[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003112923A - Reformed titanium oxide particle - Google Patents

Reformed titanium oxide particle

Info

Publication number
JP2003112923A
JP2003112923A JP2001304959A JP2001304959A JP2003112923A JP 2003112923 A JP2003112923 A JP 2003112923A JP 2001304959 A JP2001304959 A JP 2001304959A JP 2001304959 A JP2001304959 A JP 2001304959A JP 2003112923 A JP2003112923 A JP 2003112923A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide particles
silica
oxide
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001304959A
Other languages
Japanese (ja)
Other versions
JP4111701B2 (en
Inventor
Yoshinori Wakamiya
義憲 若宮
Hiroyasu Nishida
広泰 西田
Tsuguo Koyanagi
嗣雄 小柳
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001304959A priority Critical patent/JP4111701B2/en
Publication of JP2003112923A publication Critical patent/JP2003112923A/en
Application granted granted Critical
Publication of JP4111701B2 publication Critical patent/JP4111701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reformed titanium oxide particle whose surface is coated, and which is substantially inert, and is suitably used in coating materials, cosmetics, hard coat materials, or the like. SOLUTION: The surface of the titanium oxide particle is coated with a coating layer consisting of silica based multiple oxide (A) and an inorganic oxide (B). Preferably, the element composing the silica-based multiple oxide (A) is either Al or Zr, and the element composing the inorganic oxide (B) is one or more kinds selected from Mg, Ca, Sr, Ba, La and Sn. Preferably, the content of the silica-based multiple oxide (A) lies in the range of 1 to 45 wt.%, and the content of the inorganic oxide (B) lies in the range of 0.1 to 10 wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、塗料、光学材料、化粧用
材料などの用途に有用な新規な酸化チタン粒子に関す
る。
TECHNICAL FIELD The present invention relates to novel titanium oxide particles useful for applications such as paints, optical materials and cosmetic materials.

【0002】[0002]

【発明の技術的背景】酸化チタン粒子は、その化学的、
物理的特性を利用した用途が広く、白色顔料、酸化還元
触媒あるいは触媒担体として、また紫外線の遮蔽力・隠
蔽力を利用した化粧料、プラスチックの表面コート剤と
して、さらには高屈折を利用した反射防止コート材、導
電性を利用した帯電防止材等として用いられたり、これ
らの効果を組み合わせて機能性ハードコート材に用いら
れたり、さらに高いバンドギャップに基づく光触媒機
能、防菌剤、防汚剤、超親水性被膜、太陽電池などに用
いられている。このような酸化チタン粒子としては、通
常ルチル型の酸化チタン粒子、アナターゼ型の酸化チタ
ン粒子、ブルッカイト型の酸化チタン粒子およびこれら
結晶性酸化チタンを修飾した酸化チタン粒子が用いられ
ているが、塗料、化粧料、ハードコート材料等にこれら
の酸化チタンを用いる場合、特に油脂や有機樹脂等の有
機物と組み合わせて用いる場合には、酸化チタンが紫外
線を吸収して活性化し、有機物の酸化を惹起して耐候
性、耐光性、耐久性等を低下させることがあり、塗料が
変色したり、樹脂レンズ基材が劣化する等の問題が指摘
されている。
TECHNICAL BACKGROUND OF THE INVENTION Titanium oxide particles are
Widely used for its physical properties, such as white pigments, redox catalysts or catalyst carriers, cosmetics that use the ability to block and conceal ultraviolet rays, surface coating agents for plastics, and reflection that uses high refraction. It is used as an anti-coating material, an antistatic material that uses conductivity, and is used as a functional hard-coating material by combining these effects. It also has a photocatalytic function, antibacterial agent, and antifouling agent based on a higher band gap. , Superhydrophilic coatings, solar cells, etc. As such titanium oxide particles, usually rutile type titanium oxide particles, anatase type titanium oxide particles, brookite type titanium oxide particles and titanium oxide particles modified with these crystalline titanium oxides are used. When these titanium oxides are used for cosmetics, hard coat materials, etc., especially when used in combination with organic substances such as oils and fats and organic resins, titanium oxide absorbs ultraviolet rays and activates, causing oxidation of organic substances. Therefore, weather resistance, light resistance, durability, etc. may be deteriorated, and problems such as discoloration of the paint and deterioration of the resin lens substrate have been pointed out.

【0003】特開平2−264909号公報、特開平3
−68901号公報、特開平5−2102号公報には、
酸化チタンにCeO2 あるいはFe2 3 を複合化した
粒子を用いることにより耐候性が増し、基材樹脂レンズ
の劣化が抑制されることが開示されている。また、本願
出願人は、特開平8−48940号公報にて、高屈折率
プラスチックレンズの表面コート膜に、酸化チタンとZ
rO2 、Al2 3 、SiO2 等を複合化した粒子を用
いることにより耐光性が増し、基材樹脂レンズの劣化が
抑制されることを開示している。しかしながら、耐候性
が改善したものの、いまだ不十分であり、長期間の使用
により変色したり着色する問題があった。
Japanese Unexamined Patent Publication Nos. 2-264909 and 3
In Japanese Patent Application Laid-Open No. -68901 and Japanese Patent Application Laid-Open No. 5-2102,
It is disclosed that the weather resistance is increased and the deterioration of the base resin lens is suppressed by using particles in which CeO 2 or Fe 2 O 3 is compounded in titanium oxide. Further, the applicant of the present application has disclosed in JP-A-8-48940 that titanium oxide and Z are added to the surface coating film of a high refractive index plastic lens.
It is disclosed that the light resistance is increased and the deterioration of the base resin lens is suppressed by using the particles in which rO 2 , Al 2 O 3 , SiO 2 and the like are compounded. However, although the weather resistance was improved, it was still insufficient, and there was a problem of discoloration or coloring due to long-term use.

【0004】塗料等に顔料として用いる場合について
も、酸化チタン基体粒子をスズの水和酸化物およびジル
コニウムの水和酸化物で被覆し、さらにアルミニウムの
水和酸化物で被覆した二酸化チタン顔料が開示されてい
る(特開昭57−085859号公報)。また、中核酸
化チタン粒子をスズの含水酸化物およびジルコニウムの
含水酸化物で被覆し、ついでチタンの含水酸化物で被覆
し、さらにアルミニウムの含水酸化物で被覆した二酸化
チタン顔料が開示されている(特開昭61−28101
8号公報)。さらに、特開平6−49387号公報、特
開平7−292277号公報には酸化ランタンで被覆し
たり、シリカ、酸化錫、酸化ジルコニウム、アルミナで
被覆することが開示されている。
Also when it is used as a pigment in a paint or the like, a titanium dioxide pigment in which titanium oxide base particles are coated with a hydrated oxide of tin and a hydrated oxide of zirconium and further coated with a hydrated oxide of aluminum is disclosed. (JP-A-57-085859). Further, a titanium dioxide pigment in which medium nucleic acid titanium particles are coated with a hydroxide of tin and a hydroxide of zirconium, then with a hydroxide of titanium, and further coated with a hydroxide of aluminum is disclosed ( JP-A-61-28101
No. 8). Further, JP-A-6-49387 and JP-A-7-292277 disclose coating with lanthanum oxide, or coating with silica, tin oxide, zirconium oxide, or alumina.

【0005】しかしながら、これらも耐候性が向上した
ものの、いまだ不十分であり、長期間の使用により変色
したり着色する問題があった。このためさらに酸化チタ
ンの活性を抑制することが求められており、用途によっ
ては実質的に不活性にすることが求められている。この
ような状況のもと、本発明者らは、さらに鋭意研究を重
ねた結果、酸化チタン粒子の表面をシリカ系複合酸化物
と例えばアルカリ土類金属酸化物とからなる酸化物で被
覆することにより酸化チタンの活性を抑制できることを
見出して本発明を完成した。
However, although these have improved weather resistance, they are still insufficient, and there is a problem that they are discolored or colored by long-term use. Therefore, it is further required to suppress the activity of titanium oxide, and it is required to make it substantially inactive depending on the application. Under these circumstances, the inventors of the present invention have further earnestly studied, and as a result, coat the surface of titanium oxide particles with an oxide composed of a silica-based composite oxide and, for example, an alkaline earth metal oxide. The present invention has been completed by finding that the activity of titanium oxide can be suppressed by the above.

【0006】[0006]

【発明の目的】本発明は、実質的に不活性で、塗料、化
粧料、ハードコート材等として好適に用いることのでき
る、表面がシリカ系複合酸化物と他の無機酸化物からな
る被覆層で被覆された改質酸化チタン粒子を提供するこ
とを目的としている。
An object of the present invention is to provide a coating layer which is substantially inert and which can be suitably used as a coating material, a cosmetic material, a hard coating material and the like, and whose surface is composed of a silica-based composite oxide and another inorganic oxide. It is intended to provide modified titanium oxide particles coated with.

【0007】[0007]

【発明の概要】本発明は、シリカ系複合酸化物(A)と
無機酸化物(B)からなる被覆層で表面が被覆された酸
化チタン粒子であって、シリカ系複合酸化物(A)が下
記式(1)で表される元素Mと珪素の複合酸化物であ
り、無機酸化物(B)がCu、Ag、Mg、Ca、S
r、Ba、Zn、La、Ce、Al、Zr、Pb、S
n、Nb、Ta、Sb、Mo、Fe、およびNiからな
る元素群から選ばれたM以外の元素の酸化物の1種また
は2種以上であることを特徴とするものである。 SiO2 ・nM2/V O ・・・(1) (但し、M:Mg、Ca、Sr、Ba、Al、Ti、Z
r、Sb、またはMoであり、V:元素Mの原子価であ
り、n:0. 1〜1である。)前記シリカ系複合酸化物
(A)の含有量が1〜45重量%の範囲にあり、前記無
機酸化物(B)の含有量が0. 1〜10重量%の範囲に
あることが好ましい。前記シリカ系複合酸化物(A)を
構成する元素Mは、AlまたはZrのいずれかであるこ
とが好ましい。前記無機酸化物(B)を構成する元素
は、Mg、Ca、Sr、Baから選ばれる1種または2
種以上であることが好ましい。前記無機酸化物(B)を
構成する元素は、Ba、La、Snから選ばれる1種ま
たは2種以上であることが好ましい。前記被覆層が、シ
リカ系複合酸化物(A)の層に無機酸化物(B)が分散
した複合化被覆層であることが好ましい。特に、無機酸
化物(B)を構成する金属元素のカチオンがイオン交換
によりシリカ系複合酸化物(A)の層に分散してなるこ
とが好ましい。
SUMMARY OF THE INVENTION The present invention relates to titanium oxide particles whose surface is coated with a coating layer composed of a silica-based composite oxide (A) and an inorganic oxide (B). It is a composite oxide of the element M and silicon represented by the following formula (1), and the inorganic oxide (B) is Cu, Ag, Mg, Ca, S.
r, Ba, Zn, La, Ce, Al, Zr, Pb, S
One or more oxides of elements other than M selected from the group of elements consisting of n, Nb, Ta, Sb, Mo, Fe and Ni. SiO 2 · nM 2 / VO 2 (1) (However, M: Mg, Ca, Sr, Ba, Al, Ti, Z
r, Sb, or Mo, V: the valence of the element M, and n: 0.1 to 1. ) It is preferable that the content of the silica-based composite oxide (A) is in the range of 1 to 45% by weight and the content of the inorganic oxide (B) is in the range of 0.1 to 10% by weight. The element M forming the silica-based composite oxide (A) is preferably either Al or Zr. The element constituting the inorganic oxide (B) is one or two selected from Mg, Ca, Sr and Ba.
It is preferably at least one species. The element constituting the inorganic oxide (B) is preferably one or more selected from Ba, La and Sn. It is preferable that the coating layer is a composite coating layer in which the inorganic oxide (B) is dispersed in the layer of the silica-based composite oxide (A). In particular, it is preferable that the cation of the metal element forming the inorganic oxide (B) is dispersed in the layer of the silica-based composite oxide (A) by ion exchange.

【0008】[0008]

【発明の具体的な説明】以下、本発明に係る改質酸化チ
タン粒子について具体的に説明する。酸化チタン粒子 本発明に用られる酸化チタン粒子としては、塗料、化粧
料、ハードコート材等に顔料、紫外線吸収剤、高屈折率
材料等として用いられる従来公知の酸化チタン粒子が挙
げられる。酸化チタン粒子の結晶形に関するアナターゼ
型、ルチル型、ブルッカイト型、無定型などの制約は特
にないが、ルチル型酸化チタンはアナターゼ型のものに
比べて屈折率が高く活性が低いので好適である。また、
粒子の大きさ、形状等についての特別の制限もないが、
通常5nm〜10μmのものが用いられる。
DETAILED DESCRIPTION OF THE INVENTION The modified titanium oxide particles according to the present invention will be specifically described below. Titanium Oxide Particles Examples of the titanium oxide particles used in the present invention include conventionally known titanium oxide particles used as paints, cosmetics, hard coat materials and the like as pigments, UV absorbers, high refractive index materials and the like. There are no particular restrictions on the crystal form of the titanium oxide particles such as anatase type, rutile type, brookite type, and amorphous type, but rutile type titanium oxide is preferable because it has a higher refractive index and lower activity than the anatase type. Also,
There are no special restrictions on the size and shape of the particles,
Usually, those having a thickness of 5 nm to 10 μm are used.

【0009】シリカ系複合酸化物(A) 被覆層を構成するシリカ系複合酸化物(A)は、シリカ
を主成分とし、Mg、Ca、Sr、Ba、Al、Ti、
Zr、Sb、およびMoの中から選ばれるいずれかの元
素の酸化物とからなる複合酸化物である。このようなシ
リカを主成分とする複合酸化物は酸化チタン粒子を緻密
に被覆することができ、かつこれら複合酸化物はシリカ
の珪素原子の一部が前記元素で置換された構造を有し、
このため多くの場合、シリカの酸素原子に配位された置
換原子部分は負電荷となり、この負電荷を中和する形で
カチオンが配位できるようになる。このときのカチオン
としては、複合酸化物層を形成する過程で存在するカチ
オン、例えばNa+ 等が存在する。このようなカチオン
の存在により、後述する無機酸化物(B)を構成する元
素のカチオンをイオン交換する形で複合酸化物層に付
着、担持させることができ、本発明の被覆層が形成され
る。従って、シリカ系複合酸化物(A)を構成するシリ
カ以外の成分としては、シリカの珪素原子と置換可能な
元素であればよいが、置換がより多くできる元素(M)
として前記Mg、Ca、Sr、Ba、Al、Ti、Z
r、Sb、およびMoが挙げられ、特に、Al、Ti、
Zr、およびMgが好ましい。
The silica-based composite oxide (A) constituting the coating layer of silica-based composite oxide (A) contains silica as a main component and contains Mg, Ca, Sr, Ba, Al, Ti,
It is a composite oxide composed of an oxide of any element selected from Zr, Sb, and Mo. Such a composite oxide containing silica as a main component can densely coat titanium oxide particles, and these composite oxides have a structure in which some of the silicon atoms of silica are substituted with the above elements,
Therefore, in many cases, the substitution atom portion coordinated with the oxygen atom of silica becomes negative charge, and the cation can be coordinated in a form of neutralizing this negative charge. As cations at this time, there are cations existing in the process of forming the composite oxide layer, such as Na + . Due to the presence of such cations, the cations of the elements constituting the inorganic oxide (B) described below can be attached to and carried by the complex oxide layer in the form of ion exchange, and the coating layer of the present invention is formed. . Therefore, the component other than silica that constitutes the silica-based composite oxide (A) may be any element that can substitute for the silicon atom of silica, but an element that allows more substitution (M).
As said Mg, Ca, Sr, Ba, Al, Ti, Z
r, Sb, and Mo, in particular Al, Ti,
Zr and Mg are preferred.

【0010】このようなシリカ系複合酸化物(A)中の
シリカ以外の成分の含有量は前記式(1)に置いてnが
0. 1〜1. 0、好ましくは0. 15〜0. 85、より
好ましくは0. 2〜0. 5の範囲である。nが0. 1未
満の場合は、シリカ以外の成分の格子置換が少なく、後
述する無機酸化物(B)を構成する元素のカチオンの付
着量が少なくなり、酸化チタンの活性の抑制が不充分と
なる。一方、nが1.0を越えても、シリカ以外の成分
の格子置換がさらに増加することはなく、無機酸化物
(B)構成する元素のカチオンの付着量は減少するよう
になったり、また、シリカ以外の成分の種類にもよるが
緻密なシリカ系複合酸化物(A)層が形成できない場合
があり、このため酸化チタンの活性の抑制が不充分とな
る。
The content of components other than silica in the silica-based composite oxide (A) is 0.1 to 1.0, preferably 0.15 to 0.1 in the above formula (1). The range is 85, more preferably 0.2 to 0.5. When n is less than 0.1, the lattice substitution of components other than silica is small, the amount of cations of the elements composing the inorganic oxide (B) described later is small, and the activity of titanium oxide is not sufficiently suppressed. Becomes On the other hand, even if n exceeds 1.0, the lattice substitution of components other than silica does not increase further, and the amount of cations of the elements constituting the inorganic oxide (B) decreases, or However, depending on the type of components other than silica, a dense silica-based composite oxide (A) layer may not be formed in some cases, so that the activity of titanium oxide is insufficiently suppressed.

【0011】無機酸化物(B) 被覆層を構成する無機酸化物(B)は、Cu、Ag、M
g、Ca、Sr、Ba、Zn、La、Ce、Al、Z
r、Pb、Sn、Nb、Ta、Sb、Mo、Fe、Ni
からなる元素群(E)から選ばれる1種または2種以上
の元素の酸化物からなり、前記シリカ系複合酸化物
(A)の層に前記元素のカチオンが付着(以下、イオン
交換ということがある)して構成されている。即ち、無
機酸化物(B)は、シリカ系複合酸化物(A)に均一に
分散し、シリカ系複合酸化物(A)と複合化した被覆層
を構成しているものと考えられる。上記シリカ系複合酸
化物(A)に無機酸化物(B)を導入した複合被覆層が
酸化チタンの活性を抑制することができる原因について
は必ずしも明らかではないが、次のような理由が考えら
れる。 被覆層が太陽光等の光を遮蔽する。 無機酸化物(B)を構成するイオンが、酸化チタン粒
子内で生成する電子(e - )または正孔(h+ )の生成
を抑制するか電気的に中和して消滅させる。 前記および/またはに加えて、被覆層により有機
物等と隔絶される。前記元素群(E)の中では、Mg、
Ca、Sr、およびBaが好ましく、この種のアルカリ
土類金属を用いると酸化チタンの活性をより効果的に抑
制することができる。
[0011]Inorganic oxide (B) The inorganic oxide (B) forming the coating layer is Cu, Ag, M
g, Ca, Sr, Ba, Zn, La, Ce, Al, Z
r, Pb, Sn, Nb, Ta, Sb, Mo, Fe, Ni
One or more selected from the group of elements (E) consisting of
The above-mentioned silica-based composite oxide
Cation of the above element is attached to the layer of (A) (hereinafter, referred to as ion
It is sometimes called exchange). That is, nothing
Organic oxide (B) is uniformly mixed with silica-based composite oxide (A)
Coating layer dispersed and composited with silica-based composite oxide (A)
It is thought that it constitutes. Silica-based complex acid
The composite coating layer in which the inorganic oxide (B) is introduced into the compound (A)
About the cause that can suppress the activity of titanium oxide
Is not always clear, but the possible reasons are as follows:
Be done. The coating layer blocks light such as sunlight. Ions forming the inorganic oxide (B) are titanium oxide particles
Electrons generated in the child (e -) Or holes (h+) Is generated
To suppress or electrically neutralize and eliminate. In addition to the above and / or
It is isolated from things. In the element group (E), Mg,
Ca, Sr, and Ba are preferred and this type of alkali
The use of earth metals more effectively suppresses the activity of titanium oxide.
Can be controlled.

【0012】次に、改質酸化チタン粒子中のシリカ系複
合酸化物(A)の含有量は1〜45重量%、さらには5
〜30重量%の範囲にあることが好ましい。この含有量
が1重量%未満の場合は、酸化チタン粒子の表面の全面
を被覆できないことがあり、できたとしても、無機酸化
物(B)の導入量が不充分となり、酸化チタンの活性を
抑制する効果が充分得られないことがある。含有量が4
5重量%を越えると、酸化チタンの含有量が低下し、高
屈折率、白色酸化チタン顔料など酸化チタン独自の特性
が低下し、酸化チタンの使用目的を充分達成することが
できない場合がある。また、改質酸化チタン粒子中の無
機酸化物(B)の含有量は、0. 1〜10重量%、さら
には1〜5重量%の範囲にあることが好ましい。この含
有量が0. 1重量%未満の場合は酸化チタンの活性を抑
制する効果が充分得られないことがある。他方、含有量
が10重量%を越えて導入することは困難であり、でき
たとしても酸化チタンの活性を抑制する効果がさらに増
すこともない。
Next, the content of the silica-based composite oxide (A) in the modified titanium oxide particles is 1 to 45% by weight, and further 5
It is preferably in the range of ˜30% by weight. If this content is less than 1% by weight, the entire surface of the titanium oxide particles may not be covered, and even if it is possible, the amount of the inorganic oxide (B) introduced will be insufficient and the titanium oxide activity will be reduced. The suppression effect may not be sufficiently obtained. Content is 4
If it exceeds 5% by weight, the content of titanium oxide is lowered, the characteristics unique to titanium oxide such as high refractive index and white titanium oxide pigment are lowered, and the purpose of use of titanium oxide may not be sufficiently achieved. The content of the inorganic oxide (B) in the modified titanium oxide particles is preferably 0.1 to 10% by weight, more preferably 1 to 5% by weight. If this content is less than 0.1% by weight, the effect of suppressing the activity of titanium oxide may not be sufficiently obtained. On the other hand, it is difficult to introduce it in a content exceeding 10% by weight, and even if it is possible, the effect of suppressing the activity of titanium oxide will not be further enhanced.

【0013】改質酸化チタン粒子の製造方法 続いて、前記改質酸化チタン粒子の製造方法を説明す
る。 〔シリカ系複合酸化物層の形成〕先ず、前述した酸化チ
タン粒子を水に分散させて酸化チタンの水分散液を調製
する。分散液の酸化チタン粒子濃度はTiO2 として
0. 1〜10重量%、特に0. 2〜5重量%の範囲にあ
ることが好ましい。酸化チタン粒子の濃度が0. 1重量
%未満の場合は、濃度が低すぎて、次工程におけるシリ
カ系複合酸化物前駆体の酸化チタン粒子表面上への析出
が効率的に起きず、また後工程で濃縮する際の効率も悪
い。酸化チタン粒子の濃度が10重量%を越えると、濃
度が高すぎて酸化チタン粒子が凝集することがあるので
好ましくない。
Manufacturing Method of Modified Titanium Oxide Particles Next, a manufacturing method of the modified titanium oxide particles will be described. [Formation of Silica-based Complex Oxide Layer] First, the titanium oxide particles described above are dispersed in water to prepare an aqueous dispersion of titanium oxide. The concentration of titanium oxide particles in the dispersion is preferably in the range of 0.1 to 10% by weight, particularly 0.2 to 5% by weight as TiO 2 . When the concentration of titanium oxide particles is less than 0.1% by weight, the concentration is too low, and the silica-based composite oxide precursor in the next step is not efficiently deposited on the surface of the titanium oxide particles. The efficiency in concentrating in the process is also poor. If the concentration of titanium oxide particles exceeds 10% by weight, the concentration is too high and the titanium oxide particles may aggregate, which is not preferable.

【0014】次に、分散液にアルカリを加えて分散液の
pHを9〜12、特に9. 5〜11. 5の範囲に調整す
る。アルカリとしては、NaOH、KOHなどのアルカ
リ金属水酸化物の他、アンモニア、4級アミン等の塩基
性窒素化合物を用いることができる。分散液のpHが上
記範囲にあると、緻密なシリカ系複合酸化物による被覆
が得られ、酸化チタンと有機物の接触が効果的に遮断さ
れるので、酸化チタンの活性を抑制することができる。
ついで、分散液にシリカ源としてアルカリ金属珪酸塩水
溶液と、前記元素(M)の可溶性金属塩水溶液とを、同
時に、連続的にまたは断続的に添加してシリカ系複合酸
化物の前駆体水和物を酸化チタン粒子表面上に析出させ
る。前記アルカリ金属珪酸塩としては珪酸ナトリウム、
珪酸カリウムなどが用いられ、元素(M)の可溶性金属
塩としては塩化マグネシウム、アルミン酸ナトリウム、
塩化チタン、塩化ジルコニウム、塩化アンチモン、硫酸
モリブデンなどが挙げられる。
Next, an alkali is added to the dispersion to adjust the pH of the dispersion to the range of 9 to 12, especially 9.5 to 11.5. As the alkali, alkali metal hydroxides such as NaOH and KOH, as well as basic nitrogen compounds such as ammonia and quaternary amines can be used. When the pH of the dispersion is in the above range, a dense silica-based composite oxide coating is obtained, and contact between titanium oxide and organic matter is effectively blocked, so that the activity of titanium oxide can be suppressed.
Then, an aqueous solution of an alkali metal silicate as a silica source and an aqueous solution of a soluble metal salt of the element (M) are simultaneously and continuously or intermittently added to the dispersion to hydrate a precursor of a silica-based composite oxide. The substance is deposited on the surface of the titanium oxide particles. As the alkali metal silicate, sodium silicate,
Potassium silicate or the like is used, and soluble metal salts of the element (M) include magnesium chloride, sodium aluminate,
Examples thereof include titanium chloride, zirconium chloride, antimony chloride, molybdenum sulfate and the like.

【0015】このとき分散液の温度は通常50〜100
℃、さらには65℃〜95℃の範囲とすることが好まし
く、アルカリ金属珪酸塩と元素(M)の可溶性金属塩の
添加量比は、前記式(1)において所定のモル比nとな
るようにする。両水溶液の添加速度は、分散液の温度や
シリカ系複合酸化物を含む被覆層の形成割合等によって
適宜選択することができ、分散液がゲル化したりあるい
は酸化チタン粒子が凝集することのない範囲でゆっくり
添加し、酸化チタン粒子表面上に選択的にシリカ系複合
酸化物前駆体を析出させることが重要である。前記水溶
液の添加終了後、さらに緻密なシリカ系複合酸化物層を
形成し、酸化チタンの活性抑制効果を向上させるため
に、前記分散液を熟成することが好ましい。熟成は、前
記水溶液の添加時の温度より高くすることが可能であ
り、例えば150℃程度のオートクレーブ中で、概ね1
0分から2時間の範囲で行うことができる。次に、分散
液を洗浄し、必要に応じて濃縮し、ついで50〜150
℃の範囲で乾燥してシリカ系複合酸化物層を形成した酸
化チタン粒子を得る。洗浄方法は、pH調整剤や原料に
由来するカチオンおよびアニオンを除去することができ
れば特に制限はなく、例えば、限外濾過膜法、イオン交
換樹脂法、イオン交換膜、脱水濾過洗浄法などが好適で
ある。
At this time, the temperature of the dispersion is usually 50 to 100.
C., more preferably in the range of 65.degree. C. to 95.degree. C., and the addition amount ratio of the alkali metal silicate and the soluble metal salt of the element (M) is set to a predetermined molar ratio n in the formula (1). To The addition rate of both aqueous solutions can be appropriately selected depending on the temperature of the dispersion liquid, the formation ratio of the coating layer containing the silica-based composite oxide, and the like, in the range where the dispersion liquid does not gel or the titanium oxide particles do not aggregate. It is important that the silica-based complex oxide precursor is selectively deposited on the surface of the titanium oxide particles by slowly adding it at. After the addition of the aqueous solution is completed, it is preferable to age the dispersion liquid in order to form a more dense silica-based complex oxide layer and improve the titanium oxide activity suppressing effect. The aging can be performed at a temperature higher than the temperature at which the aqueous solution is added, for example, in an autoclave at about 150 ° C.
It can be performed in the range of 0 minutes to 2 hours. The dispersion is then washed, concentrated if necessary and then 50-150.
The titanium oxide particles having a silica-based composite oxide layer formed thereon are obtained by drying in the range of ° C. The washing method is not particularly limited as long as it can remove cations and anions derived from the pH adjuster and the raw material, and for example, an ultrafiltration membrane method, an ion exchange resin method, an ion exchange membrane, a dehydration filtration washing method, etc. are preferable. Is.

【0016】〔無機酸化物(B)成分の導入〕上記で得
たシリカ系複合酸化物層が形成された酸化チタン粒子の
水分散液を調製する。このときの酸化チタン粒子の濃度
は酸化物として0. 1〜30重量%、特に1〜20重量
%の範囲にあることが好ましい。酸化チタン粒子の濃度
が0.1重量%未満の場合は、濃度が低すぎて生産効率
が低く、酸化チタン粒子の濃度が30重量%を越える
と、濃度が高すぎて酸化チタン粒子が均一に分散できな
いことがあり、無機酸化物(B)成分前駆体の導入が不
均一になる傾向がある。ついで、元素群(E)中の金属
塩(塩酸塩、硫酸塩、硝酸塩等)であって前記シリカ系
複合酸化物(A)の形成に用いた可溶性金属塩を除く金
属塩水溶液を添加し、通常30〜95℃の温度範囲で、
1分〜60分程度撹拌する。このとき前述したように、
金属塩の金属カチオンが主にイオン交換によりシリカ系
複合酸化物に均一に担持される。
[Introduction of Inorganic Oxide (B) Component] An aqueous dispersion of titanium oxide particles having the silica-based composite oxide layer obtained above is prepared. At this time, the concentration of the titanium oxide particles is preferably in the range of 0.1 to 30% by weight, particularly 1 to 20% by weight as an oxide. When the concentration of titanium oxide particles is less than 0.1% by weight, the production efficiency is low because the concentration is too low. When the concentration of titanium oxide particles exceeds 30% by weight, the concentration is too high and the titanium oxide particles become uniform. In some cases, they cannot be dispersed, and the introduction of the inorganic oxide (B) component precursor tends to be non-uniform. Then, an aqueous solution of a metal salt (hydrochloride, sulfate, nitrate, etc.) in the element group (E), excluding the soluble metal salt used to form the silica-based composite oxide (A), is added, Usually in the temperature range of 30-95 ° C,
Stir for about 1 to 60 minutes. At this time, as described above,
The metal cation of the metal salt is uniformly supported on the silica-based composite oxide mainly by ion exchange.

【0017】[0017]

【発明の効果】本発明の酸化チタン粒子は、シリカ系複
合酸化物(A)と特定の元素の無機酸化物(B)からな
る被覆層で被覆されているために酸化チタンとしての高
い屈折率や紫外線遮蔽性・隠蔽性を有していながら、そ
の活性が効果的に抑制されている。従って、この改質酸
化チタン粒子は、耐光性・耐候性等に優れた塗料、化粧
料、ハードコート材、合成樹脂レンズ等に好適に用いる
ことができる。
The titanium oxide particles of the present invention are coated with a coating layer composed of a silica-based composite oxide (A) and an inorganic oxide (B) of a specific element, and therefore have a high refractive index as titanium oxide. It also has a UV-shielding / concealing property, but its activity is effectively suppressed. Therefore, the modified titanium oxide particles can be suitably used for paints, cosmetics, hard coat materials, synthetic resin lenses and the like having excellent light resistance and weather resistance.

【0018】[0018]

【実施例】以下、実施例により説明するが、本発明はこ
れらの実施例により限定されるものではない。 〔実施例1〕酸化チタン粒子(TITANIX 社製:CR-90 、
ルチル型酸化チタン、平均粒子径0. 25μm)20g
を純水3. 98kgに均一に分散させ、分散液に濃度2
0重量%のNaOH水溶液5gを加えて分散液のpHを
10. 5とした。ついで、分散液の温度を90℃に昇温
し、30分間撹拌した後、SiO2 としての濃度が1.
5重量%の希釈3号水硝子300gとAl2 3 として
の濃度が0. 5重量%のアルミン酸ソーダ300gとを
同時に、連続的に4. 5時間で添加した。ついで、1時
間熟成した後、常温に冷却し、限外濾過膜法で洗浄と濃
縮を行い酸化物としての濃度が20重量%のSiO2
Al2 3 被覆酸化チタン粒子分散液を得た。この分散
液を150℃で乾燥してSiO2 ・Al2 3 被覆酸化
チタン粒子24gを得た。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. [Example 1] Titanium oxide particles (manufactured by TITANIX: CR-90,
Rutile type titanium oxide, average particle size 0.25 μm) 20 g
Is uniformly dispersed in 3.98 kg of pure water, and the concentration of 2 is added to the dispersion.
The pH of the dispersion was adjusted to 10.5 by adding 5 g of 0 wt% NaOH aqueous solution. Then, the temperature of the dispersion liquid was raised to 90 ° C., and after stirring for 30 minutes, the concentration as SiO 2 was 1.
300 g of 5 wt% diluted No. 3 water glass and 300 g of sodium aluminate having a concentration of Al 2 O 3 of 0.5 wt% were simultaneously and continuously added in 4.5 hours. Then, after aging for 1 hour, it was cooled to room temperature, washed and concentrated by the ultrafiltration membrane method, and the concentration of the oxide as SiO 2 was 20% by weight.
An Al 2 O 3 -coated titanium oxide particle dispersion liquid was obtained. The dispersion was dried at 150 ° C. to obtain 24 g of SiO 2 .Al 2 O 3 coated titanium oxide particles.

【0019】得られたSiO2 ・Al2 3 被覆酸化チ
タン粒子3. 08gを純水58. 52gに均一に分散さ
せ、これに濃度10重量%のBaCl2 水溶液3. 0g
を加え、30℃で1時間撹拌した後、限外濾過膜法で流
出液の電導度が50μS/cm以下となるまで洗浄し、
ついで酸化物として濃度20重量%に濃縮した。つい
で、150℃で乾燥してSiO2 ・Al2 3 被覆酸化
チタン粒子にBaを担持した改質酸化チタン粒子(A)
2. 6gを得た。得られた粒子の組成を表1に示す。ま
た、酸化チタン粒子の活性としての耐UV性を評価し、
その結果を表1に示した。耐UV性の測定は、改質酸化
チタン粒子(A)1gとアクリル樹脂3gとをメノウ乳
鉢で混合し、これをルツボに採取し高圧水銀ランプ(H
B−1000−A)により紫外線を照射し、樹脂が着色
するまでの時間を測定した。
3.08 g of the obtained SiO 2 .Al 2 O 3 coated titanium oxide particles were uniformly dispersed in 58.52 g of pure water, and 3.0 g of a 10 wt% concentration of BaCl 2 aqueous solution was added thereto.
Was added and stirred at 30 ° C. for 1 hour, and then washed by an ultrafiltration membrane method until the conductivity of the effluent was 50 μS / cm or less,
Then, it was concentrated as an oxide to a concentration of 20% by weight. Then, modified titanium oxide particles (A) obtained by drying at 150 ° C. and supporting Ba on SiO 2 · Al 2 O 3 -coated titanium oxide particles.
2.6 g were obtained. The composition of the obtained particles is shown in Table 1. In addition, the UV resistance as the activity of the titanium oxide particles was evaluated,
The results are shown in Table 1. To measure the UV resistance, 1 g of the modified titanium oxide particles (A) and 3 g of an acrylic resin were mixed in an agate mortar, and this was sampled in a crucible and a high pressure mercury lamp (H
B-1000-A) was irradiated with ultraviolet rays, and the time until the resin was colored was measured.

【0020】〔実施例2〕酸化チタン粒子(TITANIX 社
製:CR-90 、ルチル型酸化チタン、平均粒子径0. 25
μm)18. 8gを純水3. 98kgに均一に分散さ
せ、分散液に濃度20重量%のNaOH水溶液4. 7g
を加えて分散液のpHを10. 5とした。ついで、分散
液の温度を90℃に昇温し、30分間撹拌した後、Si
2 としての濃度が1. 5重量%の希釈3号水硝子15
0gとAl2 3 としての濃度が0.5重量%のアルミ
ン酸ソーダ150gとを同時に、連続的に3時間で添加
した。ついで、1時間熟成した後、常温に冷却し、限外
濾過膜法で洗浄と濃縮を行い酸化物としての濃度が20
重量%のSiO2 ・Al2 3 被覆酸化チタン粒子分散
液を得た。この分散液を150℃で乾燥してSiO2
Al2 3 被覆酸化チタン粒子19. 4gを得た。得ら
れたSiO2 ・Al2 3 被覆酸化チタン粒子2. 49
gを純水58. 52gに均一に分散させ、これに濃度1
0重量%のBaCl2 水溶液12. 1gを加え、30℃
で1時間撹拌した後、限外濾過膜法で流出液の電導度が
50μS/cm以下となるまで洗浄し、ついで酸化物と
して濃度20重量%に濃縮した。ついで、150℃で乾
燥してSiO2 ・Al2 3 被覆酸化チタン粒子にBa
を担持した改質酸化チタン粒子(B)2. 6gを得た。
得られた粒子の組成を表1に示し、また耐UV性を評価
し、結果を表1に示した。
[Example 2] Titanium oxide particles (manufactured by TITANIX: CR-90, rutile type titanium oxide, average particle size 0.25)
μm) 18.8 g was evenly dispersed in 3.98 kg of pure water, and 4.7 g of a 20 wt% aqueous NaOH solution was added to the dispersion.
Was added to adjust the pH of the dispersion to 10.5. Then, the temperature of the dispersion liquid was raised to 90 ° C., and after stirring for 30 minutes, Si
Diluted No. 3 water glass 15 with a concentration of O 2 of 1.5% by weight
0 g and 150 g of sodium aluminate having a concentration of 0.5% by weight as Al 2 O 3 were simultaneously added continuously and in 3 hours. Then, after aging for 1 hour, it was cooled to room temperature and washed and concentrated by an ultrafiltration membrane method to obtain an oxide concentration of 20.
A weight% SiO 2 · Al 2 O 3 -coated titanium oxide particle dispersion liquid was obtained. This dispersion is dried at 150 ° C. and dried with SiO 2.
19.4 g of titanium oxide particles coated with Al 2 O 3 were obtained. Obtained SiO 2 · Al 2 O 3 Coated Titanium Oxide Particles 2.49
g is evenly dispersed in 58.52 g of pure water and the concentration of 1
12.1 g of 0% by weight BaCl 2 aqueous solution was added, and the temperature was adjusted to 30 ° C.
After stirring for 1 hour, the solution was washed by an ultrafiltration membrane method until the conductivity of the effluent was 50 μS / cm or less, and then concentrated as an oxide to a concentration of 20% by weight. Then, it is dried at 150 ° C. to form SiO 2 · Al 2 O 3 -coated titanium oxide particles with Ba.
2.6 g of modified titanium oxide particles (B) carrying C were obtained.
The composition of the obtained particles is shown in Table 1, the UV resistance was evaluated, and the results are shown in Table 1.

【0021】〔実施例3〕酸化チタン粒子(TITANIX 社
製:CR-90 、ルチル型酸化チタン、平均粒子径0. 25
μm)17. 4gを純水3. 98kgに均一に分散さ
せ、分散液に濃度20重量%のNaOH水溶液4. 35
gを加えて分散液のpHを10. 5とした。ついで、分
散液の温度を90℃に昇温し、30分間撹拌した後、S
iO2 としての濃度が1. 5重量%の希釈3号水硝子3
00gとAl2 3 としての濃度が0. 5重量%のアル
ミン酸ソーダ300gとを同時に、連続的に4. 5時間
で添加した。ついで、1時間熟成した後、常温に冷却
し、限外濾過膜法で洗浄と濃縮を行い酸化物としての濃
度が20重量%のSiO2 ・Al2 3 被覆酸化チタン
粒子分散液を得た。この分散液を150℃で乾燥してS
iO2 ・Al2 3 被覆酸化チタン粒子21. 8gを得
た。得られたSiO2 ・Al2 3 被覆酸化チタン粒子
2. 8gを純水58. 52gに均一に分散させ、これに
濃度10重量%のBaCl2 水溶液27. 3gを加え、
30℃で1時間撹拌した後、限外濾過膜法で流出液の電
導度が50μS/cm以下となるまで洗浄し、ついで酸
化物として濃度20重量%に濃縮した。ついで、150
℃で乾燥してSiO2 ・Al2 3 被覆酸化チタン粒子
にBa を担持した改質酸化チタン粒子(C)3. 1gを
得た。得られた粒子の組成を表1に示し、また耐UV性
を評価し、結果を表1に示した。
[Example 3] Titanium oxide particles (manufactured by TITANIX: CR-90, rutile type titanium oxide, average particle size 0.25)
(1 μm) 17.4 g was evenly dispersed in 3.98 kg of pure water, and the dispersion was mixed with 20% by weight NaOH aqueous solution 4.35 g.
g was added to adjust the pH of the dispersion to 10.5. Then, the temperature of the dispersion liquid is raised to 90 ° C., the mixture is stirred for 30 minutes, and then S
Diluted No. 3 water glass 3 with a concentration as iO 2 of 1.5% by weight
00 g and 300 g of sodium aluminate having a concentration of 0.5% by weight as Al 2 O 3 were simultaneously added continuously in 4.5 hours. Then, after aging for 1 hour, it was cooled to room temperature, washed and concentrated by an ultrafiltration membrane method to obtain a SiO 2 · Al 2 O 3 -coated titanium oxide particle dispersion liquid having an oxide concentration of 20% by weight. . The dispersion is dried at 150 ° C. and S
was obtained iO 2 · Al 2 O 3 coated titanium oxide particles 21. 8 g. 2.8 g of the obtained SiO 2 · Al 2 O 3 -coated titanium oxide particles were uniformly dispersed in 58.52 g of pure water, and 27.3 g of a 10 wt% concentration of BaCl 2 aqueous solution was added thereto.
After stirring at 30 ° C. for 1 hour, the effluent was washed by an ultrafiltration membrane method until the conductivity became 50 μS / cm or less, and then concentrated as an oxide to a concentration of 20% by weight. Then 150
After drying at 0 ° C., 3.1 g of modified titanium oxide particles (C) in which Ba was supported on SiO 2 .Al 2 O 3 -coated titanium oxide particles were obtained. The composition of the obtained particles is shown in Table 1, the UV resistance was evaluated, and the results are shown in Table 1.

【0022】〔実施例4〕酸化チタン粒子(TITANIX 社
製:CR-90 、ルチル型酸化チタン、平均粒子径0. 25
μm)24. 6gを純水3. 98kgに均一に分散さ
せ、分散液に濃度20重量%のNaOH水溶液6. 16
gを加えて分散液のpHを10. 5とした。ついで、分
散液の温度を90℃に昇温し、30分間撹拌した後、S
iO2 としての濃度が1. 5重量%の希釈3号水硝子1
00gとAl2 3 としての濃度が0. 5重量%のアル
ミン酸ソーダ100gとを同時に、連続的に1. 5時間
で添加した。ついで、1時間熟成した後、常温に冷却
し、限外濾過膜法で洗浄と濃縮を行い酸化物としての濃
度が20重量%のSiO2 ・Al2 3 被覆酸化チタン
粒子分散液を得た。この分散液を150℃で乾燥してS
iO2 ・Al2 3 被覆酸化チタン粒子23gを得た。
得られたSiO2 ・Al2 3 被覆酸化チタン粒子2.
96gを純水58. 52gに均一に分散させ、これに濃
度10重量%のBaCl2 水溶液14. 4gを加え、3
0℃で1時間撹拌した後、限外濾過膜法で流出液の電導
度が50μS/cm以下となるまで洗浄し、ついで酸化
物として濃度20重量%に濃縮した。ついで、150℃
で乾燥してSiO2 ・Al2 3 被覆酸化チタン粒子に
Baを担持した改質酸化チタン粒子(D)3. 1gを得
た。得られた粒子の組成を表1に示し、また耐UV性を
評価し、結果を表1に示した。
[Example 4] Titanium oxide particles (manufactured by TITANIX: CR-90, rutile type titanium oxide, average particle size 0.25)
μm) 24.6 g was evenly dispersed in 3.98 kg of pure water, and the dispersion solution was added with an aqueous solution of NaOH having a concentration of 20% by weight of 6.16.
g was added to adjust the pH of the dispersion to 10.5. Then, the temperature of the dispersion liquid is raised to 90 ° C., the mixture is stirred for 30 minutes, and then S
Diluted No. 3 water glass 1 with a concentration of 1.5% by weight as iO 2.
00 g and 100 g of sodium aluminate having a concentration of 0.5% by weight as Al 2 O 3 were simultaneously added continuously and in 1.5 hours. Then, after aging for 1 hour, it was cooled to room temperature, washed and concentrated by an ultrafiltration membrane method to obtain a SiO 2 · Al 2 O 3 -coated titanium oxide particle dispersion liquid having an oxide concentration of 20% by weight. . The dispersion is dried at 150 ° C. and S
was obtained iO 2 · Al 2 O 3 coated titanium oxide particles 23 g.
The obtained SiO 2 · Al 2 O 3 coated titanium oxide particles 2.
96 g of water was evenly dispersed in 58.52 g of pure water, and 14.4 g of a 10% by weight concentration of BaCl 2 aqueous solution was added thereto, and 3
After stirring at 0 ° C. for 1 hour, the effluent was washed by an ultrafiltration membrane method until the conductivity of the effluent was 50 μS / cm or less, and then concentrated as an oxide to a concentration of 20% by weight. Then, 150 ℃
Then, 3.1 g of modified titanium oxide particles (D) in which Ba was supported on SiO 2 .Al 2 O 3 -coated titanium oxide particles were obtained. The composition of the obtained particles is shown in Table 1, the UV resistance was evaluated, and the results are shown in Table 1.

【0023】〔実施例5〕酸化チタン粒子(TITANIX 社
製:CR-90 、ルチル型酸化チタン、平均粒子径0. 25
μm)14. 5gを純水3. 98kgに均一に分散さ
せ、分散液に濃度20重量%のNaOH水溶液3. 6g
を加えて分散液のpHを10. 5とした。ついで、分散
液の温度を90℃に昇温し、30分間撹拌した後、Si
2 としての濃度が1. 5重量%の希釈3号水硝子45
0gとAl2 3 としての濃度が0.5重量%のアルミ
ン酸ソーダ450gとを同時に、連続的に6時間で添加
した。ついで、1時間熟成した後、常温に冷却し、限外
濾過膜法で洗浄と濃縮を行い酸化物としての濃度が20
重量%のSiO2 ・Al2 3 被覆酸化チタン粒子分散
液を得た。この分散液を150℃で乾燥してSiO2
Al2 3 被覆酸化チタン粒子23gを得た。得られた
SiO2 ・Al2 3 被覆酸化チタン粒子2. 96gを
純水58. 52gに均一に分散させ、これに濃度10重
量%のBaCl2 水溶液14. 4gを加え、30℃で1
時間撹拌した後、限外濾過膜法で流出液の電導度が50
μS/cm以下となるまで洗浄し、ついで酸化物として
濃度20重量%に濃縮した。ついで、150℃で乾燥し
てSiO2 ・Al2 3 被覆酸化チタン粒子にBaを担
持した改質酸化チタン粒子(E)3. 1gを得た。得ら
れた粒子の組成を表1に示し、また耐UV性を評価し、
結果を表1に示した。
[Example 5] Titanium oxide particles (manufactured by TITANIX: CR-90, rutile type titanium oxide, average particle size 0.25)
μm) 14.5 g was evenly dispersed in 3.98 kg of pure water, and 3.6 g of a 20 wt% concentration aqueous NaOH solution was added to the dispersion.
Was added to adjust the pH of the dispersion to 10.5. Then, the temperature of the dispersion liquid was raised to 90 ° C., and after stirring for 30 minutes, Si
Diluted No. 3 water glass 45 with a concentration of O 2 of 1.5% by weight
0 g and 450 g of sodium aluminate having a concentration of 0.5% by weight as Al 2 O 3 were simultaneously added continuously and in 6 hours. Then, after aging for 1 hour, it was cooled to room temperature and washed and concentrated by an ultrafiltration membrane method to obtain an oxide concentration of 20.
A weight% SiO 2 · Al 2 O 3 -coated titanium oxide particle dispersion liquid was obtained. This dispersion is dried at 150 ° C. and dried with SiO 2.
23 g of titanium oxide particles coated with Al 2 O 3 were obtained. 2.96 g of the obtained SiO 2 · Al 2 O 3 -coated titanium oxide particles were uniformly dispersed in 58.52 g of pure water, and 14.4 g of a 10 wt% concentration of BaCl 2 aqueous solution was added thereto, and the mixture was stirred at 30 ° C. for 1 hour.
After stirring for an hour, the conductivity of the effluent is 50 by ultrafiltration membrane method.
It was washed until the concentration became μS / cm or less and then concentrated as an oxide to a concentration of 20% by weight. Then, it was dried at 150 ° C. to obtain 3.1 g of modified titanium oxide particles (E) in which SiO 2 · Al 2 O 3 -coated titanium oxide particles supported Ba. The composition of the obtained particles is shown in Table 1 and UV resistance was evaluated.
The results are shown in Table 1.

【0024】〔実施例6〕酸化チタン粒子(TITANIX 社
製:CR-90 、ルチル型酸化チタン、平均粒子径0. 25
μm)18. 8gを純水3. 98kgに均一に分散さ
せ、分散液に濃度20重量%のNaOH水溶液4. 7g
を加えて分散液のpHを10. 5とした。ついで、分散
液の温度を90℃に昇温し、30分間撹拌した後、Si
2 としての濃度が1. 5重量%の希釈3号水硝子30
0gとZrO2 としての濃度が0. 5重量%の塩化ジル
コニウム300gとを同時に、連続的に4. 5時間で添
加した。ついで、1時間熟成した後、常温に冷却し、限
外濾過膜法で洗浄と濃縮を行い酸化物としての濃度が2
0重量%のSiO2 ・ZrO2 被覆酸化チタン粒子分散
液を得た。この分散液を150℃で乾燥してSiO2
ZrO2 被覆酸化チタン粒子23gを得た。得られたS
iO2 ・ZrO2 被覆酸化チタン粒子3. 08gを純水
58. 52gに均一に分散させ、これに濃度10重量%
のBaCl2 水溶液15gを加え、30℃で1時間撹拌
した後、限外濾過膜法で流出液の電導度が50μS/c
m以下となるまで洗浄し、ついで酸化物として濃度20
重量%に濃縮した。ついで、150℃で乾燥してSiO
2 ・ZrO2 被覆酸化チタン粒子にBaを担持した改質
酸化チタン粒子(F)3. 2gを得た。得られた粒子の
組成を表1に示し、また耐UV性を評価し、結果を表1
に示した。
[Example 6] Titanium oxide particles (manufactured by TITANIX: CR-90, rutile type titanium oxide, average particle size 0.25)
μm) 18.8 g was evenly dispersed in 3.98 kg of pure water, and 4.7 g of a 20 wt% aqueous NaOH solution was added to the dispersion.
Was added to adjust the pH of the dispersion to 10.5. Then, the temperature of the dispersion liquid was raised to 90 ° C., and after stirring for 30 minutes, Si
Diluted No. 3 water glass 30 whose concentration as O 2 is 1.5% by weight
0 g and 300 g of zirconium chloride having a ZrO 2 concentration of 0.5% by weight were added simultaneously and continuously in the course of 4.5 hours. Then, after aging for 1 hour, the mixture was cooled to room temperature, washed and concentrated by the ultrafiltration membrane method, and the concentration as an oxide was reduced to 2
A 0 wt% SiO 2 .ZrO 2 coated titanium oxide particle dispersion was obtained. This dispersion is dried at 150 ° C. and dried with SiO 2.
23 g of ZrO 2 -coated titanium oxide particles were obtained. The obtained S
3.08 g of titanium oxide particles coated with iO 2 · ZrO 2 were uniformly dispersed in 58.52 g of pure water, and a concentration of 10% by weight was added thereto.
BaCl 2 aqueous solution (15 g) was added and the mixture was stirred at 30 ° C. for 1 hour.
washed to m or less, then concentration as oxide 20
Concentrated to wt%. Then, dry it at 150 ° C and SiO
3.2 g of modified titanium oxide particles (F) in which Ba was supported on 2 · ZrO 2 coated titanium oxide particles were obtained. The composition of the obtained particles is shown in Table 1, UV resistance was evaluated, and the results are shown in Table 1.
It was shown to.

【0025】〔実施例7〕酸化チタン粒子(TITANIX 社
製:CR-90 、ルチル型酸化チタン、平均粒子径0. 25
μm)17. 4gを純水3. 98kgに均一に分散さ
せ、分散液に濃度20重量%のNaOH水溶液4. 3g
を加えて分散液のpHを10. 5とした。ついで、分散
液の温度を90℃に昇温し、30分間撹拌した後、Si
2 としての濃度が1. 5重量%の希釈3号水硝子30
0gとZrO2 としての濃度が0. 5重量%の塩化ジル
コニウム300gとを同時に、連続的に4. 5時間で添
加した。ついで、1時間熟成した後、常温に冷却し、限
外濾過膜法で洗浄と濃縮を行い酸化物としての濃度が2
0重量%のSiO2 ・ZrO2 被覆酸化チタン粒子分散
液を得た。この分散液を150℃で乾燥してSiO2
ZrO2 被覆酸化チタン粒子21. 8gを得た。得られ
たSiO2 ・ZrO2 被覆酸化チタン粒子2. 8gを純
水58. 52gに均一に分散させ、これに濃度10重量
%のBaCl2 水溶液27. 3gを加え、30℃で1時
間撹拌した後、限外濾過膜法で流出液の電導度が50μ
S/cm以下となるまで洗浄し、ついで酸化物として濃
度20重量%に濃縮した。ついで、150℃で乾燥して
SiO2 ・ZrO2 被覆酸化チタン粒子にBaを担持し
た改質酸化チタン粒子(G)3. 1gを得た。得られた
粒子の組成を表1に示し、また耐UV性を評価し、結果
を表1に示した。
[Example 7] Titanium oxide particles (manufactured by TITANIX: CR-90, rutile type titanium oxide, average particle size 0.25)
(1 μm) 17.4 g is evenly dispersed in 3.98 kg of pure water, and 4.3 g of an aqueous solution of NaOH having a concentration of 20% by weight is added to the dispersion.
Was added to adjust the pH of the dispersion to 10.5. Then, the temperature of the dispersion liquid was raised to 90 ° C., and after stirring for 30 minutes, Si
Diluted No. 3 water glass 30 whose concentration as O 2 is 1.5% by weight
0 g and 300 g of zirconium chloride having a ZrO 2 concentration of 0.5% by weight were added simultaneously and continuously in the course of 4.5 hours. Then, after aging for 1 hour, the mixture was cooled to room temperature, washed and concentrated by the ultrafiltration membrane method, and the concentration as an oxide was reduced to 2
A 0 wt% SiO 2 .ZrO 2 coated titanium oxide particle dispersion was obtained. This dispersion is dried at 150 ° C. and dried with SiO 2.
21.8 g of ZrO 2 coated titanium oxide particles were obtained. 2.8 g of the obtained SiO 2 .ZrO 2 -coated titanium oxide particles were uniformly dispersed in 58.52 g of pure water, 27.3 g of a 10 wt% concentration of BaCl 2 aqueous solution was added, and the mixture was stirred at 30 ° C. for 1 hour. After that, the conductivity of the effluent was 50μ by the ultrafiltration membrane method.
It was washed until it became S / cm or less, and then concentrated as an oxide to a concentration of 20% by weight. Then, it was dried at 150 ° C. to obtain 3.1 g of modified titanium oxide particles (G) in which Ba was supported on SiO 2 .ZrO 2 coated titanium oxide particles. The composition of the obtained particles is shown in Table 1, the UV resistance was evaluated, and the results are shown in Table 1.

【0026】〔実施例8〕実施例5と同様にしてSiO
2 ・Al2 3 被覆酸化チタン粒子23gを得、この被
覆酸化チタン粒子2. 96gを純水58. 52gに均一
に分散させ、これに濃度10重量%のLaCl3 水溶液
14. 4gを加え、30℃で1時間撹拌した後、限外濾
過膜法で流出液の電導度が50μS/cm以下となるま
で洗浄し、ついで酸化物として濃度20重量%に濃縮し
た。ついで、150℃で乾燥してSiO2 ・Al2 3
被覆酸化チタン粒子にLaを担持した改質酸化チタン粒
子(H)3. 1gを得た。得られた粒子の組成を表1に
示し、また耐UV性を評価し、結果を表1に示した。
[Embodiment 8] Similar to Embodiment 5, SiO
23 g of titanium oxide particles coated with 2 · Al 2 O 3 were obtained, 2.96 g of the coated titanium oxide particles were uniformly dispersed in 58.52 g of pure water, and 14.4 g of an aqueous solution of LaCl 3 having a concentration of 10 wt% was added thereto. After stirring at 30 ° C. for 1 hour, the effluent was washed by an ultrafiltration membrane method until the conductivity became 50 μS / cm or less, and then concentrated as an oxide to a concentration of 20% by weight. Then, dry at 150 ° C to obtain SiO 2 · Al 2 O 3
3.1 g of modified titanium oxide particles (H) in which La was carried on the coated titanium oxide particles were obtained. The composition of the obtained particles is shown in Table 1, the UV resistance was evaluated, and the results are shown in Table 1.

【0027】〔実施例9〕実施例5と同様にしてSiO
2 ・Al2 3 被覆酸化チタン粒子23gを得、この被
覆酸化チタン粒子2. 96gを純水58. 52gに均一
に分散させ、これに濃度10重量%のSnCl4 水溶液
14. 4gを加え、30℃で1時間撹拌した後、限外濾
過膜法で流出液の電導度が50μS/cm以下となるま
で洗浄し、ついで酸化物として濃度20重量%に濃縮し
た。ついで、150℃で乾燥してSiO2 ・Al2 3
被覆酸化チタン粒子にSnを担持した改質酸化チタン粒
子(I)3. 1gを得た。得られた粒子の組成を表1に
示し、また耐UV性を評価し、結果を表1に示した。
[Embodiment 9] As in Embodiment 5, SiO
23 g of titanium oxide particles coated with 2 · Al 2 O 3 were obtained, 2.96 g of the coated titanium oxide particles were uniformly dispersed in 58.52 g of pure water, and 14.4 g of an aqueous SnCl 4 solution having a concentration of 10% by weight was added thereto. After stirring at 30 ° C. for 1 hour, the effluent was washed by an ultrafiltration membrane method until the conductivity became 50 μS / cm or less, and then concentrated as an oxide to a concentration of 20% by weight. Then, dry at 150 ° C to obtain SiO 2 · Al 2 O 3
3.1 g of modified titanium oxide particles (I) in which Sn was supported on the coated titanium oxide particles were obtained. The composition of the obtained particles is shown in Table 1, the UV resistance was evaluated, and the results are shown in Table 1.

【0028】〔比較例1〕酸化チタン粒子(TITANIX 社
製:CR-90 、ルチル型酸化チタン、平均粒子径0. 25
μm)について耐UV性を評価し、結果を表1に示し
た。
Comparative Example 1 Titanium oxide particles (manufactured by TITANIX: CR-90, rutile type titanium oxide, average particle size 0.25)
μm) was evaluated for UV resistance, and the results are shown in Table 1.

【0029】〔比較例2〕実施例1で調製したSiO2
・Al2 3 被覆酸化チタン粒子について耐UV性を評
価し、結果を表1に示した。
Comparative Example 2 SiO 2 prepared in Example 1
The UV resistance of the Al 2 O 3 -coated titanium oxide particles was evaluated, and the results are shown in Table 1.

【0030】〔比較例3〕実施例7で調製したSiO2
・ZrO2 被覆酸化チタン粒子について耐UV性を評価
し、結果を表1に示した。
Comparative Example 3 SiO 2 prepared in Example 7
The UV resistance of the ZrO 2 -coated titanium oxide particles was evaluated, and the results are shown in Table 1.

【0031】[0031]

【表1】 改質酸化チタン粒子 評価 酸化チタン 複合酸化物(A) 酸化物(B) 耐UV性 粒子含有量 元素 含有量 元素 含有量 (wt%) (wt%) (wt%) (分) 実施例1 69 Al 0.3 30 Ba 1 25 実施例2 65 Al 0.3 15 Ba 5 45 実施例3 60 Al 0.3 30 Ba 10 30 実施例4 85 Al 0.3 10 Ba 5 20 実施例5 50 Al 0.3 45 Ba 5 55 実施例6 65 Zr 0.3 30 Ba 5 45 実施例7 60 Zr 0.3 30 Ba 10 30 実施例8 65 Al 0.3 30 La 5 40 実施例9 65 Al 0.3 30 Sn 5 40 比較例1 100 − − − − − 5 比較例2 69.7 Al 0.3 30.3 − − 15 比較例3 69.7 Zr 0.3 30.3 − − 15TABLE 1 modified titanium oxide particles rating titanium composite oxide (A) oxide (B) UV resistance particle content element n content element content (wt%) (wt%) (wt%) ( min Example 1 69 Al 0.3 30 Ba 1 25 Example 2 65 Al 0.3 15 Ba 5 45 Example 3 60 Al 0.3 30 Ba 10 30 Example 4 85 Al 0.3 10 Ba 5 20 Example 5 50 Al 0.3 45 Ba 5 55 Example 6 65 Zr 0.3 30 Ba 5 45 Example 7 60 Zr 0.3 30 Ba 10 30 Example 8 65 Al 0.3 30 La 5 40 Example 9 65 Al 0.3 30 Sn 5 40 Comparative Example 1 100 − − − − − 5 Comparative Example 2 69.7 Al 0.3 30.3 − − 15 Comparative Example 3 69.7 Zr 0.3 30.3 − − 15

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柳 嗣雄 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 小松 通郎 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 Fターム(参考) 4G047 CA02 CB08 CC01 CC03 CD03 4J037 AA22 CA09 CA11 CA12 CA24 DD05 EE03 EE17 EE25 EE43 FF22    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsuguo Koyanagi             13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka             Kasei Industry Co., Ltd. Wakamatsu factory (72) Inventor Toshiro Komatsu             13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka             Kasei Industry Co., Ltd. Wakamatsu factory F term (reference) 4G047 CA02 CB08 CC01 CC03 CD03                 4J037 AA22 CA09 CA11 CA12 CA24                       DD05 EE03 EE17 EE25 EE43                       FF22

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シリカ系複合酸化物(A)と無機酸化物
(B)からなる被覆層で表面が被覆された酸化チタン粒
子であって、シリカ系複合酸化物(A)が下記式(1)
で表される元素Mと珪素の複合酸化物であり、無機酸化
物(B)がCu、Ag、Mg、Ca、Sr、Ba、Z
n、La、Ce、Al、Zr、Pb、Sn、Nb、T
a、Sb、Mo、Fe、およびNiからなる元素群から
選ばれたM以外の元素の酸化物の1種または2種以上で
あることを特徴とする改質酸化チタン粒子。 SiO2 ・nM2/V O ・・・(1) (但し、M:Mg、Ca、Sr、Ba、Al、Ti、Z
r、Sb、またはMoであり、V:元素Mの原子価であ
り、n:0. 1〜1である。)
1. A titanium oxide particle having a surface coated with a coating layer comprising a silica-based composite oxide (A) and an inorganic oxide (B), wherein the silica-based composite oxide (A) has the following formula (1): )
Is a composite oxide of the element M and silicon represented by, and the inorganic oxide (B) is Cu, Ag, Mg, Ca, Sr, Ba, Z.
n, La, Ce, Al, Zr, Pb, Sn, Nb, T
Modified titanium oxide particles, which are one or more oxides of elements other than M selected from the group of elements consisting of a, Sb, Mo, Fe, and Ni. SiO 2 · nM 2 / VO 2 (1) (However, M: Mg, Ca, Sr, Ba, Al, Ti, Z
r, Sb, or Mo, V: the valence of the element M, and n: 0.1 to 1. )
【請求項2】 前記シリカ系複合酸化物(A)の含有量
が1〜45重量%の範囲にあり、前記無機酸化物(B)
の含有量が0. 1〜10重量%の範囲にあることを特徴
とする請求項1記載の改質酸化チタン粒子。
2. The content of the silica-based composite oxide (A) is in the range of 1 to 45% by weight, and the inorganic oxide (B).
The modified titanium oxide particles according to claim 1, characterized in that the content thereof is in the range of 0.1 to 10% by weight.
【請求項3】 前記シリカ系複合酸化物(A)を構成す
る元素MがAlまたはZrのいずれかである請求項1記
載の改質酸化チタン粒子。
3. The modified titanium oxide particles according to claim 1, wherein the element M constituting the silica-based composite oxide (A) is either Al or Zr.
【請求項4】 前記無機酸化物(B)を構成する元素が
Mg、Ca、Sr、Baから選ばれる1種または2種以
上であることを特徴とする請求項1記載の改質酸化チタ
ン粒子。
4. The modified titanium oxide particles according to claim 1, wherein the element forming the inorganic oxide (B) is one kind or two or more kinds selected from Mg, Ca, Sr and Ba. .
【請求項5】 前記無機酸化物(B)を構成する元素が
Ba、La、Snから選ばれる1種または2種以上であ
ることを特徴とする請求項1記載の改質酸化チタン粒
子。
5. The modified titanium oxide particles according to claim 1, wherein the element constituting the inorganic oxide (B) is one or more selected from Ba, La and Sn.
【請求項6】 前記被覆層が、シリカ系複合酸化物
(A)の層に無機酸化物(B)が分散した複合化被覆層
である請求項1記載の改質酸化チタン粒子。
6. The modified titanium oxide particles according to claim 1, wherein the coating layer is a composite coating layer in which an inorganic oxide (B) is dispersed in a layer of silica-based composite oxide (A).
【請求項7】 無機酸化物(B)を構成する金属元素の
カチオンがイオン交換によりシリカ系複合酸化物(A)
の層に分散してなる請求項6記載の改質酸化チタン粒
子。
7. A silica-based composite oxide (A) in which a cation of a metal element constituting the inorganic oxide (B) is ion-exchanged.
The modified titanium oxide particles according to claim 6, wherein the modified titanium oxide particles are dispersed in the layer.
JP2001304959A 2001-10-01 2001-10-01 Modified titanium oxide particles Expired - Lifetime JP4111701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001304959A JP4111701B2 (en) 2001-10-01 2001-10-01 Modified titanium oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001304959A JP4111701B2 (en) 2001-10-01 2001-10-01 Modified titanium oxide particles

Publications (2)

Publication Number Publication Date
JP2003112923A true JP2003112923A (en) 2003-04-18
JP4111701B2 JP4111701B2 (en) 2008-07-02

Family

ID=19124815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304959A Expired - Lifetime JP4111701B2 (en) 2001-10-01 2001-10-01 Modified titanium oxide particles

Country Status (1)

Country Link
JP (1) JP4111701B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078657A1 (en) * 2006-12-22 2008-07-03 Asahi Glass Company, Limited Composite particle and uses thereof
JP2011522910A (en) * 2008-05-07 2011-08-04 テイオキサイド・ユーロプ・リミテツド titanium dioxide
WO2011102214A1 (en) * 2010-02-22 2011-08-25 堺化学工業株式会社 Composite particles and process for production thereof
JP2014139993A (en) * 2013-01-21 2014-07-31 Toyo Ink Sc Holdings Co Ltd Resin composition for solar cell sealing material
WO2015072499A1 (en) * 2013-11-13 2015-05-21 住友大阪セメント株式会社 Silicon-oxide-coated zinc oxide and method for manufacturing same, silicon-oxide-coated zinc-oxide-containing composition, and cosmetic
CN107001063A (en) * 2014-11-13 2017-08-01 住友大阪水泥股份有限公司 Silica coating zinc oxide and its manufacture method, the composition and cosmetic of the coating zinc oxide containing silica
CN107250046A (en) * 2015-02-27 2017-10-13 住友大阪水泥股份有限公司 The composition and cosmetic preparation of silica coating zinc oxide, the coating zinc oxide containing silica
JP2018076215A (en) * 2016-11-11 2018-05-17 ナノジークスジャパン株式会社 Ultraviolet shielding material, method for producing ultraviolet shielding material, method for producing fined titanium oxide nano-tube, and method for producing fined titanium oxide nano-tube coated with silicon dioxide, or silicon oxide and barium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108033486B (en) * 2017-12-15 2019-11-05 河北麦森钛白粉有限公司 A kind of preparation method of conductive mesoporous nano titanium dioxide

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167357A (en) * 1981-04-08 1982-10-15 Ishihara Sangyo Kaisha Ltd Production of titanium dioxide pigment
JPS61295234A (en) * 1985-06-11 1986-12-26 Sumitomo Chem Co Ltd Metal oxide-coated flakelike titanium oxide
JPH06192593A (en) * 1992-10-24 1994-07-12 Tioxide Group Services Ltd Method of coating inorganic particle
JPH07506081A (en) * 1992-04-28 1995-07-06 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Improved method for producing silica-coated inorganic particles
JPH07316457A (en) * 1994-05-27 1995-12-05 Mitsubishi Materials Corp Pigment for forming ultraviolet-screening protective film excellent in discoloration prevention effect
JPH0931335A (en) * 1995-07-20 1997-02-04 Goyo Paper Working Co Ltd Resin composition with deodorizing function
JPH11506155A (en) * 1996-02-15 1999-06-02 ロディア シミ Titanium dioxide particles
JPH11269303A (en) * 1998-03-19 1999-10-05 Sekisui Plastics Co Ltd Ultraviolet screening particle, slurry having ultraviolet screening property, production thereof, and cosmetic by using them
JP2000500515A (en) * 1995-11-13 2000-01-18 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー TiO 2 pigment coated with small inorganic particles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167357A (en) * 1981-04-08 1982-10-15 Ishihara Sangyo Kaisha Ltd Production of titanium dioxide pigment
JPS61295234A (en) * 1985-06-11 1986-12-26 Sumitomo Chem Co Ltd Metal oxide-coated flakelike titanium oxide
JPH07506081A (en) * 1992-04-28 1995-07-06 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Improved method for producing silica-coated inorganic particles
JPH06192593A (en) * 1992-10-24 1994-07-12 Tioxide Group Services Ltd Method of coating inorganic particle
JPH07316457A (en) * 1994-05-27 1995-12-05 Mitsubishi Materials Corp Pigment for forming ultraviolet-screening protective film excellent in discoloration prevention effect
JPH0931335A (en) * 1995-07-20 1997-02-04 Goyo Paper Working Co Ltd Resin composition with deodorizing function
JP2000500515A (en) * 1995-11-13 2000-01-18 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー TiO 2 pigment coated with small inorganic particles
JPH11506155A (en) * 1996-02-15 1999-06-02 ロディア シミ Titanium dioxide particles
JPH11269303A (en) * 1998-03-19 1999-10-05 Sekisui Plastics Co Ltd Ultraviolet screening particle, slurry having ultraviolet screening property, production thereof, and cosmetic by using them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小柳嗣雄: "チタニアゾルの酸化物表面改質とその化学的性能について", 触媒化成技報, vol. 12, no. 1, JPN6007004899, 20 March 1995 (1995-03-20), pages 48 - 57, ISSN: 0000917744 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168151B2 (en) * 2006-12-22 2013-03-21 旭硝子株式会社 Composite particles and their uses
JPWO2008078657A1 (en) * 2006-12-22 2010-04-22 旭硝子株式会社 Composite particles and their uses
US8003213B2 (en) 2006-12-22 2011-08-23 Asahi Glass Company, Limited Composite particles comprising coating of cerium oxide and silicon oxide, and application thereof
WO2008078657A1 (en) * 2006-12-22 2008-07-03 Asahi Glass Company, Limited Composite particle and uses thereof
JP2011522910A (en) * 2008-05-07 2011-08-04 テイオキサイド・ユーロプ・リミテツド titanium dioxide
JP5849944B2 (en) * 2010-02-22 2016-02-03 堺化学工業株式会社 Composite particles and method for producing the same
EP2540672B1 (en) 2010-02-22 2016-12-07 Sakai Chemical Industry Co., Ltd. Composite particles and process for production thereof
CN102770375A (en) * 2010-02-22 2012-11-07 堺化学工业株式会社 Composite particles and method for producing same
JPWO2011102214A1 (en) * 2010-02-22 2013-06-17 堺化学工業株式会社 Composite particles and method for producing the same
US20130028948A1 (en) * 2010-02-22 2013-01-31 Sakai Chemical Industry Co., Ltd. Composite particles and method for production thereof
WO2011102214A1 (en) * 2010-02-22 2011-08-25 堺化学工業株式会社 Composite particles and process for production thereof
US9193871B2 (en) 2010-02-22 2015-11-24 Sakai Chemical Industry Co., Ltd. Composite particles and method for production thereof
JP2014139993A (en) * 2013-01-21 2014-07-31 Toyo Ink Sc Holdings Co Ltd Resin composition for solar cell sealing material
CN105722789B (en) * 2013-11-13 2019-01-01 住友大阪水泥股份有限公司 The composition and cosmetic preparation of the zinc oxide of the zinc oxide and its manufacturing method and the cladding containing silica of silica cladding
CN105722789A (en) * 2013-11-13 2016-06-29 住友大阪水泥股份有限公司 Silicon-oxide-coated zinc oxide and method for manufacturing same, silicon-oxide-coated zinc-oxide-containing composition, and cosmetic
KR20160079083A (en) * 2013-11-13 2016-07-05 스미토모 오사카 세멘토 가부시키가이샤 Silicon-oxide-coated zinc oxide and method for manufacturing same, silicon-oxide-coated zinc-oxide-containing composition, and cosmetic
US20160287488A1 (en) * 2013-11-13 2016-10-06 Sumitomo Osaka Cement Co., Ltd. Zinc oxide which is coated with silicon oxide, method for manufacturing the same, composition which includes the zinc oxide coated with silicon oxide, and cosmetic
JPWO2015072499A1 (en) * 2013-11-13 2017-03-16 住友大阪セメント株式会社 Silicon oxide-coated zinc oxide, production method thereof, silicon oxide-coated zinc oxide-containing composition, and cosmetics
WO2015072499A1 (en) * 2013-11-13 2015-05-21 住友大阪セメント株式会社 Silicon-oxide-coated zinc oxide and method for manufacturing same, silicon-oxide-coated zinc-oxide-containing composition, and cosmetic
KR102176830B1 (en) * 2013-11-13 2020-11-10 스미토모 오사카 세멘토 가부시키가이샤 Silicon-oxide-coated zinc oxide and method for manufacturing same, silicon-oxide-coated zinc-oxide-containing composition, and cosmetic
US9855197B2 (en) 2013-11-13 2018-01-02 Sumitomo Osaka Cement Co., Ltd. Zinc oxide which is coated with silicon oxide, method for manufacturing the same, composition which includes the zinc oxide coated with silicon oxide, and cosmetic
US10363204B2 (en) 2013-11-13 2019-07-30 Sumitomo Osaka Cement Co., Ltd. Zinc oxide which is coated with silicon oxide, method for manufacturing the same, composition which includes the zinc oxide coated with silicon oxide, and cosmetic
CN107001063A (en) * 2014-11-13 2017-08-01 住友大阪水泥股份有限公司 Silica coating zinc oxide and its manufacture method, the composition and cosmetic of the coating zinc oxide containing silica
CN107001063B (en) * 2014-11-13 2020-03-10 住友大阪水泥股份有限公司 Silica-coated zinc oxide, method for producing same, composition containing silica-coated zinc oxide, and cosmetic material
CN107250046A (en) * 2015-02-27 2017-10-13 住友大阪水泥股份有限公司 The composition and cosmetic preparation of silica coating zinc oxide, the coating zinc oxide containing silica
JP2018076215A (en) * 2016-11-11 2018-05-17 ナノジークスジャパン株式会社 Ultraviolet shielding material, method for producing ultraviolet shielding material, method for producing fined titanium oxide nano-tube, and method for producing fined titanium oxide nano-tube coated with silicon dioxide, or silicon oxide and barium
JP7032622B2 (en) 2016-11-11 2022-03-09 ナノジークスジャパン株式会社 A method for producing an ultraviolet shielding material and an ultraviolet shielding material, a method for producing finely divided titanium oxide nanotubes, and a method for producing silicon dioxide or a finely divided titanium oxide nanotube coated with silicon dioxide and barium.

Also Published As

Publication number Publication date
JP4111701B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
JP4550753B2 (en) Method for producing surface-treated titanium oxide sol
JP4408702B2 (en) Superhydrophilic photocatalyst film forming liquid, structure provided with the film, and method for producing the same
TWI428282B (en) Metal oxide complex sol, coating composition and optical member
EP2138462B1 (en) Sol of surface-coated titanium oxide, process for producing the same, and coating composition containing the same
JP5441264B2 (en) Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate
JP5135231B2 (en) Titanium dioxide pigment particles with dense doped SiO2 coating and method for producing the same
JP2006512463A (en) Photocatalytically active water-based paint having self-cleaning action and method for producing the same
TWI221480B (en) Photocatalytic titanium oxide coating composition
JP2007532469A (en) Metal peroxide film
US6479141B1 (en) Photocatalytic coating composition and product having photocatalytic thin film
CN104909404A (en) Stable nano-titanium dioxide hydrosol and preparation method thereof
JP4312299B2 (en) Method for producing titanium oxide fine particles containing brookite-type crystals
JP2003112923A (en) Reformed titanium oxide particle
JP2005231935A (en) Tungsten oxide-containing titanium oxide sol, method of manufacturing the same, coating material and optical functional body
JP5337393B2 (en) Transparent titanium oxide organosol, coating composition containing the same, and optical substrate
JPH10114870A (en) Titanium oxide ceramic coating material excellent in hydrophilicity, photocatalytic properties and transparency, and its production
JPH06650B2 (en) Titanium oxide / cerium oxide composite sol and transparent thin film formed from this sol
JP4139090B2 (en) Method for producing spherical particles with crystalline titanium oxide coating layer
JP6714530B2 (en) Photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP7023689B2 (en) Photocatalyst coating body and photocatalyst coating composition
JP4522082B2 (en) Photocatalyst liquid composition and photocatalyst formed using the same
JP2005105138A (en) Aqueous liquid for formation of photocatalyst film excellent in transparency and stability, method for producing the same and method for producing structure by using the same
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
JP6646603B2 (en) Multilayer coating, coating agent set, and painted body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4111701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250