Nr of MG2 according to the internal combustion engine rotation speed Nc so that the rotation speed Nr of 2 becomes a desired negative value. Such MG
The adjustment control of the rotational speeds of 1 and MG2 can be performed rapidly without any step, but in this case, the torque for driving the vehicle in the reverse direction can be covered only by the motor-generator, so the magnitude of the reverse drive torque obtained is Limited On the other hand, when the transmission is provided in the middle of the wheel drive shaft and has a reverse gear as in the embodiment shown in FIG. 4 or 5, this is switched to the reverse gear and the wheels are driven backward by the internal combustion engine. By doing so, although it takes some time to switch the transmission, the vehicle can be driven in reverse with a large driving torque. Therefore, although not shown in the figure, if a means for selecting between the vehicle reverse drive by the reverse gear of the transmission and the vehicle reverse drive by adjusting the power distribution mechanism is provided, the vehicle reverse drive is required. A more appropriate vehicle operation can be performed by appropriately selecting between the two according to the magnitude of the driving torque. The means for making such a selection can be achieved almost by software according to the vehicle operation control device equipped with the current computer.

【0030】以上に於いては本発明をいくつかの実施例
について詳細に説明したが、本発明がこれらの実施例に
のみ限られるものではなく、本発明の範囲内にて他に種
々の実施例が可能であることは当業者にとって明らかで
あろう。
In the above, the present invention has been described in detail with reference to several embodiments, but the present invention is not limited to these embodiments, and various other implementations are possible within the scope of the present invention. It will be apparent to those skilled in the art that examples are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による改良の対象となるハイブリッド車
の駆動構造を示す概略図。
FIG. 1 is a schematic diagram showing a drive structure of a hybrid vehicle to be improved by the present invention.

【図2】図1に示すハイブリッド車駆動構造に於ける内
燃機関と二つの電動発電機MG1、MG2の回転数N
c、Ns、Nrの間の関係を示す線図。
2 is a rotational speed N of an internal combustion engine and two motor generators MG1 and MG2 in the hybrid vehicle drive structure shown in FIG.
A diagram showing the relationship between c, Ns, and Nr.

【図3】図1に示すハイブリッド車駆動構造に於いて内
燃機関および電動発電機MG2の各々により分担される
べき車軸トルクを車速に対し示す線図。
3 is a diagram showing an axle torque to be shared by each of an internal combustion engine and a motor generator MG2 with respect to a vehicle speed in the hybrid vehicle drive structure shown in FIG.

【図4】図1に示すハイブリッド車駆動構造について本
発明によりなされる改良の第一の実施例を示す概略図。
FIG. 4 is a schematic diagram showing a first embodiment of an improvement made by the present invention with respect to the hybrid vehicle drive structure shown in FIG.

【図5】図1に示すハイブリッド車駆動構造について本
発明によりなされる改良の第二の実施例を示す概略図。
FIG. 5 is a schematic view showing a second embodiment of the improvement made by the present invention with respect to the hybrid vehicle drive structure shown in FIG.

【図6】図1に示すハイブリッド車駆動構造について本
発明によりなされる改良の第三の実施例を示す概略図。
6 is a schematic view showing a third embodiment of the improvement made by the present invention with respect to the hybrid vehicle drive structure shown in FIG.

【図7】三つの変速段と後進段とを提供する変速機の一
例を示す概略図。
FIG. 7 is a schematic diagram showing an example of a transmission that provides three shift speeds and a reverse speed.

【図8】図4に示すハイブリッド車駆動構造に於いて内
燃機関および電動発電機MG2の各々により分担される
べき車軸トルクを車速に対し示す線図。
8 is a diagram showing an axle torque to be shared by an internal combustion engine and a motor generator MG2 with respect to a vehicle speed in the hybrid vehicle drive structure shown in FIG.

【図9】図5に示すハイブリッド車駆動構造に於いて内
燃機関および電動発電機MG2の各々により分担される
べき車軸トルクを車速に対し示す線図。
9 is a diagram showing an axle torque to be shared by an internal combustion engine and a motor generator MG2 with respect to a vehicle speed in the hybrid vehicle drive structure shown in FIG.

【図10】図6に示すハイブリッド車駆動構造に於いて
内燃機関および電動発電機MG2の各々により分担され
るべき車軸トルクを車速に対し示す線図。
10 is a diagram showing an axle torque to be shared by an internal combustion engine and a motor generator MG2 with respect to a vehicle speed in the hybrid vehicle drive structure shown in FIG.

【符号の説明】[Explanation of symbols]

1…内燃機関 2…内燃機関の出力軸 3…遊星歯車装置 4…サンギヤ 5…リングギヤ 6…プラネタリピニオン 7…キャリア 8…第一の電動発電機(MG1) 9…コイル 10…回転子 11…プロペラ軸 12…第二の電動発電機(MG2) 13…コイル 14…回転子 15,16…歯車 17…ディファレンシャル装置 18…車軸 19…車輪 20…サンギヤ 22…リングギヤ 24…プラネタリピニオン 26…キャリア 21…サンギヤ 23…リングギヤ 25…プラネタリピニオン 27…キャリア 28,29…クラッチ 28,29…ブレーキ 32…ワンウェイクラッチ 100,101,102…変速機 1 ... Internal combustion engine 2 ... Output shaft of internal combustion engine 3 ... Planetary gear device 4 ... Sun gear 5 ... Ring gear 6 ... Planetary pinion 7 ... Career 8 ... First motor generator (MG1) 9 ... Coil 10 ... rotor 11 ... Propeller shaft 12 ... Second motor generator (MG2) 13 ... Coil 14 ... rotor 15, 16 ... Gears 17 ... Differential device 18 ... Axle 19 ... Wheels 20 ... Sun gear 22 ... Ring gear 24 ... Planetary pinion 26 ... Career 21 ... Sun gear 23 ... Ring gear 25 ... Planetary pinion 27 ... Career 28, 29 ... Clutch 28, 29 ... Brakes 32 ... One-way clutch 100, 101, 102 ... Transmission

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多賀 豊 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3D039 AA04 AB27 AC39 AC74 3J027 FB01 GC13 GC22 GD03 GD04 GD07 GD09 5H115 PA12 PG04 PI16 PU01 PU25 SE08 SF01 TO04 UI40    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yutaka Taga             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. F-term (reference) 3D039 AA04 AB27 AC39 AC74                 3J027 FB01 GC13 GC22 GD03 GD04                       GD07 GD09                 5H115 PA12 PG04 PI16 PU01 PU25                       SE08 SF01 TO04 UI40

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の出力軸が動力分配機構を経て第
一の電動発電機と車輪駆動軸とに連結され、該車輪駆動
軸に第二の電動発電機が連結されたハイブリッド車駆動
構造に於いて、前記車輪駆動軸の途中または該車輪駆動
軸への前記第二の電動発電機の連結の途中の少なくとも
一方に変速機を設けたことを特徴とするハイブリッド車
駆動構造。
1. A hybrid vehicle drive structure in which an output shaft of an internal combustion engine is connected to a first motor generator and a wheel drive shaft via a power distribution mechanism, and a second motor generator is connected to the wheel drive shaft. In the above, the hybrid vehicle drive structure is characterized in that a transmission is provided in at least one of the wheel drive shaft and the second motor generator connected to the wheel drive shaft.
【請求項2】前記変速機は前記車輪駆動軸の途中に前記
第二の電動発電機の連結部より前記内燃機関の側に設け
られていることを特徴とする請求項1に記載のハイブリ
ッド車駆動構造。
2. The hybrid vehicle according to claim 1, wherein the transmission is provided in the middle of the wheel drive shaft, closer to the internal combustion engine than a connecting portion of the second motor generator. Drive structure.
【請求項3】前記変速機は前記車輪駆動軸の途中に前記
第二の電動発電機の連結部より前記内燃機関とは隔たる
側に設けられていることを特徴とする請求項1に記載の
ハイブリッド車駆動構造。
3. The transmission according to claim 1, wherein the transmission is provided on the side of the wheel drive shaft on a side separated from the internal combustion engine with respect to the connecting portion of the second motor generator. Hybrid vehicle drive structure.
【請求項4】前記変速機は後進段を含んでいることを特
徴とする請求項1〜3のいずれかに記載のハイブリッド
車駆動構造。
4. The hybrid vehicle drive structure according to claim 1, wherein the transmission includes a reverse gear.
【請求項5】前記変速機の後進段による車輌後進駆動と
前記動力分配機構の調節による車輌後進駆動との間の選
択を行う手段を含んでいることを特徴とする請求項4に
記載のハイブリッド車駆動構造。
5. The hybrid according to claim 4, further comprising means for selecting between a reverse drive of the vehicle by the reverse gear of the transmission and a reverse drive of the vehicle by adjusting the power distribution mechanism. Car drive structure.
JP2001323578A 2001-10-22 2001-10-22 Hybrid vehicle drive structure with transmission Expired - Lifetime JP3893938B2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP2001323578A JP3893938B2 (en) 2001-10-22 2001-10-22 Hybrid vehicle drive structure with transmission
US10/261,411 US7223200B2 (en) 2001-10-22 2002-10-02 Hybrid-vehicle drive system and operation method with a transmission
CA2704804A CA2704804C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system with a transmission
CA2704802A CA2704802C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system with a transmission
CA2632448A CA2632448C (en) 2001-10-22 2002-10-08 Operation method of a hybrid-vehicle drive system with a transmission
CA002406817A CA2406817C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system and operation method with a transmission
CA2704805A CA2704805A1 (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system with a transmission
CA002548815A CA2548815C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system and operation method with a transmission
DE60223850T DE60223850T2 (en) 2001-10-22 2002-10-21 Method for operating a drive system of a hybrid vehicle
ES02023460T ES2269583T3 (en) 2001-10-22 2002-10-21 HYBRID TRANSMISSION SYSTEM OF A VEHICLE AND METHOD OF OPERATION WITH A TRANSMISSION.
ES04028726T ES2308093T3 (en) 2001-10-22 2002-10-21 METHOD OF OPERATION OF A MOTOR SYSTEM OF A HYBRID VEHICLE.
DE60227711T DE60227711D1 (en) 2001-10-22 2002-10-21 Method for operating a drive system of a hybrid vehicle
EP04028726A EP1520743B1 (en) 2001-10-22 2002-10-21 Method of operating a hybrid-vehicle drive system
DE60214104T DE60214104T2 (en) 2001-10-22 2002-10-21 Drive system for hybrid vehicle and method of operation with a transmission
EP02023460A EP1304248B1 (en) 2001-10-22 2002-10-21 Hybrid-vehicle drive system and operation method with a transmission
ES04028725T ES2294422T3 (en) 2001-10-22 2002-10-21 METHOD OF OPERATION OF A TRACTION SYSTEM FOR HYBRID VEHICLE.
EP04028725A EP1514716B1 (en) 2001-10-22 2002-10-21 Method of operating a hybrid-vehicle drive system
KR10-2002-0064574A KR100501062B1 (en) 2001-10-22 2002-10-22 Hybrid-vehicle drive system and operation method with a transmission
CNB021471347A CN1286681C (en) 2001-10-22 2002-10-22 Mixed power vehicle drive system with speed changing box and operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323578A JP3893938B2 (en) 2001-10-22 2001-10-22 Hybrid vehicle drive structure with transmission

Publications (3)

Publication Number Publication Date
JP2003127681A true JP2003127681A (en) 2003-05-08
JP2003127681A5 JP2003127681A5 (en) 2005-06-23
JP3893938B2 JP3893938B2 (en) 2007-03-14

Family

ID=19140447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323578A Expired - Lifetime JP3893938B2 (en) 2001-10-22 2001-10-22 Hybrid vehicle drive structure with transmission

Country Status (1)

Country Link
JP (1) JP3893938B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028233A1 (en) * 2003-08-18 2005-03-31 Honda Motor Co., Ltd. Hybrid vehicle
JP2005132365A (en) * 2004-12-20 2005-05-26 Toyota Motor Corp Hybrid driving device and automobile mounted with the same device
WO2005106290A1 (en) 2004-04-27 2005-11-10 Toyota Jidosha Kabushiki Kaisha Controller of driving gear for vehicle
JP2006089003A (en) * 2004-09-27 2006-04-06 Toyota Motor Corp Driving device for vehicle
US7137924B2 (en) 2004-01-22 2006-11-21 Toyota Jidosha Kabushiki Kaisha Control system for hybrid vehicles
JP2006327583A (en) * 2006-06-15 2006-12-07 Toyota Motor Corp Drive device for vehicle
US7201690B2 (en) 2003-05-29 2007-04-10 Aisin Aw Co., Ltd. Drive unit for vehicle
WO2007049681A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller for vehicle drive device
WO2007049682A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller of vehicle automatic transmission
WO2007049683A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller of vehicle driving device
WO2007049680A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller for vehicle drive device
WO2007049684A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller of power transmission
WO2007049685A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Shift control device for automatic transmission
WO2007049686A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Engine start control device
WO2007049679A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive device control device
US7226385B2 (en) 2004-06-03 2007-06-05 Toyota Jidosha Kabushiki Kaisha Control apparatus for controlling driving device of vehicle
US7249642B2 (en) 2004-06-07 2007-07-31 Toyota Jidosha Kabushiki Kaisha Control apparatus for controlling vehicle drive apparatus, and vehicle drive system including the control apparatus
US7252619B2 (en) 2004-02-25 2007-08-07 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
US7255186B2 (en) 2002-08-02 2007-08-14 Aisin Aw Co., Ltd. Hybrid drive system and vehicle equipped therewith
US7314421B2 (en) 2005-08-18 2008-01-01 Hyundai Motor Company Power system of hybrid vehicles
US7322902B2 (en) 2004-05-10 2008-01-29 Toyota Jidosha Kabushiki Kaisha Control device for vehicular transmission mechanism
JP2008025658A (en) * 2006-07-19 2008-02-07 Toyota Central Res & Dev Lab Inc Starting device
JP2008138806A (en) * 2006-12-04 2008-06-19 Toyota Motor Corp Controller of drive device for vehicle
DE102007055918A1 (en) 2006-12-25 2008-07-17 Toyota Jidosha Kabushiki Kaisha, Toyota Control device and control method for a vehicle drive system
US7469758B2 (en) 2005-10-26 2008-12-30 Aisin Aw Co., Ltd. Electric vehicle drive control device and control method therefor
US7492114B2 (en) 2005-10-26 2009-02-17 Aisin Aw Co., Ltd. Electric vehicle drive control device and control method therefor
DE112007000604T5 (en) 2006-03-23 2009-02-19 Aisin Aw Co., Ltd. Power transmission unit and mounting method for this
DE112007000684T5 (en) 2006-03-24 2009-04-23 Aisin Aw Co., Ltd. Power transmission unit and mounting method for this
WO2009106947A1 (en) * 2008-02-26 2009-09-03 Nissan Motor Co., Ltd. Vehicle drive apparatus
WO2009106941A1 (en) * 2008-02-26 2009-09-03 Nissan Motor Co., Ltd. Vehicle drive apparatus
US7727112B2 (en) 2006-02-28 2010-06-01 Toyota Jidosha Kabushiki Kaisha Control system for power transmission unit of vehicle
US7762365B2 (en) 2005-10-26 2010-07-27 Aisin Aw Co., Ltd. Electric vehicle drive control device and control method therefor
WO2010089841A1 (en) * 2009-02-09 2010-08-12 本田技研工業株式会社 Power transmitting device
US7822524B2 (en) 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
DE112006002819B4 (en) 2005-10-26 2011-02-24 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Control system for a vehicle drive unit
US7923945B2 (en) 2005-05-20 2011-04-12 Toyota Jidosha Kabushiki Kaisha Voltage control of upconverter in a motored vehicle drive
DE112005000456B4 (en) * 2004-02-26 2011-07-14 Toyota Jidosha Kabushiki Kaisha, Aichi-ken Control device for vehicle drive system
US8043181B2 (en) 2007-04-27 2011-10-25 Honda Motor Co., Ltd. Power unit
CN102922981A (en) * 2012-10-29 2013-02-13 长城汽车股份有限公司 Hybrid power drive device and vehicle
JP2013103654A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Hybrid vehicle drive device
DE112007000612B4 (en) 2006-03-23 2013-06-27 Aisin Aw Co., Ltd. Power transmission unit and mounting method therefor

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255186B2 (en) 2002-08-02 2007-08-14 Aisin Aw Co., Ltd. Hybrid drive system and vehicle equipped therewith
US7201690B2 (en) 2003-05-29 2007-04-10 Aisin Aw Co., Ltd. Drive unit for vehicle
US7568539B2 (en) 2003-08-18 2009-08-04 Honda Motor Co., Ltd. Hybrid vehicle
WO2005028233A1 (en) * 2003-08-18 2005-03-31 Honda Motor Co., Ltd. Hybrid vehicle
US7822524B2 (en) 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
EP2375103A1 (en) 2003-12-26 2011-10-12 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US7848858B2 (en) 2003-12-26 2010-12-07 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US7137924B2 (en) 2004-01-22 2006-11-21 Toyota Jidosha Kabushiki Kaisha Control system for hybrid vehicles
US7252619B2 (en) 2004-02-25 2007-08-07 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
DE112005000456B4 (en) * 2004-02-26 2011-07-14 Toyota Jidosha Kabushiki Kaisha, Aichi-ken Control device for vehicle drive system
US8135522B2 (en) 2004-02-26 2012-03-13 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
US7396316B2 (en) 2004-04-27 2008-07-08 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
WO2005106290A1 (en) 2004-04-27 2005-11-10 Toyota Jidosha Kabushiki Kaisha Controller of driving gear for vehicle
US7513847B2 (en) 2004-04-27 2009-04-07 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
DE102005021582B4 (en) 2004-05-10 2022-06-23 Toyota Jidosha Kabushiki Kaisha Vehicle power transmission mechanism control device
US7322902B2 (en) 2004-05-10 2008-01-29 Toyota Jidosha Kabushiki Kaisha Control device for vehicular transmission mechanism
US7226385B2 (en) 2004-06-03 2007-06-05 Toyota Jidosha Kabushiki Kaisha Control apparatus for controlling driving device of vehicle
CN100427813C (en) * 2004-06-03 2008-10-22 丰田自动车株式会社 Control apparatus for controlling driving device of vehicle
DE102005025654B4 (en) 2004-06-03 2022-06-30 Toyota Jidosha Kabushiki Kaisha Control device for controlling the driving device of a vehicle
US7249642B2 (en) 2004-06-07 2007-07-31 Toyota Jidosha Kabushiki Kaisha Control apparatus for controlling vehicle drive apparatus, and vehicle drive system including the control apparatus
DE102005026226B4 (en) * 2004-06-07 2009-06-18 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A control device for controlling a vehicle drive device and a vehicle drive system including the control device
JP2006089003A (en) * 2004-09-27 2006-04-06 Toyota Motor Corp Driving device for vehicle
JP2005132365A (en) * 2004-12-20 2005-05-26 Toyota Motor Corp Hybrid driving device and automobile mounted with the same device
US7923945B2 (en) 2005-05-20 2011-04-12 Toyota Jidosha Kabushiki Kaisha Voltage control of upconverter in a motored vehicle drive
US7314421B2 (en) 2005-08-18 2008-01-01 Hyundai Motor Company Power system of hybrid vehicles
US8012060B2 (en) 2005-10-26 2011-09-06 Toyota Jidosha Kabushiki Kaisha Speed change control system for automatic transmission
US8177004B2 (en) 2005-10-26 2012-05-15 Toyota Jidosha Kabushiki Kaisha Control system for drive unit of hybrid vehicle
US7469758B2 (en) 2005-10-26 2008-12-30 Aisin Aw Co., Ltd. Electric vehicle drive control device and control method therefor
US7492114B2 (en) 2005-10-26 2009-02-17 Aisin Aw Co., Ltd. Electric vehicle drive control device and control method therefor
WO2007049681A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller for vehicle drive device
US8496560B2 (en) 2005-10-26 2013-07-30 Toyota Jidosha Kabushiki Kaisha Starting control system for engines
DE112006002847B4 (en) 2005-10-26 2012-11-29 Toyota Jidosha K.K. Control system for the speed change in an automatic transmission
US8246508B2 (en) 2005-10-26 2012-08-21 Toyota Jidosha Kabushiki Kaisha Controller for vehicle drive device
DE112006002865T5 (en) 2005-10-26 2008-09-25 Toyota Jidosha Kabushiki Kaisha, Toyota Control system for a vehicle drive unit
US8177680B2 (en) 2005-10-26 2012-05-15 Toyota Jidosha Kabushiki Kaisha Controller of vehicle driving device
WO2007049682A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller of vehicle automatic transmission
US8052569B2 (en) 2005-10-26 2011-11-08 Toyota Jidosha Kabushiki Kaisha Controller of power transmission
WO2007049683A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller of vehicle driving device
US7762365B2 (en) 2005-10-26 2010-07-27 Aisin Aw Co., Ltd. Electric vehicle drive control device and control method therefor
WO2007049680A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller for vehicle drive device
WO2007049684A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Controller of power transmission
US7798938B2 (en) 2005-10-26 2010-09-21 Toyota Jidosha Kabushiki Kaisha Controller system for device unit of vehicle
WO2007049679A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive device control device
WO2007049686A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Engine start control device
US7976428B2 (en) 2005-10-26 2011-07-12 Toyota Jidosha Kabushiki Kaisha Control system for drive unit of vehicle
WO2007049685A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Shift control device for automatic transmission
DE112006002819B4 (en) 2005-10-26 2011-02-24 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Control system for a vehicle drive unit
US7727112B2 (en) 2006-02-28 2010-06-01 Toyota Jidosha Kabushiki Kaisha Control system for power transmission unit of vehicle
DE112007000604T5 (en) 2006-03-23 2009-02-19 Aisin Aw Co., Ltd. Power transmission unit and mounting method for this
DE112007000604B4 (en) 2006-03-23 2017-10-19 Aisin Aw Co., Ltd. Power transmission unit and mounting method for this
DE112007000612B4 (en) 2006-03-23 2013-06-27 Aisin Aw Co., Ltd. Power transmission unit and mounting method therefor
US8337350B2 (en) 2006-03-23 2012-12-25 Toyota Jidosha Kabushiki Kaisha Power transmission device and method of assembling the same
DE112007000684T5 (en) 2006-03-24 2009-04-23 Aisin Aw Co., Ltd. Power transmission unit and mounting method for this
US7884515B2 (en) 2006-03-24 2011-02-08 Toyota Jidosha Kabushiki Kaisha Power transmission device and method of assembling the same
JP2006327583A (en) * 2006-06-15 2006-12-07 Toyota Motor Corp Drive device for vehicle
JP2008025658A (en) * 2006-07-19 2008-02-07 Toyota Central Res & Dev Lab Inc Starting device
JP2008138806A (en) * 2006-12-04 2008-06-19 Toyota Motor Corp Controller of drive device for vehicle
US8655560B2 (en) 2006-12-04 2014-02-18 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for vehicular drive apparatus
DE102007055918A1 (en) 2006-12-25 2008-07-17 Toyota Jidosha Kabushiki Kaisha, Toyota Control device and control method for a vehicle drive system
US8043181B2 (en) 2007-04-27 2011-10-25 Honda Motor Co., Ltd. Power unit
WO2009106947A1 (en) * 2008-02-26 2009-09-03 Nissan Motor Co., Ltd. Vehicle drive apparatus
WO2009106941A1 (en) * 2008-02-26 2009-09-03 Nissan Motor Co., Ltd. Vehicle drive apparatus
JP2009227268A (en) * 2008-02-26 2009-10-08 Nissan Motor Co Ltd Vehicular drive apparatus
WO2010089841A1 (en) * 2009-02-09 2010-08-12 本田技研工業株式会社 Power transmitting device
JP2010179868A (en) * 2009-02-09 2010-08-19 Honda Motor Co Ltd Power transmission device
JP4610654B2 (en) * 2009-02-09 2011-01-12 本田技研工業株式会社 Power transmission device
JP2013103654A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Hybrid vehicle drive device
CN102922981A (en) * 2012-10-29 2013-02-13 长城汽车股份有限公司 Hybrid power drive device and vehicle
CN102922981B (en) * 2012-10-29 2015-06-03 长城汽车股份有限公司 Hybrid power drive device and vehicle

Also Published As

Publication number Publication date
JP3893938B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP2003127681A (en) Hybrid vehicle drive structure with transmission
JP3852321B2 (en) HV drive structure and method with cranking support torque increasing means
CA2632448C (en) Operation method of a hybrid-vehicle drive system with a transmission
US8998761B2 (en) Transmission for hybrid vehicle
JP3786942B2 (en) Automatic switching transmission for vehicles
JP3857669B2 (en) Hybrid transmission
US6537169B1 (en) Automatic transmission for vehicles
US20110111908A1 (en) Transmission for hybrid vehicle
JP3852322B2 (en) Driving method of hybrid vehicle drive structure with transmission
JP3757845B2 (en) Driving method of hybrid vehicle drive structure with transmission
JP2003247613A (en) Hybrid transmission
JP2021091402A (en) Vehicular power train
JP2008120233A (en) Hybrid driving device
JP6458770B2 (en) Hybrid car
US20160311439A1 (en) Hybrid car
US10759413B2 (en) Control system for hybrid vehicle
JP4915217B2 (en) Vehicle power train
JP3803493B2 (en) Hybrid vehicle
JP2017154511A (en) Driving device for vehicle
KR101085977B1 (en) power train for a hybrid electric vehicle
CN110155037B (en) Vehicle drive control device and vehicle control method
JP3747842B2 (en) Driving method of hybrid vehicle drive structure equipped with transmission
CA2548815C (en) Hybrid-vehicle drive system and operation method with a transmission
JP2003166633A (en) Method of operating hybrid vehicle driving structure with transmission
JP2007118719A (en) Controller for drive unit for vehicle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R151 Written notification of patent or utility model registration

Ref document number: 3893938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term