[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003112355A - Method and apparatus for manufacturing multilayer film - Google Patents

Method and apparatus for manufacturing multilayer film

Info

Publication number
JP2003112355A
JP2003112355A JP2001308467A JP2001308467A JP2003112355A JP 2003112355 A JP2003112355 A JP 2003112355A JP 2001308467 A JP2001308467 A JP 2001308467A JP 2001308467 A JP2001308467 A JP 2001308467A JP 2003112355 A JP2003112355 A JP 2003112355A
Authority
JP
Japan
Prior art keywords
resin
layer
multilayer film
layers
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001308467A
Other languages
Japanese (ja)
Inventor
Yasusuke Nakanishi
庸介 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2001308467A priority Critical patent/JP2003112355A/en
Publication of JP2003112355A publication Critical patent/JP2003112355A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing a multilayer laminated film in which a light having an arbitrary wavelength band is selectively reflected or transmitted by alternatively laminating many layers each having a high refractive index and many layers each having a low refractive index and controlling the ratio of the maximum value to the minimum value of the thicknesses of the respective layers. SOLUTION: The method for manufacturing the multilayer laminated film comprises the steps of individually melting a resin A and a resin B by an extruder, branching the molten resins to multiple layers via pores in a multilayer feeding block, then guiding the branched resin A and resin B to a flat channel partitioned by a parallel plate so as to alternatively inflow the resins A and B in 11 layers or more further introducing the resins to a combining unit 12 in the block, then extruding the resins A and B in a sheet-like state in a direction to become the multilayers in the thickness direction from a die 13 continued to the unit 12, cooling to solidify the resin at a casting drum 15, and at least unidirectionally stretching the unstretched film 16 in longitudinal and lateral directions. The method further comprises the steps of controlling the temperature distribution of the block, and thereby regulating the thicknesses of the layers A and B of the multilayer film in the range of 0.01 to 0.5 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は多層フィルムの製造
方法及び装置に関する。更に詳しくは、11層以上積層
された多層フィルムの厚み分布を効率良く制御できる多
層フィルムの製造方法及び装置に関し、特に屈折率の高
い層と低い層を交互に多数積層させた多層フィルムの各
層の厚みを制御することができ、任意の波長帯の光を選
択的に反射または透過させることができる多層フィルム
を効率良く生産できる多層フィルムの製造方法及び装置
に関する。
TECHNICAL FIELD The present invention relates to a method and an apparatus for producing a multilayer film. More specifically, the present invention relates to a method and an apparatus for producing a multi-layer film capable of efficiently controlling the thickness distribution of a multi-layer film laminated with 11 or more layers, and particularly to a multi-layer film in which a high refractive index layer and a low refractive index layer are alternately laminated. The present invention relates to a method and an apparatus for producing a multilayer film capable of controlling the thickness and efficiently producing a multilayer film capable of selectively reflecting or transmitting light in an arbitrary wavelength band.

【0002】[0002]

【従来の技術】多層フィルムは、例えば屈折率の高い層
と低い層を交互に多数積層すると、これら層間の構造的
な光干渉によって特定波長の光を選択的に反射または透
過する光学干渉フィルムとなる。このような積層フィル
ムは選択的に反射または透過する光の波長領域を可視光
領域とすることによって、反射型の偏光板や発色フィル
ム、金属光沢フィルム、反射ミラーフィルムへの用途が
広がりつつある。また、プラズマディスプレイ等の映像
表示パネル面に使用できる近赤外線反射フィルムでは、
周辺機器への誤作動防止のため、ある幅を持った波長領
域(820〜980nm)で近赤外線を吸収する必要が
ある。また、日射カット用の窓張り用フィルム等でも近
赤外領域をカットすることで日射を和らげられる。
2. Description of the Related Art A multi-layer film is an optical interference film that selectively reflects or transmits light of a specific wavelength due to structural optical interference between layers having a high refractive index and a low refractive index, for example. Become. By making the wavelength region of light that is selectively reflected or transmitted in the visible light region, such laminated films are increasingly used as reflective polarizing plates, color-developing films, metallic luster films, and reflection mirror films. In addition, in the near-infrared reflective film that can be used for the image display panel surface of plasma display etc.,
In order to prevent malfunction of peripheral devices, it is necessary to absorb near infrared rays in a wavelength range having a certain width (820 to 980 nm). In addition, a window film for cutting solar radiation or the like can also reduce solar radiation by cutting the near infrared region.

【0003】このような積層フィルムに対しては各層の
厚みに変化を持たせるフィルムが特開2000−329
935号公報などに提案されている。しかし、各層に厚
み変化を持たせた積層フィルムを製造する場合、樹脂を
細孔で多層に分岐するタイプのフィードブロックでは、
厚みの変化量に応じて細孔の幅が徐々に異なる複雑な構
造の専用フィードブロックを用いなければならず、その
作成に技術的困難や多大な費用が伴うため問題がある。
For such a laminated film, a film in which the thickness of each layer is changed is disclosed in JP-A-2000-329.
It is proposed in Japanese Patent No. 935, etc. However, in the case of producing a laminated film in which each layer has a thickness change, in a feed block of a type in which a resin is branched into multiple layers with pores,
There is a problem because a dedicated feed block having a complicated structure in which the width of the pores gradually changes according to the amount of change in thickness must be used, and its production involves technical difficulties and great cost.

【0004】更に、各層の厚みの変化量を変更したい場
合や、各層の厚みを均一にしたい場合には、各々専用フ
ィードブロックを新たに作成する必要があるため、多大
な費用を要する問題がある。また、製膜上も多層フィル
ムの種類に応じてフィードブロックを交換する必要があ
り、手間がかかることや製膜の効率が悪くなる等の問題
が生じる。
Further, when it is desired to change the amount of change in the thickness of each layer or to make the thickness of each layer uniform, it is necessary to newly create a dedicated feed block for each layer, which causes a problem of enormous cost. . In addition, it is necessary to replace the feed block according to the type of the multilayer film on the film formation, which causes problems such as time-consuming work and poor film formation efficiency.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上述
の問題を解消し、多層フィルムの厚み分布を効率良く制
御でき、特に屈折率の高い層と低い層を交互に多数積層
させた多層フィルムを効率良く生産できる多層フィルム
の製造方法および装置を提供することにある。
The object of the present invention is to solve the above-mentioned problems and to control the thickness distribution of a multilayer film efficiently, and in particular, a multilayer in which a large number of layers having a high refractive index and a plurality of layers having a low refractive index are alternately laminated. It is an object of the present invention to provide a method and an apparatus for producing a multilayer film, which can efficiently produce the film.

【0006】[0006]

【課題を解決するための手段】本発明の課題は、本発明
によれば、(1)樹脂AからなるA層と樹脂Bからなる
B層とが交互に11層以上積層された多層フィルムの製
造方法において、樹脂Aと樹脂Bを別個に押出機で溶融
し、それぞれの溶融樹脂を多層フィードブロック内の細
孔により多層に分岐した後、分岐した樹脂Aと樹脂Bが
交互に11層以上流入するよう平行板で仕切られた扁平
な流路に導き、更に多層フィードブロック内の合流部に
導いた後、これに続くダイより樹脂Aと樹脂Bが厚み方
向に多層となる向でシート状に押出し、キャスティング
ドラムで冷却固化して未延伸フィルムとし、この未延伸
フィルムを縦方向及び横方向の少なくとも一方向に延伸
する多層フィルムの製造方法であって、該多層フィード
ブロックの温度分布を制御することにより多層フィルム
のA層及びB層の厚みを0.01〜0.5μmの範囲に
調整することを特徴とする多層フィルムの製造方法によ
り達成できる。
The object of the present invention is, according to the present invention, to provide a multilayer film in which (1) an A layer made of a resin A and a B layer made of a resin B are alternately laminated in 11 or more layers. In the manufacturing method, the resin A and the resin B are separately melted by an extruder, and each molten resin is branched into multiple layers by the pores in the multilayer feed block, and then the branched resin A and the resin B are alternately laminated in 11 layers or more. After being led to a flat flow path partitioned by parallel plates so as to flow in, and further led to the confluence in the multi-layer feed block, a sheet-like shape in which resin A and resin B are multilayered in the thickness direction from the die that follows To a non-stretched film by cooling and solidifying with a casting drum, and stretching the unstretched film in at least one of the machine direction and the transverse direction. It can be achieved by the method for producing a multilayer film characterized by adjusting the thickness of the A layer and B layer of the multilayer film in the range of 0.01~0.5μm by controlling.

【0007】また、本発明の更に好ましい態様として、
(2)多層フィードブロックに温度分布を持たせること
により多層フィルムのA層及びB層の最も厚い層の厚み
を最も薄い層の厚みで割った値が1.2以上となるよう
調整する(1)に記載の多層フィルムの製造方法、
(3)多層フィードブロックの温度差が10〜100℃
の範囲である(2)に記載の多層フィルムの製造方法、
(4)多層フィードブロックの温度差を10℃未満に制
御することにより多層フィルムのA層及びB層の最も厚
い層の厚みを最も薄い層の厚みで割った値が1.2未満
となるよう調整する(1)に記載の多層フィルムの製造
方法、(5)未延伸フィルムにおいて、樹脂Aの面内方
向屈折率と樹脂Bの面内方向屈折率の差が0.005以
上である(1)に記載の多層フィルムの製造方法、
(6)少なくとも1方向に延伸されたフィルムにおい
て、樹脂Aの面内方向屈折率と樹脂Bの面内方向屈折率
の差が0.005以上である(1)に記載の多層フィル
ムの製造方法、(7)樹脂Aがポリエチレン−2,6−
ナフタレートを主成分とする(1)に記載の多層フィル
ムの製造方法、(8)樹脂Bがポリエチレン−2,6−
ナフタレートとポリエチレンテレフタレートの混合物を
主成分とする(7)に記載の多層フィルムの製造方法、
(9)樹脂Bが融点210〜245℃のポリエチレンテ
レフタレート共重合体を主成分とする(7)に記載の多
層フィルムの製造方法、(10)ポリエチレンテレフタ
レート共重合体の共重合成分がエチレンイソフタレート
である(9)に記載の多層フィルムの製造方法を挙げる
ことができる。
As a further preferred embodiment of the present invention,
(2) By adjusting the temperature distribution in the multilayer feed block, the thickness of the thickest layer of layers A and B of the multilayer film divided by the thickness of the thinnest layer is adjusted to be 1.2 or more (1 ) The method for producing a multilayer film according to
(3) Temperature difference of the multi-layer feed block is 10 to 100 ° C
The method for producing a multilayer film according to (2), which is in the range of
(4) By controlling the temperature difference of the multilayer feed block to be less than 10 ° C., the value obtained by dividing the thickness of the thickest layer of layers A and B of the multilayer film by the thickness of the thinnest layer is less than 1.2. In the method for producing a multilayer film according to (1) to be adjusted, (5) in the unstretched film, the difference between the in-plane direction refractive index of the resin A and the in-plane direction refractive index of the resin B is 0.005 or more (1 ) The method for producing a multilayer film according to
(6) In the film stretched in at least one direction, the difference between the in-plane refractive index of the resin A and the in-plane refractive index of the resin B is 0.005 or more, and the method for producing a multilayer film according to (1). , (7) Resin A is polyethylene-2,6-
The method for producing a multilayer film according to (1) containing naphthalate as a main component, (8) the resin B is polyethylene-2,6-
The method for producing a multilayer film according to (7), which contains a mixture of naphthalate and polyethylene terephthalate as a main component,
(9) The method for producing a multilayer film according to (7), wherein the resin B has a polyethylene terephthalate copolymer having a melting point of 210 to 245 ° C as a main component, and (10) the copolymerization component of the polyethylene terephthalate copolymer is ethylene isophthalate. The method for producing a multilayer film according to (9) can be mentioned.

【0008】また、本発明の課題は、(11)樹脂Aか
らなるA層と樹脂BからなるB層とが交互に11層以上
積層された多層フィルムの製造方法において、樹脂Aと
樹脂Bを別個に押出機で溶融し、それぞれの溶融樹脂を
多層フィードブロック内の細孔により多層に分岐した
後、分岐した樹脂Aと樹脂Bが交互に11層以上流入す
るよう平行板で仕切られた扁平な流路に導き、更に多層
フィードブロック内の合流部に導いた後、これに続くダ
イより樹脂Aと樹脂Bが厚み方向に多層となる向でシー
ト状に押出し、キャスティングドラムで冷却固化して未
延伸フィルムとし、この未延伸フィルムを縦方向及び横
方向の少なくとも一方向に延伸する多層フィルムの製造
方法であって、該多層フィードブロックの温度分布を制
御することにより多層フィルムのA層及びB層の厚みを
0.01〜0.5μmの範囲に調整することを特徴とす
る多層フィルムの製造方法に用いる、温度分布の制御手
段を設けた多層フィードブロックにより達成できる。
Another object of the present invention is to provide (11) a method for producing a multi-layer film in which 11 or more layers of resin A and B of resin B are alternately laminated. Separately melted by an extruder, branched each molten resin into multiple layers by the pores in the multi-layer feed block, and then flattened with parallel plates so that branched resin A and resin B alternately flow into 11 or more layers. To a confluent part in the multi-layer feed block and then extruded into a sheet form from the die following that in which the resin A and the resin B are multi-layered in the thickness direction, and cooled and solidified by a casting drum. An unstretched film, which is a method for producing a multilayer film in which the unstretched film is stretched in at least one of the longitudinal direction and the transverse direction. Using the thickness of the A layer and B layer of the film production method of the multilayer film and adjusting the range of 0.01 to 0.5 [mu] m, it can be achieved by a multilayer feed block having a control means of the temperature distribution.

【0009】[0009]

【発明の実施の形態】以下、図面を引用して本発明を説
明する。図1は、本発明の一つの実施形態を例示した多
層フィードブロックの平面図である。図2はA層用溶融
樹脂Aの多層フィードブロック内の流路断面を示す断面
側面図であり、図3はB層用溶融樹脂Bの多層フィード
ブロック内の流路断面を示す断面側面図である。図4は
多層フィードブロック内の溶融樹脂をダイから押出し、
キャスティングドラムで冷却して未延伸フィルムとする
際の各装置の配置を示す概要図である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings. FIG. 1 is a plan view of a multi-layer feed block illustrating one embodiment of the present invention. FIG. 2 is a sectional side view showing a flow passage cross section in the multilayer feed block of the molten resin A for A layer, and FIG. 3 is a sectional side view showing a flow passage cross section in the multilayer feed block of molten resin A for B layer. is there. Figure 4 shows the molten resin in a multi-layer feed block extruded from a die
It is a schematic diagram showing arrangement of each device at the time of cooling with a casting drum and making it an unstretched film.

【0010】図1〜3において、1、1aはそれぞれ上
側、下側抑えブロック、2、2aはそれぞれ上側、下側
分岐ブロック、3は合流ブロック、4a〜4dは上側ヒ
ーター、5a〜5dは下側ヒーター、6、6aはそれぞ
れ上側、下側マニホールド、7,7aはそれぞれ上側、
下側細孔、8は平行板で仕切られた扁平な流路、9は平
行板、aはA層を構成する溶融樹脂Aの流れ方向、bは
B層を構成する溶融樹脂Bの流れ方向である。
In FIGS. 1 to 3, 1 and 1a are upper and lower restraining blocks, 2 and 2a are upper and lower branch blocks, 3 is a merging block, 4a to 4d are upper heaters, and 5a to 5d are lower. Side heaters, 6 and 6a are on the upper side, lower manifolds, 7 and 7a are on the upper side,
Lower side pores, 8 is a flat flow path partitioned by parallel plates, 9 is a parallel plate, a is the flow direction of the molten resin A forming the A layer, and b is the flow direction of molten resin B forming the B layer. Is.

【0011】また、図4において、10は多層フィード
ブロックへの溶融樹脂Bの導管、11は多層フィードブ
ロックへの溶融樹脂Aの導管、12は多層フィードブロ
ック、13は押出ダイ、14はダイより押出されたシー
ト、15はキャスティングドラム、16は未延伸フィル
ムである。
In FIG. 4, 10 is a conduit for molten resin B to the multilayer feed block, 11 is a conduit for molten resin A to the multilayer feed block, 12 is a multilayer feed block, 13 is an extrusion die, and 14 is a die. An extruded sheet, 15 is a casting drum, and 16 is an unstretched film.

【0012】尚、図1〜図3のフィードブロックの各図
は、1つの実施形態を例示したものであり、細孔7と平
行板9、細孔7aと平行板9はそれぞれ垂直に合流して
いるが、樹脂の経路差による滞留時間を平均化するため
ある角度をもって斜めに合流させてもよく、また、樹脂
Aの流れ方向a、若しくは樹脂Bの流れ方向bのどちら
か一方をストレートの流路にすることも可能である。
Each of the feed block diagrams of FIGS. 1 to 3 illustrates one embodiment, and the pores 7 and the parallel plates 9 and the pores 7a and the parallel plates 9 are joined vertically. However, in order to average the residence time due to the path difference of the resin, they may be joined at an angle at an angle, and either the flow direction a of the resin A or the flow direction b of the resin B may be straightened. It is also possible to use a flow path.

【0013】フィードブロックに導入されたB層用の溶
融樹脂Bはマニホールド6内で一旦幅方向に広げられ、
一列に並んだ細孔7を通して平行板9で仕切られた扁平
な流路8へと至る。一方、A層用の溶融樹脂Aも同様に
マニホールド6a、細孔7aを通して平行板9で仕切ら
れた扁平な流路8へ至る。平行板9で仕切られた扁平な
流路8(平行板9の各部材間の間隙)ではすでに樹脂A
と樹脂Bとが交互に配置され、その後平行板で仕切られ
た扁平な流路8出口の合流ブロック3の空隙部で合流し
A層とB層の各溶融樹脂が流動状態で交互に積層され
る。
The molten resin B for layer B introduced into the feed block is once spread in the width direction in the manifold 6,
Through the pores 7 arranged in a line, the flat channels 8 partitioned by the parallel plates 9 are reached. On the other hand, the molten resin A for the layer A similarly reaches the flat flow path 8 partitioned by the parallel plate 9 through the manifold 6a and the pores 7a. In the flat flow path 8 (gap between each member of the parallel plate 9) partitioned by the parallel plate 9, the resin A has already been used.
And the resin B are alternately arranged, and thereafter, the molten resins of the layer A and the layer B are alternately laminated in a fluid state by merging in the void portion of the merging block 3 at the exit of the flat flow path 8 partitioned by the parallel plate. It

【0014】細孔7と7aの幅は、狭すぎると幅寸法に
対して各層流量が敏感に反応するため高精度の加工を要
求され、逆に広すぎると細孔で圧が立たないため各層流
量がばらつきやすいので、0.2〜2mmが好ましく、
0.5〜1mmがより好ましい。また各細孔は実質上同
寸法で製作しておくと、例えばフィードブロックの幅方
向に温度差が10℃未満となるよう(等温状態)に温度
制御すれば、各層の厚みが均一な多層積層フィルムを製
膜でき、或いは各層の厚みに変化をつける時には後述の
温度制御で対応することができる。細孔の長さは、ワイ
ヤーによる放電加工の関係から長すぎると加工できなた
め、5〜20mmが好ましく、7〜12mmがより好ま
しい。
If the widths of the pores 7 and 7a are too narrow, the flow rate of each layer is sensitive to the width dimension, so that highly precise processing is required. Since the flow rate tends to vary, 0.2-2 mm is preferable,
0.5-1 mm is more preferable. If the pores are made to have substantially the same size, for example, if the temperature is controlled so that the temperature difference in the width direction of the feed block is less than 10 ° C. (isothermal state), the multilayer lamination in which the thickness of each layer is uniform is achieved. A film can be formed, or when the thickness of each layer is changed, it can be dealt with by the temperature control described later. The length of the pores is preferably 5 to 20 mm, more preferably 7 to 12 mm, because it cannot be processed if it is too long in view of electric discharge machining with a wire.

【0015】平行板9の肉厚は、薄すぎるとメンテナン
スで破損しやすく、運転中も樹脂の内圧で曲がってしま
い、厚すぎると層数を増やした場合、フィードブロック
の幅が広くなり大型化してしまうので、0.3〜4mm
が好ましく、0.5〜2mmがより好ましい。平行板9
の長さも、破損し難く、適度に圧損を稼ぐ観点から5〜
40mmが好ましく、10〜20mmがより好ましい。
平行板9の配置ピッチは細孔7、7aの幅寸法と合わせ
ておくことが好ましく、段差無く組み込むことにより樹
脂の滞留劣化がなく良好なフィルムを製膜できる。
If the wall thickness of the parallel plate 9 is too thin, it will be easily damaged by maintenance, and it will bend due to the internal pressure of the resin during operation. If it is too thick, the width of the feed block will become wider and the size will increase if the number of layers is increased. 0.3 to 4 mm
Is preferable, and 0.5-2 mm is more preferable. Parallel plate 9
Also, the length of 5 is hard to break, and from the viewpoint of earning an appropriate pressure loss,
40 mm is preferable and 10-20 mm is more preferable.
The arrangement pitch of the parallel plates 9 is preferably matched with the width dimension of the pores 7 and 7a. By incorporating the parallel plates 9 without steps, it is possible to form a good film without resin retention deterioration.

【0016】以上で判るとおり、フィードブロックを構
成する1、1a(上側、下側抑えブロック)、2、2a
(上側、下側分岐ブロック)、3(合流ブロック)、9
(平行板)の各ブロックは、高精度の加工が必要であ
り、しかし強度的に弱い構造となっており、材質として
は硬めのSUS630やSUS420(J2)が好適で
ある。また各ブロックの樹脂の流動面は0.6S以上の
仕上げをしておくと、筋欠陥等がない多層積層フィルム
を製膜できる。
As can be seen from the above, the feed blocks 1, 1a (upper and lower restraining blocks), 2, 2a
(Upper and lower branch blocks), 3 (merging block), 9
Each block of (parallel plate) requires high-precision processing, but has a weak strength structure, and a suitable material is hard SUS630 or SUS420 (J2). If the resin flow surface of each block is finished to 0.6 S or more, a multilayer laminated film having no line defects can be formed.

【0017】本発明で各層の厚みに変化をつけるには、
ヒーター4a〜4dを独立に温度制御し、フィードブロ
ックの幅方向に温度差を付与する。これにより細孔7、
7aと平行板9も個々に幅方向に温度分布を持つことに
なり、これらと接して流れるA層とB層の各層溶融樹脂
は、主に金属との接触面において溶融粘度が変化し、圧
損が変化し、この結果として流量が変化し、各層厚みを
制御できる。ヒーター5a〜5dをヒーター4a〜4d
と対応させ温度制御した場合は、A層とB層の各層厚み
をほぼ同程度の比率で厚み変化させることができるが、
例えばA層側の厚み変化を極端に付与したい場合もしく
は均一にしたい場合は、ヒーター5a〜5dをヒーター
4a〜4dとは別に独立に制御させても良い。
In the present invention, in order to change the thickness of each layer,
The temperature of the heaters 4a to 4d is controlled independently to give a temperature difference in the width direction of the feed block. This results in pores 7,
7a and the parallel plate 9 also individually have a temperature distribution in the width direction, and the molten resin of each of the layers A and B flowing in contact with them has a melt viscosity that changes mainly at the contact surface with the metal, resulting in pressure loss. Changes, and as a result, the flow rate changes, and the thickness of each layer can be controlled. Heaters 5a-5d are replaced by heaters 4a-4d
When the temperature control is performed in correspondence with the above, the thickness of each of the A layer and the B layer can be changed at substantially the same ratio.
For example, when it is desired to make the thickness change on the A layer side extremely or to make it uniform, the heaters 5a to 5d may be controlled independently of the heaters 4a to 4d.

【0018】本発明の多層フィルムの製造方法では、多
層フィードブロックに温度分布を制御することにより、
多層フィルム中のA層及びB層の最も厚い層の厚みを最
も薄い層の厚みで割った値(以下『厚み比率』というこ
とがある)が1.2以上となるよう調整することがで
き、また、厚み比率が1.2未満となるよう調整するこ
とができる。多層フィルムの厚み比率は、多層フィルム
が用いられる用途の目的に応じて選択することができ
る。
In the method for producing a multilayer film of the present invention, by controlling the temperature distribution in the multilayer feed block,
The value obtained by dividing the thickness of the thickest layer of the A layer and the B layer in the multilayer film by the thickness of the thinnest layer (hereinafter sometimes referred to as "thickness ratio") can be adjusted to 1.2 or more, Further, the thickness ratio can be adjusted to be less than 1.2. The thickness ratio of the multilayer film can be selected according to the purpose of use for which the multilayer film is used.

【0019】厚み比率が1.2以上の多層フィルムを得
る場合、ヒーターの温度制御範囲は、上抑えブロック1
の温度と下抑えブロック1aとの温度差を10〜100
℃に制御することが好ましい。この温度差の上限が10
0℃を超えるとフィードブロックが熱変形してしまうこ
とがある。このため温度差の上限は60℃であることが
より好ましい。また、ヒーターは片側に4枚の場合を図
1に例示したが、本発明の性格からこれ以上の個数を並
べてもより細かく各層厚み制御できるが、少なくとも2
個以上であれば目的を達成できる。加熱方式としては、
従来から知られ用いられる方式を用いることができ、ア
ルミ鋳込みヒーターやバンドヒーターなど接触式のヒー
ターや、IR赤外線ヒーターなど非接触のもの、或いは
蒸気熱媒による加熱方式が例示できる。また、これらの
加熱方式と併せて冷却を併用してもよく、ファンや温水
で局所冷却して温度制御しても良い。
When a multi-layer film having a thickness ratio of 1.2 or more is obtained, the temperature control range of the heater is kept at the upper limit.
The temperature difference between the temperature of the block and the lower holding block 1a is 10 to 100.
It is preferable to control the temperature to ° C. The upper limit of this temperature difference is 10
If it exceeds 0 ° C, the feed block may be thermally deformed. Therefore, the upper limit of the temperature difference is more preferably 60 ° C. In addition, although the case where the number of heaters is four on one side is illustrated in FIG. 1, it is possible to finely control the thickness of each layer by arranging more heaters than this in view of the characteristics of the present invention.
The purpose can be achieved if there are more than one piece. As a heating method,
A conventionally known and used method can be used, and a contact type heater such as an aluminum casting heater or a band heater, a non-contact type heater such as an IR infrared heater, or a heating method using a vapor heating medium can be exemplified. Further, cooling may be used in combination with these heating methods, or the temperature may be controlled by locally cooling with a fan or hot water.

【0020】本発明において、多層フィルムを日射カッ
ト用の近赤外カットフィルム、反射型の偏光板や発色フ
ィルム、金属光沢フィルム、反射ミラーフィルム等用途
に用いる場合は、厚み比率が1.2以上となるように多
層フィードブロックに温度分布を持たせることが好まし
い。この厚み比率は、従来の積層フィルムではできなか
ったより幅広い波長帯の光を選択的に反射する目的を達
成するため、1.5以上とすることが好ましく、1.8
以上にすることが更に好ましい。
In the present invention, when the multilayer film is used as a near-infrared cut film for solar radiation cutting, a reflection type polarizing plate or a coloring film, a metallic luster film, a reflection mirror film, etc., the thickness ratio is 1.2 or more. It is preferable that the multilayer feed block has a temperature distribution so that This thickness ratio is preferably 1.5 or more in order to achieve the purpose of selectively reflecting light in a wider wavelength band, which was not possible with the conventional laminated film, and is preferably 1.5 or more.
It is more preferable to set it as above.

【0021】A層またはB層の厚みのいずれかは、前述
の温度制御によって連続的に変化させるか、またはフィ
ードブロックにスリット加工や断熱材を挿入するなどし
て、温度制御の独立性を高めることで各層厚みをステッ
プ的に何段階かに分けて変化させても良く、この場合は
熱の相互干渉が少なくなり温度制御が安定しやすいメリ
ットがある。
Either the thickness of the A layer or the B layer is continuously changed by the temperature control described above, or slit processing or a heat insulating material is inserted into the feed block to increase the independence of the temperature control. Therefore, the thickness of each layer may be changed stepwise in several steps. In this case, there is an advantage that mutual interference of heat is reduced and temperature control is easily stabilized.

【0022】上記の目的に対しでは、多層フィルムの厚
み比率は1.2以上であることが好ましいが、多層フィ
ルム中のA層の最も厚い層の厚みをA層の最も薄い層の
厚みで割った値(以下『A層の厚み比率』ということが
ある)が1.2以上であることが更に好ましく、多層フ
ィルム中のB層の最も厚い層の厚みをB層の最も薄い層
の厚みで割った値(以下『B層の厚み比率』ということ
がある)も同時に1.2以上となることが、更に好まし
い。
For the above purpose, the thickness ratio of the multilayer film is preferably 1.2 or more, but the thickness of the thickest layer of A layer in the multilayer film is divided by the thickness of the thinnest layer of A layer. It is more preferable that the value (hereinafter sometimes referred to as "thickness ratio of A layer") is 1.2 or more, and the thickness of the thickest layer of the B layer in the multilayer film is the thickness of the thinnest layer of the B layer. It is more preferable that the divided value (hereinafter, also referred to as “B layer thickness ratio”) be 1.2 or more at the same time.

【0023】本発明におけるA層とB層の積層状態は、
A層とB層を交互に総数で11層以上、好ましくは31
層以上積層したものである。積層数が11層未満だと多
重干渉による選択反射が小さく十分な反射率が得られな
い。尚、積層数の上限は生産性の観点から301層であ
ることが好ましい。多層積層フィルムの層数に応じて個
々に専用フィードブロックを用意しても良いが、本発明
のマニホールドと細孔によって多層に分岐する装置であ
れば、必要層数に応じて細孔の樹脂入り口を塞ぐインナ
ーディッケルを挿入し層数をコントロールする方がコス
トの面で有利である。
The laminated state of the A layer and the B layer in the present invention is as follows.
Alternating layers A and B alternately for a total of 11 layers or more, preferably 31 layers
It is a laminate of more than one layer. If the number of layers is less than 11, the selective reflection due to multiple interference is small and a sufficient reflectance cannot be obtained. The upper limit of the number of layers is preferably 301 from the viewpoint of productivity. Dedicated feed blocks may be prepared individually according to the number of layers of the multilayer laminated film, but in the case of the device of the present invention and a device for branching into multiple layers by the pores, the resin inlet of the pores may be selected according to the required number of layers. It is more advantageous in terms of cost to insert an inner deckle to block the number of layers to control the number of layers.

【0024】また,A層およびB層はそれぞれ1層の厚
みは0.01〜0.5μmであることが層間の光干渉に
よって選択的に光を反射するのに必要である。
Further, each of the A layer and the B layer must have a thickness of 0.01 to 0.5 μm in order to selectively reflect light by optical interference between the layers.

【0025】尚、厚み比率が1.2未満の多層フィルム
を得る場合、即ち各層の厚みが均一な多層フィルムを得
る場合には、ヒーター4a〜4dとヒーター5a〜5d
を制御し、フィードブロックの幅方向に温度差が10℃
未満となるようにする。これにより細孔7、7aと平行
板9の幅方向に温度が均一になり、これらと接して流れ
るA層とB層の各層溶融樹脂は、各々溶融粘度が均一に
なるので各層の厚みが均一な多層フィルムを得ることが
できる。
When a multilayer film having a thickness ratio of less than 1.2 is obtained, that is, when a multilayer film in which the thickness of each layer is uniform, heaters 4a to 4d and heaters 5a to 5d are used.
Control the temperature difference in the width direction of the feed block by 10 ° C.
Be less than. As a result, the temperature becomes uniform in the width direction of the pores 7 and 7a and the parallel plate 9, and the molten resin of each of the layers A and B flowing in contact with them has a uniform melt viscosity, so that the thickness of each layer is uniform. It is possible to obtain various multilayer films.

【0026】本発明における多層積層フィルムは、例え
ば、ポリエチレン−2,6−ナフタレートを主とするA
層を形成するポリマーとB層を形成するポリマーを図に
例示したフィードブロックで2層を交互に積層し、積層
状態を維持したままこれに続くダイに展開される。ダイ
より押出されたシートはキャスティングドラムで冷却固
化され未延伸フィルムとなる。未延伸フィルムは所定の
温度で、縦かつまたは横方向に延伸され所定の温度で熱
処理され、必要によっては熱弛緩処理され、巻き取られ
る。
The multilayer laminated film in the present invention is, for example, A containing polyethylene-2,6-naphthalate as a main component.
The layer-forming polymer and the layer-B forming polymer are alternately laminated in two layers by the feed block illustrated in the figure, and are spread on the die that follows while maintaining the laminated state. The sheet extruded from the die is cooled and solidified by a casting drum to be an unstretched film. The unstretched film is stretched in a longitudinal and / or transverse direction at a predetermined temperature, heat-treated at a predetermined temperature, optionally heat-relaxed, and wound.

【0027】ところで、本発明の多層積層フィルムは少
なくとも1方向に延伸され、好ましくは2軸延伸されて
いるが、本発明ではA層側に高屈折率のポリマーを選定
しているため、延伸温度はA層の樹脂のガラス転移点
(Tg)から(Tg+50)℃の範囲で行うことが好ま
しい。延伸倍率としては1軸延伸の場合、2〜10倍で
延伸方向は縦であっても横でも構わない。2軸延伸の場
合は面積倍率として5〜25倍である。延伸倍率が大き
いほど、A層およびB層の個々の層における面方向のば
らつきが、延伸による薄膜化により絶対的に小さくな
り、多層積層フィルムの光干渉が面方向に均一になるの
で好ましい。延伸方法としては、逐次2軸延伸、同時2
軸延伸、チューブラー延伸、インフレーション延伸等の
公知の延伸方法が可能であるが、好ましくは逐次2軸延
伸が生産性、品質の面で有利である。
By the way, the multilayer laminated film of the present invention is stretched in at least one direction, preferably biaxially stretched. However, in the present invention, a polymer having a high refractive index is selected for the A layer side, and therefore the stretching temperature is Is preferably carried out within the range of (Tg + 50) ° C. from the glass transition point (Tg) of the resin of layer A. In the case of uniaxial stretching, the stretching ratio is 2 to 10 times, and the stretching direction may be vertical or horizontal. In the case of biaxial stretching, the area magnification is 5 to 25 times. The larger the draw ratio, the more preferable that the variation in the surface direction of each of the A layer and the B layer becomes absolutely small due to the thinning due to the drawing, and the optical interference of the multilayer laminated film becomes uniform in the surface direction. As the stretching method, sequential biaxial stretching and simultaneous 2
Known stretching methods such as axial stretching, tubular stretching and inflation stretching are possible, but sequential biaxial stretching is preferable in terms of productivity and quality.

【0028】また、延伸されたフィルムは熱的な安定化
のために、熱処理により安定化されるのが好ましい。熱
処理の温度としては、(B層の融点−30)℃より高く
(A層の融点−30)℃より低いのが好ましい。
Further, the stretched film is preferably stabilized by heat treatment for thermal stabilization. The heat treatment temperature is preferably higher than (melting point of layer B −30) ° C. and lower than (melting point of layer A −30) ° C.

【0029】更にまた本発明の多層積層ポリエステルフ
ィルムはB層が両端層のどちらか一方にあるとA層を形
成するポリマーのガラス転移点がB層を形成するポリマ
ーのそれよりも通常高いので、延伸のためロール等で加
熱する際にA層を延伸するのに必要な延伸温度に上げる
ことができなかったり、熱固定する際に表面のB層が融
解するのを防ぐために温度が上げられず熱的な安定性が
不十分となるなどの問題が発生する場合がある。これに
対して、A層が両端層にあると熱的に不安定なB層が内
層に位置するため十分な延伸温度や熱固定温度で生産で
きるので、本発明の多層積層フィルムはA層が両端層に
位置するものが好ましい。尚、本発明で言う両端層とは
多層積層フィルムの面方向に垂直な方向の最外層であ
る。
Furthermore, in the multilayer laminated polyester film of the present invention, the glass transition point of the polymer forming the A layer is usually higher than that of the polymer forming the B layer when the B layer is present on either one of the both end layers. When heating with a roll or the like for stretching, the temperature cannot be raised to the stretching temperature necessary for stretching the layer A, or the temperature cannot be raised to prevent the surface layer B from melting during heat setting. Problems such as insufficient thermal stability may occur. On the other hand, when the A layer is in both end layers, the thermally unstable B layer is located in the inner layer, so that it can be produced at a sufficient stretching temperature or heat setting temperature. Those located in both end layers are preferable. The both end layers referred to in the present invention are the outermost layers in the direction perpendicular to the surface direction of the multilayer laminated film.

【0030】また本発明の多層積層フィルムの製造過
程、または製造後にフィルムの表面に機能性を持たせる
等の目的で、塗液を塗布し乾燥する工程を設けても良
い。
In addition, a step of applying a coating liquid and drying may be provided for the purpose of, for example, the step of producing the multilayer laminated film of the present invention, or the purpose of imparting functionality to the surface of the film after the production.

【0031】本発明においてA層を構成する樹脂Aと
は、延伸可能なポリマーを主成分とする熱可塑性樹脂で
あり、例えばポリエチレンテレフタレート、ポリエチレ
ン−2,6−ナフタレート、ポリブチレンテレフタレー
トのような芳香族ポリエステル、ポリエチレン、ポリプ
ロピレンのようなポリオレフィン、ポリスチレンのよう
なポリビニル、ナイロン6(ポリカプロラクタム)、ナ
イロン66(ポリ(ヘキサメチレンジアミン−co−ア
ジピン酸))のようなポリアミド、ビスフェノールAポ
リカーボネートのような芳香族ポリカーボネート、ポリ
スルフォン等の単独重合体或いはこれらの共重合体を主
成分とする樹脂を挙げることができる。
In the present invention, the resin A constituting the layer A is a thermoplastic resin containing a stretchable polymer as a main component, for example, a fragrance such as polyethylene terephthalate, polyethylene-2,6-naphthalate or polybutylene terephthalate. Group polyesters, polyolefins such as polyethylene, polypropylene, polyvinyls such as polystyrene, polyamides such as nylon 6 (polycaprolactam), nylon 66 (poly (hexamethylenediamine-co-adipic acid)), such as bisphenol A polycarbonate A homopolymer such as aromatic polycarbonate or polysulfone or a resin containing a copolymer thereof as a main component can be used.

【0032】上記熱可塑性樹脂の中では、延伸による分
子配向が可能な芳香族ポリエステル、ポリオレフィン、
ポリアミドが好ましく、分子が二軸配向した際に光学
的、機械的、熱的特性が優れたものになるポリエチレン
−2,6−ナフタレートが特に好ましい。
Among the above-mentioned thermoplastic resins, aromatic polyesters, polyolefins, which are capable of molecular orientation by stretching,
Polyamide is preferable, and polyethylene-2,6-naphthalate, which has excellent optical, mechanical and thermal properties when the molecules are biaxially oriented, is particularly preferable.

【0033】本発明においてA層を構成する樹脂Aにポ
リエチレン−2,6−ナフタレートを主体とする樹脂を
用いる場合、エチレン−2,6−ナフタレート単位を主
とする共重合ポリエチレン−2,6−ナフタレート、或
いはポリエチレン−2,6−ナフタレートを主とする組
成物使用することができる。ここで「主とする」とは共
重合体または組成物におけるエチレン−2,6−ナフタ
レート単位の割合が全成分に対して85モル%以上を占
めることを言う。共重合体を使用する場合、その共重合
成分は15モル%以下、更に2モル%以下であることが
好ましい。共重合成分は、ジカルボン酸成分であっても
グリコール成分であっても良く、ジカルボン酸成分とし
ては例えばイソフタル酸、フタル酸、ナフタレンジカル
ボン酸等の如き芳香族ジカルンボン酸;アジピン酸、ア
ゼライン酸、セバシン酸、デカンジカルボン酸等の如き
脂肪族ジカルボン酸;シクロヘキサンジカルボン酸の如
き脂環族ジカルボン酸等を挙げることができ、グリコー
ル成分としては例えばブタンジオール、ヘキサンジオー
ル等の如き脂肪族ジオール;シクロヘキサンジメタノー
ルの如き脂環族ジオール等を挙げることができる。
In the present invention, when a resin mainly composed of polyethylene-2,6-naphthalate is used as the resin A constituting the layer A, copolymerized polyethylene-2,6-containing ethylene-2,6-naphthalate units as main constituents. A composition mainly containing naphthalate or polyethylene-2,6-naphthalate can be used. The term "mainly" means that the proportion of ethylene-2,6-naphthalate units in the copolymer or composition accounts for 85 mol% or more based on all components. When a copolymer is used, its copolymerization component is preferably 15 mol% or less, more preferably 2 mol% or less. The copolymerization component may be a dicarboxylic acid component or a glycol component, and examples of the dicarboxylic acid component include aromatic dicarumbonic acid such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid; adipic acid, azelaic acid and sebacine. Acids, aliphatic dicarboxylic acids such as decanedicarboxylic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, and the like. Examples of glycol components include aliphatic diols such as butanediol and hexanediol; cyclohexanedimethanol Examples thereof include alicyclic diols and the like.

【0034】本発明における樹脂Bは、A層を構成する
熱可塑性樹脂と屈折率が異なる熱可塑性樹脂であり、例
えば樹脂Aよりも屈折率が0.005以上低い、より好
ましくは0.02以上低い熱可塑性樹脂低い樹脂を挙げ
ることができる。ここでいう屈折率とはシート状或いは
フィルム状の樹脂の面内方向屈折率である。
The resin B in the present invention is a thermoplastic resin having a refractive index different from that of the thermoplastic resin constituting the layer A, and has a refractive index lower than that of the resin A by 0.005 or more, more preferably 0.02 or more. Low thermoplastic resins Low resins can be mentioned. The term "refractive index" as used herein refers to the in-plane refractive index of a sheet-shaped or film-shaped resin.

【0035】本発明においてA層を構成する樹脂Aにポ
リエチレン−2、6−ナフタレートを用いる場合は、樹
脂Bはポリエチレン−2、6−ナフタレートよりも屈折
率が低い樹脂であることが好ましく、更に屈折率がポリ
エチレン−2、6−ナフタレートよりも0.005以上
低い樹脂であることが好ましく、特に屈折率が0.02
以上低い樹脂であることが好ましい。このような熱可塑
性樹脂としては、以下の(1)〜(3)の3種類を好ま
しく挙げることができる。
In the present invention, when polyethylene-2,6-naphthalate is used as the resin A constituting the layer A, the resin B is preferably a resin having a lower refractive index than that of polyethylene-2,6-naphthalate. It is preferable that the resin has a refractive index lower than that of polyethylene-2,6-naphthalate by 0.005 or more, and particularly a refractive index of 0.02.
It is preferable that the resin is low. As such a thermoplastic resin, the following three types (1) to (3) can be preferably mentioned.

【0036】(1)ポリエチレン−2、6−ナフタレー
トとポリエチレンテレフタレートとの混合物 (2)シンジオタクティックポリスチレン (3)融点が210℃〜245℃のポリエチレンテレフ
タレート共重合体。
(1) A mixture of polyethylene-2,6-naphthalate and polyethylene terephthalate (2) Syndiotactic polystyrene (3) A polyethylene terephthalate copolymer having a melting point of 210 ° C to 245 ° C.

【0037】これらの中でも、B層がポリエチレン−
2、6−ナフタレートとポリエチレンテレフタレートと
の混合物またはシンジオタクティックポリスチレンから
なるものが好ましく、特にB層の屈折率を容易に変更で
きることから、B層が上記混合物からなるものが好まし
く、以下に本発明におけるB層を構成するポリマーが、
(1)ポリエチレン−2、6−ナフタレートとポリエチ
レンテレフタレートとの混合物である場合について、詳
細に説明する。
Among these, the B layer is polyethylene-
A mixture of 2,6-naphthalate and polyethylene terephthalate or a mixture of syndiotactic polystyrene is preferable, and in particular, the mixture of the B layer is preferable because the refractive index of the B layer can be easily changed. The polymer constituting the B layer in
(1) The case of a mixture of polyethylene-2,6-naphthalate and polyethylene terephthalate will be described in detail.

【0038】本発明におけるB層を構成するポリマーが
ポリエチレン−2、6−ナフタレートとポリエチレンテ
レフタレートとの混合物である場合は、両者の混合の割
合は、重量比で5:95〜95:5、特に20:80〜
80:20の範囲であることが好ましい。該混合割合に
おいて、ポリエチレンテレフタレートの割合が5重量%
未満であるかポリエチレン−2、6−ナフタレートの割
合が95重量%を超えるとA層との屈折率の差が不十分
となり易く、他方、ポリエチレンテレフタレートの割合
が95重量%を超えるかポリエチレン−2、6−ナフタ
レートの割合が5重量%未満だと、A層との溶融粘度の
差が過度に大きくなり、多層の積層状態を維持するのが
極めて困難になる。
When the polymer constituting the layer B in the present invention is a mixture of polyethylene-2,6-naphthalate and polyethylene terephthalate, the mixing ratio of both is 5:95 to 95: 5 by weight, particularly 20: 80 ~
It is preferably in the range of 80:20. In the mixing ratio, the ratio of polyethylene terephthalate is 5% by weight.
When the proportion of polyethylene-2,6-naphthalate exceeds 95% by weight, the difference in refractive index from the layer A tends to be insufficient, while when the proportion of polyethylene terephthalate exceeds 95% by weight or polyethylene-2. When the proportion of 6-naphthalate is less than 5% by weight, the difference in melt viscosity between the layer A and the layer A becomes excessively large, and it becomes extremely difficult to maintain the multilayered state.

【0039】ところで、B層の屈折率は、ポリエチレン
テレフタレートとポリエチレン−2、6−ナフタレート
との混合割合を変更することで調整ができるので、反射
率の調整のために数々のポリマーを準備する必要はな
い。換言すれば、混合物中の混合割合を調整するだけで
容易に種々の反射率の多層積層延伸フィルムとすること
ができるという利点がある。また、B層のポリマーが共
重合の場合、低結晶性になるので、溶融状態のポリマー
を押出す際に特別な押出し機や乾燥機などの設備を必要
とする場合がある。しかしながら、本発明では混合物で
あることから結晶性の低下が小さく、前述のような特別
の設備を要しないという利点もある。
By the way, since the refractive index of the B layer can be adjusted by changing the mixing ratio of polyethylene terephthalate and polyethylene-2,6-naphthalate, it is necessary to prepare various polymers for adjusting the reflectance. There is no. In other words, there is an advantage that a multilayer laminated stretched film having various reflectances can be easily obtained only by adjusting the mixing ratio in the mixture. In addition, when the polymer of the layer B is copolymerized, it becomes low in crystallinity, and therefore a special extruder or dryer may be required for extruding the molten polymer. However, in the present invention, since it is a mixture, there is an advantage that the decrease in crystallinity is small and the above-mentioned special equipment is not required.

【0040】B層を構成する混合物中のポリエチレンテ
レフタレートとポリエチレン−2、6−ナフタレートに
ついて、更に詳述する。
The polyethylene terephthalate and polyethylene-2,6-naphthalate in the mixture forming the layer B will be described in more detail.

【0041】混合物中のポリエチレン−2,6−ナフタ
レートは、ポリエチレン−2,6−ナフタレートホモポ
リマー、または、全繰り返し単位の少なくとも80モル
%、好ましくは90モル%以上がエチレン−2,6−ナ
フタレートで占められたコポリマーである。これらの中
上記ホモポリマーが好ましい。上記コポリマーを構成す
る共重合成分としては、例えば、テレフタル酸、イソフ
タル酸、2,7−ナフタレンジカルボン酸のような他の
芳香族カルボン酸;アジピン酸、アゼライン酸、セバシ
ン酸、デカンジカルボン酸等の如き脂肪族ジカルボン
酸;シクロヘキサンジカルボン酸の如き脂環族ジカルボ
ン酸等の酸成分や、ブタンジオール、ヘキサンジオール
等の如き脂肪酸ジオール:シクロヘキサンジメタノール
の如き脂環族ジオール等のグリコール成分を挙げること
ができる。
The polyethylene-2,6-naphthalate in the mixture is polyethylene-2,6-naphthalate homopolymer, or at least 80 mol%, preferably 90 mol% or more of all repeating units are ethylene-2,6-. It is a copolymer occupied by naphthalate. Among these, the above homopolymers are preferable. Examples of the copolymerization component that constitutes the above copolymer include other aromatic carboxylic acids such as terephthalic acid, isophthalic acid, and 2,7-naphthalenedicarboxylic acid; adipic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, and the like. Such as aliphatic dicarboxylic acids; acid components such as alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; fatty acid diols such as butanediol and hexanediol; glycol components such as alicyclic diols such as cyclohexanedimethanol. it can.

【0042】また、混合物中のポリエチレンテレフタレ
ートは、ポリエチレンテレフタレートホモポリマー、ま
たは、全繰り返し単位の少なくとも80モル%、好まし
くは90モル%以上がエチレンテレフタレートで占めら
れたコポリマーである。これらの中上記ホモポリマーが
好ましい。上記コポリマーを構成する共重合成分として
は、例えば、イソフタル酸、2,7−ナフタレンジカル
ボン酸のような他の芳香族カルボン酸;アジピン酸、ア
ゼライン酸、セバシン酸、デカンジカルボン酸等の如き
脂肪族ジカルボン酸;シクロヘキサンジカルボン酸の如
き脂肪族ジオール;シクロヘキサンジメタノールの如き
脂環族ジオール等のグリコール成分を挙げることができ
る。これらのコポリマーの中では、イソフタル酸のコポ
リマーが好ましい。
The polyethylene terephthalate in the mixture is a polyethylene terephthalate homopolymer or a copolymer in which at least 80 mol%, preferably 90 mol% or more of all repeating units are occupied by ethylene terephthalate. Among these, the above homopolymers are preferable. Examples of the copolymerization component constituting the above-mentioned copolymer include other aromatic carboxylic acids such as isophthalic acid and 2,7-naphthalenedicarboxylic acid; aliphatic compounds such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid. Dicarboxylic acids; aliphatic diols such as cyclohexanedicarboxylic acid; glycol components such as alicyclic diols such as cyclohexanedimethanol. Among these copolymers, the copolymer of isophthalic acid is preferred.

【0043】ところで、B層を構成する混合物の融点
は、元々のポリマーの融点よりは低くなるものの、それ
ぞれのポリマーに由来する2つのピークを形成する。こ
れらB層を構成する混合物の融点ピークの内、高い方の
ピーク温度は、220℃〜265℃、更に240〜26
0℃の範囲にあるものが好ましい。また、A層を構成す
るポリマーの融点とB層を構成する混合物の高い方の融
点ピークとの温度差は、少なくとも10℃更に少なくと
も20℃であることが好ましい。この融点差が少なくと
も10℃あると、熱処理による配向の差が拡大し易く、
屈折率の差がつけやすい。
By the way, the melting point of the mixture forming the B layer is lower than the melting point of the original polymer, but two peaks derived from each polymer are formed. Among the melting point peaks of the mixture forming these B layers, the higher peak temperature is 220 ° C to 265 ° C, and further 240 to 26 ° C.
Those in the range of 0 ° C. are preferable. Further, the temperature difference between the melting point of the polymer forming the A layer and the higher melting point peak of the mixture forming the B layer is preferably at least 10 ° C. and more preferably at least 20 ° C. If this difference in melting point is at least 10 ° C., the difference in orientation due to heat treatment tends to increase,
Easy to make a difference in refractive index.

【0044】本発明において、延伸されたフィルムは、
熱的な安定化のために、熱処理(熱固定処理)をするの
が好ましく、B層を構成するポリマーとして、ポリエチ
レン−2、6−ナフタレートとポリエチレンテレフタレ
ートとの混合物を用いた場合は、A層のポリマーの融点
(TmA)を基準としたとき、(TmA−60)℃〜
(TmA−10)℃の範囲の温度で熱処理するのが好ま
しい。
In the present invention, the stretched film is
For thermal stabilization, it is preferable to perform a heat treatment (heat setting treatment), and when a mixture of polyethylene-2,6-naphthalate and polyethylene terephthalate is used as the polymer constituting the layer B, the layer A is used. Based on the melting point (TmA) of the polymer of (TmA-60) ° C ~
It is preferable to perform heat treatment at a temperature in the range of (TmA-10) ° C.

【0045】本発明において、A層またはB層を構成す
るポリマーの少なくとも一方は、フィルムの巻き取り性
を向上させるため、平均粒径が好ましくは0.01〜2
μm、より好ましくは0.05〜1μm、最も好ましく
は0.1〜0.3μmの範囲にある不活性粒子を好まし
くは0.001〜0.5重量%、より好ましくは0.0
05〜0.2重量%の割合で含有する。不活性粒子の平
均粒径が0.01μm未満または含有量が0.001重
量%未満ではフィルムの巻き取り性向上が不十分になり
やすく、他方、不活性粒子の平均粒径が2μmを超える
または含有量が0.5重量%を越えると粒子による光学
特性の悪化が顕著になりやすく、フィルム全体の光線透
過率が減少する場合がある。尚,光線透過率は70%以
上が好ましく、これより低いと光学用途には性能不足と
なる。
In the present invention, at least one of the polymers constituting the layer A or the layer B has an average particle size of preferably 0.01 to 2 in order to improve the film winding property.
μm, more preferably 0.05 to 1 μm, most preferably 0.1 to 0.3 μm, preferably 0.001 to 0.5% by weight, more preferably 0.0 to 0.5% by weight of the inert particles.
It is contained at a rate of 05 to 0.2% by weight. If the average particle size of the inert particles is less than 0.01 μm or the content thereof is less than 0.001% by weight, the improvement of the film winding property tends to be insufficient, while the average particle size of the inert particles exceeds 2 μm, or If the content exceeds 0.5% by weight, the deterioration of the optical characteristics due to the particles is likely to be remarkable, and the light transmittance of the entire film may decrease. The light transmittance is preferably 70% or more, and if it is lower than this, the performance is insufficient for optical applications.

【0046】このような不活性粒子としては例えばシリ
カ、アルミナ、炭酸カルシウム、燐酸カルシウム、カオ
リン、タルクのような無機不活性粒子、シリコーン、架
橋ポリスチレン、スチレン−ジビニルベンゼン共重合体
のような有機不活性粒子をあげることができる。
Examples of such inert particles include inorganic inert particles such as silica, alumina, calcium carbonate, calcium phosphate, kaolin and talc, organic inert materials such as silicone, crosslinked polystyrene and styrene-divinylbenzene copolymer. Active particles can be mentioned.

【0047】[0047]

【実施例】以下、実施例によって本発明を更に説明す
る。尚、例中の物性は下記の方法で測定した。
EXAMPLES The present invention will be further described below with reference to examples. The physical properties in the examples were measured by the following methods.

【0048】(1)各層の厚み(最大厚み、および最小
厚み) サンプルを三角形に切り出し、包理カプセルに固定後、
エポキシ樹脂にて包理する。そして、包理されたサンプ
ルをミクロト−ム(ULTRACUT−S)で縦方向に
平行な断面を50nm厚みの薄膜切片にしたあと、透過
型電子顕微鏡を用いて、加速電子100kvにて観察・
投影し、写真から各層の厚みを測定し、A層およびB層
について、各層の最も厚みの厚い層を最大厚み、最も薄
い層の厚みを最小厚みとした。
(1) Thickness of Each Layer (Maximum Thickness and Minimum Thickness) A sample was cut into a triangle and fixed in an embedding capsule.
Embed with epoxy resin. Then, after embedding the sample into a thin film section with a thickness of 50 nm in a cross section parallel to the longitudinal direction with a microtome (ULTRACUT-S), it was observed with a transmission electron microscope at 100 kv of accelerated electrons.
The thickness of each layer was measured from the projected image and photographed. Regarding the layers A and B, the thickest layer of each layer was the maximum thickness, and the thinnest layer was the minimum thickness.

【0049】(2)反射率 島津製作所製分光光度計MPC−3100を用い、各波
長でのアルミ蒸着したミラーとの相対鏡面反射率を波長
350〜2100nmの範囲で測定する。その測定され
た反射率の中で最大のものを,最大反射率とする。
(2) Reflectance Using a spectrophotometer MPC-3100 manufactured by Shimadzu Corporation, the relative specular reflectance with respect to the aluminum-deposited mirror at each wavelength is measured in the wavelength range of 350 to 2100 nm. The maximum reflectance among the measured reflectance is the maximum reflectance.

【0050】(3)ピーク反値幅波長 最大反射率と同様の測定を行い、最大反射率の半値幅と
なる波長の短波長側と長波長側の値をそれぞれ短波長
側、長波長側ピーク半値幅波長とした。
(3) Peak inverse value width The same measurement as the wavelength maximum reflectance is carried out, and the values on the short wavelength side and the long wavelength side of the wavelength which is the half-value width of the maximum reflectance are respectively defined on the short wavelength side and the long wavelength side. The wavelength range was used.

【0051】(4)ヒーターの温度差 図2において、各ヒーター(4a〜4d、5a〜5d)
に対応する上側、下側抑えブロックに熱電対を挿入(図
示省略)し、各測定点の温度のうち最大値と最小値の差
を温度差とした。
(4) Temperature difference of heaters In FIG. 2, each heater (4a-4d, 5a-5d)
Thermocouples were inserted (not shown) into the upper and lower restraining blocks corresponding to, and the difference between the maximum value and the minimum value among the temperatures at each measurement point was taken as the temperature difference.

【0052】(5) 屈折率 ナトリウムD線(589nm)を光源とし、マウント液
にはヨウ化メチレンを用いて、偏光板を装着したアッベ
屈折計にて、25℃、65%RHの条件でサンプルの長
手方向の屈折率(nMD)と、サンプルの巾方向の屈折
率(nTD)を測定し、nMDとnTDの平均値を面内
方向屈折率(nAve)とした。ただし、本発明の延伸
フィルムでは樹脂Aと樹脂Bに該当する2本の線が見え
るので、高屈折率側をA樹脂、低屈折側をB樹脂の屈折
率とした。尚、サンプルの作成は以下のとおりとした。
(5) Sample with a refractive index of sodium D line (589 nm) as a light source, methylene iodide as a mount solution, and an Abbe refractometer equipped with a polarizing plate at 25 ° C. and 65% RH. The refractive index (nMD) in the longitudinal direction and the refractive index (nTD) in the width direction of the sample were measured, and the average value of nMD and nTD was defined as the in-plane refractive index (nAve). However, in the stretched film of the present invention, two lines corresponding to resin A and resin B are visible, so the high refractive index side is the A resin and the low refractive side is the B resin. The sample was prepared as follows.

【0053】(樹脂Aの未延伸フィルムの屈折率)各実
施例で用いたA層用押出機とB層用押出機の両方に樹脂
A供給して溶融し、溶融した樹脂Aを各実施例で用いた
多層フィードブロックに導入し、多層フィードブロック
内でポリマーを多層に分岐させた後、多層フィードブロ
ック内の合流部でA層同士を交互に積層させ、ダイヘと
導き、キャスティングドラム上にキャストしてA層同士
が積層された未延伸フィルムを作成した。このシートの
面内方向屈折率を測定して樹脂Aの未延伸フィルムの屈
折率とした。
(Refractive Index of Unstretched Film of Resin A) The resin A was supplied to both the A layer extruder and the B layer extruder used in each example and melted, and the molten resin A was used in each example. Introduced into the multi-layer feed block used in, the polymer is branched into multi-layers in the multi-layer feed block, and then layers A are alternately laminated at the confluence of the multi-layer feed block, and then guided to a die and cast on a casting drum. Then, an unstretched film in which layers A were laminated was prepared. The in-plane refractive index of this sheet was measured and used as the refractive index of the unstretched film of resin A.

【0054】(樹脂Bの未延伸フィルムの屈折率)各実
施例で用いたA層用押出機とB層用押出機の両方に樹脂
B供給した以外は、上記樹脂Aの屈折率測定と同様にし
て、樹脂Bの未延伸フィルムの屈折率を測定した。
(Refractive Index of Unstretched Film of Resin B) Same as the above measurement of the refractive index of Resin A, except that the resin B was supplied to both the extruder for layer A and the extruder for layer B used in each example. Then, the refractive index of the unstretched film of the resin B was measured.

【0055】(延伸フィルムの屈折率)各実施例で得ら
れた延伸フィルムの面内方向屈折率を測定した。
(Refractive Index of Stretched Film) The in-plane refractive index of the stretched film obtained in each Example was measured.

【0056】[実施例1]まず図1〜3に示す装置で、
A層の細孔7aとしては、個数が151個、幅が0.5
5mm、深さ7mm、B層の細孔7aとしては、個数が
150個、幅が0.55mm、深さ7mm、のSUS6
30製の多層フィードブロックにマニホールド6、6a
の両端に細孔を塞ぐアルミ製のインナーディッケルを挿
入し、A層を31層、B層を30層とした。
Example 1 First, in the apparatus shown in FIGS.
The number of pores 7a in the A layer is 151, and the width is 0.5.
SUS6 having a size of 5 mm, a depth of 7 mm, the number of pores 7a of the B layer is 150, the width is 0.55 mm, and the depth is 7 mm.
Multi-layer feed block made of 30 and manifolds 6, 6a
Inner deckles made of aluminum for closing the pores were inserted at both ends of the layer to form 31 layers of A layer and 30 layers of B layer.

【0057】また、樹脂Aには固有粘度(オルトクロロ
フェノール、35℃)0.62dl/gのポリエチレン
−2,6−ナフタレート(PEN)、樹脂bには固有粘
度(オルトクロロフェノール、35℃)0.63dl/
gのポリエチレンテレフタレート(PET)を準備し
た。そして、PENに真球状シリカ粒子(平均粒径:
0.12μm、長径と短径の比:1.02、粒径の平均
偏差:0.1)を0.11wt%添加したものをA層用
の樹脂とし、不活性粒子を含まないPENとPETを5
0:50の重量比で混合したものをB層用の樹脂として
調整した。
Further, the resin A has an intrinsic viscosity (orthochlorophenol, 35 ° C.) of 0.62 dl / g polyethylene-2,6-naphthalate (PEN), and the resin b has an intrinsic viscosity (orthochlorophenol, 35 ° C.). 0.63dl /
g polyethylene terephthalate (PET) was prepared. Then, the spherical silica particles (average particle size:
0.12 μm, ratio of major axis to minor axis: 1.02, average deviation of particle diameter: 0.1) 0.11 wt% was added as resin for layer A, and PEN and PET containing no inactive particles 5
The mixture for the weight ratio of 0:50 was prepared as the resin for layer B.

【0058】A層用の樹脂を160℃で3時間、B層用
の混合樹脂を160℃で3時間乾燥後、A層用押出機と
B層用押出機に夫々供給して溶融し、溶融した樹脂Aと
樹脂Bを多層フィードブロック内に導き、多層フィード
ブロック内でA層のポリマーを31層、B層のポリマー
を30層に分岐させた後、多層フィードブロック内の合
流部でA層とB層を交互に積層させ、その積層状態を維
持したままダイヘト導き、キャスティングドラム上にキ
ャストして各層の厚みが徐々に変化しながらA層とB層
が交互に積層された総数61層の積層未延伸フィルムを
作成した。
The resin for layer A was dried at 160 ° C. for 3 hours, and the mixed resin for layer B was dried at 160 ° C. for 3 hours, and then fed to the extruder for layer A and the extruder for layer B to melt and melt. The resulting resin A and resin B are introduced into the multi-layer feed block, the layer A polymer is branched into 31 layers and the layer B polymer is branched into 30 layers in the multi-layer feed block. And B layers are alternately laminated, and while maintaining the laminated state, they are guided to a die head and cast on a casting drum to gradually change the thickness of each layer, so that the A layer and the B layer are alternately laminated. A laminated unstretched film was prepared.

【0059】このとき、ヒーター4a〜4dは片側の4
aが285℃、4dが315℃で温度差が30℃になる
よう調整し、ヒーター5a〜5dもこれらと同様に調整
し、またA層とB層の押出し量が1:0.8になるよう
調整した。この未延伸積層シートを150℃の温度で縦
方向に3.5倍に延伸し、更に155℃の延伸温度で横
方向に5.5倍に延伸し、230℃で3秒間の熱固定処
理を行った。得られた多層フィルムの物性を表1に示
す。尚、別途測定した樹脂Aの屈折率は、未延伸フィル
ムでは1.647、延伸フィルムでは1.717であ
り、樹脂B(樹脂H)の屈折率は、未延伸フィルムでは
1.612、延伸フィルムでは1.651であった。
At this time, the heaters 4a to 4d are provided on one side of the heater 4a-4d.
a is 285 ° C., 4d is 315 ° C. and the temperature difference is 30 ° C., the heaters 5a to 5d are adjusted in the same manner, and the extrusion amount of the A layer and the B layer is 1: 0.8. Was adjusted. This unstretched laminated sheet was stretched 3.5 times in the longitudinal direction at a temperature of 150 ° C., further stretched 5.5 times in the transverse direction at a stretching temperature of 155 ° C., and heat set at 230 ° C. for 3 seconds. went. Table 1 shows the physical properties of the obtained multilayer film. Incidentally, the refractive index of the resin A, which was separately measured, was 1.647 for the unstretched film and 1.717 for the stretched film, and the refractive index of the resin B (resin H) was 1.612 for the unstretched film, and the stretched film. Was 1.651.

【0060】[実施例2〜6]ヒーター温度、層数、樹
脂の組み合わせを表1に示すとおり変更した以外は実施
例と同様に多層フィルムを得た。得られたフィルムの物
性測定結果を表1に示す。
[Examples 2 to 6] Multilayer films were obtained in the same manner as in Examples except that the combination of the heater temperature, the number of layers and the resin was changed as shown in Table 1. Table 1 shows the results of measuring the physical properties of the obtained film.

【0061】[0061]

【表1】 [Table 1]

【0062】尚、表1に示すB層の樹脂は以下の通りで
ある。 樹脂H:不活性粒子を含まないPENとPETを50:
50の重量比で混合したもの。
The resins for layer B shown in Table 1 are as follows. Resin H: PEN and PET containing no inert particles 50:
Mixed in a weight ratio of 50.

【0063】樹脂I:不活性粒子を含まないイソフタル
酸を12mol%共重合したPET共重合体。この樹脂
の屈折率は、未延伸フィルムでは1.590、延伸フィ
ルムでは1.630であった。
Resin I: PET copolymer obtained by copolymerizing 12 mol% of isophthalic acid containing no inert particles. The refractive index of this resin was 1.590 for the unstretched film and 1.630 for the stretched film.

【0064】[0064]

【発明の効果】本発明によれば、多層フィードブロック
を温度制御することで、多層積層延伸フィルムの各層の
厚みを容易に振ることができ、広い波長に渡って選択的
に光を反射する積層フィルムを提供できる。
According to the present invention, by controlling the temperature of the multi-layer feed block, the thickness of each layer of the multi-layer laminated stretched film can be easily varied, and the multi-layer laminated stretched film selectively reflects light over a wide wavelength range. Can provide film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一つの実施形態を示す多層フィードブ
ロックの平面図である。
FIG. 1 is a plan view of a multi-layer feed block showing one embodiment of the present invention.

【図2】本発明の一つの実施形態を示す、A層の流路断
面を示す断面側面図である。
FIG. 2 is a sectional side view showing a channel cross section of an A layer, showing one embodiment of the present invention.

【図3】本発明の一つの実施形態を示す、B層の流路断
面を示す断面側面図である。
FIG. 3 is a sectional side view showing a channel cross section of a B layer, showing one embodiment of the present invention.

【図4】本発明の一つの実施形態において、多層フィー
ドブロック、押出ダイ、冷却ドラム等の配置を示す斜視
図である。
FIG. 4 is a perspective view showing an arrangement of a multi-layer feed block, an extrusion die, a cooling drum, etc. in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、1a:上側、下側抑えブロック 2、2a:上側、下側分岐ブロック 3:合流ブロック 4a〜4d:上側ヒータ− 5a〜5d:下側ヒーター 6、6a:上側、下側マニホールド 7,7a:上側、下側細孔 8:平行板で仕切られた扁平な流路 9:平行板 10:多層フィードブロックへの溶融樹脂Bの導管 11:多層フィードブロックへの溶融樹脂Aの導管 12:多層フィードブロック 13:押出ダイ 14:ダイより押出されたシート 15:キャスティングドラム 16:未延伸フィルム a:A層を構成する溶融樹脂Aの流れ方向 b:B層を構成する溶融樹脂Bの流れ方向 1, 1a: Upper and lower restraining blocks 2, 2a: upper and lower branch blocks 3: Confluence block 4a-4d: Upper heater- 5a-5d: Lower heater 6, 6a: upper and lower manifolds 7, 7a: upper and lower pores 8: Flat flow path partitioned by parallel plates 9: Parallel plate 10: Conduit of molten resin B to multi-layer feed block 11: Conduit of molten resin A to multi-layer feed block 12: Multi-layer feed block 13: Extrusion die 14: Sheet extruded from die 15: Casting drum 16: Unstretched film a: Flow direction of the molten resin A forming the A layer b: Flow direction of the molten resin B forming the B layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 67:00 B29K 67:00 B29L 7:00 B29L 7:00 9:00 9:00 11:00 11:00 Fターム(参考) 4F100 AK41A AK41B AK42B AL05B BA02 BA03 BA04 BA05 BA06 GB90 JA04B JN06 JN08 JN18 4F207 AA26 AG01 AG03 AR06 AR12 KA01 KA17 KB26 KL65 KL84 KW41 4J002 CF05X CF08W ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) // B29K 67:00 B29K 67:00 B29L 7:00 B29L 7:00 9:00 9:00 11:00 11:00 F-term (reference) 4F100 AK41A AK41B AK42B AL05B BA02 BA03 BA04 BA05 BA06 GB90 JA04B JN06 JN08 JN18 4F207 AA26 AG01 AG03 AR06 AR12 KA01 KA17 KB26 KL65 KL84 KW41 4J002 CF05X CF08W

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 樹脂AからなるA層と樹脂BからなるB
層とが交互に11層以上積層された多層フィルムの製造
方法において、樹脂Aと樹脂Bを別個に押出機で溶融
し、それぞれの溶融樹脂を多層フィードブロック内の細
孔により多層に分岐した後、分岐した樹脂Aと樹脂Bが
交互に11層以上流入するよう平行板で仕切られた扁平
な流路に導き、更に多層フィードブロック内の合流部に
導いた後、これに続くダイより樹脂Aと樹脂Bが厚み方
向に多層となる向でシート状に押出し、キャスティング
ドラムで冷却固化して未延伸フィルムとし、この未延伸
フィルムを縦方向及び横方向の少なくとも一方向に延伸
する多層フィルムの製造方法であって、該多層フィード
ブロックの温度分布を制御することにより多層フィルム
のA層及びB層の厚みを0.01〜0.5μmの範囲に
調整することを特徴とする多層フィルムの製造方法。
1. A layer made of resin A and B made of resin B
In a method for producing a multilayer film in which 11 or more layers are alternately laminated, resin A and resin B are separately melted by an extruder, and each molten resin is branched into multiple layers by pores in a multilayer feed block. , The branched resin A and the resin B are introduced into a flat flow path partitioned by parallel plates so that 11 or more layers of the resin flow alternately, and further to a confluent portion in the multi-layer feed block. And a resin B are extruded in a sheet form in a multilayered direction in the thickness direction, cooled and solidified by a casting drum to give an unstretched film, and the unstretched film is stretched in at least one of the longitudinal direction and the transverse direction. A method for controlling the temperature distribution of the multilayer feed block to adjust the thicknesses of the A layer and the B layer of the multilayer film in the range of 0.01 to 0.5 μm. Method of manufacturing a multilayer film to be.
【請求項2】 多層フィードブロックに温度分布を持た
せることにより多層フィルムのA層及びB層の最も厚い
層の厚みを最も薄い層の厚みで割った値が1.2以上と
なるよう調整する請求項1に記載の多層フィルムの製造
方法。
2. A multilayer feed block is provided with a temperature distribution so that a value obtained by dividing the thickness of the thickest layer of layers A and B of the multilayer film by the thickness of the thinnest layer is 1.2 or more. The method for producing a multilayer film according to claim 1.
【請求項3】 多層フィードブロックの温度差が10〜
100℃の範囲である請求項2に記載の多層フィルムの
製造方法。
3. A multi-layer feed block having a temperature difference of 10 to 10.
The method for producing a multilayer film according to claim 2, wherein the temperature is in the range of 100 ° C.
【請求項4】 多層フィードブロックの温度差を10℃
未満に制御することにより多層フィルムのA層及びB層
の最も厚い層の厚みを最も薄い層の厚みで割った値が
1.2未満となるよう調整する請求項1に記載の多層フ
ィルムの製造方法。
4. The temperature difference of the multi-layer feed block is 10 ° C.
The production of the multilayer film according to claim 1, wherein the value obtained by dividing the thickness of the thickest layer of the A layer and the B layer of the multilayer film by the thickness of the thinnest layer is less than 1.2 by controlling the thickness to be less than 1.2. Method.
【請求項5】 未延伸フィルムにおいて、樹脂Aの面内
方向屈折率と樹脂Bの面内方向屈折率の差が0.005
以上である請求項1に記載の多層フィルムの製造方法。
5. In an unstretched film, the difference between the in-plane refractive index of resin A and the in-plane refractive index of resin B is 0.005.
The method for producing a multilayer film according to claim 1, which is the above.
【請求項6】 少なくとも1方向に延伸されたフィルム
において、樹脂Aの面内方向屈折率と樹脂Bの面内方向
屈折率の差が0.005以上である請求項1に記載の多
層フィルムの製造方法。
6. The multilayer film according to claim 1, wherein in the film stretched in at least one direction, the difference between the in-plane direction refractive index of the resin A and the in-plane direction refractive index of the resin B is 0.005 or more. Production method.
【請求項7】 樹脂Aがポリエチレン−2,6−ナフタ
レートを主成分とする請求項1に記載の多層フィルムの
製造方法。
7. The method for producing a multilayer film according to claim 1, wherein the resin A contains polyethylene-2,6-naphthalate as a main component.
【請求項8】 樹脂Bがポリエチレン−2,6−ナフタ
レートとポリエチレンテレフタレートの混合物を主成分
とする請求項7に記載の多層フィルムの製造方法。
8. The method for producing a multilayer film according to claim 7, wherein the resin B contains a mixture of polyethylene-2,6-naphthalate and polyethylene terephthalate as a main component.
【請求項9】 樹脂Bが融点210〜245℃のポリエ
チレンテレフタレート共重合体を主成分とする請求項7
に記載の多層フィルムの製造方法。
9. The resin B is mainly composed of a polyethylene terephthalate copolymer having a melting point of 210 to 245 ° C.
The method for producing a multilayer film according to.
【請求項10】 ポリエチレンテレフタレート共重合体
の共重合成分がエチレンイソフタレートである請求項9
に記載の多層フィルムの製造方法。
10. The copolymerization component of the polyethylene terephthalate copolymer is ethylene isophthalate.
The method for producing a multilayer film according to.
【請求項11】 請求項1に記載の多層フィルムの製造
方法に用いる、温度分布の制御手段を設けた多層フィー
ドブロック。
11. A multi-layer feed block provided with a temperature distribution control means used in the method for producing a multi-layer film according to claim 1.
JP2001308467A 2001-10-04 2001-10-04 Method and apparatus for manufacturing multilayer film Pending JP2003112355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308467A JP2003112355A (en) 2001-10-04 2001-10-04 Method and apparatus for manufacturing multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308467A JP2003112355A (en) 2001-10-04 2001-10-04 Method and apparatus for manufacturing multilayer film

Publications (1)

Publication Number Publication Date
JP2003112355A true JP2003112355A (en) 2003-04-15

Family

ID=19127773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308467A Pending JP2003112355A (en) 2001-10-04 2001-10-04 Method and apparatus for manufacturing multilayer film

Country Status (1)

Country Link
JP (1) JP2003112355A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108408A1 (en) * 2003-06-04 2004-12-16 Toray Industries, Inc. Multilayer film and biaxially oriented polyester film
WO2005037544A1 (en) * 2003-10-14 2005-04-28 Toray Industries, Inc. Laminated film
JP2005288996A (en) * 2004-04-05 2005-10-20 Toray Ind Inc Laminated film
WO2005115719A1 (en) * 2004-05-31 2005-12-08 Toray Industries, Inc. Liquid flow converging device and method of manufacturing multi-layer film
WO2006035670A1 (en) * 2004-09-30 2006-04-06 Toray Industries, Inc. Apparatus and method for manufacturing laminated sheet
JP2006123541A (en) * 2004-09-30 2006-05-18 Toray Ind Inc Apparatus and method for producing laminated sheet
JP2006130910A (en) * 2004-10-06 2006-05-25 Toray Ind Inc Laminated sheet manufacturing apparatus and laminated sheet manufacturing method
JP2006130912A (en) * 2004-10-07 2006-05-25 Toray Ind Inc Laminated sheet manufacturing apparatus and laminated sheet manufacturing method
JP2006159537A (en) * 2004-12-06 2006-06-22 Teijin Dupont Films Japan Ltd Manufacturing method of multilayered sheet and manufacturing method of multilayered film
JP2006212941A (en) * 2005-02-04 2006-08-17 Toray Ind Inc Apparatus and method for producing laminated film
JP2006326891A (en) * 2005-05-24 2006-12-07 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayered film
JP2007144846A (en) * 2005-11-29 2007-06-14 Toray Ind Inc Device for forming laminated flow, method and apparatus for producing laminated sheet
JP2007268847A (en) * 2006-03-31 2007-10-18 Toray Ind Inc Manufacturing apparatus and process for laminated sheet
JP2009234164A (en) * 2008-03-28 2009-10-15 Toray Ind Inc Manufacturing device and manufacturing method of laminate sheet
WO2009134228A1 (en) * 2008-05-02 2009-11-05 Gary Nicholson Baker Improved apparatus for creating brighter illusions
JP2013052687A (en) * 2012-12-17 2013-03-21 Toray Ind Inc Apparatus and method for manufacturing laminated sheet
JP2022501582A (en) * 2018-10-01 2022-01-06 シコラ アーゲー Methods and equipment for controlling production systems for planar or strand objects

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105459B2 (en) * 2003-06-04 2012-12-26 東レ株式会社 Laminated film and biaxially oriented polyester film
WO2004108408A1 (en) * 2003-06-04 2004-12-16 Toray Industries, Inc. Multilayer film and biaxially oriented polyester film
JPWO2004108408A1 (en) * 2003-06-04 2006-07-20 東レ株式会社 Laminated film and biaxially oriented polyester film
WO2005037544A1 (en) * 2003-10-14 2005-04-28 Toray Industries, Inc. Laminated film
US7851050B2 (en) 2003-10-14 2010-12-14 Toray Industries, Inc. Laminated film
JP2005288996A (en) * 2004-04-05 2005-10-20 Toray Ind Inc Laminated film
JP4661073B2 (en) * 2004-04-05 2011-03-30 東レ株式会社 Laminated film
JPWO2005115719A1 (en) * 2004-05-31 2008-03-27 東レ株式会社 Liquid flow confluence apparatus and multilayer film manufacturing method
WO2005115719A1 (en) * 2004-05-31 2005-12-08 Toray Industries, Inc. Liquid flow converging device and method of manufacturing multi-layer film
US8388331B2 (en) 2004-05-31 2013-03-05 Toray Industries, Inc. Liquid flow converging device and method of manufacturing multi-layer film
US7858006B2 (en) 2004-09-30 2010-12-28 Toray Industries, Inc. Apparatus and method for manufacturing laminated sheet
CN101031407B (en) * 2004-09-30 2010-06-16 东丽株式会社 Apparatus and method for producing laminated sheet
WO2006035670A1 (en) * 2004-09-30 2006-04-06 Toray Industries, Inc. Apparatus and method for manufacturing laminated sheet
JP2006123541A (en) * 2004-09-30 2006-05-18 Toray Ind Inc Apparatus and method for producing laminated sheet
JP4720409B2 (en) * 2004-09-30 2011-07-13 東レ株式会社 Laminate sheet manufacturing apparatus and method
JP2006130910A (en) * 2004-10-06 2006-05-25 Toray Ind Inc Laminated sheet manufacturing apparatus and laminated sheet manufacturing method
JP2006130912A (en) * 2004-10-07 2006-05-25 Toray Ind Inc Laminated sheet manufacturing apparatus and laminated sheet manufacturing method
JP2006159537A (en) * 2004-12-06 2006-06-22 Teijin Dupont Films Japan Ltd Manufacturing method of multilayered sheet and manufacturing method of multilayered film
JP4496066B2 (en) * 2004-12-06 2010-07-07 帝人デュポンフィルム株式会社 Multilayer sheet manufacturing method, multilayer film manufacturing method, and multilayer sheet manufacturing apparatus
JP4600066B2 (en) * 2005-02-04 2010-12-15 東レ株式会社 Laminate film manufacturing apparatus and method
JP2006212941A (en) * 2005-02-04 2006-08-17 Toray Ind Inc Apparatus and method for producing laminated film
JP2006326891A (en) * 2005-05-24 2006-12-07 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayered film
JP4620526B2 (en) * 2005-05-24 2011-01-26 帝人デュポンフィルム株式会社 Multilayer film manufacturing method and apparatus
JP4702012B2 (en) * 2005-11-29 2011-06-15 東レ株式会社 Laminate flow forming apparatus, laminated sheet manufacturing apparatus and manufacturing method
JP2007144846A (en) * 2005-11-29 2007-06-14 Toray Ind Inc Device for forming laminated flow, method and apparatus for producing laminated sheet
JP2007268847A (en) * 2006-03-31 2007-10-18 Toray Ind Inc Manufacturing apparatus and process for laminated sheet
JP2009234164A (en) * 2008-03-28 2009-10-15 Toray Ind Inc Manufacturing device and manufacturing method of laminate sheet
WO2009134228A1 (en) * 2008-05-02 2009-11-05 Gary Nicholson Baker Improved apparatus for creating brighter illusions
JP2013052687A (en) * 2012-12-17 2013-03-21 Toray Ind Inc Apparatus and method for manufacturing laminated sheet
JP2022501582A (en) * 2018-10-01 2022-01-06 シコラ アーゲー Methods and equipment for controlling production systems for planar or strand objects

Similar Documents

Publication Publication Date Title
JP2003112355A (en) Method and apparatus for manufacturing multilayer film
JP3752410B2 (en) Multilayer laminated stretched film
JP2003251675A (en) Method and apparatus for manufacturing multilayered film
CN1135159C (en) Method for making multilayer optical films having thin optical layers
JP4816419B2 (en) Laminated film
WO2013057845A1 (en) Uniaxially oriented multi-layer laminate film
JP3653403B2 (en) Multilayer laminated stretched polyester film
TWI551448B (en) Textured film and process for manufacture thereof
TW200846179A (en) Surface optical diffusility polyester film
CN102811849A (en) Feedblock for making multilayered films
JP2011141408A (en) Polarizing reflector
JP2002160339A (en) Multi-layer laminated stretched film
JP4496066B2 (en) Multilayer sheet manufacturing method, multilayer film manufacturing method, and multilayer sheet manufacturing apparatus
KR101213122B1 (en) Apparatus and method for manufacturing laminated sheet
JP4730098B2 (en) Laminated film
JP2000127227A (en) Film extrusion device and manufacture of film
JP2004249587A (en) Biaxially oriented multi-layer polyester film
JP4765504B2 (en) Optical filter
JP3678607B2 (en) Multilayer laminated stretched film
JP4605739B2 (en) White polyester film roll and method for producing the same
TWI684794B (en) White reflective film for direct-type surface light source and direct-type surface light source using the same
JP2006130912A (en) Laminated sheet manufacturing apparatus and laminated sheet manufacturing method
JP4168690B2 (en) Cavity-containing polyester film roll and method for producing the same
KR102001118B1 (en) MULTILAYERED WHITE POLYESTER FILM FOR REFLECTOR of LCD UNIT
JP2012237853A (en) Uniaxially stretched multilayer laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060502