JP2003103139A - Wet process flue gas desulfurizer - Google Patents
Wet process flue gas desulfurizerInfo
- Publication number
- JP2003103139A JP2003103139A JP2001302581A JP2001302581A JP2003103139A JP 2003103139 A JP2003103139 A JP 2003103139A JP 2001302581 A JP2001302581 A JP 2001302581A JP 2001302581 A JP2001302581 A JP 2001302581A JP 2003103139 A JP2003103139 A JP 2003103139A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- absorption tower
- absorption
- liquid
- inlet duct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はボイラ等の燃焼排ガ
スの湿式排煙脱硫装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet flue gas desulfurization apparatus for combustion exhaust gas from a boiler or the like.
【0002】[0002]
【従来の技術】大気汚染防止のために化石燃料の燃焼排
ガス中の硫黄酸化物の除去装置として、湿式石灰石−石
膏法による脱硫装置が広く実用化されている。この脱硫
装置の主要機器である従来技術の円筒自立型スプレ方式
リターンフロー吸収塔を図7に示し、そのガス出入口部
平面図(図7のB−B線矢視図)を図8に示す。2. Description of the Related Art In order to prevent air pollution, a desulfurization device by a wet limestone-gypsum method has been widely put into practical use as a device for removing sulfur oxides from combustion exhaust gas of fossil fuels. FIG. 7 shows a conventional cylindrical self-supporting spray type return flow absorption tower which is the main equipment of this desulfurization apparatus, and FIG. 8 shows a plan view of the gas inlet / outlet portion thereof (a view taken along the line BB in FIG. 7).
【0003】図7に示す円筒自立型スプレ方式リターン
フロー吸収塔1は、その側壁にガス入口ダクト2と該ガ
ス入口ダクト2に対向する側壁にガス出口ダクト7を設
け、吸収塔内部空間内に鉛直方向に仕切板6を配置す
る。該仕切板6の上端と吸収塔天井壁との間に塔内を流
れる排ガスの流路空間を設け、前記仕切板6の下端は吸
収塔の下部に設けられる吸収液循環タンク16に溜めら
れる吸収液中に浸漬させている。The cylindrical self-supporting spray type return flow absorption tower 1 shown in FIG. 7 is provided with a gas inlet duct 2 on the side wall and a gas outlet duct 7 on the side wall opposite to the gas inlet duct 2, and the inside space of the absorption tower is provided. The partition plate 6 is arranged in the vertical direction. A flow passage space for the exhaust gas flowing in the tower is provided between the upper end of the partition plate 6 and the absorption tower ceiling wall, and the lower end of the partition plate 6 is an absorption liquid reserving tank 16 provided in the lower part of the absorption tower. It is immersed in the liquid.
【0004】従って、ガス入口ダクト2から流入した排
ガスは仕切板6により、その流れ方向が変えられ、吸収
塔1内を上昇し、仕切板6を越えてから下降流に変わ
り、ガス出口ダクト7から排出される。Therefore, the exhaust gas flowing in from the gas inlet duct 2 is changed in its flow direction by the partition plate 6, rises in the absorption tower 1 and changes to a downward flow after passing through the partition plate 6, and the gas outlet duct 7 is formed. Emitted from.
【0005】上記仕切板6により仕切られた吸収塔内の
ガス上昇流と下降流が生じる領域に石灰石スラリなどの
炭酸塩スラリからなる吸収液をスプレイするスプレイノ
ズル4、5が多数設けられたスプレイ配管3が複数段設
けられている。A spray provided with a large number of spray nozzles 4 and 5 for spraying an absorbing liquid composed of a carbonate slurry such as limestone slurry in a region where an ascending flow and a descending flow of gas in an absorption tower partitioned by the partition plate 6 are provided. Plural stages of the pipe 3 are provided.
【0006】火力発電所プラントの中のボイラ等から発
生した硫黄酸化物及び煤塵を含む燃焼排ガスg1は前記
吸収塔1に導かれ、吸収塔1で仕切板6により流路を強
制的に変更されて上昇流(アップフロー)となり、その
間に多数のスプレノズル4を備えた吸収液スプレ配管3
がガス流れと直交して少なくとも2段以上設置されてお
り、スプレノズル4から微細な液滴として噴霧される吸
収液と対向流を形成する。Combustion exhaust gas g1 containing sulfur oxides and soot generated from a boiler or the like in a thermal power plant is guided to the absorption tower 1, and the flow path of the absorption tower 1 is forcibly changed by a partition plate 6. Ascending flow (upflow), and a large number of spray nozzles 4 in between, an absorption liquid spray pipe 3
Are installed at least in two or more stages orthogonal to the gas flow, and form a counter flow with the absorbing liquid sprayed as fine liquid droplets from the spray nozzle 4.
【0007】また、排ガスが吸収塔天井部と仕切板6の
間を流れた後、ガス下降流(ダウンフロー)が生じる領
域では図7に示す例では吸収液をスプレイするスプレイ
ノズル5がガス下降流と並行流となるようにスプレイ配
管3に設けられ、該スプレイ配管3が複数段設けられて
いる(スプレイノズル5がガス下降流れと対向流となる
ようにスプレイ配管3を設けても良い。)。After the exhaust gas flows between the absorption tower ceiling and the partition plate 6, in a region where a gas downflow occurs, in the example shown in FIG. 7, the spray nozzle 5 for spraying the absorbing liquid descends the gas. The spray pipe 3 is provided so as to be in parallel with the flow, and the spray pipe 3 is provided in a plurality of stages (the spray pipe 3 may be provided so that the spray nozzle 5 is in a counterflow with the gas downward flow). ).
【0008】前記排ガスの上昇流と下降流はスプレイノ
ズル4、5からスプレイされる吸収液と気液接触するこ
とで、排ガス中の硫黄酸化物は吸収液滴表面を介して吸
収除去され、煤塵は液滴との衝突により物理的に除去さ
れる。The ascending and descending flows of the exhaust gas come into gas-liquid contact with the absorbing liquid sprayed from the spray nozzles 4 and 5, so that the sulfur oxides in the exhaust gas are absorbed and removed through the surface of the absorbing droplets, and soot and dust are collected. Are physically removed by collision with the droplets.
【0009】排ガス流れに同伴する微少な液滴(ミス
ト)は吸収塔1の外部に設置された図示しないミストエ
リミネータで除去され、浄化された処理排ガスg2は必
要により吸収塔後流側のガスダクト(図示せず)に設置
される再加熱設備により昇温されて、煙突より大気中に
排出される。Minute droplets (mist) entrained in the exhaust gas flow are removed by a mist eliminator (not shown) installed outside the absorption tower 1, and the purified treated exhaust gas g2 is, if necessary, a gas duct (at the downstream side of the absorption tower). The temperature is raised by a reheating facility installed (not shown) and discharged from the chimney into the atmosphere.
【0010】一方、吸収液スプレノズル4、5から噴霧
された吸収液滴は排ガス中の硫黄酸化物を吸収した後、
吸収塔下部に設けられた吸収液循環タンク16に落下す
る。On the other hand, the absorbing droplets sprayed from the absorbing liquid spray nozzles 4 and 5 absorb the sulfur oxides in the exhaust gas, and
It falls into the absorption liquid circulation tank 16 provided in the lower part of the absorption tower.
【0011】吸収塔1で吸収された硫黄酸化物は、吸収
液循環タンク16に供給される石灰石スラリと反応し、
同時に循環タンク16の側壁から酸化用空気9が導入さ
れ、該酸化用空気9は酸化用撹拌機8により微細化さ
れ、吸収液中の硫黄酸化物を酸化して石膏を生成させ
る。The sulfur oxides absorbed in the absorption tower 1 react with the limestone slurry supplied to the absorption liquid circulation tank 16,
At the same time, the oxidizing air 9 is introduced from the side wall of the circulation tank 16, and the oxidizing air 9 is atomized by the oxidizing stirrer 8 to oxidize the sulfur oxides in the absorbing liquid to produce gypsum.
【0012】このように、吸収液循環タンク16内部に
溜められる吸収液中には石膏が固形物として存在するた
め、スラリ用撹拌機(図示せず)で沈殿防止が図られて
いる。吸収液循環タンク16内の吸収液を抜き出してス
プレイノズル4、5に循環供給する循環ポンプ11と吸
収液循環配管12が設けられ、吸収液循環配管12が接
続する循環タンク16の側壁の開口部を覆うバッフルプ
レート10を設けている。バッフルプレート10は酸化
用撹拌機8で微細化された酸化用空気9の気泡が吸収液
循環配管12内に流れ込まないように遮断するための部
材であり、その上方は開放しており、吸収液循環タンク
16内の吸収液中の微細化空気9を除いた後、吸収液が
吸収液循環ポンプ11により昇圧され、吸収塔循環配管
12を通り再び吸収液スプレ配管3に導かれて吸収液ス
プレノズル4、5から噴霧される。As described above, since gypsum exists as a solid substance in the absorbent stored in the absorbent circulation tank 16, precipitation is prevented by a slurry agitator (not shown). A circulation pump 11 for withdrawing the absorbing liquid from the absorbing liquid circulating tank 16 and supplying the circulating liquid to the spray nozzles 4, 5 and an absorbing liquid circulating pipe 12 are provided, and an opening portion of a side wall of the circulating tank 16 to which the absorbing liquid circulating pipe 12 is connected. A baffle plate 10 is provided to cover the. The baffle plate 10 is a member for blocking the bubbles of the oxidizing air 9 that have been miniaturized by the oxidizing agitator 8 so as not to flow into the absorbing solution circulation pipe 12, and the upper side thereof is open, and the absorbing solution is opened. After removing the atomized air 9 in the absorption liquid in the circulation tank 16, the absorption liquid is boosted by the absorption liquid circulation pump 11 and is guided to the absorption liquid spray pipe 3 again through the absorption tower circulation pipe 12 to be absorbed by the absorption liquid spray nozzle. It is sprayed from 4 and 5.
【0013】[0013]
【発明が解決しようとする課題】図7に示す従来技術で
は吸収塔1のガス入口ダクト2の直下の吸収液循環タン
ク16に落下した吸収液のpHは、被処理排ガスg1と
吸収液が最初に接しているため、pH3〜4程度であ
る。このpH値は、ガス出口ダクト7側のように十分に
排ガスと気液接触した後に吸収液循環タンク16に落下
した吸収液のpH約5〜6の値と比較して低い。In the prior art shown in FIG. 7, the pH of the absorbing liquid dropped to the absorbing liquid circulating tank 16 immediately below the gas inlet duct 2 of the absorption tower 1 is first determined by the exhaust gas g1 to be treated and the absorbing liquid. Since it is in contact with, the pH is about 3 to 4. This pH value is lower than the pH value of about 5 to 6 of the absorbing liquid which has dropped into the absorbing liquid circulation tank 16 after being sufficiently in gas-liquid contact with the exhaust gas like the gas outlet duct 7 side.
【0014】図7に示すように脱硫装置機器の設置面積
を減らすためにガス入口ダクト2やそれより上流側の排
ガス流路中に配置される図示していない熱交換器の熱回
収側部分の下面の空きスペースを利用して吸収液循環ポ
ンプ11が設置される場合、上記pH値の低い吸収液が
循環配管12へショートパスして、吸収液スプレ配管
3、吸収液スプレノズル4、5へ供給されるため、排ガ
スの脱硫率が下がる可能性があった。このため、循環タ
ンク16の側壁の循環配管12への吸収液の取出口の配
置位置が制約を受け、循環配管12の取り回し長さが長
大化したり、吸収液循環タンク16の容積を大きくして
吸収液の滞留時間を長くし、pH値を回復させるなどの
対策を講じる必要があり、装置コストの増大につながっ
ていた。As shown in FIG. 7, in order to reduce the installation area of the desulfurization equipment, the heat recovery side portion of a heat exchanger (not shown) arranged in the gas inlet duct 2 or in the exhaust gas flow path upstream thereof. When the absorption liquid circulation pump 11 is installed using the empty space on the lower surface, the absorption liquid having a low pH value short-passes to the circulation pipe 12 and is supplied to the absorption liquid spray pipe 3 and the absorption liquid spray nozzles 4 and 5. Therefore, the desulfurization rate of the exhaust gas may decrease. For this reason, the arrangement position of the absorption liquid outlet to the circulation pipe 12 on the side wall of the circulation tank 16 is restricted, and the handling length of the circulation pipe 12 is increased or the volume of the absorption liquid circulation tank 16 is increased. It was necessary to take measures such as prolonging the retention time of the absorption liquid and recovering the pH value, leading to an increase in the cost of the device.
【0015】本発明の課題は、pH値の低い吸収液が吸
収液循環配管へショートパスして脱硫率が低下すること
を防止し、ガス入口ダクト周辺、特にその底面領域へ吸
収液及び石膏スケールが蓄積して、通風損失が増大する
のを回避する吸収塔を有する湿式排煙脱硫装置を提供す
ることである。The object of the present invention is to prevent the absorption liquid having a low pH value from short-pathing to the absorption liquid circulation pipe to lower the desulfurization rate, and to prevent the absorption liquid and the gypsum scale around the gas inlet duct, especially the bottom surface region thereof. It is an object of the present invention to provide a wet flue gas desulfurization apparatus having an absorption tower that avoids the accumulation of air and increases the ventilation loss.
【0016】[0016]
【課題を解決するための手段】本発明の上記課題は、以
下の構成によって達成できる。すなわち、被処理ガスの
ガス入口ダクトと、ガス入口ダクトから導入された被処
理ガスを吸収液と接触させて該ガス中の硫黄酸化物を除
去し、脱硫処理後の排ガスを排出するガス出口ダクトと
を備えた吸収塔と、該吸収塔の下部に吸収液を貯留し、
かつ貯留吸収液の一部を吸収塔本体内に供給して被処理
ガスを吸収液と接触させるための吸収液循環タンクを備
えた湿式排煙脱硫装置において、吸収液循環配管をガス
入口ダクトの吸収塔との接続部の下方の吸収液循環タン
クに取り付け、該吸収液循環タンクの吸収液循環配管取
付部に対向する吸収液循環タンク内には吸収液中の気泡
が吸収液循環配管内に流入するのを防ぐバッフルプレー
トを設け、被処理ガスのガス入口ダクトの吸収塔との接
続部と吸収液循環タンク内の吸収液の液面との間であっ
て、バッフルプレートの上方を覆う位置にガス入口ダク
ト底面付近に接続する遮蔽板を設けた湿式排煙脱硫装置
である。The above object of the present invention can be achieved by the following constitution. That is, the gas inlet duct for the gas to be treated and the gas outlet duct for contacting the gas to be treated introduced from the gas inlet duct with the absorbing liquid to remove the sulfur oxides in the gas and discharging the exhaust gas after desulfurization treatment An absorption tower provided with, and storing the absorption liquid in the lower part of the absorption tower,
Also, in a wet flue gas desulfurization device equipped with an absorbing liquid circulation tank for supplying a part of the stored absorbing liquid into the absorption tower body to bring the gas to be treated into contact with the absorbing liquid, the absorbing liquid circulation pipe is connected to the gas inlet duct. Attached to the absorption liquid circulation tank below the connection with the absorption tower, the bubbles in the absorption liquid are in the absorption liquid circulation pipe in the absorption liquid circulation tank facing the absorption liquid circulation pipe mounting part of the absorption liquid circulation tank. A position where a baffle plate for preventing inflow is provided, and it is located between the connection part of the gas inlet duct for the gas to be treated with the absorption tower and the liquid level of the absorption liquid in the absorption liquid circulation tank and covers the upper part of the baffle plate. It is a wet flue gas desulfurization device having a shield plate connected to the bottom of the gas inlet duct.
【0017】被処理ガスの入口ダクトの底面を吸収塔内
に延長した下向き傾斜面とし、該傾斜面を遮蔽板の上面
とすることができる。The bottom surface of the inlet duct for the gas to be treated may be a downward inclined surface extending into the absorption tower, and the inclined surface may be the upper surface of the shielding plate.
【0018】また、上記遮蔽板は、吸収塔の中心部近傍
にその先端部を有し、あるいは循環タンクの吸収液貯留
液面上の吸収塔の側壁を底面とする縦断面形状が三角形
状である構成としても良い。The shielding plate has a tip portion near the center of the absorption tower, or has a triangular vertical cross-section with the side wall of the absorption tower on the absorbent liquid storage surface of the circulation tank as the bottom surface. It may have a certain configuration.
【0019】さらに、上記遮蔽板は、循環タンクの吸収
液の液面上の吸収塔の側壁内側を底面とする縦断面形状
が三角形状とすることができる。Further, the shielding plate may have a triangular vertical cross section with the bottom surface being the inside of the side wall of the absorption tower above the liquid level of the absorption liquid in the circulation tank.
【0020】また、本発明の上記吸収塔は、入口ダクト
と出口ダクトと、その入口ダクトと出口ダクトの間に排
ガス流路を設け、その排ガス流路を入口ダクト側と出口
ダクト側の二室に分割するために天井部側に開口部を有
する鉛直方向に立てた仕切板を設け、該仕切板で入口ダ
クトから導入される排ガスが上向きに流れる上昇流領域
と天井側の開口部で反転した後に出口ダクトに向けて下
向きに排ガスが流れる下降流領域を形成し、噴出する吸
収液スラリが排ガスと上昇流領域では向流接触し、下降
流領域では並流接触するように前記各領域にスプレノズ
ルを設けた構成からなる吸収塔を用いることができる。Further, the absorption tower of the present invention is provided with an inlet duct and an outlet duct, and an exhaust gas passage between the inlet duct and the outlet duct, and the exhaust gas passage has two chambers on the inlet duct side and the outlet duct side. In order to divide into two parts, a vertically standing partition plate having an opening on the ceiling side is provided, and exhaust gas introduced from an inlet duct flows upward in the partition plate and is inverted at the ceiling side opening. A spray nozzle is formed in each of the above regions so that a downward flow region in which the exhaust gas flows downward toward the outlet duct is formed later, and the jetted absorbent slurry is in countercurrent contact with the exhaust gas in the upward flow region and in parallel flow contact in the downward flow region. It is possible to use an absorption tower having a configuration provided with.
【0021】本発明の湿式排煙脱硫装置の吸収塔は、被
処理ガスを吸収塔側壁面から導入して、吸収塔内で被処
理ガスに鉛直方向又は水平方向に吸収液をスプレイする
方式の吸収塔である。The absorption tower of the wet flue gas desulfurization apparatus of the present invention is of a system in which the gas to be treated is introduced from the side wall surface of the absorption tower and the absorbent is sprayed vertically or horizontally to the gas to be treated in the absorption tower. It is an absorption tower.
【0022】[0022]
【作用】図1の排煙脱硫装置を例にして、本発明の作用
を説明する。湿式排煙脱硫装置の運用は被処理排ガスg
1を吸収塔1に通す前に吸収液スプレノズル4、5から
多量の吸収液を吸収塔内に噴霧する(これを、吸収液循
環時ということとする)。そして、ある一定時間経過し
た後、被処理排ガスg1を吸収塔1に通す(これを通常
運転時ということとする)。The operation of the present invention will be described by taking the flue gas desulfurization apparatus of FIG. 1 as an example. Operation of wet flue gas desulfurization equipment is treated exhaust gas
Before passing 1 through the absorption tower 1, a large amount of the absorption liquid is sprayed into the absorption tower from the absorption liquid spray nozzles 4 and 5 (this is referred to as "absorption liquid circulation"). Then, after a certain period of time has passed, the treated exhaust gas g1 is passed through the absorption tower 1 (this is referred to as normal operation).
【0023】ガス入口ダクト2の底面と一体の遮へい板
15を、その吸収塔内への張り出し水平長さBがその直
下部に位置するバッフルプレート10の幅Wと同一、あ
るいは前記張り出し長さBがバッフルプレート10の幅
W以上に大きくなるようにして、遮へい板15が通常運
転時にアップフロー側で脱硫された低pH値の吸収液を
直接バッフルプレート10上に流下させないようにす
る。The horizontal length B of the shield plate 15 integrated with the bottom surface of the gas inlet duct 2 into the absorption tower is the same as the width W of the baffle plate 10 located immediately below it, or the above-mentioned protrusion length B Is made larger than the width W of the baffle plate 10 so that the shielding plate 15 does not allow the desulfurized absorption liquid having a low pH value to flow directly onto the baffle plate 10 on the upflow side during normal operation.
【0024】また、遮へい板15により循環タンク16
の中央部分付近に誘導されて流下する吸収液は、アップ
フロー側の低pH値の吸収液をバッフルプレート10か
ら遠ざけ、ダウンフロー側のpH値の異なる吸収液と混
合させ、酸化用空気9とより良く接触攪拌させるように
作用する。Further, the circulation tank 16 is provided by the shield plate 15.
The absorbing liquid that is induced and flows down near the central portion of the is that the absorbing liquid having a low pH value on the upflow side is moved away from the baffle plate 10 and mixed with the absorbing liquid having a different pH value on the downflow side, and the oxidizing air 9 is supplied. It works so as to make contact and stirring better.
【0025】こうして循環タンク16内に落下した低p
H値の吸収液がショートパスして直接バッフルプレート
10上に流下することなく、吸収液循環タンク16内で
ダウンフロー側の吸収液と混合し、さらに酸化用空気9
と接触攪拌し易くなるので、同じ液/ガス比で脱硫率の
向上が図れる。The low p dropped into the circulation tank 16 in this way
The absorbing liquid of H value does not pass through the baffle plate 10 by short-pass and directly mixes with the absorbing liquid on the downflow side in the absorbing liquid circulation tank 16, and further the oxidizing air 9
Since it becomes easier to stir by contacting with, the desulfurization rate can be improved with the same liquid / gas ratio.
【0026】また、ガス入口ダクト2の底面及び遮へい
板15上に吸収液及び石膏スケールが堆積しないような
勾配を持たせることが望ましい。これにより、吸収液循
環時に、スラリ状の吸収液はガス入口ダクト2底面に堆
積しないように流下するので石膏ソフトスケールになる
ことがない。従って排ガス温度が高いことにより、ガス
入口ダクト2の底面及び遮へい板15上に吸収液中の水
分が蒸発して石膏スケールが生成されるおそれはない。Further, it is desirable that the bottom surface of the gas inlet duct 2 and the shield plate 15 have a gradient so that the absorbing liquid and the gypsum scale are not deposited. As a result, during circulation of the absorbing liquid, the slurry-like absorbing liquid flows down so as not to be deposited on the bottom surface of the gas inlet duct 2, so that the gypsum soft scale does not occur. Therefore, due to the high exhaust gas temperature, there is no possibility that water in the absorbing liquid will evaporate on the bottom surface of the gas inlet duct 2 and the shield plate 15 to form gypsum scale.
【0027】[0027]
【発明の実施の形態】本発明の実施の形態を図面と共に
説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.
【実施例1】図1は本実施の形態のスプレ方式リターン
フロー吸収塔1の概略断面図を示すが、図7で示す部材
と同一部材には同一番号を付してその説明は省略する。EXAMPLE 1 FIG. 1 is a schematic cross-sectional view of a spray type return flow absorption tower 1 of this embodiment. The same members as those shown in FIG. 7 are designated by the same reference numerals and their description is omitted.
【0028】本実施の形態の特徴はガス入口ダクト2の
底面があたかも吸収塔内部へ延長されたように、遮へい
板15の上面とガス入口ダクト2の底面が同一平面を形
成するように遮蔽板15を配置したものである。図2に
は図1のA−A線矢視図を示すが、ガス入口ダクト2と
ガス出口ダクト7とガス入口ダクト2の近傍、さらに遮
へい板15を示している。The feature of the present embodiment is that the bottom surface of the gas inlet duct 2 is extended to the inside of the absorption tower so that the top surface of the shielding plate 15 and the bottom surface of the gas inlet duct 2 form the same plane. 15 are arranged. FIG. 2 shows a view taken along the line AA of FIG. 1, showing the gas inlet duct 2, the gas outlet duct 7, the vicinity of the gas inlet duct 2, and the shield plate 15.
【0029】本実施の形態では、ガス入口ダクト2の底
面は下向きに傾斜している。また、遮へい板15の吸収
塔1内への張り出し部の水平方向の長さはBであり、遮
へい板15の先端部の両端は吸収塔1の壁面部に接する
位置にまで伸びており、前記長さBはバッフルプレート
10の幅Wと同一のものを示している。In this embodiment, the bottom surface of the gas inlet duct 2 is inclined downward. Further, the horizontal length of the protruding portion of the shield plate 15 into the absorption tower 1 is B, and both ends of the tip end portion of the shield plate 15 extend to the position in contact with the wall surface portion of the absorption tower 1. The length B is the same as the width W of the baffle plate 10.
【0030】遮へい板15は縦断面形状が三角形をして
おり、上面傾斜部の水平に対する下向きの傾斜角θ2は
20度、下面傾斜部の水平に対する下向きの傾斜角θ3
は30度であるが、この部位に石膏のスケーリングが生
じない角度であれば良く、前記傾斜角度θ2、θ3は特
に限定されない。The shield plate 15 has a triangular vertical cross-sectional shape. The downward inclination angle θ2 of the upper surface inclined portion with respect to the horizontal is 20 degrees, and the downward inclination angle θ3 of the lower surface inclined portion with respect to the horizontal.
Is 30 degrees, but it is sufficient if the angle does not cause plaster scaling, and the inclination angles θ2 and θ3 are not particularly limited.
【0031】なお、遮へい板15の吸収塔1の壁面部に
対する接続位置は、ガス入口ダクト2の底面から吸収塔
内部へ延長して伸びているが、吸収塔1の側壁のガス入
口ダクト2の開口部の下端より下側で、吸収液循環タン
ク16の液面上であればどこにあってもよい。The connection position of the shield plate 15 to the wall surface of the absorption tower 1 extends from the bottom surface of the gas inlet duct 2 to the inside of the absorption tower. It may be anywhere below the lower end of the opening as long as it is on the liquid surface of the absorbent circulation tank 16.
【0032】図5及び図6に遮へい板15とバッフルプ
レート10の構造の一例を示す。図5には遮へい板15
とバッフルプレート10の斜視図と空間上での互いの配
置関係を示し、図6は図5のD−D線矢視図を示す。ス
プレイノズル4から噴霧された低pH値の吸収液Q1は
流下して遮へい板15上に落ち、ここで方向転換してバ
ッフルプレート10から離れるように吸収液循環タンク
16に流れ込む。一方、吸収液循環タンク16内で混合
攪拌されてpH値が回復した吸収液Q2はバッフルプレ
ート10の開口部からバッフルプレート10内に流入
し、吸収液循環ポンプ11を通り、吸収液として循環再
使用される。5 and 6 show an example of the structure of the shield plate 15 and the baffle plate 10. Shield plate 15 is shown in FIG.
FIG. 6 shows a perspective view of the baffle plate 10 and the mutual arrangement relationship in space, and FIG. 6 shows a view taken along the line DD of FIG. The low-pH absorption liquid Q1 sprayed from the spray nozzle 4 flows down and drops onto the shielding plate 15, where it changes direction and flows into the absorption liquid circulation tank 16 away from the baffle plate 10. On the other hand, the absorption liquid Q2, which has been mixed and stirred in the absorption liquid circulation tank 16 to recover the pH value, flows into the baffle plate 10 through the opening of the baffle plate 10, passes through the absorption liquid circulation pump 11, and is circulated and recirculated as an absorption liquid. used.
【0033】(1)吸収液循環ポンプ内への低pH吸収
液のショートパスについて
ガス入口ダクト2の底面の塔内への遮へい板15の前記
張り出し長さBと遮へい板15の直下部に位置するバッ
フルプレート10の幅Wが同一であるか、または前記張
り出し長さBがバッフルプレート10の幅W以上に大き
いことから、遮へい板15が、通常運転時、アップフロ
ー側で脱硫された低pH値の吸収液を直接バッフルプレ
ート10内には流下させないようにすることができる。(1) Short path of low pH absorption liquid into the absorption liquid circulation pump is located at the bottom of the gas inlet duct 2 to the above-mentioned protruding length B of the shielding plate 15 into the tower and immediately below the shielding plate 15. Since the width W of the baffle plate 10 is the same or the overhang length B is larger than the width W of the baffle plate 10, the shielding plate 15 is desulfurized at the upflow side at low pH during normal operation. It is possible to prevent the absorbing liquid of the value from directly flowing down into the baffle plate 10.
【0034】また、遮へい板15に誘導されて循環タン
ク16の中央部分に流下する吸収液は、アップフロー側
の低pH値の吸収液をバッフルプレート10から遠ざ
け、ダウンフロー側のpH値の異なる吸収液と循環タン
ク16内で混合させ、酸化用空気9とより接触攪拌し易
くすることができる。The absorption liquid guided by the shield plate 15 and flowing down to the central portion of the circulation tank 16 keeps the absorption liquid having a low pH value on the upflow side away from the baffle plate 10 and has a different pH value on the downflow side. The absorbing liquid can be mixed in the circulation tank 16 to facilitate contact and stirring with the oxidizing air 9.
【0035】こうして、吸収液循環タンク16内に落下
した低pH値の吸収液はショートパスして直接バッフル
プレート10に流下することなく、吸収液循環タンク1
6内でダウンフロー側の吸収液と混合し、さらには酸化
用空気9と接触攪拌するようになるので、遮へい板15
を設けていない吸収塔と比較して同じ液/ガス比で脱硫
率がより向上する。また、吸収液のpH値の回復のため
に吸収液循環タンク16の容量を大きくして滞留時間を
長くする必要がなくなる。In this way, the absorbent having a low pH value that has fallen into the absorbent circulating tank 16 does not short-path and directly flow down to the baffle plate 10, and the absorbent circulating tank 1
Since it mixes with the absorbing liquid on the downflow side in 6 and is further brought into contact with the oxidizing air 9 to be stirred, the shielding plate 15
The desulfurization rate is further improved with the same liquid / gas ratio as compared with the absorption tower not provided with. Further, there is no need to increase the capacity of the absorption liquid circulation tank 16 and lengthen the residence time in order to recover the pH value of the absorption liquid.
【0036】遮へい板15の張り出し長さBは吸収液循
環タンク16内に落下してきた低pH値の吸収液が直接
バッフルプレート10内側(タンク16の壁面とプレー
ト10の間)の吸収液内に流下しなければ良く、B≧W
を満たせば、張り出し長さBを特に限定されない。The protruding length B of the shield plate 15 is such that the low pH absorption liquid that has fallen into the absorption liquid circulation tank 16 directly enters the absorption liquid inside the baffle plate 10 (between the wall surface of the tank 16 and the plate 10). If it does not flow down, B ≧ W
If the above condition is satisfied, the overhang length B is not particularly limited.
【0037】また遮へい板15の平面から見た範囲は、
図2に示すように、バッフルプレート10を覆い被さる
ようにすれば良く、形状を限定するものではない。The range of the shield plate 15 seen from the plane is
As shown in FIG. 2, the baffle plate 10 may be covered, and the shape is not limited.
【0038】遮へい板15は縦断面形状が三角形をして
おり、上面傾斜部の水平に対する下向きの傾斜角θ2は
20度、下面傾斜部の水平に対する下向きの傾斜角θ3
は30度であるが、この部位に石膏のスケーリングが生
じない角度で有れば、その傾斜角度θ2、θ3は特に限
定されない。The shield plate 15 has a triangular vertical cross-section, the upper surface inclined portion has a downward inclination angle θ2 with respect to the horizontal of 20 degrees, and the lower surface inclined portion has a downward inclination angle θ3 with respect to the horizontal.
Is 30 degrees, but the inclination angles θ2 and θ3 are not particularly limited as long as the plaster is not scaled at this portion.
【0039】なお、遮へい板15の吸収塔1の壁面部に
対する接続位置は、ガス入口ダクト2の底面から吸収塔
内部へ延長して伸びているが、吸収塔の側壁のガス入口
ダクト接続用開口部の下端より下側で、吸収液循環タン
ク16の液面上であればどこにあってもよい。The connection position of the shield plate 15 to the wall surface of the absorption tower 1 extends from the bottom surface of the gas inlet duct 2 to the inside of the absorption tower, and the opening for connecting the gas inlet duct on the side wall of the absorption tower. It may be anywhere below the lower end of the part as long as it is on the liquid surface of the absorbing liquid circulation tank 16.
【0040】(2)ガス入口ダクト2の底面上での石膏
スケールの堆積、成長及び断面閉塞について
ガス入口ダクト2近傍では、100〜200℃の被処理
排ガスと吸収液が気液接触し、排ガス温度が高いことか
ら吸収液(石膏を含む石灰石スラリ)中の水分が蒸発
し、石膏スケールとなってガス入口ダクト2の底面に堆
積・成長し、通風系の圧力損失増大を招き、成長した大
きなスケール片が吸収液循環タンク16に落下して吸収
塔循環配管12を通り、最終的に吸収液スプレノズル
4、5に詰まりを生じさせる可能性があった。(2) Deposition, growth and cross-section blockage of gypsum scale on the bottom surface of the gas inlet duct 2 In the vicinity of the gas inlet duct 2, the treated exhaust gas at 100 to 200 ° C. and the absorbing liquid come into gas-liquid contact, and the exhaust gas Due to the high temperature, the water in the absorbing liquid (limestone slurry containing gypsum) evaporates and becomes gypsum scale that accumulates and grows on the bottom surface of the gas inlet duct 2 and causes an increase in the pressure loss of the ventilation system, resulting in large growth. There is a possibility that the scale pieces may drop into the absorption liquid circulation tank 16 and pass through the absorption tower circulation pipe 12 to eventually cause clogging of the absorption liquid spray nozzles 4 and 5.
【0041】望ましくは、円筒部とその端部に直方体を
接続した形状のガス入口ダクト2が吸収塔1の側壁の開
口部に接続する部分である前記直方体部分であって、従
来は水平となっていたガス入口ダクト2底面の図2に示
す領域X’の範囲(吸収塔側壁及びガス入口ダクト2の
点線部分で囲まれる領域)に上部より落下してきた吸収
液中の石膏が堆積しない下向きの傾斜角度を持たせると
良い。Desirably, the gas inlet duct 2 having a shape in which a rectangular parallelepiped is connected to the cylindrical portion and its end is a portion connected to the opening of the side wall of the absorption tower 1 is a rectangular parallelepiped portion, which is conventionally horizontal. 2 where the gypsum in the absorbing liquid that has fallen from above does not accumulate in the area X'on the bottom surface of the gas inlet duct 2 (the area surrounded by the absorption tower sidewall and the dotted line portion of the gas inlet duct 2) shown in FIG. It is good to have a tilt angle.
【0042】これにより、吸収塔1を循環しているスラ
リ状の吸収液はガス入口ダクト2の底面に堆積せず、常
時吸収液循環タンク16に流下するようになるので、前
記領域X’に石膏ソフトスケールが生成することを抑制
できる。As a result, the slurry-like absorption liquid circulating in the absorption tower 1 does not deposit on the bottom surface of the gas inlet duct 2 and always flows down to the absorption liquid circulation tank 16, so that the area X'is provided. Generation of gypsum soft scale can be suppressed.
【0043】従って、ガス入口ダクト2の底面上で10
0〜200℃と高い温度からなる排ガスにより吸収液中
の水分が蒸発して石膏スケールが生成・成長することを
防止でき、通風損失やスプレノズル4、5の詰まりの問
題を回避できる。Therefore, on the bottom surface of the gas inlet duct 2, 10
It is possible to prevent the moisture in the absorbing liquid from evaporating due to the exhaust gas having a high temperature of 0 to 200 ° C. to form and grow the gypsum scale, and to avoid the problems of ventilation loss and clogging of the spray nozzles 4 and 5.
【0044】同様にガス出口ダクト7の底面も図2の領
域Y’の範囲(吸収塔側壁及びガス出口ダクト7の点線
部分で囲まれる領域)に吸収液中の石膏が堆積しない傾
斜角度を持たせるようにするとよい。Similarly, the bottom surface of the gas outlet duct 7 also has an inclination angle at which the gypsum in the absorbing liquid does not accumulate in the area Y'in FIG. 2 (the area surrounded by the side wall of the absorption tower and the dotted line portion of the gas outlet duct 7). It is better to let them.
【0045】この時の傾斜角度は、この部位に石膏のス
ケーリングが生じない角度であれば良く、特に限定され
ない。The angle of inclination at this time is not particularly limited as long as it does not cause plaster scaling at this portion.
【0046】また、図5及び図6にバッフルプレート1
0の構造一例を示すが、酸化用空気9から供給された微
細気泡を吸い込まなければ、構造や形状を限定するもの
ではない。The baffle plate 1 shown in FIGS.
An example of the structure of No. 0 is shown, but the structure and shape are not limited unless the fine bubbles supplied from the oxidizing air 9 are sucked.
【0047】[0047]
【実施例2】本発明の他の実施の形態を図3及び図4に
示す。図3は本実施の形態のスプレ方式リターンフロー
吸収塔1の概略断面図を示し、図4には図3のC−C線
矢視図を示すが、ガス入口ダクト2とガス出口ダクト7
とガス入口ダクト2の近傍、さらに遮へい板15を示し
ている。Second Embodiment Another embodiment of the present invention is shown in FIGS. FIG. 3 shows a schematic cross-sectional view of the spray type return flow absorption tower 1 of the present embodiment, and FIG. 4 shows a view taken along the line CC of FIG. 3, showing a gas inlet duct 2 and a gas outlet duct 7.
And the vicinity of the gas inlet duct 2 and the shielding plate 15.
【0048】本実施の形態は被処理排ガスg1と噴霧吸
収液を並行流或いは対向流で水平方向で気液接触させ、
脱硫する方式であり、高速水平流脱硫装置と呼ばれてい
る。In this embodiment, the exhaust gas to be treated g1 and the sprayed absorbent are brought into gas-liquid contact in a horizontal direction in a parallel flow or a counter flow,
This is a method for desulfurization and is called a high-speed horizontal flow desulfurization device.
【0049】このシステム構成は図1に示すリターンフ
ロー式吸収塔と同様であり、吸収液スプレ及び排ガス流
が水平流型脱硫装置である点が構造的に異なる。This system configuration is the same as that of the return flow type absorption tower shown in FIG. 1, but structurally different in that the absorbing liquid spray and the exhaust gas flow are horizontal flow type desulfurization devices.
【0050】火力発電所プラントの中のボイラ等から発
生した硫黄酸化物及び煤塵を含む燃焼排ガスg1は前記
吸収塔1に水平方向に導かれ、吸収塔1内で多数のスプ
レノズル4を備えた水平方向に伸びる吸収液スプレ配管
3がガス流れと対向する方向に吸収液を噴霧する。図3
に示す例ではガス入口ダクト2のより入口側のスプレイ
配管3のスプレイノズル4からはガス入口ダクト2内の
上流側ではガスの流れと並行する方向に少なくとも1段
スプレ配管3が設置され、またガス入口ダクト2内の下
流側ではスプレイ配管3のスプレイノズル4からはガス
の流れと対向する方向に少なくとも2段設置されてい
る。A combustion exhaust gas g1 containing sulfur oxides and soot dust generated from a boiler or the like in a thermal power plant is guided to the absorption tower 1 in a horizontal direction, and a horizontal spray provided with a large number of spray nozzles 4 in the absorption tower 1. The absorption liquid spray pipe 3 extending in the direction sprays the absorption liquid in the direction opposite to the gas flow. Figure 3
In the example shown in (1), at least one stage spray pipe 3 is installed in the direction parallel to the flow of gas on the upstream side in the gas inlet duct 2 from the spray nozzle 4 of the spray pipe 3 on the more inlet side of the gas inlet duct 2. At least two stages are installed downstream of the gas inlet duct 2 from the spray nozzle 4 of the spray pipe 3 in a direction facing the gas flow.
【0051】前記排ガスの流れはスプレイノズル4から
スプレイされる吸収液と気液接触することで、排ガス中
の硫黄酸化物は吸収液滴表面を介して吸収除去され、煤
塵は液滴との衝突により物理的に除去される。The flow of the exhaust gas comes into gas-liquid contact with the absorbing liquid sprayed from the spray nozzle 4, whereby the sulfur oxides in the exhaust gas are absorbed and removed through the surface of the absorbing droplets, and the dust particles collide with the droplets. Are physically removed by.
【0052】排ガス流れに同伴する微少な液滴(ミス
ト)は吸収塔1の外部に設置された図示しないミストエ
リミネータで除去され、浄化された処理排ガスg2は必
要により吸収塔後流側のガスダクト(図示せず)に設置
される再加熱設備により昇温されて、煙突より大気中に
排出される。Minute droplets (mist) entrained in the exhaust gas flow are removed by a mist eliminator (not shown) installed outside the absorption tower 1, and the purified treated exhaust gas g2 is, if necessary, a gas duct (at the downstream side of the absorption tower). The temperature is raised by a reheating facility installed (not shown) and discharged from the chimney into the atmosphere.
【0053】一方、吸収液スプレノズル4から噴霧され
た吸収液滴は排ガス中の硫黄酸化物を吸収した後、吸収
塔下部に設けられた吸収液循環タンク16に落下する。On the other hand, the absorption liquid droplets sprayed from the absorption liquid spray nozzle 4 absorb the sulfur oxides in the exhaust gas and then fall into the absorption liquid circulation tank 16 provided in the lower part of the absorption tower.
【0054】吸収塔1に吸収された硫黄酸化物は、吸収
液循環タンク16に供給される石灰石スラリと反応し、
同時に循環タンク16の側壁から酸化用空気9が導入さ
れ、該酸化用空気9は酸化用撹拌機8により微細化さ
れ、吸収液中の硫黄酸化物を酸化して石膏を生成させ
る。The sulfur oxide absorbed in the absorption tower 1 reacts with the limestone slurry supplied to the absorption liquid circulation tank 16,
At the same time, the oxidizing air 9 is introduced from the side wall of the circulation tank 16, and the oxidizing air 9 is atomized by the oxidizing stirrer 8 to oxidize the sulfur oxides in the absorbing liquid to produce gypsum.
【0055】このように、吸収液循環タンク16内部に
溜められる吸収液中には石膏が固形物として存在するた
め、スラリ用撹拌機(図示せず)で沈殿防止が図られて
いる。吸収液循環タンク16内の吸収液を抜き出してス
プレイノズル4、5に循環供給する循環ポンプ11と吸
収液循環配管12が設けられているが、吸収液循環配管
12が接続する循環タンク16の側壁の開口部を覆うバ
ッフルプレート10を設けている。バッフルプレート1
0は吸収液循環タンク16内の吸収液が酸化用撹拌機8
で微細化された酸化用空気9の気泡が吸収液循環配管1
2内に流れ込まないように遮断するための部材であり、
その上方は開放しており、吸収液循環タンク16内の吸
収液中の微細化空気9を除いた後の、吸収液が吸収液循
環ポンプ11により昇圧され、吸収塔循環配管12を通
り、再び吸収液スプレ配管3に導かれて吸収液スプレノ
ズル4から噴霧される。As described above, since gypsum is present as a solid in the absorbent stored in the absorbent circulation tank 16, precipitation is prevented by a slurry agitator (not shown). A circulation pump 11 and an absorption liquid circulation pipe 12 for extracting the absorption liquid from the absorption liquid circulation tank 16 and circulating it to the spray nozzles 4 and 5 are provided, and the side wall of the circulation tank 16 to which the absorption liquid circulation pipe 12 is connected. The baffle plate 10 is provided to cover the opening. Baffle plate 1
0 indicates that the absorption liquid in the absorption liquid circulation tank 16 is an agitator 8 for oxidation.
The bubbles of the oxidizing air 9 that have been made fine by
It is a member to shut off so that it does not flow into 2,
The upper part is open, and after removing the atomized air 9 in the absorbing liquid in the absorbing liquid circulating tank 16, the absorbing liquid is pressurized by the absorbing liquid circulating pump 11, passes through the absorbing tower circulating pipe 12, and again. It is guided to the absorption liquid spray pipe 3 and sprayed from the absorption liquid spray nozzle 4.
【0056】ガス入口ダクト2の底面は下向きに傾斜し
ている。また、遮へい板15は吸収塔1内へ張り出し、
遮へい板15の先端部は吸収塔1の壁面部に接する位置
にまで伸びており、その水平長さBはバッフルプレート
10の幅Wと同一のものを示している。The bottom surface of the gas inlet duct 2 is inclined downward. In addition, the shield plate 15 projects into the absorption tower 1,
The tip of the shielding plate 15 extends to a position in contact with the wall surface of the absorption tower 1, and its horizontal length B is the same as the width W of the baffle plate 10.
【0057】遮へい板15は縦断面形状が三角形をして
おり、上面傾斜部の水平に対する下向きの傾斜角θ2は
20度、下面傾斜部の水平に対する下向きの傾斜角θ3
は30度であるが、この部位に石膏のスケーリングが生
じない角度であれば良く、その傾斜角度θ2、θ3は特
に限定されない。The shield plate 15 has a triangular vertical cross-sectional shape. The downward inclination angle θ2 of the upper surface inclined portion with respect to the horizontal is 20 degrees, and the downward inclination angle θ3 of the lower surface inclined portion with respect to the horizontal.
Is 30 degrees, but the angle is not particularly limited as long as the gypsum scaling does not occur at this portion.
【0058】また、遮へい板15の吸収塔1の壁面部に
対する接続位置は、ガス入口ダクト2の底面から吸収塔
1の内部へ延長して伸びているが、吸収塔1の側壁の入
口ダクト接続用開口部の下端より下側で、吸収液循環タ
ンク16の液面上であればどこにあってもよい。Further, the connection position of the shield plate 15 to the wall surface portion of the absorption tower 1 extends from the bottom surface of the gas inlet duct 2 to the inside of the absorption tower 1, and the inlet duct connection of the side wall of the absorption tower 1 is performed. It may be anywhere below the lower end of the working opening as long as it is on the liquid surface of the absorbent circulating tank 16.
【0059】バッフルプレート10の幅W以上の張り出
し長さBを有している遮へい板15がなければ、脱硫さ
れた低pH値(pH=3〜4)の吸収液が集中的にバッ
フルプレート10近傍に流入するため、この低pH値の
吸収液をそのまま吸収塔循環配管12を介してスプレノ
ズル4から噴霧すれば排ガス脱硫率が下がる。従って、
ガス入口ダクト2、ガス出口ダクト7の勾配(傾斜角)
及び遮へい板の構造を図1に示す実施例1と同じように
すれば同様の効果が得られる。If there is no shielding plate 15 having an overhanging length B which is equal to or larger than the width W of the baffle plate 10, the desulfurized absorption liquid having a low pH value (pH = 3 to 4) is concentrated. Since it flows into the vicinity, the exhaust gas desulfurization rate is lowered if this low pH absorption liquid is directly sprayed from the spray nozzle 4 through the absorption tower circulation pipe 12. Therefore,
Slope (tilt angle) of gas inlet duct 2 and gas outlet duct 7
Also, if the structure of the shield plate is the same as that of the first embodiment shown in FIG. 1, the same effect can be obtained.
【0060】図示していないが本発明は図1に示す吸収
塔1で仕切板6を備えていない被処理ガスを吸収塔側壁
部から導入し、水平方向に複数段のスプレイ配管3を配
置してガスと対向流接触及び/又は並流接触させる縦型
吸収塔にも適用可能である。According to the present invention, although not shown, the gas to be treated which is not provided with the partition plate 6 in the absorption tower 1 shown in FIG. 1 is introduced from the side wall of the absorption tower, and the spray pipes 3 having a plurality of stages are arranged in the horizontal direction. The present invention is also applicable to a vertical absorption tower in which gas is subjected to countercurrent contact and / or cocurrent contact.
【0061】[0061]
【発明の効果】本発明によれば、pH値の低い吸収液が
吸収液循環配管へショートパスすることがないので被処
理ガスの脱硫率の低下が防止でき、ガス入口ダクトの周
辺、特にその底面領域へ吸収液及び石膏スケールが堆積
して、通風損失が増大するのを回避することができる。
これにより、長期間安定した脱硫装置の運用ができ運転
維持費の低減、吸収塔のコンパクト化が図れる。According to the present invention, since the absorbent having a low pH value does not short-path to the absorbent circulating pipe, it is possible to prevent the desulfurization rate of the gas to be treated from being lowered, and particularly in the vicinity of the gas inlet duct, It is possible to prevent the absorption liquid and the gypsum scale from accumulating in the bottom surface area and increasing the ventilation loss.
As a result, it is possible to operate the desulfurizer stably for a long period of time, reduce operation and maintenance costs, and make the absorption tower compact.
【図1】 本発明の実施の形態の円筒自立型スプレ方式
リターンフロー吸収塔の断面概略図である。FIG. 1 is a schematic sectional view of a cylindrical self-supporting spray type return flow absorption tower of an embodiment of the present invention.
【図2】 図1のA−A線斜視図である。FIG. 2 is a perspective view taken along the line AA of FIG.
【図3】 本発明の他の実施の形態の高速水平流スプレ
方式呼吸塔の断面概略図である。FIG. 3 is a schematic sectional view of a high-speed horizontal flow spray type breathing tower according to another embodiment of the present invention.
【図4】 図3のC−C線斜視図である。FIG. 4 is a perspective view taken along the line CC of FIG.
【図5】 本発明の遮へい板とバッフルプレート(一
例)の関係を表した鳥瞰図である。FIG. 5 is a bird's-eye view showing the relationship between the shield plate and the baffle plate (one example) of the present invention.
【図6】 バッフルプレート(一例)の側面図(図5の
D−D視図)である。FIG. 6 is a side view of the baffle plate (one example) (view from DD in FIG. 5).
【図7】 従来技術の円筒自立型スプレ方式リターンフ
ロー吸収塔の断面概略図である。FIG. 7 is a schematic sectional view of a conventional cylindrical self-supporting spray type return flow absorption tower.
【図8】 従来技術の吸収塔ガス出入口部平面図(図7
のB−B視図)である。8 is a plan view of a gas inlet / outlet portion of a conventional absorption tower (FIG. 7).
BB view).
1 リターンフロー吸収塔 2 ガス入口ダクト
3 吸収液スプレ配管 4 吸収液スプレノ
ズル
5 吸収液スプレノズル 6 仕切板
7 ガス出口ダクト 8 酸化用撹拌機
9 酸化用空気 10 バッフルプレ
ート
11 循環ポンプ 12 吸収塔循環配
管
15 遮へい板 16 吸収液循環タ
ンク
g1 被処理排ガス g2 処理排ガス
W バッフルプレートの幅
θ バッフルプレートの円周方向の角度
B 遮へい板の張り出し長さ θ2 遮へい板上面
傾斜角
θ3 遮へい板下面傾斜角1 Return Flow Absorption Tower 2 Gas Inlet Duct 3 Absorption Liquid Spray Pipe 4 Absorption Liquid Spray Nozzle 5 Absorption Liquid Spray Nozzle 6 Partition Plate 7 Gas Outlet Duct 8 Oxidation Stirrer 9 Oxidation Air 10 Baffle Plate 11 Circulation Pump 12 Absorption Tower Circulation Pipe 15 Shield plate 16 Absorbing liquid circulation tank g1 Treated exhaust gas g2 Treated exhaust gas W Baffle plate width θ Angle of baffle plate in circumferential direction B Shield plate overhang angle θ2 Shield plate upper surface inclination angle θ3 Shield plate lower surface inclination angle
───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅海 隆夫 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 (72)発明者 石坂 浩 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 Fターム(参考) 4D002 AA02 AC01 BA02 CA01 CA20 DA05 DA16 EA12 FA03 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takao Asami Babcock Hitachi 6-9 Takaracho, Kure City, Hiroshima Prefecture Kure Office Co., Ltd. (72) Inventor Hiroshi Ishizaka Babcock Hitachi 3-36 Takaracho, Kure City, Hiroshima Prefecture Kure Institute Co., Ltd. F-term (reference) 4D002 AA02 AC01 BA02 CA01 CA20 DA05 DA16 EA12 FA03
Claims (6)
口ダクトから導入された被処理ガスを吸収液と接触させ
て該ガス中の硫黄酸化物を除去し脱硫処理後の排ガスを
排出するガス出口ダクトとを備えた吸収塔と、該吸収塔
の下部に吸収液を貯留し、かつ貯留吸収液の一部を吸収
塔本体内に供給して被処理ガスを吸収液と接触させるた
めの吸収液循環タンクを備えた湿式排煙脱硫装置におい
て、 吸収液循環配管をガス入口ダクトの吸収塔との接続部の
下方の吸収液循環タンクに取り付け、該吸収液循環タン
クの吸収液循環配管取付部に対向する吸収液循環タンク
内には吸収液中の気泡が吸収液循環配管内に流入するの
を防ぐバッフルプレートを設け、被処理ガスのガス入口
ダクトの吸収塔との接続部と吸収液循環タンク内の吸収
液の液面との間であって、バッフルプレートの上方を覆
う位置にガス入口ダクト底面付近に接続する遮蔽板を設
けたことを特徴とする湿式排煙脱硫装置。1. A gas inlet duct for a gas to be treated and a gas for contacting the gas to be treated introduced from the gas inlet duct with an absorbing liquid to remove sulfur oxides in the gas and to discharge exhaust gas after desulfurization treatment. An absorption tower having an outlet duct, an absorption liquid for storing the absorption liquid in the lower part of the absorption tower, and supplying a part of the stored absorption liquid into the absorption tower main body to bring the gas to be treated into contact with the absorption liquid. In a wet flue gas desulfurization device equipped with a liquid circulation tank, the absorption liquid circulation pipe is attached to the absorption liquid circulation tank below the connection part of the gas inlet duct with the absorption tower, and the absorption liquid circulation pipe mounting part of the absorption liquid circulation tank is installed. A baffle plate that prevents bubbles in the absorbing liquid from flowing into the absorbing liquid circulation pipe is installed in the absorbing liquid circulation tank facing the With the liquid level of the absorbing liquid in the tank A is a wet flue gas desulfurization apparatus characterized in that a shielding plate to be connected to the vicinity of the gas inlet duct bottom at a position covering the upper side of the baffle plate.
内に延長した下向き傾斜面とし、該傾斜面を遮蔽板の上
面とすることを特徴とする請求項1記載の湿式排煙脱硫
装置。2. The wet flue gas desulfurization apparatus according to claim 1, wherein the bottom surface of the inlet duct for the gas to be treated is a downward inclined surface extending into the absorption tower, and the inclined surface is the upper surface of the shielding plate. .
端部を有していることを特徴とする請求項1記載の湿式
排煙脱硫装置。3. The wet flue gas desulfurization apparatus according to claim 1, wherein the shielding plate has a tip portion near the center of the absorption tower.
の吸収塔の側壁内側を底面とする縦断面形状が三角形状
であることを特徴とする請求項1記載の湿式排煙脱硫装
置。4. The wet flue gas desulfurization according to claim 1, wherein the shielding plate has a triangular vertical cross-section whose bottom surface is the inside of the side wall of the absorption tower above the liquid level of the absorption liquid in the circulation tank. apparatus.
その入口ダクトと出口ダクトの間に排ガス流路を設け、
その排ガス流路を入口ダクト側と出口ダクト側の二室に
分割するために天井部側に開口部を有する鉛直方向に立
てた仕切板を設け、該仕切板で入口ダクトから導入され
る排ガスが上向きに流れる上昇流領域と天井側の開口部
で反転した後に出口ダクトに向けて下向きに排ガスが流
れる下降流領域を形成し、噴出する吸収液スラリが排ガ
スと上昇流領域では向流接触し、下降流領域では並流接
触するように前記各領域にスプレノズルを設けた構成か
らなることを特徴とする請求項1記載の湿式排煙脱硫装
置。5. The absorption tower has an inlet duct and an outlet duct.
An exhaust gas passage is provided between the inlet duct and the outlet duct,
In order to divide the exhaust gas flow path into two chambers, one on the inlet duct side and the other on the outlet duct side, a partition plate that stands vertically with an opening on the ceiling side is provided, and the exhaust gas introduced from the inlet duct by the partition plate After reversing in the upward flow region that flows upward and the opening on the ceiling side, a downward flow region in which the exhaust gas flows downward toward the outlet duct is formed, and the jetted absorbent slurry comes into countercurrent contact with the exhaust gas and the upward flow region, 2. The wet flue gas desulfurization apparatus according to claim 1, wherein a spray nozzle is provided in each of the areas so as to make parallel flow contact in the downflow area.
ら導入して、吸収塔内で被処理ガスに鉛直方向又は水平
方向に吸収液をスプレイする方式の吸収塔であることを
特徴とする請求項1記載の湿式排煙脱硫装置。6. The absorption tower is an absorption tower of a system in which the gas to be treated is introduced from the side wall surface of the absorption tower and the absorbing liquid is sprayed vertically or horizontally to the gas to be treated in the absorption tower. The wet flue gas desulfurization apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001302581A JP2003103139A (en) | 2001-09-28 | 2001-09-28 | Wet process flue gas desulfurizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001302581A JP2003103139A (en) | 2001-09-28 | 2001-09-28 | Wet process flue gas desulfurizer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003103139A true JP2003103139A (en) | 2003-04-08 |
Family
ID=19122800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001302581A Pending JP2003103139A (en) | 2001-09-28 | 2001-09-28 | Wet process flue gas desulfurizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003103139A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008296152A (en) * | 2007-05-31 | 2008-12-11 | Okawara Mfg Co Ltd | Scrubber apparatus |
CN100464822C (en) * | 2005-06-28 | 2009-03-04 | 颜松林 | Fume desulfurizing, defluorinating and dedusting device |
US8906141B2 (en) | 2012-08-09 | 2014-12-09 | Mitsubishi Heavy Industries, Ltd. | Carbon dioxide recovery apparatus and method |
CN104524953A (en) * | 2015-01-16 | 2015-04-22 | 方小刚 | Desulfuration and dust removal equipment capable of radiating through fan |
CN107261803A (en) * | 2017-08-16 | 2017-10-20 | 红河绿地环保科技发展有限公司 | Baffling desulfurization liquid circulating device and application method in a kind of flue gas desulphurization system |
CN110075689A (en) * | 2019-05-24 | 2019-08-02 | 湖南省湘衡盐化有限责任公司 | A kind of device preventing desulphurization system inlet flue duct fouling |
WO2020218240A1 (en) * | 2019-04-24 | 2020-10-29 | 三菱日立パワーシステムズ株式会社 | Exhaust gas inlet structure of absorption column |
CN113041828A (en) * | 2021-03-29 | 2021-06-29 | 丁治淦 | Flue gas desulfurization and denitrification system and application method thereof |
CN118286842A (en) * | 2024-04-09 | 2024-07-05 | 无锡安和净化设备有限公司 | Purifying device capable of classifying and treating various gases |
-
2001
- 2001-09-28 JP JP2001302581A patent/JP2003103139A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100464822C (en) * | 2005-06-28 | 2009-03-04 | 颜松林 | Fume desulfurizing, defluorinating and dedusting device |
JP2008296152A (en) * | 2007-05-31 | 2008-12-11 | Okawara Mfg Co Ltd | Scrubber apparatus |
US8906141B2 (en) | 2012-08-09 | 2014-12-09 | Mitsubishi Heavy Industries, Ltd. | Carbon dioxide recovery apparatus and method |
CN104524953A (en) * | 2015-01-16 | 2015-04-22 | 方小刚 | Desulfuration and dust removal equipment capable of radiating through fan |
CN104524953B (en) * | 2015-01-16 | 2016-10-19 | 佛山市爱摩生科技有限公司 | A kind of desulfurating dust-removing equipment by fan cooling |
CN107261803A (en) * | 2017-08-16 | 2017-10-20 | 红河绿地环保科技发展有限公司 | Baffling desulfurization liquid circulating device and application method in a kind of flue gas desulphurization system |
WO2020218240A1 (en) * | 2019-04-24 | 2020-10-29 | 三菱日立パワーシステムズ株式会社 | Exhaust gas inlet structure of absorption column |
JP2020179333A (en) * | 2019-04-24 | 2020-11-05 | 三菱パワー株式会社 | Exhaust gas inlet structure of absorption column |
JP7091280B2 (en) | 2019-04-24 | 2022-06-27 | 三菱重工業株式会社 | Exhaust gas inlet structure of absorption tower |
CN110075689A (en) * | 2019-05-24 | 2019-08-02 | 湖南省湘衡盐化有限责任公司 | A kind of device preventing desulphurization system inlet flue duct fouling |
CN113041828A (en) * | 2021-03-29 | 2021-06-29 | 丁治淦 | Flue gas desulfurization and denitrification system and application method thereof |
CN118286842A (en) * | 2024-04-09 | 2024-07-05 | 无锡安和净化设备有限公司 | Purifying device capable of classifying and treating various gases |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090277334A1 (en) | Wet flue gas desulfurization apparatus | |
KR101473285B1 (en) | Wet flue gas desulfurization device | |
WO2008035703A1 (en) | Wet-type exhaust desulfurizing apparatus | |
JP2003103139A (en) | Wet process flue gas desulfurizer | |
JP3776793B2 (en) | Wet flue gas desulfurization equipment | |
JP2001327831A (en) | Wet type exhaust gas desulfurizer | |
JP2002136835A (en) | Two-chamber type wet flue gas desulfurization apparatus | |
JP2002253925A (en) | Wet type stack gas desulfurization apparatus | |
JP2002248318A (en) | Wet flue gas desulfurizing apparatus | |
JPH09865A (en) | Process and device for treatment of exhaust gas | |
JP3392635B2 (en) | Exhaust gas treatment method and device | |
JPH07155536A (en) | Wet type flue gas desulfurization apparatus | |
JP4014073B2 (en) | Two-chamber wet flue gas desulfurization system | |
JPH09141048A (en) | Wet flue gas desulfurizing method and device therefor | |
JP3338209B2 (en) | Absorption tower of wet flue gas desulfurization unit | |
JP3842693B2 (en) | Wet flue gas desulfurization equipment | |
JP3333031B2 (en) | Wet exhaust gas desulfurization method | |
JPH08229341A (en) | Gas-liquid contacting method and device thereof | |
JP3907873B2 (en) | Two-chamber wet flue gas desulfurization system | |
JPH0975659A (en) | Wet exhaust gas desulfurizer | |
JP2001079337A (en) | Two chamber type wet flue gas desulfurizer | |
JP3590856B2 (en) | Exhaust gas desulfurization method | |
JP2003190739A (en) | Wet-type flue-gas desulfurization equipment | |
JPH0929059A (en) | Flue gas desulfurization and device therefor | |
JPH07171337A (en) | Flue gas desulfurization device |