[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003126663A - Liquid-solid separation apparatus and operation method thereof - Google Patents

Liquid-solid separation apparatus and operation method thereof

Info

Publication number
JP2003126663A
JP2003126663A JP2001328476A JP2001328476A JP2003126663A JP 2003126663 A JP2003126663 A JP 2003126663A JP 2001328476 A JP2001328476 A JP 2001328476A JP 2001328476 A JP2001328476 A JP 2001328476A JP 2003126663 A JP2003126663 A JP 2003126663A
Authority
JP
Japan
Prior art keywords
filtration
liquid
membrane
solid
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001328476A
Other languages
Japanese (ja)
Inventor
Toshi Otsuki
利 大月
Tomohisa Okada
知久 岡田
Takashi Imaoka
孝 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001328476A priority Critical patent/JP2003126663A/en
Publication of JP2003126663A publication Critical patent/JP2003126663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid-solid separation apparatus capable of removing a solid by filtration, maintaining the filtration performance for a long time, and decomposing organic chlorine compounds such as PCB and dioxins contained in the solid, and an operation method thereof. SOLUTION: The liquid-solid separation apparatus has a plurality of membrane filters 12 each having a filtration membrane layer on the outer surface and having a through-hole coupled together by a hollow member, and comprises a liquid supplying and discharging apparatus 16 supplying a liquid to be treated to the outer surfaces of the plurality of membrane filters and draining a filtered liquid through the hollow of the hollow member, and an ultrasonic cleaner 18 cleaning the outer surfaces of the membrane filters with an ultrasonic wave. The ultrasonic cleaner 18 generates the ultrasonic wave in the frequency range of from about 20 kHz to about 600 kHz, whereby solids deposited on the filtration surface by a shock wave associated with cavitation occurring in water are physically stripped off, and solids are chemically decomposed by an oxidation reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固液分離装置とそ
の運転方法に関する。
TECHNICAL FIELD The present invention relates to a solid-liquid separation device and a method for operating the same.

【0002】[0002]

【従来の技術】図11、図12は、従来のリーフフィル
ターの模式図である。リーフフィルターとは、表面に濾
過面を有する円板状の濾葉1(リーフ又はフィルターデ
ィスクと呼ぶ)を用い、タンク内を原液で満たして濾葉
1の表面に最初に原液中の固形物をケーキ第1層として
形成させ、このケーキ第1層により濾過を行いケーキ層
2を形成し、原液3を固形物4(ケーキ)と濾液5とに
分離する固液分離装置である。かかるリーフフィルター
は、薬品や化学物質の分離に従来から広く用いられてい
る。
11 and 12 are schematic views of a conventional leaf filter. A leaf filter is a disk-shaped filter leaf 1 (referred to as a leaf or a filter disc) having a filtration surface on the surface thereof, and the tank is filled with the stock solution to first fill the surface of the filter leaf 1 with the solid matter in the stock solution. It is a solid-liquid separation device that forms a cake first layer, forms a cake layer 2 by filtering the cake first layer, and separates the stock solution 3 into a solid matter 4 (cake) and a filtrate 5. Conventionally, such leaf filters have been widely used for separating chemicals and chemical substances.

【0003】リーフフィルタのケーキ排出はその構造に
より回転、振動、掻き取り、逆洗などのさまざまな方法
が取られている。図の例では、濾葉の回転駆動装置6を
備えており、固液分離が完了した後、濾葉を高速回転さ
せてケーキ層2を遠心力で濾葉の外側に移動し、下方か
らスクレーパ7又はホッパ8で排出して、1回の固液分
離を終了するようになっている。
Various methods such as rotation, vibration, scraping, and backwashing are used for discharging the cake of the leaf filter depending on its structure. In the example shown in the figure, a rotary drive device 6 for the filter leaf is provided, and after the solid-liquid separation is completed, the filter leaf is rotated at a high speed to move the cake layer 2 to the outside of the filter leaf by centrifugal force, and the scraper is fed from below. 7 or hopper 8 is used to discharge the solid-liquid separation once.

【0004】一方、MF(カートリッジ精密濾過膜)や
UF(限外濾過膜)としてセラミック膜フィルタも固液
分離のために広く用いられている。かかるセラミック膜
フィルタは、中空円筒形のセラミックパイプ、或いは複
数の中空円筒孔を有する棒状セラミックであり、薄い濾
過膜層(微細なセラミック粉体)が強固な支持体(粗い
セラミック粉体)で支持されたものである。濾過膜層
は、通常、中空円筒形の内表面に形成されており、内部
に固形分を含む被処理液が圧送され、固形分を分離・除
去した濾過液が微細なセラミック粉体の隙間から外部に
透過するようになっている。なお、濾過膜層は内表面に
限られず、セラミックパイプの外表面に形成され、外部
から内側に被処理液を透過させる場合もある。
On the other hand, ceramic membrane filters such as MF (cartridge microfiltration membrane) and UF (ultrafiltration membrane) are also widely used for solid-liquid separation. Such a ceramic membrane filter is a hollow cylindrical ceramic pipe or a rod-shaped ceramic having a plurality of hollow cylindrical holes, and a thin filtration membrane layer (fine ceramic powder) is supported by a strong support (coarse ceramic powder). It was done. The filtration membrane layer is usually formed on the inner surface of a hollow cylinder, and the liquid to be treated containing the solid content is pumped inside, and the filtered liquid from which the solid content has been separated / removed from the gap of the fine ceramic powder. It is transparent to the outside. The filtration membrane layer is not limited to the inner surface but may be formed on the outer surface of the ceramic pipe to allow the liquid to be treated to permeate from the outside to the inside.

【0005】[0005]

【発明が解決しようとする課題】上述したリーフフィル
ター(又はリーフ型濾過機と呼ぶ)やセラミック膜フィ
ルタは、食品加工、廃水処理等の固液分離を必要とする
分野で使われている。しかし、リーフフィルターやセラ
ミック膜フィルターを用いた従来の固液分離装置は、固
形分の分離・除去を継続すると分離された固形分が濾過
膜層の表面に堆積し、徐々に濾過性能が低下する問題点
がある。なお、以下、膜面や膜内での溶質の不可逆的な
析出により引き起こされる現象を「ファウリング」と呼
ぶ。
The leaf filters (or leaf type filters) and ceramic membrane filters described above are used in fields requiring solid-liquid separation, such as food processing and wastewater treatment. However, in the conventional solid-liquid separation device using a leaf filter or a ceramic membrane filter, if the separation and removal of solids are continued, the separated solids will be deposited on the surface of the filtration membrane layer, and the filtration performance will gradually deteriorate. There is a problem. Note that, hereinafter, a phenomenon caused by irreversible precipitation of solute on the film surface or in the film is referred to as “fouling”.

【0006】目詰まりやファウリングの解決手段として
従来から、(1)圧縮空気や濾液の一部を濾過と反対方
向に圧入する「逆洗」、(2)濾過後に次亜塩素酸、塩
酸、カセイソーダ等の薬液で洗浄する「薬液洗浄」、
(3)リーフ上にあらかじめセルロースや珪藻土等の粉
末をプレコートし、濾過後に抜液、送気、乾燥後リーフ
を回転してケーキを剥離除去する手段、等がもっぱら適
用されていた。
Conventionally, as means for solving clogging and fouling, (1) "backwashing" in which compressed air or a part of the filtrate is pressed in a direction opposite to filtration, (2) hypochlorous acid, hydrochloric acid after filtration, "Chemical cleaning", which cleans with chemicals such as caustic soda,
(3) Means for pre-coating a leaf with a powder of cellulose, diatomaceous earth, or the like in advance, draining after filtration, feeding air, drying and rotating the leaf to peel off the cake, and the like have been mainly applied.

【0007】しかし、「逆洗」による濾過性能の回復
は、短時間しか効果がなく、固形物の除去が不完全であ
る。また、「薬液洗浄」や「凝集剤」の添加の場合、洗
浄に用いた薬液の後処理(廃液処理)や系内残留薬液の
除去等が必要になる。更に、洗浄後の系内への薬液や凝
集剤成分の残留のおそれがある。
However, the recovery of the filtration performance by "backwashing" is effective only for a short time, and the removal of solids is incomplete. Further, in the case of adding “chemical solution cleaning” or “flocculant”, post-treatment (waste solution processing) of the chemical solution used for cleaning, removal of residual chemical solution in the system, etc. are required. Further, there is a possibility that the chemical solution or the coagulant component may remain in the system after washing.

【0008】また、リーフフィルターのようにプレコー
ト剤を用いる目詰まりは、装置の運転制御が複雑とな
る。
Also, clogging using a pre-coating agent like a leaf filter complicates the operation control of the apparatus.

【0009】更に、上述の各手段は、目詰まりやファウ
リングの解消のために、多大のエネルギーを必要とする
ばかりでなく、いずれも濾過中に固形物除去を行うこと
ができず、濾過工程を中断する必要があった。
Furthermore, each of the above-mentioned means not only requires a large amount of energy for eliminating clogging and fouling, but also neither of them can remove the solid matter during the filtration, and the filtration step Had to interrupt.

【0010】また、固形分に、四塩化炭素、クロルエチ
レン類、PCB、ダイオキシン等の有機塩素化合物が含
まれるている場合、従来の固液分離装置では、その固形
物を分離除去はできるものの、その有害成分を分解する
ことはできなかった。
Further, when the solid content contains an organic chlorine compound such as carbon tetrachloride, chloroethylenes, PCB, dioxin, etc., the solid matter can be separated and removed by the conventional solid-liquid separation device, The harmful component could not be decomposed.

【0011】本発明は上述した種々の問題点を解決する
ために創案されたものである。すなわち、本発明の目的
は、濾過工程を中断することなく濾過中に固形物除去を
行うことができ、これにより濾過性能を長時間安定して
維持することができ、かつ薬液や凝集剤を用いることな
く、固形分に含まれるPCB、ダイオキシン等の有機塩
素化合物を分解することができる固液分離装置とその運
転方法を提供することにある。
The present invention was created to solve the above-mentioned various problems. That is, the object of the present invention is to remove solids during filtration without interrupting the filtration step, which enables stable maintenance of filtration performance for a long time, and the use of chemicals and flocculants. It is an object of the present invention to provide a solid-liquid separator capable of decomposing organic chlorine compounds such as PCB and dioxin contained in the solid content without the need and an operating method thereof.

【0012】[0012]

【課題を解決するための手段】本発明によれば、濾過膜
層(12a)が外表面に形成されかつ貫通孔(12b)
を有する複数の膜フィルタ(12)と、該複数の膜フィ
ルタを互いに間隔を隔てて連結しかつ各貫通孔を水密に
連通する中空部材(14)と、複数の膜フィルタの外表
面に被処理液を供給しかつ中空部材の中空孔から濾過液
を抜き出す液供給排出装置(16)と、膜フィルタの外
表面を超音波で洗浄する超音波洗浄装置(18)と、を
備えたことを特徴とする固液分離装置が提供される。
According to the present invention, a filtration membrane layer (12a) is formed on the outer surface and a through hole (12b).
A plurality of membrane filters (12), a hollow member (14) that connects the plurality of membrane filters at a distance from each other and communicates each through hole in a watertight manner, and the outer surfaces of the plurality of membrane filters to be treated. A liquid supply / discharge device (16) for supplying a liquid and extracting a filtered liquid from a hollow hole of a hollow member, and an ultrasonic cleaning device (18) for ultrasonically cleaning the outer surface of a membrane filter. A solid-liquid separation device is provided.

【0013】また、本発明によれば、(A)濾過膜層
(12a)が外表面に形成されかつ貫通孔(12b)を
有する複数の膜フィルタ(12)を、互いに間隔を隔て
て連結しかつ各貫通孔を水密に連通し、(B)前記複数
の膜フィルタの外表面に被処理液を供給しかつ中空部材
の貫通孔から濾過液を抜き出し、(C)同時に、継続的
に又は断続的に膜フィルタの外表面を超音波で洗浄す
る、ことを特徴とする膜分離装置の洗浄方法が提供され
る。
Further, according to the present invention, (A) a plurality of membrane filters (12) having a filtration membrane layer (12a) formed on the outer surface and having through holes (12b) are connected to each other at intervals. Moreover, the through holes are communicated in a watertight manner, (B) the liquid to be treated is supplied to the outer surfaces of the plurality of membrane filters, and the filtrate is extracted from the through holes of the hollow member, (C) simultaneously, continuously or intermittently. There is provided a method for cleaning a membrane separation device, characterized in that the outer surface of the membrane filter is ultrasonically cleaned.

【0014】上記本発明の装置及び方法によれば、液供
給排出装置(16)により、複数の膜フィルタ(12)
の外表面に被処理液(1)を供給し、その外表面に形成
された濾過膜層(12a)で固液分離し、膜フィルタ
(12)の貫通孔(12b)から中空部材(14)の中
空孔を介してから濾過液(2)を分離して取り出すこと
ができる。また、膜フィルタ(12)の濾過膜層(12
a)が外表面に形成されているので、従来の中空円筒形
の内表面やパイプの外表面の場合に比べて、濾過面積を
大きくした場合でも、外部からアクセスしやすく、かつ
超音波洗浄装置(18)により膜フィルタの外表面を超
音波で洗浄しながら、同時に、複数の膜フィルタ(1
2)で被処理液を濾過し、濾過液を抜き出すことができ
る。従って、濾過と同時に、継続的に又は断続的に膜フ
ィルタの外表面を洗浄することができ、濾過工程を中断
することなく濾過中に固形物除去を行うことができる。
According to the above apparatus and method of the present invention, a plurality of membrane filters (12) are provided by the liquid supply / discharge device (16).
The liquid to be treated (1) is supplied to the outer surface of the membrane, solid-liquid separation is performed by the filtration membrane layer (12a) formed on the outer surface, and the hollow member (14) is passed through the through hole (12b) of the membrane filter (12). The filtrate (2) can be separated and taken out after passing through the hollow pores. In addition, the filtration membrane layer (12) of the membrane filter (12)
Since a) is formed on the outer surface, compared to the conventional hollow cylindrical inner surface or the outer surface of the pipe, the ultrasonic cleaning device can be easily accessed from the outside even when the filtration area is increased. While cleaning the outer surface of the membrane filter with ultrasonic waves according to (18), at the same time, a plurality of membrane filters (1
The liquid to be treated can be filtered in 2) and the filtered liquid can be withdrawn. Therefore, the outer surface of the membrane filter can be continuously or intermittently washed simultaneously with the filtration, and the solid matter can be removed during the filtration without interrupting the filtration step.

【0015】本発明の好ましい実施形態によれば、前記
超音波洗浄装置(18)は、約20kHzから約600
kHzの周波数範囲で超音波を発生可能な超音波振動子
(18a)とする。
According to a preferred embodiment of the present invention, the ultrasonic cleaning device (18) comprises about 20 kHz to about 600 kHz.
The ultrasonic transducer (18a) is capable of generating ultrasonic waves in the frequency range of kHz.

【0016】この構成により、超音波振動子(18a)
による超音波が水中のあらゆる箇所に高速で伝搬し、水
中で発生するキャビテーションによる衝撃波で濾過面に
付着した固形物を除去する。また、特に200kHz以
上の高周波数ではキャビテーションによる化学反応が起
こり、水分子が分解して水酸基ラジカルが生じ、ラジカ
ル反応による酸化分解反応を引き起こす。従って、超音
波の照射条件を変えることにより低周波数での物理的剥
離のみならず、高周波数での化学反応による分解をも、
用途に応じて使い分けることができる。また、超音波の
照射時間、照射サイクル、周波数、照射エネルギー等の
条件を目的物の性状に応じて変えることができる。
With this configuration, the ultrasonic transducer (18a)
Ultrasonic waves propagate at high speed to all parts of the water, and the cavitational shock waves generated in the water remove the solids adhering to the filtration surface. Further, particularly at a high frequency of 200 kHz or higher, a chemical reaction due to cavitation occurs, water molecules are decomposed to generate hydroxyl radicals, and an oxidative decomposition reaction due to a radical reaction is caused. Therefore, by changing the ultrasonic irradiation conditions, not only physical peeling at low frequency but also decomposition by chemical reaction at high frequency,
It can be used properly according to the application. Further, conditions such as ultrasonic irradiation time, irradiation cycle, frequency and irradiation energy can be changed according to the properties of the target object.

【0017】前記膜フィルタ(12)は、セラミックス
板又は焼結金属板である。セラミックス板を用いること
により、膜フィルタ自体の反応による消耗を防止でき
る。また、焼結金属板を用いることにより、超音波に対
する強度を高めることができる。
The membrane filter (12) is a ceramic plate or a sintered metal plate. By using the ceramic plate, it is possible to prevent the membrane filter itself from being consumed by the reaction. Further, by using the sintered metal plate, the strength against ultrasonic waves can be increased.

【0018】前記膜フィルタ(12)は、貫通孔(12
b)を中心孔とする円板形状であり、前記中空部材(1
4)は、中空管であり、更に複数の膜フィルタ(12)
を中空部材(14)の軸心を中心に回転駆動するフィル
タ回転装置(20)を備える。
The membrane filter (12) has a through hole (12
b) is a disk shape having a central hole, and the hollow member (1
4) is a hollow tube, and a plurality of membrane filters (12)
Is provided with a filter rotating device (20) for rotating the hollow member (14) about the axis thereof.

【0019】この構成により、濾過中にリーフを回転さ
せることができ、目詰まり防止のみならず、超音波照射
による濾過面上の目詰まり物質(固形物粒子)の剥離、
除去を促進できる。
With this structure, the leaf can be rotated during the filtration, so that not only the clogging can be prevented but also the clogging substances (solid particles) on the filtration surface due to ultrasonic irradiation can be removed.
Can facilitate removal.

【0020】[0020]

【発明の実施の形態】以下本発明の好ましい実施形態に
ついて図面を参照して説明する。なお、各図において共
通する部分には同一の符号を付し、重複した説明を省略
する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the common part is denoted by the same reference numeral, and the duplicated description will be omitted.

【0021】図1は、本発明の固液分離装置の第1実施
形態を示す全体構成図である。また図2は、本発明の固
液分離装置に用いる膜フィルタの模式図であり、(A)
は使用状態の斜視図、(B)は部分断面図である。
FIG. 1 is an overall configuration diagram showing a first embodiment of a solid-liquid separation device of the present invention. 2 is a schematic diagram of a membrane filter used in the solid-liquid separation device of the present invention, (A)
Is a perspective view of a use state, and (B) is a partial sectional view.

【0022】図1に示すように、本発明の固液分離装置
10は、複数の膜フィルタ12、中空部材14、液供給
排出装置16及び超音波洗浄装置18を備える。
As shown in FIG. 1, the solid-liquid separation device 10 of the present invention comprises a plurality of membrane filters 12, a hollow member 14, a liquid supply / discharge device 16 and an ultrasonic cleaning device 18.

【0023】複数(この例では3枚)の膜フィルタ12
は、濾過膜層12aが外表面に形成され、かつ貫通孔1
2bを有する。図2(A)に示すように、膜フィルタ1
2は、この例では貫通孔12bが中心孔である円板状の
セラミックス板である。更に図2(B)に示すように、
濾過膜層12aは、微細なセラミック粉体からなり、そ
の内側の粗く強固な支持体12c(粗いセラミック粉
体)で支持されている。この構成により、固形分を含む
被処理液1を濾過膜層12aで濾過し、固形分3を外表
面に残して濾過液2が微細なセラミック粉体の隙間から
内部に透過し、中心孔12bに抜けるようになってい
る。なお、膜フィルタ12は、セラミックス板に限定さ
れず、金属粉末を焼結した同様の構成の焼結金属板であ
ってもよい。
A plurality (three in this example) of membrane filters 12
Has the filtration membrane layer 12a formed on the outer surface thereof and the through-hole 1
With 2b. As shown in FIG. 2A, the membrane filter 1
2 is a disk-shaped ceramic plate in which the through hole 12b is a central hole in this example. Further, as shown in FIG.
The filtration membrane layer 12a is made of fine ceramic powder, and is supported by a rough and strong support 12c (coarse ceramic powder) inside thereof. With this configuration, the liquid to be treated 1 containing the solid content is filtered by the filtration membrane layer 12a, the solid content 3 is left on the outer surface, and the filtrate 2 permeates through the gaps of the fine ceramic powder into the central hole 12b. It is designed to come out. The membrane filter 12 is not limited to the ceramics plate, and may be a sintered metal plate having a similar structure obtained by sintering metal powder.

【0024】中空部材14は、この例では、中空管であ
り、複数の膜フィルタ12を互いに間隔を隔てて連結
し、かつ各貫通孔を水密に連通する。図1において、中
空部材14は、複数(この図で3枚)の膜フィルタ12
を互いに間隔を隔てて同心に連結し、かつ各中心孔を水
密に連通している。この中空部材14は、例えば、フィ
ルタ12の間に挟持されるスペーサ管14a、フィルタ
の内縁部とスペーサ管を水密にシールするガスケット
(図示せず)、スペーサ管の内側を通り全体を軸方向に
締め上げる固定ロッド14b、等で構成する。
The hollow member 14 is a hollow tube in this example, and connects the plurality of membrane filters 12 with a space between each other and connects the through holes in a watertight manner. In FIG. 1, the hollow member 14 includes a plurality of (three in this figure) membrane filters 12
Are concentrically connected to each other with a space therebetween, and each central hole is communicated in a watertight manner. This hollow member 14 is, for example, a spacer tube 14a sandwiched between the filters 12, a gasket (not shown) that seals the inner edge of the filter and the spacer tube in a watertight manner, and passes through the inside of the spacer tube in the entire axial direction. It is composed of a fixed rod 14b to be tightened.

【0025】液供給排出装置16は、複数の膜フィルタ
12の外表面に被処理液を供給し、かつ中空部材14の
貫通孔から濾過液2を外部に抜き出す。この液供給排出
装置16は、例えば膜フィルタ12及び中空部材14を
水密に囲みこれらを浸漬する処理液槽16a、処理液槽
16a内に被処理液1を供給する供給ポンプ(図示せ
ず)、及び/又は中空部材14の中心孔から濾過液2を
外部に抜き出す排出ポンプ(図示せず)、等で構成す
る。処理液槽16aは加圧容器であり、膜フィルタ12
のまわりに満たされた被処理液1を必要な圧力に加圧で
きるのがよい。
The liquid supplying / discharging device 16 supplies the liquid to be treated to the outer surfaces of the plurality of membrane filters 12 and also extracts the filtrate 2 from the through holes of the hollow member 14 to the outside. The liquid supply / discharge device 16 includes, for example, a treatment liquid tank 16a that surrounds the membrane filter 12 and the hollow member 14 in a watertight manner and immerses them therein, a supply pump (not shown) that supplies the treatment liquid 1 into the treatment liquid tank 16a, And / or a discharge pump (not shown) for extracting the filtrate 2 from the central hole of the hollow member 14 to the outside. The processing liquid tank 16a is a pressure vessel, and the membrane filter 12
It is preferable that the liquid to be treated 1 filled around the can be pressurized to a required pressure.

【0026】超音波洗浄装置18は、膜フィルタ12の
外表面を超音波で洗浄する。この超音波洗浄装置18
は、約20kHzから約600kHzの周波数範囲で超
音波を発生可能な超音波振動子18aを有する。この超
音波振動子18aは、例えば、ピエゾ型の圧電素子であ
り、図示しない電極に周波数電圧を印加し、所望の周波
数で超音波を発生するようになっている。また、この例
において、単一の取付板18bに複数の共振ブロック1
8cが取付けられ、それぞれ超音波振動子18aで加振
することにより、超音波振動を有効に伝達し、振動密度
を高めるようになっている。
The ultrasonic cleaning device 18 cleans the outer surface of the membrane filter 12 with ultrasonic waves. This ultrasonic cleaning device 18
Has an ultrasonic transducer 18a capable of generating ultrasonic waves in the frequency range of about 20 kHz to about 600 kHz. The ultrasonic oscillator 18a is, for example, a piezo-type piezoelectric element, and applies a frequency voltage to electrodes (not shown) to generate ultrasonic waves at a desired frequency. Further, in this example, a plurality of resonance blocks 1 are attached to a single mounting plate 18b.
8c are attached, and ultrasonic vibrations are effectively transmitted by being vibrated by the ultrasonic vibrators 18a, respectively, and the vibration density is increased.

【0027】超音波振動により水中にキャビテーション
が発生し、その膨張と圧縮の際にキャビテーションによ
る衝撃波が発生する。この衝撃波により濾過面に付着し
た固形物の物理的剥離を行うことができる。また、特に
約200kHz以上の高周波領域において、キャビテー
ションによる化学反応により水分子を分解して水酸基ラ
ジカルを生じさせ、ラジカル反応による酸化分解反応で
付着した固形物の化学的分解を行うことができる。な
お、かかる超音波による現象に関しては、以下の文献に
開示されている。
Cavitation is generated in water due to ultrasonic vibration, and a shock wave due to cavitation is generated during expansion and compression of the water. By this shock wave, the solid matter adhered to the filtration surface can be physically peeled off. Further, particularly in a high frequency region of about 200 kHz or more, water molecules are decomposed by a chemical reaction by cavitation to generate hydroxyl radicals, and the solid matter attached by the oxidative decomposition reaction by the radical reaction can be chemically decomposed. The phenomenon caused by such ultrasonic waves is disclosed in the following documents.

【0028】(文献1)ソノケミストリーの物理化学、
化学工業、1996年8月 (文献2)ソノケミストリー、最近の展開と今後の動
向、化学工業、1996年8月 (文献3)環境汚染物質の超音波分解、化学工業、19
96年8月
(Reference 1) Physical Chemistry of Sonochemistry,
Chemical industry, August 1996 (reference 2) sonochemistry, recent developments and future trends, chemical industry, August 1996 (reference 3) ultrasonic decomposition of environmental pollutants, chemical industry, 19
August 1996

【0029】本発明の固液分離装置10は、更に、複数
の膜フィルタ12を中空部材14の軸心を中心に回転駆
動するフィルタ回転装置20を備える。このフィルタ回
転装置20は、例えば、中空部材14を軸心を中心に回
転可能に支持する軸受20a,20b、中空部材14を
回転駆動する回転駆動装置20cで構成する。
The solid-liquid separation device 10 of the present invention further comprises a filter rotation device 20 for rotationally driving the plurality of membrane filters 12 around the axis of the hollow member 14. The filter rotating device 20 is composed of, for example, bearings 20a and 20b that rotatably support the hollow member 14 around an axis, and a rotary drive device 20c that rotationally drives the hollow member 14.

【0030】図3は、本発明の固液分離装置の第2実施
形態を示す全体構成図である。この図において、膜フィ
ルタ12は、円板形状に限定されず、矩形、その他の形
状であってもよい。また、貫通孔12bは、中心孔に限
定されず、膜フィルタ12の任意の箇所に設けられてい
ればよい。更に、この例では、第1実施形態におけるフ
ィルタ回転装置20を備えず、中空部材14の上下端
は、処理液槽16aに水密に固定されている。また、こ
の例では、1対の超音波洗浄装置18が、図で左右に設
けられている。その他の構成は、図1の第2実施形態と
同様である。
FIG. 3 is an overall configuration diagram showing a second embodiment of the solid-liquid separation device of the present invention. In this figure, the membrane filter 12 is not limited to a disc shape, but may be a rectangle or any other shape. Further, the through hole 12b is not limited to the central hole, and may be provided at any position of the membrane filter 12. Further, in this example, the filter rotating device 20 in the first embodiment is not provided, and the upper and lower ends of the hollow member 14 are watertightly fixed to the treatment liquid tank 16a. Further, in this example, a pair of ultrasonic cleaning devices 18 are provided on the left and right sides in the drawing. Other configurations are similar to those of the second embodiment shown in FIG.

【0031】上述した固液分離装置10を用いて本発明
の洗浄方法は、以下のステップからなる。 (A)前述の複数の膜フィルタ12を、互いに間隔を隔
てて同心に連結し、かつ各貫通孔12bを水密に連通す
る。 (B)複数の膜フィルタ12の外表面に被処理液1を供
給し、かつ中空部材14の貫通孔から濾過液2を外部に
抜き出す。 (C)これと同時に、継続的に又は断続的に膜フィルタ
12の外表面を超音波で洗浄する。
The cleaning method of the present invention using the solid-liquid separation device 10 described above comprises the following steps. (A) The plurality of membrane filters 12 described above are concentrically connected to each other with a space therebetween, and the through holes 12b are connected in a watertight manner. (B) The liquid to be treated 1 is supplied to the outer surfaces of the plurality of membrane filters 12, and the filtered liquid 2 is extracted from the through holes of the hollow member 14 to the outside. (C) At the same time, the outer surface of the membrane filter 12 is continuously or intermittently cleaned with ultrasonic waves.

【0032】上述した本発明の装置及び方法によれば、
液供給排出装置16により、複数の膜フィルタ12の外
表面に被処理液1を供給し、その外表面に形成された濾
過膜層12aで固液分離し、膜フィルタ12の貫通孔1
2bから中空部材14の中空孔を介してから濾過液2を
分離して取り出すことができる。また、膜フィルタ12
の濾過膜層12aが外表面に形成されているので、従来
の中空円筒形の内表面やパイプの外表面の場合に比べ
て、濾過面積を大きくした場合でも、外部からアクセス
しやすく、かつ超音波洗浄装置18により膜フィルタの
外表面を超音波で洗浄しながら、同時に、複数の膜フィ
ルタ12で被処理液を濾過し、濾過液を抜き出すことが
できる。従って、濾過と同時に、継続的に又は断続的に
膜フィルタの外表面を洗浄することができ、濾過工程を
中断することなく濾過中に固形物除去を行うことができ
る。
According to the apparatus and method of the present invention described above,
The liquid to be treated 1 is supplied to the outer surfaces of the plurality of membrane filters 12 by the liquid supply / exhaust device 16, and solid-liquid separation is performed by the filtration membrane layer 12a formed on the outer surfaces, and the through holes 1 of the membrane filter 12 are formed.
The filtrate 2 can be separated and taken out from 2b through the hollow holes of the hollow member 14. Also, the membrane filter 12
Since the filtration membrane layer 12a is formed on the outer surface, it can be easily accessed from the outside even when the filtration area is increased as compared with the conventional hollow cylindrical inner surface or the outer surface of the pipe, and While the outer surface of the membrane filter is ultrasonically cleaned by the sonic cleaning device 18, the liquid to be treated can be filtered by the plurality of membrane filters 12 at the same time and the filtered liquid can be extracted. Therefore, the outer surface of the membrane filter can be continuously or intermittently washed simultaneously with the filtration, and the solid matter can be removed during the filtration without interrupting the filtration step.

【0033】[0033]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0034】1.現状のセラミック膜濾過における濾過
性能維持・回復法として、運転中の定期的濾液逆洗が通
常行われているが、長期運転に伴う濾過性能低下は避け
難い。セラミック膜濾過継続運転において、この様な濾
過面ファウリング、目詰まりによる濾過速度低減度合の
抑制は重要となる。また、濾過速度低下が著しい時は薬
液洗浄による回復も必要となるため、それに伴うコスト
増大や洗浄時間確保に伴う濾過効率低下など弊害も多
く、薬液洗浄頻度の低減は大きな課題となっている。そ
こで、膜フィルターエレメントとして、濾過面の汚れ
(スケール)除去、ファウリング対策を行い易い濾過面
表層形状ディスク型セラミック膜を適用し、その効果、
実用性を検討した。
1. As a method for maintaining and recovering the filtration performance in the current ceramic membrane filtration, regular backwashing of the filtrate during operation is usually performed, but it is unavoidable that the filtration performance deteriorates due to long-term operation. In continuous operation of ceramic membrane filtration, it is important to suppress the degree of filtration rate reduction due to such fouling of the filtration surface and clogging. Further, when the filtration rate is significantly reduced, recovery by chemical cleaning is also required, and there are many adverse effects such as increased cost and reduced filtration efficiency due to securing cleaning time, and reducing the frequency of chemical cleaning is a major issue. Therefore, as a membrane filter element, a filter-type surface-layer-shaped disc-type ceramic membrane that is easy to remove dirt (scale) on the filtration surface and fouling countermeasures is applied, and its effect,
The practicality was examined.

【0035】2.実験方法 (1)実験装置 (ディスク型セラミック膜)本実験で用いたディスク型
セラミック膜フィルタの仕様は、膜層平均細孔径0.2
μm、支持体平均細孔径10μm、支持体気孔率約30
%、膜厚約50μm、アルミナ純度99.8%以上であ
る。表、裏、側面ともに濾過面となっているため、正味
濾過面積は下記の様になる。 [濾過面積(Disc3枚)] (表裏)φ145/φ70×6面=0.076m2 (側面)145π×10×3=0.014m2 ∴総濾過面積0.09m2(1枚あたり0.03m2
2. Experimental method (1) Experimental device (disk type ceramic membrane) The specifications of the disk type ceramic membrane filter used in this experiment are:
μm, average pore size of support 10 μm, porosity of support about 30
%, The film thickness is about 50 μm, and the alumina purity is 99.8% or more. Since the front, back, and side surfaces are filtration surfaces, the net filtration area is as follows. [Filtration Area (3 Discs)] (Front and Back) φ145 / φ70 × 6 Sides = 0.076m 2 (Side Side) 145π × 10 × 3 = 0.014m 2 ∴ Total Filtration Area 0.09m 2 (0.03m per Sheet) 2 )

【0036】(テスト機)ディスク型セラミック膜を組
みこむテスト機として、図4に模式的に示す水平濾葉型
濾過機のテスト機(CFR0.06型、濾過面積0.0
6m2)を用いた。この装置は、図1に示した本発明の
固液分離装置と実質的に同一のものである。
(Testing Machine) As a testing machine for incorporating a disk type ceramic membrane, a horizontal leaf filter type testing machine (CFR 0.06 type, filtration area 0.0) schematically shown in FIG.
6 m 2 ) was used. This apparatus is substantially the same as the solid-liquid separation apparatus of the present invention shown in FIG.

【0037】(2)実験項目 (濾過速度初期値測定)ディスク型セラミック膜の初期
濾過速度値を測定しておくことは、今後のセラミック膜
濾過テストにおける比較対象値の観点から重要となる。
本研究では市水を用いた濾過を行うことでその濾過速度
を測定した。なお、濾過圧力ΔP=0.2Mpa(P
e)一定とした。
(2) Experimental Items (Measurement of Initial Filtration Rate) It is important to measure the initial filtration rate of the disk-type ceramic membrane from the viewpoint of comparison target values in future ceramic membrane filtration tests.
In this study, the filtration rate was measured by performing filtration using city water. The filtration pressure ΔP = 0.2 Mpa (P
e) Fixed.

【0038】(ディスク回転)濾過中および濾液逆洗後
において、ディスク型セラミック膜濾過面にせん断力を
加えることを目的として、フィルタネスト(複数のフィ
ルタの集合体)を回転させた。ディスク回転を加えるこ
とによる濾過面洗浄、ファウリング防止効果等を観察し
た。回転は約5〜15sec/1回毎を目安に実施し
た。本テスト機仕様のディスクセラミック膜回転では 外周:0.145m×π×(1450rpm/60)=
11.0m/sec 内周:0.07m×π×(1450rpm/60)=
5.3m/sec の線速度(膜面方向)となる。現状マルチタイプメディ
アセラミック膜フィルター濾過におけるクロスフロー流
速は通常2〜3m/sec程度であることと比して、断
続的、瞬間的にクロスフロー方式と同等以上の膜面相対
せん断力が得られていると判断される。
(Disc rotation) During filtration and after backwashing the filtrate, the filter nest (assembly of a plurality of filters) was rotated for the purpose of applying a shearing force to the filtration surface of the disc-shaped ceramic membrane. The filtration surface cleaning, the fouling prevention effect and the like by adding the disk rotation were observed. The rotation was performed about 5 to 15 sec / once as a guide. Outer radius: 0.145 m × π × (1450 rpm / 60) = when rotating the disc ceramic membrane of this tester specification
11.0 m / sec Inner circumference: 0.07 m × π × (1450 rpm / 60) =
The linear velocity (in the film surface direction) is 5.3 m / sec. Compared with the fact that the cross flow velocity in the current multi-type media ceramic membrane filtration is usually about 2 to 3 m / sec, the membrane surface relative shear force equal to or higher than that of the cross flow method is obtained intermittently and instantaneously. It is judged that there is.

【0039】(ウェスによるディスク拭取洗浄)工水濾
過により目詰まりを起こしたディスク型セラミック膜を
取り外した後、ディスク濾過面に堆積している汚れをウ
エスにより軽く拭取った。その後再度組付けて濾過テス
トを行い、拭取り前後の濾過速度比較を行うことで、実
機レベルにおいてのブラシ等を組込んだ拭取機構の有効
性を確認した。
(Disc wiping and cleaning with a waste cloth) After removing the disk-shaped ceramic membrane that had been clogged by filtration with industrial water, dirt accumulated on the disk filtration surface was lightly wiped with a waste cloth. After that, the filter was reassembled and a filtration test was performed. By comparing the filtration speeds before and after wiping, the effectiveness of the wiping mechanism incorporating a brush and the like at the actual machine level was confirmed.

【0040】(エアー逆洗)フィルタネストをテスト機
より抜き取り、その下部の濾液出口ラインより0.2〜
0.3MPa(Pe)程度のエアーを注入することでエ
アーによるバックブローの是非判断を行った。
(Air backwashing) The filter nest was pulled out from the tester, and 0.2 to 10% from the filtrate outlet line below it.
By injecting air of about 0.3 MPa (Pe), it was judged whether or not the back blow by the air was necessary.

【0041】(ジェット洗浄)工水濾過により濾過速度
低下を引き起こさせた後に運転停止し、ディスクフィル
タを取り外し、濾過面堆積ファウリングを高圧洗浄機
(東芝WP-80B型、最大圧力80bar(81.6
kgf/cm2)、吐出し水量6Lit./min)に
て全面洗浄した。洗浄時間は各面あたり10〜15se
c程度とした。
(Jet washing) After causing a reduction in filtration speed by industrial water filtration, the operation was stopped, the disk filter was removed, and the fouling on the filtration surface was washed with a high pressure washing machine (Toshiba WP-80B type, maximum pressure 80 bar (81. 6
kgf / cm 2 ), discharge water amount 6 Lit. / Min) and the whole surface was washed. Cleaning time is 10-15se per side
It was set to about c.

【0042】(濾液逆洗)セラミック膜濾過において、
濾過中に数分毎の定期的濾液逆洗を行うことで濾過速度
経時低下の抑制が可能であることはよく知られている。
しかしながら、逆流圧、逆洗液量等の条件設定による逆
洗効果の違いはあまり明確にされていない。そこで、チ
ューフラー型とディスク型の形状の違いによる効果の差
異と合わせて、濾液逆洗効果の確認を行った。 濾液取
り出しラインに濾液逆洗用の濾液溜タンク(内容積約5
Lit.)を取付けた。濾液溜タンク下部入口ラインを
濾液流入口とし、上部出口ラインは2方向に分岐させ一
方は濾液抜出し口、他方を逆洗圧用エア流入口とした。
タンク側方には液面読取り可能なシンフレックスチュー
ブを取付け目盛りをふることで逆洗液量の測定を可能と
した(逆洗液量読取可能範囲1.5Lit.〜5Li
t.)。
(Backwashing of filtrate) In ceramic membrane filtration,
It is well known that the filtration rate can be prevented from decreasing over time by performing regular backwashing of the filtrate every few minutes during filtration.
However, the difference in the backwash effect depending on the conditions such as backflow pressure and the amount of backwash liquid has not been clarified. Therefore, the backwashing effect of the filtrate was confirmed together with the difference in the effect due to the difference in the shapes of the Tuchler type and the disc type. A filtrate reservoir tank for backwashing filtrate (internal volume approx. 5
Lit. ) Was installed. The lower inlet line of the filtrate storage tank was used as a filtrate inlet, the upper outlet line was branched in two directions, one was a filtrate outlet, and the other was a backwash pressure air inlet.
A thin flex tube capable of reading the liquid level was attached to the side of the tank to measure the backwash liquid volume by adjusting the scale (backwash liquid volume readable range 1.5Lit.
t. ).

【0043】(超音波照射) ・超音波洗浄器 超音波照射による濾過面堆積物除去効果確認のための初
期テストとして、超音波洗浄器を用いて以下手順により
超音波照射試験を行った。まず工水濾過により濾過速度
低下誘発後、フィルタディスク取り外した。取り外した
ディスク型セラミック膜を超音波洗浄器(Shimad
zu,Hi−Power SUS−100型,出力10
0W,発振周波数42kHz、容量約3Lit.)に順
々に浸し、ディスク3枚全面一様に濾過面汚れを除去し
た。その後再度組み込み濾過テスト実施することで超音
波照射前後での濾過速度変化を観察した。なお、本条件
での長時間の超音波照射は、キャビテーションによるセ
ラミック膜濾過面の破損も引き起こしかねない為、照射
時間は各ディスク毎ゆっくり回転させることで全面を浸
しつつ30〜40sec程度とした。
(Ultrasonic Irradiation) Ultrasonic Cleaning Device As an initial test for confirming the filtering surface deposit removal effect by ultrasonic irradiation, an ultrasonic irradiation test was conducted using the ultrasonic cleaning device according to the following procedure. First, the filtration disk was removed by filtering with industrial water, and then the filter disk was removed. Remove the removed disk-shaped ceramic membrane with an ultrasonic cleaner (Shimad
zu, Hi-Power SUS-100 type, output 10
0 W, oscillation frequency 42 kHz, capacity about 3 Lit. ) In order to remove the dirt on the filtering surface uniformly over the three disks. After that, a built-in filtration test was performed again to observe the change in filtration rate before and after ultrasonic irradiation. Since the ultrasonic irradiation for a long time under these conditions may cause damage to the ceramic membrane filtration surface due to cavitation, the irradiation time was set to about 30 to 40 seconds by slowly rotating each disk while immersing the entire surface.

【0044】・超音波発生機による超音波照射(発振子
(接続ホーン+チップ)形状) ディスク型セラミック膜フィルタ実機レベルヘの超音波
機構適用に際しては、超音波照射装置の組入れ、配置に
多くの制約を課せられると判断される。よって、超音波
照射方向、照射間距離等の物理的制約も考慮した確認テ
ストを行うことが必要である。そこで、水を張った容器
に水浴した工水濾過済ディスクセラミック膜に、発振子
(接続ホーン+チップ)形状の超音波発生機(トミー精
工、UD−201型、最大出力200W、発振周波数2
0kHz)を用いて超音波照射し、ファウリング濾過面
に対する照射方向や照射間距離を変化させることでその
洗浄度の差異を観察した。また周波数出力も変動させ
て、その影響も同時に確認した。
-Ultrasonic irradiation by ultrasonic generator (oscillator (connection horn + chip) shape) When applying an ultrasonic mechanism to a disc-type ceramic membrane filter actual machine level, there are many restrictions on the installation and arrangement of the ultrasonic irradiation device. Will be imposed. Therefore, it is necessary to perform a confirmation test in consideration of physical constraints such as the ultrasonic wave irradiation direction and the irradiation distance. Therefore, an ultrasonic wave generator (Tomy Seiko, UD-201 type, maximum output 200 W, oscillation frequency 2) of an oscillator (connection horn + tip) shaped ultrasonic wave was added to a disk ceramic membrane that had been filtered with industrial water filtered in a container filled with water.
The difference in the cleaning degree was observed by changing the irradiation direction and the irradiation distance to the fouling filtration surface by irradiating ultrasonic waves at 0 kHz). The frequency output was also changed, and the effect was also confirmed.

【0045】3.実験結果 (1)ディスク型セラミック膜フィルタ濾過速度初期値 測定(RUN1市水濾過) 濾過圧ΔP=0.2MPa(Pe)、総濾過時間131
min運転にて、瞬間濾過速度Ri≒800〜900L
it./m2Hr程度で図5に示すように、ほぼ安定し
た値が得られた。市水濾過においては濾過面ファウリン
グは起こり難く、濾過性能は充分保持されている。ま
た、運転中に1min毎約5secフィルタネスト回転
実施も、無回転時との差異はほぼ見られなかった。ディ
スク回転と濾過速度保持、濾過性回復の相関性は本RU
Nにおいては考えにくい。
3. Experimental results (1) Disk-type ceramic membrane filter Initial measurement of filtration speed (RUN1 city water filtration) Filtration pressure ΔP = 0.2 MPa (Pe), total filtration time 131
Instantaneous filtration rate Ri ≈ 800-900L in min operation
it. As shown in FIG. 5, an almost stable value was obtained at about / m 2 Hr. In city water filtration, the fouling of the filtration surface is unlikely to occur, and the filtration performance is sufficiently maintained. Also, when the filter nest was rotated for about 5 seconds every 1 minute during operation, there was almost no difference between when the filter was rotated and when it was not rotated. This RU shows the correlation between disk rotation, retention of filtration speed, and recovery of filtration performance.
It is hard to think in N.

【0046】(2)工水濾過テスト(RUN2) 濾過圧ΔP=0.2MPa(Pe)一定、総濾過時間θ
=213min運転にて、運転開始直後は濾過速度Ri
≒750Lit./m2Hrであったが、濾過終了時に
はRi≒420Lit./m2Hrまで低下した(図6
参照)。また、濾過中のDisc回転による濾過速度維
持および回復効果は観察されなかった。フィルタ回転に
伴うせん断流発生によるファウリング除去効果は、本回
転数条件(約1500rpm)における断続回転(1〜
2回/min約5sec回転)では考えにくいと判断さ
れる。
(2) Industrial water filtration test (RUN2) Filtration pressure ΔP = 0.2 MPa (Pe) constant, total filtration time θ
= 213 min operation, the filtration rate Ri immediately after the start of operation
≈750 Lit. / M 2 Hr, but Ri≈420Lit. / M 2 Hr (Fig. 6)
reference). Moreover, the effect of maintaining the filtration rate and recovery by the disc rotation during filtration was not observed. The effect of removing fouling due to the generation of a shear flow due to the rotation of the filter is that intermittent rotation (1 to 1500 rpm) at this rotational speed condition (about 1500 rpm)
2 times / min for about 5 sec) is considered to be unlikely.

【0047】(3)汚れ拭取除去後市水濾過テスト(R
UN2) 濾過速度は拭取り前後ではRi≒420Lit./m2
HrからRi≒600Lit./m2Hr程度まで回復
が見られた(ΔP=0.2MPa(Pe))。本テスト
ではディスク取り外し後の拭取りであったが、実機レベ
ルにおいてブラシ等の組込み可能であれば同等の表面フ
ァウリング除去効果は充分に見込まれる。
(3) City water filtration test (R
UN2) The filtration rate is Ri≈420Lit. / M 2
From Hr to Ri≈600 Lit. Recovery was observed up to about / m 2 Hr (ΔP = 0.2 MPa (Pe)). In this test, the disk was wiped after being removed, but if a brush or the like can be incorporated at the actual machine level, the same effect of removing surface fouling can be expected.

【0048】(4)エアバッグブロー効果の確認(RU
N3) フィルタネストを取り外し、フィルタネスト下部(濾液
ライン)より0.2〜0.3MPa(Pe)程度のエア
ーを注入した。その後、再度組付けて市水濾過テスト案
施するも、濾過速度Ri≒400〜500Lit./m
2Hrまで低下した。濾過時間経過とともに濾過速度漸
増しRi≒600Lit./m2Hr程度まで回復が見
られ、エアブロー前とほぼ同程度まで濾過性回復が見ら
れた。よってエアバッグブローによる大気曝露でフィル
タ積層内にエアーが噛み込み、一時的通液不良を生じる
ものと判断され、ファウリングや目詰まり除去効果もほ
とんど期待しづらい。
(4) Confirmation of airbag blowing effect (RU
N3) The filter nest was removed, and air of about 0.2 to 0.3 MPa (Pe) was injected from the bottom of the filter nest (filtrate line). After that, it is reassembled and a city water filtration test is proposed, but the filtration rate Ri is approximately 400 to 500 Lit. / M
It decreased to 2 Hr. The filtration rate gradually increased with the passage of filtration time, and Ri≈600Lit. / M 2 Hr was recovered, and the filterability was recovered to almost the same level as before air blowing. Therefore, it is judged that the air is caught in the filter stack due to the air exposure by the air bag blow and a temporary liquid passing defect occurs, and it is difficult to expect the fouling and clogging removing effect.

【0049】(5)超音波照射(RUN4) フィルタディスク取り外して超音波洗浄器(100W,
42kHz〉に浸した。10〜15秒程度で浸した箇所
の表面汚れはほぼ除去した(茶色からほぼ白色に)。同
様に濾過面全面を超音波により汚れ除去後、市水濾過テ
ストを実施した。濾過速度は約Ri≒830Lit./
2Hrであり、RUN1から得られた初期値程度まで
ほぼ回復が見られた。濾過性回復に劇的な効果が有ると
期待される。
(5) Ultrasonic irradiation (RUN4) Remove the filter disk and remove the ultrasonic cleaner (100W,
42 kHz>. Surface stains on the soaked area were removed for about 10 to 15 seconds (from brown to almost white). Similarly, the entire surface of the filtration surface was removed by ultrasonic waves, and then a city water filtration test was performed. The filtration rate is about Ri≈830 Lit. /
m 2 Hr, and almost recovered to the initial value obtained from RUN1. It is expected to have a dramatic effect on filterability recovery.

【0050】(6)ジェット洗浄(RUN5,7,8) RUN5にて、工水濾過によりΔP=0.2MPa(P
e)にて初期 Ri≒600Lit./m2HrからR
i≒350Lit./m2Hrまで濾過速度低下させた
後ディスク取り外し、3枚全面ともジエット洗浄により
汚れを除去して再度組み込み工水濾過実施した。その結
果、再開後Ri≒640Lit./m2Hrとほぼ初期
値まで回復が見られた。ジェット洗浄による濾過面表面
のファウリング除去効果は極めて高いと判断される。R
UN7,8においてもRUN5と同様のテストを行い、
その再現性を確認した。
(6) Jet cleaning (RUN5, 7, 8) At RUN5, ΔP = 0.2 MPa (P
e) initial Ri≈600 Lit. / M 2 Hr to R
i≈350 Lit. After the filtration speed was reduced to / m 2 Hr, the discs were removed, and all three surfaces were cleaned with a jet to remove dirt, and incorporated again to carry out industrial water filtration. As a result, after the restart, Ri≈640Lit. / M 2 Hr was recovered to almost the initial value. It is judged that the effect of removing fouling on the surface of the filtration surface by jet cleaning is extremely high. R
Performed the same test as RUN5 in UN7 and 8,
The reproducibility was confirmed.

【0051】(7)濾液逆洗 (通常逆洗)(RUN6) 濾過時間3〜8min,72〜90min,146〜1
58min間に各々3回濾液逆洗を行うことで、図7に
示すように瞬間的に10%程度の濾過速度回復が見られ
た。なお、逆流圧0.3MPa(Pe)程度、逆洗水量
約5〜7Lit./m2であった。本傾向より判断し
て、適正な逆洗インターバルの設定により、ディスク型
セラミック膜フィルタにおいても安定した継続運転を行
うことが可能と考えられる。
(7) Filtrate backwash (normal backwash) (RUN6) Filtration time 3 to 8 min, 72 to 90 min, 146-1
By performing the backwashing of the filtrate three times for each 58 minutes, a recovery of the filtration rate of about 10% was instantaneously seen as shown in FIG. 7. The backflow pressure is about 0.3 MPa (Pe) and the backwash water amount is about 5 to 7 Lit. / M 2 . Judging from this tendency, it is considered that stable continuous operation can be performed even in the disk-type ceramic membrane filter by setting an appropriate backwash interval.

【0052】(高圧逆洗)(RUN8) 濾過時間25min以降に、逆流圧約0.4〜O.5M
Pa(Pe)、逆洗液量約15〜30Lit./m2
逆洗インターバル3〜5min毎の逆洗条件において、
図8に示すように、3回程度の逆洗にて濾過速度700
〜750Lit./m2Hrまで回復が見られた。
(High-pressure backwash) (RUN8) After the filtration time of 25 min, the backflow pressure was about 0.4 to O.V. 5M
Pa (Pe), backwashing liquid amount of about 15 to 30 Lit. / M 2 ,
In the backwash condition every backwash interval 3-5 min,
As shown in FIG. 8, a filtration rate of 700 was obtained by backwashing three times.
~ 750 Lit. Recovery was observed up to / m 2 Hr.

【0053】(濾液逆洗効果と逆洗圧、逆洗液量の相関
性)(RUN9) 濾過時間135min〜150min間では、逆洗圧約
0.1〜0.15MPa(Pe)とほぼ一定にして逆洗
液量約17Lit./m2、28Lit./m2と変動さ
せたが、濾過速度の回復はほぼ見られなかった。150
min〜175min間では、逆洗液量17Lit./
2と一定にして逆流圧を0.25,0.34,0.4
MPa(Pe)と変動させた。その結果、図9に示すよ
うに、濾過速度は微増傾向を見せた。以降、逆洗圧0.
4〜0.5MPa(Pe)、逆洗インターバル約5mi
nにて複数回逆洗実施により、濾過速度は初期値の80
%程度の回復を見せた。以上の結果より、濾液逆洗にお
いては、逆洗液量よりも逆洗圧の条件設定が濾過性回復
傾向により強い影響を及ぼすものと判断される。
(Correlation between the effect of backwashing of filtrate, backwashing pressure and backwashing liquid amount) (RUN9) During the filtering time of 135 min to 150 min, the backwashing pressure was kept constant at about 0.1 to 0.15 MPa (Pe). Backwash volume about 17 Lit. / M 2 , 28 Lit. / M 2 , but the filtration rate was hardly recovered. 150
During the period from min to 175 min, the backwash liquid amount was 17 Lit. /
0.25,0.34,0.4 backflow pressure in the m 2 and constant
It was changed to MPa (Pe). As a result, as shown in FIG. 9, the filtration rate showed a slight increase tendency. Thereafter, the backwash pressure was 0.
4 to 0.5 MPa (Pe), backwash interval about 5 mi
The initial filtration rate was set to 80 by performing backwashing multiple times at n.
It showed a recovery of about%. From the above results, it is judged that in the backwashing of the filtrate, the condition setting of the backwashing pressure has a stronger influence on the tendency of recovering the filterability than the backwashing liquid amount.

【0054】(濾液逆洗とディスク回転の並用効果)R
UN6,8,9では濾液逆洗直後にディスク回転を行っ
たが、その有効性や具体的な傾向は本テストデータのみ
では判断し難い結果となった。しかしながらディスク回
転は、それに起因する表層乱流により、濾液逆洗直後の
濾過面ファウリング剥離の再付着を防ぐ効果があると推
測されるため、濾液逆洗とディスク回転の並用の意義は
高いと考える。
(Effect of reverse washing of filtrate and rotation of disk) R
In UN6, 8 and 9, the disc was rotated immediately after the backwashing of the filtrate, but its effectiveness and specific tendency were difficult to judge only by this test data. However, disk rotation is presumed to have the effect of preventing reattachment of filtration surface fouling separation immediately after filtrate backwashing due to the resulting turbulent surface layer flow. Therefore, the parallel use of filtrate backwashing and disk rotation is highly significant. Think

【0055】(8)超音波発生機による超音波照射(発
振子(接続ホーン+チップ)形状)(RUN10) 工水濾過によりΔP=0.2MPa(Pe)にて濾過速
度Ri=333lit./m2Hrまで濾過速度低下を
引き起こした後、ディスク型セラミック膜3枚を取り外
して各々超音波照射条件(出力、周波数、照射距離、照
射方向)を変えて照射してその効果の違いを判断した。
1枚目ディスクを条件出力OUTPUT2、膜面〜発振
子間距離10cm(照射位置は中心部)にて5min程
度超音波照射実施したが、膜面汚れ除去は目視判断でほ
ぼ確認されなかった。OUTPUT5、距離5〜6cm
で約5min間照射時には、照射方向側濾過面にうっす
らとした汚れ除去都が数箇所見られた。OUTPUT1
0(出力200W)、距離5〜cm、照射時間5〜12
minにて照射時は、照射方向側濾過面はほぼ全面汚れ
除去され、裏側濾過面も全面的にぼんやりと汚れが取れ
ていた。次に、2枚目ディスクを用いて、1枚目で良好
な結果が得られたOUTPUT10(出力200W)、
距離5〜6cmの条件にて、発振子をディスク端部に設
定して、照射位置による効果の差異を確認した。3mi
n後には全面的にうっすらと汚れが取れたものの、15
min経過後も汚れが取りきれない箇所が幾分見られ
た。裏側濾過面はほとんど汚れ除去確認されなかった。
3枚目ディスクにてOUTPUT1O(出力200
W),距離2cmで側面より照射時には、照射近接箇所
のみ汚れ除去されただけで濾過面両面ともにほとんど除
去効果は見られなかった。3枚全面とも一様に超音波照
射にてファウリング除去後、再度組込んで工水濾過実施
によりΔP=0.2MPa(Pe)にて濾過速度Ri=
633Lit./m2Hrまで濾過速度回復した。
(8) Ultrasonic irradiation by ultrasonic generator (oscillator (connecting horn + tip) shape) (RUN10) Filtration speed Ri = 333 lit. / M 2 Hr After reducing the filtration rate, 3 disk-type ceramic membranes were removed, and the ultrasonic irradiation conditions (output, frequency, irradiation distance, irradiation direction) were changed and irradiation was performed to determine the difference in the effect. did.
Ultrasonic irradiation was performed on the first disk for about 5 minutes at a condition output OUTPUT2 and a distance between the film surface and the oscillator of 10 cm (the irradiation position was the central portion), but the removal of the film surface stain was hardly confirmed by visual judgment. OUTPUT5, distance 5-6cm
At the time of irradiation for about 5 minutes, a few spots of dirt removal were found on the filtering surface on the irradiation direction side. OUTPUT1
0 (output 200W), distance 5-cm, irradiation time 5-12
During irradiation at min, the filter surface on the irradiation direction side was almost entirely cleaned, and the filter surface on the back side was also cleanly cleaned. Next, using the second disc, the OUTPUT 10 (output 200 W), in which good results were obtained with the first disc,
Under the condition of the distance of 5 to 6 cm, the oscillator was set at the end of the disk, and the difference in effect depending on the irradiation position was confirmed. 3 mi
After n, the surface was slightly cleaned, but 15
Some spots were not completely removed even after the lapse of min. Almost no stain removal was confirmed on the back side filtration surface.
OUTPUT1O (output 200
W), when irradiation was performed from the side surface at a distance of 2 cm, only the area adjacent to irradiation was removed, and almost no removal effect was seen on both sides of the filtration surface. After uniformly removing the fouling by ultrasonic irradiation on all three surfaces, the water is filtered again and ΔP = 0.2 MPa (Pe) at the filtration rate Ri =
633Lit. The filtration rate was recovered to / m 2 Hr.

【0056】(9)ジェット洗浄繰返運転(RUN1
1) ジェット洗浄により高い濾過性回復効果が得られること
はRUN5,7,8で確認された。しかしながらディス
ク型セラミック膜フィルタを長期間安定して継続運転す
るためには、複数回運転を行い、濾過速度漸近値の傾向
をつかむことが極めて重要な要素となる。工水濾過後の
取り外しディスクジェット洗浄テストを3回連続して実
施することで確認した。ジェット洗浄実施毎に図10に
示すように、初期値と同程度まで濾過速度回復が見られ
た。本テストでは濾過時間約125min、ジェット洗
浄実施は3回であったが、更なる長時間運転のケースに
おいても、適正頻度のジェット洗浄実施により充分な濾
過速度回復が得られると見込まれ、平均濾過速度は安定
運転に足り得る一定漸近値に近づくものと示唆される。
(9) Jet cleaning repeated operation (RUN1
1) It was confirmed in RUN 5, 7, and 8 that a high filterability recovery effect can be obtained by jet cleaning. However, in order to stably and continuously operate the disk-type ceramic membrane filter for a long period of time, it is extremely important to carry out the operation a plurality of times and grasp the tendency of the asymptotic value of the filtration rate. It was confirmed by carrying out the removal disk jet cleaning test three times in succession after filtering the industrial water. As shown in FIG. 10, each time the jet cleaning was performed, the recovery of the filtration rate was observed to the same extent as the initial value. In this test, the filtration time was about 125 min, and the jet cleaning was performed 3 times. However, even in the case of longer operating time, it is expected that sufficient filtration speed recovery can be obtained by performing the jet cleaning at an appropriate frequency, and the average filtration is performed. It is suggested that the speed approaches a certain asymptotic value that is sufficient for stable driving.

【0057】4.今後の方向性・課題 濾過性低下の要因として、濾過面表面への捕捉物堆積に
よる濾過面閉塞、およびセラミック膜濾過層内部の目詰
まりに起因するものの2通りに分類して考慮する必要性
がある。 ジェット洗浄は表面堆積物除去には極めて有
効と判断されるが、目詰まりに対する有効な効果は期待
し難い。目詰まりへの有効な対処法としては、超音波照
射、濾液逆洗の有効性が予測される。
4. Future direction / problems It is necessary to consider as two factors as factors that reduce the filterability: those that are caused by the clogging of the filtration surface due to the accumulation of trapped substances on the filtration surface and the clogging inside the ceramic membrane filtration layer. is there. Although jet cleaning is judged to be extremely effective for removing surface deposits, it is difficult to expect an effective effect on clogging. As effective countermeasures against clogging, ultrasonic irradiation and filtrate backwash are expected to be effective.

【0058】(1)超音波洗浄 超音波照射については、本テストにおいてはその照射条
件設定値より判断して、キャビテーション発生条件に起
因する洗浄効果で汚れ除去していると考えられる。さら
に高周波数(MHz帯)のキャビテーション現象を生じ
ない条件設定下での超音波照射は、濾過面ファウリング
除去効果は薄いと推測されるが濾過運転中の照射による
透過促進、濾過速度上昇効果も期待し得る。
(1) Ultrasonic Cleaning With regard to ultrasonic irradiation, it is considered that in this test, dirt is removed by the cleaning effect caused by the cavitation generation condition, judging from the irradiation condition setting value. Ultrasonic irradiation under conditions that do not cause high frequency (MHz band) cavitation phenomenon is presumed to have little effect on removing fouling on the filtration surface, but it also promotes permeation and increases filtration rate by irradiation during filtration operation. You can expect it.

【0059】(2)ジェット洗浄 濾過層内部の目詰まりに対する効果は期待し難いと推測
されるものの、濾過面ファウリング除去効果が極めて高
いことは本テスト結果より確認済みであり、濾過速度回
復には極めて有効な手法であると判断できる。実機適用
時もスプレーノズル組込のみで可能であり、容易に設計
可能と考える。
(2) Although it is presumed that the effect of clogging inside the jet washing filter layer is difficult to expect, it has been confirmed from the results of this test that the effect of removing the fouling on the filtration surface is extremely high, and recovery of the filtration speed is confirmed. Can be judged to be an extremely effective method. Even when applied to an actual machine, it is possible only by incorporating a spray nozzle, and we think that it can be easily designed.

【0060】(3)濾液逆洗 現状の多孔チューブ型セラミック膜においても用いられ
ている手法のため、ディスク型セラミック膜への適用も
全く問題は無い。高圧(O.5MPa(Pe)程度)・
多量逆洗が有効であることは確認されたが、逆洗実施に
伴うタイムロスも生じるため、最適な濾過効率を得る逆
洗条件を、低圧(約0.3MPa(Pe))・少量・短
インターバル逆洗適用の可能性も合わせて検討の余地が
ある。
(3) Filtration backwash Since the method is also used in the current porous tube type ceramic membrane, there is no problem in applying it to the disk type ceramic membrane. High pressure (about 0.5 MPa (Pe))
Although it has been confirmed that a large amount of backwashing is effective, there is a time loss associated with the backwashing. Therefore, the backwashing conditions that achieve the optimum filtration efficiency should be low pressure (about 0.3 MPa (Pe)) There is room for consideration as to the possibility of applying backwash.

【0061】5.結言 ディスク型セラミック膜フィルタ濾過における濾過速度
回復、濾過面ファウリング除去に対する手法として、拭
取り・掻取り、濾液逆洗(高圧(0.5MPa(Pe)
程度)or低圧(約O.3MPa(Pe))・短インタ
ーバル)、ジェット洗浄、超音波照射、ディスク回転
(他手法との並用時)の5項目が有効であると判断され
た。実機適用、実用性を考慮すると、超音波照射と共に
ジェット洗浄、濾液逆流+ディスク回転の並用が有効と
考えられる。
5. Conclusion As methods for recovery of filtration speed and removal of fouling on the filtration surface in disk type ceramic membrane filtration, wiping / scraping, filtrate backwashing (high pressure (0.5 MPa (Pe))
It was judged that the following five items were effective: (or about) or low pressure (about 0.3 MPa (Pe) / short interval), jet cleaning, ultrasonic irradiation, and disk rotation (when used in combination with other methods). Considering practical application and practicality, it is considered effective to apply ultrasonic cleaning together with jet cleaning and reverse flow of filtrate + disk rotation.

【0062】なお本発明は以上述べた実施形態に限定さ
れるものではなく、発明の要旨を逸脱しない範囲で種々
の変更が可能である。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit of the invention.

【0063】[0063]

【発明の効果】上述したように、本発明の固液分離装置
とその運転方法は、以下の特徴を有する。 (1)目詰まりを防止しながら、濾過を行うことができ
る。 (2)超音波はセラミックス製や焼結金属製のろ盤(膜
フィルタ)に悪影響を及ぼさない。 (3)リーフ型ろ盤を回転し、かつ、超音波の照射条件
を変更することにより、固形物の物理的剥離・除去か
ら、化学的分解に至るまでの広範囲な目詰まり防止手段
を提供できる。 (4)製品としての濾液を得る場合、濾液に化学変化を
生じさせない照射条件を選択できるため、飲料原料水中
の懸濁物質、発酵生産プロセスの菌体除去、半導体研磨
液中の懸濁物質、等の濾過に有効である。 (5)有機塩素化合物等の疎水性有害物質が水中の懸濁
物質に付着している場合、本発明による濾過機でこの懸
濁物質をろ盤上に阻止し、有害物質を含まない濾液を得
ると同時に、ろ盤上の有害物質を超音波による化学反応
で分解することができるため、難分解物質含有の廃水処
理に有効である。
As described above, the solid-liquid separation device and the method of operating the same of the present invention have the following features. (1) Filtration can be performed while preventing clogging. (2) Ultrasonic waves do not adversely affect the ceramic or sintered metal filter plate (membrane filter). (3) By rotating the leaf type filter and changing the ultrasonic irradiation conditions, it is possible to provide a wide range of means for preventing clogging from physical peeling / removal of solid matter to chemical decomposition. . (4) When a filtrate as a product is obtained, irradiation conditions that do not cause a chemical change in the filtrate can be selected. Therefore, suspended substances in beverage raw material water, removal of cells in the fermentation production process, suspended substances in semiconductor polishing liquid, It is effective for filtration. (5) When a hydrophobic harmful substance such as an organic chlorine compound adheres to the suspended substance in water, the suspended substance is blocked on the filter plate by the filter according to the present invention, and the filtrate containing no harmful substance is removed. At the same time, the harmful substances on the filter plate can be decomposed by a chemical reaction by ultrasonic waves, which is effective for the treatment of wastewater containing hardly decomposable substances.

【0064】従って、本発明の固液分離装置とその運転
方法は、濾過工程を中断することなく濾過中に固形物除
去を行うことができ、これにより濾過性能を長時間安定
して維持することができ、かつ薬液や凝集剤を用いるこ
となく、固形分に含まれるPCB、ダイオキシン等の有
機塩素化合物を分解することができる、等の優れた効果
を有する。
Therefore, the solid-liquid separation device and the method of operating the same according to the present invention can remove solids during filtration without interrupting the filtration step, thereby maintaining stable filtration performance for a long time. And has an excellent effect of being able to decompose organochlorine compounds such as PCB and dioxin contained in the solid content without using a chemical solution or a coagulant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固液分離装置の第1実施形態を示す全
体構成図である。
FIG. 1 is an overall configuration diagram showing a first embodiment of a solid-liquid separation device of the present invention.

【図2】本発明の膜フィルタの模式図である。FIG. 2 is a schematic diagram of a membrane filter of the present invention.

【図3】本発明の固液分離装置の第2実施形態を示す全
体構成図である。
FIG. 3 is an overall configuration diagram showing a second embodiment of the solid-liquid separation device of the present invention.

【図4】本発明の実施例におけるテスト機の模式図であ
る。
FIG. 4 is a schematic diagram of a test machine according to an embodiment of the present invention.

【図5】市水濾過における透過時間と濾過速度の関係図
である。
FIG. 5 is a relationship diagram between a permeation time and a filtration rate in city water filtration.

【図6】工水濾過における透過時間と濾過速度の関係図
である。
FIG. 6 is a relational diagram of permeation time and filtration rate in industrial water filtration.

【図7】通常逆洗による透過時間と濾過速度の関係図で
ある。
FIG. 7 is a diagram showing the relationship between the filtration time and the permeation time by normal backwash.

【図8】高圧逆洗による透過時間と濾過速度の関係図で
ある。
FIG. 8 is a diagram showing the relationship between the permeation time by high-pressure backwash and the filtration rate.

【図9】濾液逆洗による透過時間と濾過速度の関係図で
ある。
FIG. 9 is a diagram showing the relationship between the filtration time and the permeation time of the filtrate backwashed.

【図10】ジェット洗浄による透過時間と濾過速度の関
係図である。
FIG. 10 is a relationship diagram between the permeation time by jet cleaning and the filtration rate.

【図11】従来のリーフフィルターの模式図である。FIG. 11 is a schematic view of a conventional leaf filter.

【図12】従来のリーフフィルターの別の模式図であ
る。
FIG. 12 is another schematic view of a conventional leaf filter.

【符号の説明】[Explanation of symbols]

1 濾葉(リーフ)、2 ケーキ層、3 原液、4 固
形物(ケーキ)、5 濾液、6 回転駆動装置、7 ス
クレーパ、8 ホッパ、10 固液分離装置、12 膜
フィルタ、12a 濾過膜層、12b 貫通孔(中心
孔)、12c 支持体、14 中空部材、14a スペ
ーサ管、14b 固定ロッド、16 液供給排出装置、
16a 処理液槽、18 超音波洗浄装置、18a 超
音波振動子、18b 取付板、18c 共振ブロック、
20 フィルタ回転装置
1 filter leaf (leaf), 2 cake layer, 3 stock solution, 4 solid matter (cake), 5 filtrate, 6 rotation drive device, 7 scraper, 8 hopper, 10 solid-liquid separation device, 12 membrane filter, 12a filtration membrane layer, 12b through hole (center hole), 12c support, 14 hollow member, 14a spacer tube, 14b fixed rod, 16 liquid supply / discharge device,
16a treatment liquid tank, 18 ultrasonic cleaning device, 18a ultrasonic vibrator, 18b mounting plate, 18c resonance block,
20 Filter rotation device

フロントページの続き (72)発明者 今岡 孝 東京都江東区豊洲2丁目1番1号 石川島 播磨重工業株式会社東京第一工場内 Fターム(参考) 4D006 GA06 GA07 HA83 HA93 JA19Z JA51Z KA41 KC03 KC19 KE30R MC02 MC03X NA39 PB08 PC11 Continued front page    (72) Inventor Takashi Imaoka             2-1-1 Toyosu, Koto-ku, Tokyo Ishikawajima             Harima Heavy Industries, Ltd. Tokyo No. 1 Factory F-term (reference) 4D006 GA06 GA07 HA83 HA93 JA19Z                       JA51Z KA41 KC03 KC19                       KE30R MC02 MC03X NA39                       PB08 PC11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 濾過膜層(12a)が外表面に形成され
かつ貫通孔(12b)を有する複数の膜フィルタ(1
2)と、該複数の膜フィルタを互いに間隔を隔てて連結
しかつ各貫通孔を水密に連通する中空部材(14)と、
複数の膜フィルタの外表面に被処理液を供給しかつ中空
部材の中空孔から濾過液を抜き出す液供給排出装置(1
6)と、膜フィルタの外表面を超音波で洗浄する超音波
洗浄装置(18)と、を備えたことを特徴とする固液分
離装置。
1. A plurality of membrane filters (1) having a filtration membrane layer (12a) formed on an outer surface thereof and having through holes (12b).
2) and a hollow member (14) that connects the plurality of membrane filters at a distance from each other and connects the through holes in a watertight manner.
A liquid supply / discharge device (1) for supplying the liquid to be treated to the outer surfaces of the plurality of membrane filters and for extracting the filtered liquid from the hollow holes of the hollow member (1
6) and an ultrasonic cleaning device (18) for cleaning the outer surface of the membrane filter with ultrasonic waves, a solid-liquid separation device.
【請求項2】 前記超音波洗浄装置(18)は、約20
kHzから約600kHzの周波数範囲で超音波を発生
可能な超音波振動子(18a)を有し、これにより、水
中で発生するキャビテーションによる衝撃波で濾過面に
付着した固形物の物理的剥離、及び/又は、キャビテー
ションによる化学反応により水分子を分解して水酸基ラ
ジカルを生じさせ、ラジカル反応による酸化分解反応で
付着した固形物の化学的分解を行う、ことを特徴とする
請求項1に記載の固液分離装置。
2. The ultrasonic cleaning device (18) comprises about 20
It has an ultrasonic transducer (18a) capable of generating ultrasonic waves in the frequency range of kHz to about 600 kHz, whereby physical separation of solid matter adhered to the filtration surface due to shock waves due to cavitation generated in water, and / or Alternatively, the solid-liquid according to claim 1, characterized in that a water molecule is decomposed by a chemical reaction by cavitation to generate a hydroxyl group, and a solid substance attached is chemically decomposed by an oxidative decomposition reaction by a radical reaction. Separation device.
【請求項3】 前記膜フィルタ(12)は、セラミック
ス板又は焼結金属板である、ことを特徴とする請求項1
に記載の固液分離装置。
3. The membrane filter (12) is a ceramic plate or a sintered metal plate.
The solid-liquid separation device according to.
【請求項4】 前記膜フィルタ(12)は、貫通孔(1
2b)を中心孔とする円板形状であり、前記中空部材
(14)は、中空管であり、 更に複数の膜フィルタ(12)を中空部材(14)の軸
心を中心に回転駆動するフィルタ回転装置(20)を備
える、ことを特徴とする請求項1に記載の固液分離装
置。
4. The membrane filter (12) has a through hole (1).
2b) is a disk shape having a central hole, the hollow member (14) is a hollow tube, and a plurality of membrane filters (12) are rotationally driven about the axis of the hollow member (14). A solid-liquid separation device according to claim 1, characterized in that it comprises a filter rotation device (20).
【請求項5】 (A)濾過膜層(12a)が外表面に形
成されかつ貫通孔(12b)を有する複数の膜フィルタ
(12)を、互いに間隔を隔てて連結しかつ各貫通孔を
水密に連通し、(B)前記複数の膜フィルタの外表面に
被処理液を供給しかつ中空部材の貫通孔から濾過液を抜
き出し、(C)同時に、継続的に又は断続的に膜フィル
タの外表面を超音波で洗浄する、ことを特徴とする膜分
離装置の洗浄方法。
5. (A) A plurality of membrane filters (12) each having a filtration membrane layer (12a) formed on the outer surface and having through holes (12b) are connected to each other at intervals and each through hole is watertight. (B) The liquid to be treated is supplied to the outer surfaces of the plurality of membrane filters and the filtered liquid is extracted from the through holes of the hollow member, and (C) at the same time, continuously or intermittently outside the membrane filter. A method for cleaning a membrane separation device, which comprises cleaning the surface with ultrasonic waves.
JP2001328476A 2001-10-26 2001-10-26 Liquid-solid separation apparatus and operation method thereof Pending JP2003126663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001328476A JP2003126663A (en) 2001-10-26 2001-10-26 Liquid-solid separation apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001328476A JP2003126663A (en) 2001-10-26 2001-10-26 Liquid-solid separation apparatus and operation method thereof

Publications (1)

Publication Number Publication Date
JP2003126663A true JP2003126663A (en) 2003-05-07

Family

ID=19144532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328476A Pending JP2003126663A (en) 2001-10-26 2001-10-26 Liquid-solid separation apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP2003126663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1027468C2 (en) * 2004-11-10 2006-05-11 Sraf Nederland B V Device for rinsing products and method thereof.
CN109107389A (en) * 2018-10-17 2019-01-01 苏州名列膜材料有限公司 A kind of equipment for separating liquid from solid
CN113578058A (en) * 2021-08-02 2021-11-02 南京艾宇琦膜科技有限公司 Multilayer positive and negative counter-rotating ceramic membrane
CN115040926A (en) * 2022-07-17 2022-09-13 中国石油化工股份有限公司 Ultrasonic residual oil backwashing filter device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1027468C2 (en) * 2004-11-10 2006-05-11 Sraf Nederland B V Device for rinsing products and method thereof.
WO2006052130A1 (en) 2004-11-10 2006-05-18 Sraf Nederland B.V. Device and method for rinsing products
CN109107389A (en) * 2018-10-17 2019-01-01 苏州名列膜材料有限公司 A kind of equipment for separating liquid from solid
CN113578058A (en) * 2021-08-02 2021-11-02 南京艾宇琦膜科技有限公司 Multilayer positive and negative counter-rotating ceramic membrane
CN113578058B (en) * 2021-08-02 2024-05-10 南京艾宇琦膜科技有限公司 Multilayer forward and reverse rotation ceramic membrane
CN115040926A (en) * 2022-07-17 2022-09-13 中国石油化工股份有限公司 Ultrasonic residual oil backwashing filter device

Similar Documents

Publication Publication Date Title
CN102527134B (en) High flow disc filter
JP2002191945A (en) Membrane separation apparatus and method for washing it
NZ568167A (en) Reduced backwash volume process
JP2000254459A (en) Method for washing solid-liquid separation element and solid-liquid separator
JPH07289860A (en) Cleaning method of hollow fiber membrane module
JPH07313973A (en) Water purifier and method for washing porous filtration membrane in the same
JP2003126663A (en) Liquid-solid separation apparatus and operation method thereof
EP0230928B1 (en) A method of regenerating a dynamic membrane in a separation means for a liquid medium and device for carrying out the method
JPH11319517A (en) Membrane separation apparatus, membrane separation method, and method for washing membrane separation apparatus
FI103325B (en) Clear filter and regeneration process
JP2003225518A (en) Solid-liquid separator
JP3417455B2 (en) Sludge thickener using filtration membrane
JP3114487B2 (en) Filtration equipment using an asymmetric filtration membrane.
JPH05309242A (en) Filter element and liquid treating device
JPH1066843A (en) Washing of membrane separator
JPS63302910A (en) Method for washing porous filter
JP2003225517A (en) Method for washing solid-liquid separator
CN205435488U (en) Novel membrane filtration device
JP3453518B2 (en) Porous ceramic filter and fluid purification method and apparatus using the same
TW202421253A (en) Ultrasonic liquid processing device
JP2002166111A (en) Solid-liquid separation apparatus
JP2003245665A (en) Water treatment device
JP2002166110A (en) Solid-liquid separation apparatus
JP3225994B2 (en) Filtration equipment using an asymmetric filtration membrane
JPH07178396A (en) Method for filtering and concentrating sludge

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040412