JP2003100515A - Soft magnetic thin film for magnetic core with high saturation magnetization - Google Patents
Soft magnetic thin film for magnetic core with high saturation magnetizationInfo
- Publication number
- JP2003100515A JP2003100515A JP2001331714A JP2001331714A JP2003100515A JP 2003100515 A JP2003100515 A JP 2003100515A JP 2001331714 A JP2001331714 A JP 2001331714A JP 2001331714 A JP2001331714 A JP 2001331714A JP 2003100515 A JP2003100515 A JP 2003100515A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetic
- soft magnetic
- saturation magnetization
- magnetic core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 88
- 230000005415 magnetization Effects 0.000 title claims abstract description 40
- 239000010409 thin film Substances 0.000 title abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 29
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000001301 oxygen Substances 0.000 claims abstract description 17
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 239000013081 microcrystal Substances 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 65
- 239000011162 core material Substances 0.000 abstract description 14
- 239000013078 crystal Substances 0.000 abstract description 9
- 230000035699 permeability Effects 0.000 abstract description 6
- 229910052697 platinum Inorganic materials 0.000 abstract 1
- 229910002546 FeCo Inorganic materials 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 5
- 230000005389 magnetism Effects 0.000 description 5
- 229910007746 Zr—O Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101150117667 PPP1R14D gene Proteins 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017061 Fe Co Inorganic materials 0.000 description 1
- 101000650817 Homo sapiens Semaphorin-4D Proteins 0.000 description 1
- 102100027744 Semaphorin-4D Human genes 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002707 nanocrystalline material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0246—Manufacturing of magnetic circuits by moulding or by pressing powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/14—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
- H01F10/147—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel with lattice under strain, e.g. expanded by interstitial nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetic Heads (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Compounds Of Iron (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は軟磁性膜に関し、特に5
0Gbpi以上の高密度磁気記録の記録用磁気ヘッドに
好適な高い飽和磁束密度、優れた高周波特性および熱的
安定性を有する磁心用軟磁性膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic film, especially 5
The present invention relates to a soft magnetic film for a magnetic core having a high saturation magnetic flux density suitable for a recording magnetic head of high density magnetic recording of 0 Gbpi or more, excellent high frequency characteristics and thermal stability.
【0002】[0002]
【従来の技術】コンピュータの高性能化に伴い、主な記
録部であるハードディスクの高記録密度化が年40%以
上の大きさで進んでおり、2,3年後には100Gbp
iを超えることが予測されている。このような高い記録
密度を有するハードディスクには大きな保磁力を示す媒
体とこれをオーバーライトするための高い飽和磁化を有
する記録ヘッド用軟磁性材料が要求される。しかし、十
分な特性を有する材料はまだ見出されていない。特に、
近未来の超高密度記録のハードディスク装置では、記録
用ヘッド材料の点で大きな問題になることが考えられ
る。2. Description of the Related Art As the performance of computers has increased, the recording density of hard disks, which are the main recording section, has been increasing at a rate of 40% or more per year, and 100 Gbp after a few years.
It is expected to exceed i. A hard disk having such a high recording density requires a medium having a large coercive force and a soft magnetic material for a recording head having a high saturation magnetization for overwriting the medium. However, a material having sufficient properties has not yet been found. In particular,
In the near future, ultra-high-density recording hard disk devices, it is conceivable that there will be a major problem in terms of recording head materials.
【0003】一般に、ハードディスク装置の記録用ヘッ
ド材料の飽和磁化は、記録媒体の保磁力の約3倍の大き
さを保有しないと十分にオーバーライトすることが出来
ないことが知られている。100Gbpiの記録密度を
得るためには、7000Oe以上の保磁力が媒体に求め
られ、その結果、記録用ヘッド材料には、2.1T以上
の飽和磁化を有することが求められる。It is generally known that the saturation magnetization of the recording head material of a hard disk drive cannot be sufficiently overwritten unless it has a coercive force of about 3 times the coercive force of the recording medium. In order to obtain a recording density of 100 Gbpi, a coercive force of 7,000 Oe or more is required for the medium, and as a result, the recording head material is required to have a saturation magnetization of 2.1 T or more.
【0004】最近、大きな飽和磁化を有する高周波軟磁
性材料の研究が盛んに行われており、これまでに数多く
の磁性材料、例えば、T.Osaka,M.Taka
i,K.Hayashi,K.Ohashi,M.Sa
ito and K.Yamada:Nature,3
92,796(1998),大沼、李、小林、増本、藤
森:日本応用磁気学会誌、24,691(2000)が
提案されてきた。しかし、それらの材料のBs値は高々
2.0Tであり、現状での書き込み容量には対応できて
いる。しかし、年約40%の割合で記録密度が上昇して
いる昨今、数年後のハードディスクには、現状の軟磁性
材料では対応できなくなることが考えられ、さらなる大
きな飽和磁化を有する軟磁性材料が要望されている。Recently, high-frequency soft magnetic materials having a large saturation magnetization have been actively researched, and a large number of magnetic materials such as T.W. Osaka, M .; Taka
i, K. Hayashi, K .; Ohashi, M .; Sa
it and K. Yamada: Nature, 3
92, 796 (1998), Onuma, Lee, Kobayashi, Masumoto, Fujimori: Journal of Japan Society for Applied Magnetics, 24, 691 (2000). However, the Bs value of those materials is at most 2.0 T, which is sufficient for the current writing capacity. However, with the recent increase in recording density at a rate of about 40%, it is considered that the current soft magnetic materials will no longer be compatible with hard disks several years later, and soft magnetic materials with even higher saturation magnetization will be used. Is requested.
【0005】[0005]
【発明が解決しようとする課題】磁性原子中最も大きな
磁化の値を示す材料が純Feで、その値は2.2Tであ
り、また合金ではFe−Coで、2.4〜2.5Tであ
る。その他、Feにわずかの窒素が入った特殊な構造を
示す物質がさらに大きな磁化を示すとの報告がなされた
が、その真実性は定かではない。そのため、従来から多
くの研究者によって純FeやFeCoの軟磁性化が試み
られてきたが、まだ成功していない。The material exhibiting the largest magnetization value among the magnetic atoms is pure Fe, which has a value of 2.2T, and the alloy Fe-Co, which has a value of 2.4 to 2.5T. is there. In addition, it was reported that a substance having a special structure, in which Fe contains a small amount of nitrogen, exhibits even larger magnetization, but the truth is not clear. Therefore, many researchers have tried to soften pure Fe and FeCo, but have not succeeded yet.
【0006】軟磁性化を促進させるためには、材料の磁
気異方性を小さくすることにある。そのためには、結晶
粒径を制御させることと、結晶配向を制御することの2
つの方法が行われている。結晶粒径を制御し、磁気異方
性を分散消滅させた例がアモルファス材料であり、また
ナノ結晶材料である。しかし、これらの場合はいずれも
が微細化、または非晶質化させるために、かなりの量の
非磁性元素を混入させなければならず、そのために、磁
化の大きさが著しく減少してしまう。もう1つの優先結
晶配向を制御することによって異方性を小さくする方法
においても、非磁性元素の混入が必要であり、そのため
Bsは減少し、また組成的に材料がかなり限定される。In order to promote soft magnetization, the magnetic anisotropy of the material should be reduced. For that purpose, it is necessary to control the crystal grain size and the crystal orientation.
One way is done. An example in which the crystal grain size is controlled and the magnetic anisotropy is dispersed and eliminated is an amorphous material or a nanocrystalline material. However, in each of these cases, a considerable amount of a non-magnetic element must be mixed in order to make the particles finer or amorphous, which significantly reduces the magnitude of magnetization. Another method for reducing anisotropy by controlling the preferential crystal orientation also requires the inclusion of a non-magnetic element, which reduces Bs and considerably limits the material compositionally.
【0007】本発明は前記課題を解決するためになされ
たもので、2.2T以上の大きな飽和磁化を示す高周波
帯域まで、優れた軟磁性を示す膜を提供することを目的
としている。The present invention has been made to solve the above problems, and an object thereof is to provide a film exhibiting excellent soft magnetism up to a high frequency band exhibiting a large saturation magnetization of 2.2 T or more.
【0008】[0008]
【課題を解決するための手段】本発明は、上記の事情を
鑑みて鋭意努力した結果、僅かな酸素を含む、極狭い組
成範囲の(Fe1−ACoA)100−X−Y−ZMX
RYOZ膜に、2.2T以上の大きな飽和磁化を有し、
且つ高周波軟磁気特性をも示す膜が得られることを見出
し、本発明に至ったものである。The present invention has made intensive efforts in view of the above circumstances, and as a result, (Fe 1-A Co A ) 100-XYZ having a very narrow composition range containing a slight amount of oxygen. M X
The R Y O Z film has a large saturation magnetization of 2.2 T or more,
Moreover, they have found that a film exhibiting high-frequency soft magnetic properties can be obtained, and have reached the present invention.
【0009】本発明の特徴とするところは次の通りであ
る。第1発明は、一般式(Fe1−ACoA)
100−X−Y−ZMXRYOZで表され、MはZr及
びAlの1種又は2種の元素であり、RはRu,Pd,
Ptのうちから選択された1種又は2種の元素であり、
Oは酸素を表し、且つ組成比A,X,Y,Zは原子比率
で、
0.25≦A≦0.5
1≦X≦3
0≦Y≦1
6≦Z≦10
である組成からなり、体心立方構造の(110)面が優
先配向している粒径が40nm以下の微結晶で、且つ飽
和磁化2.2T以上を有することを特徴とする磁心用軟
磁性膜に関する。The features of the present invention are as follows. The first invention is represented by a general formula (Fe 1-A Co A ).
100-X-Y-Z M X R Y O Z , M is one or two elements of Zr and Al, R is Ru, Pd,
One or two elements selected from Pt,
O represents oxygen, and the composition ratios A, X, Y, and Z are atomic ratios, and 0.25 ≦ A ≦ 0.5 1 ≦ X ≦ 3 0 ≦ Y ≦ 16 6 ≦ Z ≦ 10 The present invention relates to a soft magnetic film for a magnetic core, which is characterized in that the (110) plane of the body-centered cubic structure is preferentially oriented and has a crystallite size of 40 nm or less and a saturation magnetization of 2.2 T or more.
【0010】第2発明は、一般式(Fe1−ACoA)
100−X−Y−ZZrXRuYOZで表され、且つ組
成比A,X,Y,Zは原子比率で、
0.25≦A≦0.5
1≦X≦3
0≦Y≦1
6≦Z≦10
である組成からなり、ZrとOの原子比率が1:2より
も多い酸素を含み、体心立方構造の(110)面が優先
配向している粒径が40nm以下の微結晶で、且つ飽和
磁化2.2T以上を有することを特徴とする磁心用軟磁
性膜に関する。The second invention is the general formula (Fe 1-A Co A )
100-X-Y-Z is represented by Zr X Ru Y O Z, and the composition ratio A, X, Y, Z is atomic ratio, 0.25 ≦ A ≦ 0.5 1 ≦ X ≦ 3 0 ≦ Y ≦ The composition is such that 16 ≦ Z ≦ 10, the atomic ratio of Zr and O is greater than 1: 2, and oxygen is included, and the (110) plane of the body-centered cubic structure is preferentially oriented and the particle size is 40 nm or less. The present invention relates to a soft magnetic film for a magnetic core, which is microcrystalline and has a saturation magnetization of 2.2 T or more.
【0011】第3発明は、一般式(Fe1−ACoA)
100−X−Y−ZAlXRuYOZで表され、且つ組
成比A,X,Y,Zは原子比率で、
0.25≦A≦0.5
1≦X≦2.4
0≦Y≦1
2≦Z≦6
である組成からなり、AlとOの原子比率が2:3より
も多い酸素を含み、体心立方構造の(110)面が優先
配向している粒径が40nm以下の微結晶で、且つ飽和
磁化2.2T以上を有することを特徴とする磁心用軟磁
性膜に関する。The third aspect of the present invention is the general formula (Fe 1-A Co A )
100-X-Y-Z is represented by Al X Ru Y O Z, and the composition ratio A, X, Y, Z is atomic ratio, 0.25 ≦ A ≦ 0.5 1 ≦ X ≦ 2.4 0 ≦ The composition is such that Y ≦ 12 ≦ Z ≦ 6, the atomic ratio of Al to O is larger than 2: 3, and oxygen is included, and the (110) plane of the body-centered cubic structure has a preferentially oriented grain size of 40 nm. The present invention relates to a soft magnetic film for a magnetic core, which is characterized by the following crystallites and having a saturation magnetization of 2.2 T or more.
【0012】第4発明は、50Oe以上の一方向磁界中
で成膜することにより、5Oe以上の一軸磁気異方性を
付与したことを特徴とする請求項1ないし3のいずれか
1項に記載の磁心用軟磁性膜に関する。The fourth invention is characterized in that uniaxial magnetic anisotropy of 5 Oe or more is imparted by forming the film in a unidirectional magnetic field of 50 Oe or more. The present invention relates to a soft magnetic film for magnetic core.
【0013】第5発明は、100℃以上600℃以下の
温度で、且つ一方向磁界中で焼鈍することを特徴とする
請求項1ないし4のいずれか1項に記載の磁心用軟磁性
膜に関する。A fifth aspect of the present invention relates to a soft magnetic film for a magnetic core according to any one of claims 1 to 4, which is annealed at a temperature of 100 ° C. or more and 600 ° C. or less and in a unidirectional magnetic field. .
【0014】[0014]
【作用】本発明の軟磁性膜は、粒径が40nm以下のF
eCoRの金属粒子で構成されており、その中に微細な
M−O酸化物が少量分散している形態になっている。そ
のために、個々の粒子が持っている結晶磁気異方性が大
きくとも、ランダムに配向しているために膜全体の磁気
異方性は小さくなる。FeCo合金においてFeとCo
との組成比(原子%)が(75:25)〜(50:5
0)の範囲のときに2.4T以上の大きなBsを示す。
M−O酸化物が13%(原子%)より多くなると軟磁性
は促進するが、Bsは2.2T以下となる。一方、7%
より少ない膜では、Bsは2.4Tに近い値を示すが、
金属粒子径が大きくなり、保磁力が大きくなってしま
う。R量が1%を超えるとBsの減少をもたらすが、そ
れ以内であれば、成膜中にまたは熱処理中に一方向の磁
界を印加することにより、膜に一軸磁気異方性を付与さ
せ、高周波軟磁気特性を向上させることが出来る。M元
素がFeCo中に存在するとBsが小さくなるばかり
か、粒子の結晶配向をも変え、軟磁気特性を示さなくな
る。そのため、M−O中の酸素濃度がM−Oの化合物の
化学量論比、例えばZr−O系ではZrO2 、またA
l−O系ではAl2O3、よりも多いことが望まれ、そ
の組成ではマトリックス中にMは含まなくなる。The soft magnetic film of the present invention has an F particle size of 40 nm or less.
It is composed of eCoR metal particles, in which a small amount of fine MO oxide is dispersed. Therefore, even if the crystal magnetic anisotropy of each grain is large, the magnetic anisotropy of the entire film is small because the grains are randomly oriented. Fe and Co in FeCo alloy
The composition ratio (atomic%) of (75:25) to (50: 5)
In the range of 0), a large Bs of 2.4 T or more is shown.
When the M-O oxide content is more than 13% (atomic%), soft magnetism is promoted, but Bs is 2.2T or less. On the other hand, 7%
For smaller films, Bs is close to 2.4T,
The metal particle diameter becomes large and the coercive force also becomes large. When the amount of R exceeds 1%, Bs is reduced, but if the amount is less than 1%, a uniaxial magnetic anisotropy is imparted to the film by applying a unidirectional magnetic field during film formation or during heat treatment, The high frequency soft magnetic characteristics can be improved. When the M element is present in FeCo, not only Bs becomes small, but also the crystal orientation of the particles is changed and the soft magnetic property is not exhibited. Therefore, the stoichiometric ratio of the compound in which the oxygen concentration in M-O is M-O, such as ZrO 2 in the Zr-O system, or A
More than Al 2 O 3 is desired in the l-O system, and the composition does not include M in the matrix.
【0015】一方、基板ホールダー付近に50Oe以上
の一方向磁界が印加するように、例えば永久磁石等をセ
ットし成膜すると、膜中に5Oe以上の異方性磁界を付
与させることが出来、膜の高周波軟磁気特性が向上する
のである。同様の効果は成膜した膜を一方向磁界中で焼
鈍することによっても得られる。ただし、このときの温
度が100℃以下では低すぎて、異方性磁界が充分付与
されず、600℃以上では結晶粒が成長してしまい、軟
磁性膜が得られなくなってしまうので、好ましくない。
また熱処理することにより、内部応力が緩和し、磁気特
性の改善が同時になされる。On the other hand, when a permanent magnet or the like is set and deposited so that a unidirectional magnetic field of 50 Oe or more is applied near the substrate holder, an anisotropic magnetic field of 5 Oe or more can be imparted to the film. The high frequency soft magnetic characteristics of are improved. The same effect can be obtained by annealing the formed film in a unidirectional magnetic field. However, if the temperature at this time is 100 ° C. or lower, the anisotropic magnetic field is not sufficiently applied, and if the temperature is 600 ° C. or higher, crystal grains grow and a soft magnetic film cannot be obtained. .
The heat treatment also relaxes the internal stress and improves the magnetic properties at the same time.
【0016】(Fe1−ACoA)100−X−Y−Z
MXRYOZ体心立方構造の薄膜においては、(11
0)面配向膜は面内磁化膜となり、(111)面配向膜
は垂直磁化膜となる。本発明においては、粒径が40n
m以下の(110)面を優先配向とする薄膜を意図的に
作製し、この(110)面薄膜の成膜中または熱処理中
に、50Oe以上の一方向磁界を印加することにより、
磁界方向が容易磁化方向となり、一軸異方性を有した
(110)面配向の薄膜となり、飽和磁化が2.2T以
上で優れた高周波特性の磁心用軟磁性膜が得られたので
ある。(Fe 1-A Co A ) 100-XYZ
In the thin film of the M X R Y O Z body-centered cubic structure, (11
The (0) plane orientation film becomes an in-plane magnetization film, and the (111) plane orientation film becomes a perpendicular magnetization film. In the present invention, the particle size is 40n
By intentionally producing a thin film in which the (110) plane of m or less is preferentially oriented and applying a unidirectional magnetic field of 50 Oe or more during film formation or heat treatment of the (110) plane thin film,
The magnetic field direction was the easy magnetization direction, a (110) plane oriented thin film having uniaxial anisotropy was obtained, and a soft magnetic film for a magnetic core having a saturation magnetization of 2.2 T or more and excellent high frequency characteristics was obtained.
【0017】[0017]
【実施例】本発明を具体的に図を用いてさらに詳しく説
明する。
〔実施例〕薄膜の作製と評価
RFマグネトロンスパッタ装置を用い、(Fe.65C
o.35)96Zr4(原子%)ターゲットを用いて、
(Ar+O2)混合ガス雰囲気中での反応スパッタ法に
より、FeCo−Zr−O薄膜を作製した。膜厚の制御
は成膜時間を加減することによって行い、約1μmにな
るように調整した。基板には、約0.5mm厚のコーニ
ング社製#7059ガラスを用いた。成膜時のスパッタ
圧力は2〜8mTorrで、スパッタ電力は100〜5
00Wである。また成膜時の基板ホールダーには、10
0Oeの一方向の磁界が試料に印加されるように、一対
の永久磁石をセットした。作製した薄膜試料には、10
0〜600℃の温度で種々の熱処理を施した。The present invention will be described in more detail with reference to the drawings. [Example] Fabrication and evaluation of thin film Using an RF magnetron sputtering device, (Fe .65 C
o . 35 ) 96 Zr 4 (atomic%) target,
The (Ar + O 2) reactive sputtering in a mixed gas atmosphere to prepare a FeCo-Zr-O thin film. The film thickness was controlled by adjusting the film forming time, and was adjusted to be about 1 μm. Corning # 7059 glass having a thickness of about 0.5 mm was used for the substrate. The sputtering pressure during film formation is 2 to 8 mTorr, and the sputtering power is 100 to 5
It is 00W. Also, the substrate holder during film formation has 10
A pair of permanent magnets was set so that a unidirectional magnetic field of 0 Oe was applied to the sample. The thin film sample produced has 10
Various heat treatments were performed at a temperature of 0 to 600 ° C.
【0018】前記のようにして作製した薄膜試料は、試
料振動型磁力計を用いて磁化曲線を、また直流4端子法
により電気比抵抗を測定した。膜組成は、エネルギー分
散型分光分析法(EDS)と(EPMA)によって決定
した。膜の構造は、Cu−Kα線を用いたX線回折法に
よって決定した。前記の方法で作製した薄膜とその飽和
磁化(Bs)の値を図1に示す。With respect to the thin film sample manufactured as described above, the magnetization curve was measured using a sample vibrating magnetometer, and the electrical resistivity was measured by the direct current 4-terminal method. The film composition was determined by energy dispersive spectroscopy (EDS) and (EPMA). The structure of the film was determined by the X-ray diffraction method using Cu-Kα ray. FIG. 1 shows the thin film produced by the above method and its saturation magnetization (Bs) value.
【0019】図中、白丸は面内磁化膜を表し、黒丸は面
内磁化成分と面に垂直な方向に容易磁化を示す成分とが
混在する膜を表す。図から明らかなように、磁気特性は
FeCo−ZrO2線で2分割される。ZrO2よりも
酸素の少ない組成の膜では垂直磁化膜が、酸素の多い組
成の膜では面内膜が実現する。膜中の酸素量の増加とと
もにZrは選択的に酸化される。ZrO2よりも酸素の
少ない組成域では、マトリックスはFeCoZrになっ
ており、またその粒界に微小なZrOが析出している構
造になっており、且つFeCoZrが(111)面に優
先配向している(図2−A)ために、垂直磁化成分が現
れる。一方、ZrO2よりも酸素の多い組成の膜では、
全てのZrは酸化されるため、マトリックスはFeCo
のみになり、膜構造はFeCo中に微小なZrOが析出
している構造になり、且つFeCoが(110)面に優
先配向する(図2−B)ために面内磁化膜が実現する。
さらに酸素濃度の高い組成域ではFeCoも酸化されて
しまうために、垂直磁化膜になってしまうのである。In the figure, white circles represent in-plane magnetized films, and black circles represent films in which in-plane magnetized components and components exhibiting easy magnetization in the direction perpendicular to the plane are mixed. As is clear from the figure, the magnetic characteristic is divided into two by the FeCo-ZrO 2 line. A perpendicularly magnetized film is realized with a film having a composition with less oxygen than ZrO 2 , and an in-plane film is realized with a film having a composition with more oxygen. Zr is selectively oxidized as the amount of oxygen in the film increases. In the composition range in which oxygen is smaller than that of ZrO 2 , the matrix is FeCoZr, and the structure is such that minute ZrO is precipitated in the grain boundaries, and FeCoZr is preferentially oriented in the (111) plane. (FIG. 2-A), a perpendicular magnetization component appears. On the other hand, for a film having a composition with more oxygen than ZrO 2 ,
Since all Zr is oxidized, the matrix is FeCo
The film structure becomes a structure in which minute ZrO is precipitated in FeCo, and FeCo is preferentially oriented to the (110) plane (FIG. 2-B), so that an in-plane magnetized film is realized.
Further, FeCo is also oxidized in the composition region where the oxygen concentration is high, so that it becomes a perpendicular magnetization film.
【0020】Zr濃度の高い領域の飽和磁化はZr量と
ともに減少し、一方酸素濃度の少ない領域では、酸素濃
度の増加とともに減少するような組成依存性を示す。そ
のため、FeCo−ZrO2組成付近にBsのピークを
持つような組成依存性を示し、低Zr濃度の組成域では
90(原子%)FeCoでも2.2T以上のBsを示す
膜が得られる。The saturation magnetization in the high Zr concentration region decreases with the Zr amount, while in the low oxygen concentration region, the saturation magnetization decreases with the increase in the oxygen concentration. Therefore, a film having a composition dependency such that a Bs peak is present in the vicinity of the FeCo-ZrO 2 composition, and a Bs of 2.2 T or more can be obtained even with 90 (atomic%) FeCo in the low Zr concentration composition range.
【0021】図3には、FeCo−Zr−O膜の保磁力
の組成依存性を示す。図から明らかなように、FeCo
−ZrO2組成に沿ってHcの小さな組成域が存在する
ことを見出した。Hcが小さくなる原因は、面配向、粒
径および交換結合の大きさに起因しているものと考えら
れる。ただし、FeCo濃度が高くなると、粒径が大き
くなるため、膜の結晶配向が(110)面になっていて
も、Hcは大きくなる。FIG. 3 shows the composition dependence of the coercive force of the FeCo-Zr-O film. As is clear from the figure, FeCo
Small composition range of Hc found that lie along the -ZrO 2 compositions. It is considered that the reason why Hc becomes small is due to the plane orientation, the particle size and the size of the exchange coupling. However, since the grain size increases as the FeCo concentration increases, Hc increases even if the crystal orientation of the film is the (110) plane.
【0022】図1と3とを重ね合わせると明らかなよう
に、Zr濃度が1(原子%)以上、3(原子%)以下、
FeCo濃度が88(原子%)以上92(原子%)以
下、そしてO濃度が6(原子%)以上10(原子%)以
下の組成域に飽和磁化が2.2T以上の軟磁性膜を見出
すことが出来た。As is apparent from the superposition of FIGS. 1 and 3, the Zr concentration is not less than 1 (at%) and not more than 3 (at%),
To find a soft magnetic film having a saturation magnetization of 2.2 T or more in a composition range in which the FeCo concentration is 88 (atomic%) or more and 92 (atomic%) or less, and the O concentration is 6 (atomic%) or more and 10 (atomic%) or less. Was completed.
【0023】本発明膜の典型的な磁化曲線の結果を図4
に示す。図4−Aは成膜したままの膜の結果であり、図
4−Bは773K(500℃)で熱処理した後の膜の結
果である。なお、熱処理は真空中で、1kOeの静磁界
中で行った。いずれも2.2T以上のBsを示し、面内
磁化膜になっている。注目すべき結果は熱処理後のHc
の値である。熱処理を施すことにより、Hcの大きさは
約1/3に小さくなる。ここでHceは容易磁化方向
の、Hchは困難磁化方向の保磁力を示す。このよう
に、熱処理により軟磁性が改善することがわかったの
で、熱処理温度とHcとの関係を詳細に検討した(図
5)。Hcは熱処理温度の上昇とともに小さくなり、7
73K付近で最小値を示し、それ以上の温度では増加し
始める。熱処理によるHcの減少は、成膜時の歪が緩和
したことによるものであり、高温での増大はFeCo粒
子の粒径の増加に起因しているものと考えられる。これ
らの結果は、本合金薄膜の耐熱性が比較的大きいことを
も示唆している。The typical magnetization curve results for the inventive film are shown in FIG.
Shown in. FIG. 4-A shows the result of the as-deposited film, and FIG. 4-B shows the result of the film after heat treatment at 773K (500 ° C.). The heat treatment was performed in vacuum in a static magnetic field of 1 kOe. Both show Bs of 2.2 T or more, and are in-plane magnetized films. Notable result is Hc after heat treatment
Is the value of. By performing the heat treatment, the size of Hc is reduced to about 1/3. Here, Hce represents the coercive force in the easy magnetization direction, and Hch represents the coercive force in the difficult magnetization direction. As described above, it was found that the heat treatment improves the soft magnetism. Therefore, the relationship between the heat treatment temperature and Hc was examined in detail (FIG. 5). Hc decreases with increasing heat treatment temperature,
It shows a minimum value around 73K, and begins to increase at higher temperatures. The decrease in Hc due to heat treatment is due to the relaxation of strain during film formation, and the increase at high temperature is considered to be due to the increase in the particle size of FeCo particles. These results also suggest that the alloy thin film has relatively high heat resistance.
【0024】種々の温度で熱処理した試料の透磁率の周
波数依存性を評価した結果が、図6に示してある。一軸
磁気異方性が付与されているために、試料は成膜直後の
膜でも、600MHzまでほぼ平らである。図中の69
3Kの結果から明らかなように、熱処理温度を上げる
と、透磁率ばかりでなく、周波数依存性も向上する。最
小のHcの値を示した773Kで処理された膜は透磁率
は大きいが、渦電流損失の影響で300MHz付近から
減少する。The results of evaluating the frequency dependence of the magnetic permeability of the samples heat-treated at various temperatures are shown in FIG. Since the uniaxial magnetic anisotropy is imparted, the sample is almost flat up to 600 MHz even in the film immediately after film formation. 69 in the figure
As is clear from the result of 3K, increasing the heat treatment temperature improves not only the magnetic permeability but also the frequency dependence. The film treated at 773K, which showed the minimum Hc value, has a high magnetic permeability, but decreases from around 300 MHz due to the effect of eddy current loss.
【0025】表1に示した試料は、いずれも請求項記載
の範囲の膜である。これらの膜はいずれもBsは2.2
T以上の値を示し、面内磁化膜になっており、軟磁性を
示す。Ruの添加は軟磁性とHkの向上に奇与し、P
d,PtはHkを増大させる効果が大きい。All the samples shown in Table 1 are films within the scope of the claims. In all of these films, Bs is 2.2.
It exhibits a value of T or more, is an in-plane magnetized film, and exhibits soft magnetism. The addition of Ru has an adverse effect on the improvement of soft magnetism and Hk.
d and Pt have a large effect of increasing Hk.
【0026】[0026]
【表1】 [Table 1]
【0027】本発明の高飽和磁化を有する軟磁性薄膜
は、Bsが大きいばかりでなく、高周波軟磁気特性が優
れているので、磁気記録ヘッド用磁心のみならず、1M
Hz以上の高周波帯域で用いるトランス用磁心やインダ
クタ、フィルタなどの磁心としても好適である。また高
周波EMI材料としても適している。The soft magnetic thin film having a high saturation magnetization of the present invention has not only a large Bs but also excellent high frequency soft magnetic characteristics, so that not only the magnetic core for a magnetic recording head but also 1M.
It is also suitable as a magnetic core for transformers, inductors, filters, etc. used in a high frequency band of Hz or higher. It is also suitable as a high frequency EMI material.
【0028】[0028]
【発明の効果】本発明の高飽和磁化を有する磁心用軟磁
性膜は、(110)面に優先配向した40nm以下の粒
径を有するFeCoマトリックス中に、微小なZr−O
粒子が分散している構造からなり、2.2T以上のBs
を有するばかりでなく、その透磁率は約1GHz付近ま
で伸びている。そのため、磁気ヘッド用磁心材料のみな
らず、各種の高周波磁気デバイス用磁心材料として好適
で、その工業的意義は大きい。The soft magnetic film for a magnetic core having a high saturation magnetization of the present invention has a fine Zr-O in a FeCo matrix having a grain size of 40 nm or less preferentially oriented in the (110) plane.
It has a structure in which particles are dispersed and has a Bs of 2.2 T or more.
Not only that, but its magnetic permeability extends to around 1 GHz. Therefore, it is suitable not only as a magnetic core material for a magnetic head but also as a magnetic core material for various high-frequency magnetic devices, and its industrial significance is great.
【図1】(Fe.65Co.35)−Zr−O3元系薄
膜の組成と、膜の容易磁化方向と飽和磁化の等値曲線を
示す特性図である。[1] (Fe .65 Co .35) the composition of -Zr-O3 ternary thin film, a characteristic diagram showing the equality curves of the easy magnetization direction as the saturation magnetization of the film.
【図2】成膜したままの(Fe.63Co.37)
95.2Zr2.0O2.8膜(A)と(Fe.65C
o.35)92.7Zr2.2O5.1膜(B)とのX
線回折図形。FIG. 2 As-deposited (Fe .63 Co .37 )
95.2 Zr 2.0 O 2.8 film (A) and (Fe .65 C
o . 35 ) X with 92.7 Zr 2.2 O 5.1 film (B)
Line diffraction pattern.
【図3】(Fe.65Co.35)−Zr−O3元系薄
膜の組成と、膜の容易磁化方向と保磁力の等値曲線を示
す特性図である。[3] the composition of the (Fe .65 Co .35) -Zr- O3 ternary thin film, a characteristic diagram showing the equality curves of the easy magnetization direction and the coercive force of the film.
【図4】(Fe.65Co.35)92.7Zr2.2
O5.1薄膜の成膜したままの膜と、773Kで熱処理
した膜の磁化と印加磁場との関係を示す特性図である。[4] (Fe .65 Co .35) 92.7 Zr 2.2
FIG. 6 is a characteristic diagram showing the relationship between the magnetization and applied magnetic field of an as-deposited O 5.1 thin film and a film heat-treated at 773K.
【図5】(Fe.65Co.35)92.7Zr2.2
O5.1薄膜の保磁力と熱処理温度との関係を示す特性
図である。FIG. 5: (Fe .65 Co .35 ) 92.7 Zr 2.2
It is a characteristic view which shows the relationship between the coercive force of an O5.1 thin film, and heat processing temperature.
【図6】(Fe.65Co.35)92.7Zr2.2
O5.1薄膜の成膜したままの膜と693Kと773K
で熱処理した膜の透磁率と周波数の関係を示す特性図で
ある。FIG. 6 is (Fe .65 Co .35 ) 92.7 Zr 2.2.
As-deposited O 5.1 thin film and 693K and 773K
FIG. 6 is a characteristic diagram showing the relationship between magnetic permeability and frequency of the film heat-treated in Step 1.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA06 AA10 AB01 AD02 AD04 AE03 5D033 BA03 CA01 DA03 5D093 AA05 BB18 BC18 FA09 HA17 JA01 JC03 JC06 5E049 AA01 AA04 AA09 AC05 BA12 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4G002 AA06 AA10 AB01 AD02 AD04 AE03 5D033 BA03 CA01 DA03 5D093 AA05 BB18 BC18 FA09 HA17 JA01 JC03 JC06 5E049 AA01 AA04 AA09 AC05 BA12
Claims (5)
100−X−Y−ZMXRYOZで表され、MはZr及
びAlの1種又は2種の元素であり、RはRu,Pd,
Ptのうちから選択された1種又は2種の元素であり、
Oは酸素を表し、且つ組成比A,X,Y,Zは原子比率
で、 0.25≦A≦0.5 1≦X≦3 0≦Y≦1 6≦Z≦10 である組成からなり、体心立方構造の(110)面が優
先配向している粒径が40nm以下の微結晶で、且つ飽
和磁化2.2T以上を有することを特徴とする磁心用軟
磁性膜。 1. A general formula (Fe 1-A Co A )
100-X-Y-Z M X R Y O Z , M is one or two elements of Zr and Al, R is Ru, Pd,
One or two elements selected from Pt,
O represents oxygen, and the composition ratios A, X, Y, and Z are atomic ratios, and 0.25 ≦ A ≦ 0.5 1 ≦ X ≦ 3 0 ≦ Y ≦ 16 6 ≦ Z ≦ 10 A soft magnetic film for a magnetic core, characterized in that the (110) plane of the body-centered cubic structure is microcrystalline with a grain size of 40 nm or less and has a saturation magnetization of 2.2 T or more.
100−X−Y−ZZrXRuYOZで表され、且つ組
成比A,X,Y,Zは原子比率で、 0.25≦A≦0.5 1≦X≦3 0≦Y≦1 6≦Z≦10 である組成からなり、ZrとOの原子比率が1:2より
も多い酸素を含み、体心立方構造の(110)面が優先
配向している粒径が40nm以下の微結晶で、且つ飽和
磁化2.2T以上を有することを特徴とする磁心用軟磁
性膜。2. A general formula (Fe 1-A Co A ).
100-X-Y-Z is represented by Zr X Ru Y O Z, and the composition ratio A, X, Y, Z is atomic ratio, 0.25 ≦ A ≦ 0.5 1 ≦ X ≦ 3 0 ≦ Y ≦ The composition is such that 16 ≦ Z ≦ 10, the atomic ratio of Zr and O is greater than 1: 2, and oxygen is included, and the (110) plane of the body-centered cubic structure is preferentially oriented and the particle size is 40 nm or less. A soft magnetic film for a magnetic core, which is microcrystalline and has a saturation magnetization of 2.2 T or more.
100−X−Y−ZAlXRuYOZで表され、且つ組
成比A,X,Y,Zは原子比率で、 0.25≦A≦0.5 1≦X≦2.4 0≦Y≦1 2≦Z≦6 である組成からなり、AlとOとの原子比率が2:3よ
りも多い酸素を含み、体心立方構造の(110)面が優
先配向している粒径が40nm以下の微結晶で、且つ飽
和磁化2.2T以上を有することを特徴とする磁心用軟
磁性膜。3. A general formula (Fe 1-A Co A )
100-X-Y-Z is represented by Al X Ru Y O Z, and the composition ratio A, X, Y, Z is atomic ratio, 0.25 ≦ A ≦ 0.5 1 ≦ X ≦ 2.4 0 ≦ The composition is such that Y ≦ 12 ≦ Z ≦ 6, the atomic ratio of Al to O is larger than 2: 3, and oxygen is included, and the (110) plane of the body-centered cubic structure has a preferentially oriented grain size. A soft magnetic film for a magnetic core, which is a microcrystal of 40 nm or less and has a saturation magnetization of 2.2 T or more.
とにより、5Oe以上の一軸磁気異方性を付与したこと
を特徴とする請求項1ないし3のいずれか1項に記載の
磁心用軟磁性膜。4. The magnetic core according to any one of claims 1 to 3, wherein uniaxial magnetic anisotropy of 5 Oe or more is imparted by forming the film in a unidirectional magnetic field of 50 Oe or more. Soft magnetic film.
一方向の磁界中で焼鈍することを特徴とする請求項1な
いし4のいずれか1項に記載の磁心用軟磁性膜。5. The soft magnetic film for a magnetic core according to claim 1, wherein the soft magnetic film is annealed at a temperature of 100 ° C. or more and 600 ° C. or less and in a magnetic field in one direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001331714A JP2003100515A (en) | 2001-09-21 | 2001-09-21 | Soft magnetic thin film for magnetic core with high saturation magnetization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001331714A JP2003100515A (en) | 2001-09-21 | 2001-09-21 | Soft magnetic thin film for magnetic core with high saturation magnetization |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003100515A true JP2003100515A (en) | 2003-04-04 |
Family
ID=19147232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001331714A Withdrawn JP2003100515A (en) | 2001-09-21 | 2001-09-21 | Soft magnetic thin film for magnetic core with high saturation magnetization |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003100515A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004097806A1 (en) * | 2003-04-30 | 2004-11-11 | Fujitsu Limited | Magnetic head |
JP2005025890A (en) * | 2003-07-04 | 2005-01-27 | Fujitsu Ltd | Magnetic film for magnetic head |
US20100201469A1 (en) * | 2006-08-09 | 2010-08-12 | General Electric Company | Soft magnetic material and systems therewith |
JP2012132095A (en) * | 2010-10-29 | 2012-07-12 | General Electric Co <Ge> | Article formed using nanostructured ferritic alloy |
JP2019534562A (en) * | 2016-10-27 | 2019-11-28 | ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティ オブ アラバマ | Fe-Al alloy magnetic thin film |
-
2001
- 2001-09-21 JP JP2001331714A patent/JP2003100515A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004097806A1 (en) * | 2003-04-30 | 2004-11-11 | Fujitsu Limited | Magnetic head |
JPWO2004097806A1 (en) * | 2003-04-30 | 2006-07-13 | 富士通株式会社 | Magnetic head |
US7372666B2 (en) | 2003-04-30 | 2008-05-13 | Fujitsu Limited | Magnetic head with alternately laminated (110)-orientation-inducing non-magnetic underlayers, magnetic layers, and discontinuous insulating layers |
JP2005025890A (en) * | 2003-07-04 | 2005-01-27 | Fujitsu Ltd | Magnetic film for magnetic head |
US20100201469A1 (en) * | 2006-08-09 | 2010-08-12 | General Electric Company | Soft magnetic material and systems therewith |
JP2012132095A (en) * | 2010-10-29 | 2012-07-12 | General Electric Co <Ge> | Article formed using nanostructured ferritic alloy |
JP2019534562A (en) * | 2016-10-27 | 2019-11-28 | ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティ オブ アラバマ | Fe-Al alloy magnetic thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | High energy products in rapidly annealed nanoscale Fe/Pt multilayers | |
Hasegawa et al. | Soft magnetic properties of microcrystalline Fe-MC (M= V, Nb, Ta) films with high thermal stability | |
JP3981732B2 (en) | FePt magnetic thin film having perpendicular magnetic anisotropy and method for producing the same | |
US5587026A (en) | Ferromagnetic film | |
Carey et al. | The magnetic and magneto‐optical properties of Co, Cr, Mn, and Ni substituted barium ferrite films | |
JP2001273622A (en) | Nanogranular thin film and magnetic recording medium | |
JP2963003B2 (en) | Soft magnetic alloy thin film and method of manufacturing the same | |
JP2003100515A (en) | Soft magnetic thin film for magnetic core with high saturation magnetization | |
US20030133223A1 (en) | Magnetic recording head with annealed multilayer, high moment structure | |
JP2694110B2 (en) | Magnetic thin film and method of manufacturing the same | |
KR0177922B1 (en) | Soft magnetic thin film | |
JP3956061B2 (en) | Uniaxial magnetic anisotropic film | |
JP2003006830A (en) | Magnetic recording medium and its production method | |
JP2927826B2 (en) | Soft magnetic alloy and manufacturing method thereof | |
JPH0690977B2 (en) | Garnet thin film for magneto-optical recording media | |
JP3810881B2 (en) | High frequency soft magnetic film | |
JP2893706B2 (en) | Iron-based soft magnetic film | |
CN1768401A (en) | Fept magnetic thin film having perpendicular magnetic anisotropy and method for preparation thereof | |
JPH10189322A (en) | Magnetic thin film | |
Ikeda et al. | Soft magnetic properties and microstructure of high moment Fe-N-Al-O films for recording heads | |
JP2539398B2 (en) | Magneto-optical recording medium | |
Chang et al. | Undoped maghemite thin films with coercivity up to 2100 Oe for magnetic recording | |
WO2004001779A1 (en) | Method of producing nife alloy films having magnetic anisotropy and magnetic storage media including such films | |
JPH03136216A (en) | Manufacture of soft magnetic alloy film and heat treatment method | |
JP4630882B2 (en) | Uniaxial magnetic anisotropic film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |