[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003177326A - Operating microscope - Google Patents

Operating microscope

Info

Publication number
JP2003177326A
JP2003177326A JP2002122972A JP2002122972A JP2003177326A JP 2003177326 A JP2003177326 A JP 2003177326A JP 2002122972 A JP2002122972 A JP 2002122972A JP 2002122972 A JP2002122972 A JP 2002122972A JP 2003177326 A JP2003177326 A JP 2003177326A
Authority
JP
Japan
Prior art keywords
observation
illumination
optical axis
magnification
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002122972A
Other languages
Japanese (ja)
Other versions
JP3730934B2 (en
Inventor
Tomonori Ishikawa
朝規 石川
俊一郎 ▲高▼橋
Shunichiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2002122972A priority Critical patent/JP3730934B2/en
Priority to US10/375,490 priority patent/US20030201378A1/en
Publication of JP2003177326A publication Critical patent/JP2003177326A/en
Application granted granted Critical
Publication of JP3730934B2 publication Critical patent/JP3730934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operating microorganism which permits good observation by allowing much illumination light to arrive at an operating site even in observation particularly at a high magnification when an observer gives a patient medical treatment of the deep operating site without the loss of the illumination light or without upsizing of the microscope. <P>SOLUTION: The operating microscope is so formed as to change the relative angle of the illumination optical axis L<SB>2</SB>of an illumination optical system with the observation optical axis L<SB>1</SB>of an observation optical system by accompanying the displacement of a moving lens possessed by a variable power lens system 3 and to approximate the illumination optical axis L<SB>2</SB>to the observation optical axis L<SB>1</SB>in the observation at the high magnification as compared to the observation at the low magnification. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、観察する像の倍率
を変更可能な手術用顕微鏡に関する。
TECHNICAL FIELD The present invention relates to a surgical microscope capable of changing the magnification of an image to be observed.

【0002】[0002]

【従来の技術】近年、手術の低侵襲化の要請に伴い、微
細な処置を可能ならしめるため、手術用顕微鏡を用いた
手術が多く行なわれるようになった。通常、手術用顕微
鏡は、観察倍率を変更する機能を備えた光学系が内蔵さ
れており、このため、例えば、脳神経外科手術において
は、腫瘍の摘出や、奇形を呈した血管に対する奇形進行
の防止処置、さらには血管の吻合等の、様々な処置を最
適な倍率での観察の下で行なえる。
2. Description of the Related Art In recent years, with the demand for minimally invasive surgery, many operations using a surgical microscope have been performed in order to enable fine treatment. Normally, a surgical microscope has an optical system with a function of changing the observation magnification. Therefore, for example, in neurosurgery, the tumor is removed or the malformation of a deformed blood vessel is prevented. Various treatments, such as vascular anastomosis, can be performed under observation at optimal magnification.

【0003】また、手術部位は平坦な表面のものばかり
ではなく、術部が深く掘り下げた深部に位置するものも
多い。そこで、特に深い穴を形成した術部の場合、術部
を照明しようとする照明光が、穴の入口で遮られ易い。
十分な照明光を深部まで到達させるため、照明光の光軸
は術部を観察する観察光の光軸とより近いことが好まし
い。
Further, the surgical site is not limited to a flat surface, but there are many surgical sites located deep in a deeply dug surgical site. Therefore, particularly in the case of a surgical site where a deep hole is formed, the illumination light that tries to illuminate the surgical site is easily blocked at the entrance of the hole.
The optical axis of the illumination light is preferably closer to the optical axis of the observation light for observing the surgical site in order to allow sufficient illumination light to reach a deep portion.

【0004】このようなことから術部を照明するための
照明光の光軸(以下、照明光軸と呼ぶ)を術部を観察す
る観察光の光軸(以下、観察光軸と呼ぶ)に近づけて配
置し、または観察光軸と照明光軸を一致させて配置した
ものが、従来から種々提案されてきた。
Therefore, the optical axis of the illumination light for illuminating the surgical site (hereinafter referred to as the illumination optical axis) becomes the optical axis of the observation light for observing the surgical site (hereinafter referred to as the observation optical axis). Various types have been conventionally proposed in which they are arranged close to each other, or the observation optical axis and the illumination optical axis are aligned.

【0005】例えば、特開平8−257037号公報の
手術用顕微鏡は、観察光学系の真下(光軸上)に半透過
半反射部材を配置し、前記観察光学系の光軸と直交する
方向から前記該半透過半反射部材に向けて照明光束を入
射させ、観察光軸と照明光軸を一致させることによっ
て、観察光軸と完全に一致した方向から照明光を術部に
照射させるようにしている。
For example, in the surgical microscope disclosed in Japanese Unexamined Patent Publication No. 8-257037, a semi-transmissive / semi-reflective member is arranged just below the observation optical system (on the optical axis), and is viewed from a direction orthogonal to the optical axis of the observation optical system. By illuminating the semitransparent-semi-reflective member with an illumination light beam so that the observation optical axis and the illumination optical axis coincide with each other, the operation light is irradiated from a direction completely coincident with the observation optical axis. There is.

【0006】また、特許第3,011,950号公報や
特開平10−73769号公報の手術用顕微鏡は、術部
が深い穴内に位置している場合において、その深い穴内
に多くの照明光を照射させるために手術用顕微鏡に内蔵
された光源から発せられた照明光の照射軸を2系統に分
けると共に、観察光軸に対して左右対称なる位置にそれ
ぞれの照明光の照射軸を固定的に配置して、定まった2
方向から観察対象に向けて照明光を照射するようにして
いる。
Further, in the surgical microscopes of Japanese Patent No. 3,011,950 and Japanese Patent Laid-Open No. 10-73769, when the surgical site is located in a deep hole, a large amount of illumination light is emitted in the deep hole. The irradiation axis of the illumination light emitted from the light source built into the surgical microscope for irradiation is divided into two systems, and the irradiation axis of each illumination light is fixed at a position symmetrical to the observation optical axis. Arranged and fixed 2
The illumination light is emitted from the direction toward the observation target.

【0007】また、特公平6−44101号公報や特許
第2891923号公報の手術用顕微鏡にあっては、対
物レンズの物体対向面よりも上方に位置する部位から観
察者の左右の眼にそれぞれ対応する左右一対の観察光束
の中間領域を経て術部に照明光束を導くようにした照明
光学系を構成し、前記左右一対の観察光束の間から術部
を照明するようにしている。
Further, in the surgical microscopes of Japanese Patent Publication No. 6-44101 and Japanese Patent No. 2891923, the left and right eyes of the observer are respectively corresponded to from the portion of the objective lens located above the object facing surface. The illumination optical system is configured to guide the illumination light flux to the surgical site through the intermediate region between the pair of left and right observation light fluxes, and the surgical site is illuminated from between the pair of left and right observation light fluxes.

【0008】[0008]

【発明が解決しようとする課題】ところで、特開平8−
257037号公報の手術用顕微鏡は、観察光学系の光
軸上に半透過半反射部材を配置しているため、光源を発
した照明光はその半分しか観察対象に導けず、さらに観
察対象で反射して観察光学系に向かう照明光束も再び該
半透過半反射部材を通り、前記観察光学系に入射するこ
とになるので、観察者の観察する明るさはさらに減り、
光量はおよそ4分の1の光量になってしまう。従って、
術者は暗い観察像のもとで手術を行なうか、又は観察に
必要な光量に対して非常に明るい光量を発することので
きる高価な高輝度光源を使用しなければならなかった。
By the way, JP-A-8-
In the surgical microscope of Japanese Patent No. 257037, since the semi-transmissive / semi-reflective member is arranged on the optical axis of the observation optical system, only half of the illumination light emitted from the light source can be guided to the observation target and further reflected by the observation target. Then, since the illumination light flux heading for the observation optical system also passes through the semi-transmissive-semi-reflective member again and enters the observation optical system, the brightness observed by the observer is further reduced,
The amount of light is about one-fourth. Therefore,
The operator had to perform an operation under a dark observation image or use an expensive high-intensity light source capable of emitting a very bright light amount with respect to the light amount required for observation.

【0009】また、特公平6−44101号公報や特許
第2891923号公報の手術用顕微鏡では、観察者の
左右の眼に対応する左右の観察光学系を、中央に位置す
る照明光学系を避けて左右に配置しなければならないた
め、左右の観察光束の間隔が大きく離れてしまう。従っ
て、照明光束が深い穴の底に到達したとしても、観察光
束の方が、この穴の入口の縁で遮られてしまい、やはり
穴の底を観察することができなかった。そればかりか、
左右の観察光束の間隔が大きく離れてしまうので、顕微
鏡自体の大型化さえ招いている。
In the surgical microscopes of Japanese Patent Publication No. 6-44101 and Japanese Patent No. 2891923, the left and right observation optical systems corresponding to the left and right eyes of the observer are avoided by avoiding the illumination optical system located at the center. Since they must be arranged on the left and right sides, the distance between the left and right observation light beams is greatly separated. Therefore, even if the illumination light flux reaches the bottom of the deep hole, the observation light flux is blocked by the edge of the entrance of this hole, and the bottom of the hole cannot be observed. Not only that,
Since the distance between the left and right observation light beams is greatly separated, the size of the microscope itself is increased.

【0010】また、特許第3011950号公報や特開
平10−73769号公報の手術用顕微鏡では観察光軸
に対して左右対称の位置から観察対象に向けて照明光を
照射するため、確かに一方向から照射する場合に比べて
深い穴の内壁を明るく照らすことは可能であるが、観察
光軸に対する照明光軸のなす角度自体は従来の顕微鏡と
同じく何ら変わらないため、やはり深い穴の底にある術
部に照明光を十分に到達させるには至っていない。
Further, in the surgical microscopes of Japanese Patent No. 3011950 and Japanese Patent Application Laid-Open No. 10-73769, the illumination light is emitted toward the observation target from a position symmetrical with respect to the observation optical axis. Although it is possible to illuminate the inner wall of the deep hole brightly compared to the case of irradiating from the bottom, the angle itself made by the illumination optical axis with respect to the observation optical axis does not change at all at the bottom of the deep hole, as it does in conventional microscopes. The illumination light has not reached the operating site sufficiently.

【0011】本発明は前記事情に着眼してなされたもの
であり、その目的とするところは、照明光のロスや顕微
鏡の大型化を招くこと無く、特に観察者が深い底の術部
を処置する場合であって高倍率の観察時においても術部
に十分な照明光を到達させて良好な観察を行なうことが
できる手術用顕微鏡を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to treat an operation site having a deep bottom, particularly for an observer without causing a loss of illumination light and an increase in size of a microscope. It is an object of the present invention to provide a surgical microscope that allows sufficient illumination light to reach the surgical site for good observation even when performing high-magnification observation.

【0012】[0012]

【課題を解決するための手段および作用】請求項1に係
わる発明は、観察対象からの光束が入射される対物レン
ズと、前記対物レンズからの光束が入射され、前記観察
対象の観察倍率を変更する変倍レンズ系と、前記変倍レ
ンズ系からの光束に基づいて形成される光学像を観察す
るための観察手段と、前記対物レンズと前記観察対象と
の間の空間に配置され、前記観察対象に照明光を照射可
能な照明光学系と、前記照明光学系の少なくとも一部と
前記対物レンズの光軸との相対位置を変更する変更手段
と、を具備する手術用顕微鏡である。
According to a first aspect of the present invention, an objective lens to which a light beam from an observation object is incident and a light beam from the objective lens is incident to change the observation magnification of the observation object. A variator lens system, an observing unit for observing an optical image formed based on a light beam from the variator lens system, and the observation unit arranged in a space between the objective lens and the observation target. A surgical microscope comprising: an illumination optical system capable of irradiating an object with illumination light; and a changing unit that changes the relative position of at least a part of the illumination optical system and the optical axis of the objective lens.

【0013】請求項2に係わる発明は、観察対象からの
光束が入射される対物レンズと、前記観察対象に照明光
を照射する照明光学系と、前記対物レンズからの光束が
入射され、前記観察対象の観察倍率を変更する変倍レン
ズ系と、立体像を得るための視差を有した2つの観察光
束を形成する観察光学系と、前記観察光学系からの前記
2つの観察光束に基づいて形成される光学像を観察する
ための観察手段と、前記変倍レンズ系の前記観察対象に
対する変倍動作に伴い前記2つの観察光束の間に前記照
明光学系の少なくとも一つの光学素子を挿入し、前記光
学素子と前記対物レンズの光軸との相対位置を変更する
変更手段と、を具備する手術用顕微鏡である。
According to a second aspect of the present invention, the objective lens on which the light flux from the observation target is incident, the illumination optical system for irradiating the observation target with illumination light, and the light flux from the objective lens are incident on the observation lens. A variable power lens system for changing the observation magnification of an object, an observation optical system for forming two observation light beams having a parallax for obtaining a stereoscopic image, and formation based on the two observation light beams from the observation optical system An observing means for observing an optical image, and at least one optical element of the illuminating optical system is inserted between the two observation light beams in accordance with a magnification changing operation of the variable power lens system with respect to the observation target. A surgical microscope comprising: an optical element; and a changing unit that changes a relative position between the optical axis of the objective lens.

【0014】請求項3に係わる発明は、前記変更手段
が、前記変倍レンズ系の動作に基づいた低倍率観察から
高倍率観察への変倍動作に連動して、前記照明光学系の
少なくとも一部を前記対物レンズの光軸に近づけるべく
変位させるようにした、請求項1または請求項2に記載
の手術用顕微鏡である。
According to a third aspect of the present invention, the changing means is interlocked with the zooming operation from the low magnification observation to the high magnification observation based on the operation of the zoom lens system, and at least one of the illumination optical systems is operated. The surgical microscope according to claim 1 or 2, wherein the part is displaced so as to approach the optical axis of the objective lens.

【0015】上記の構成によれば、観察像の倍率が高い
ときは、観察光束を遮ることなく、照明光学系をより対
物レンズに近づけることができ、倍率が低いときに比べ
て観察光軸に対して近い位置から照明光を観察対象に照
射することが可能である。また、請求項1に係わる発明
では上記に加え、照明光は対物レンズを通らないので、
対物レンズの表面反射による照明光に起因するフレアー
が生じない。
According to the above arrangement, when the magnification of the observed image is high, the illumination optical system can be brought closer to the objective lens without blocking the observation light flux, and the illumination optical system is closer to the observation optical axis than when the magnification is low. It is possible to irradiate the observation target with illumination light from a position close to the observation target. In addition to the above, in the invention according to claim 1, since the illumination light does not pass through the objective lens,
Flare due to illumination light due to surface reflection of the objective lens does not occur.

【0016】[0016]

【発明の実施の形態】(第1の実施形態)図1及び図2
を参照しながら本発明の第1の実施形態に係わる手術用
顕微鏡について説明する。図1及び図2はいずれも手術
用顕微鏡を側方から見た概略的な構成を示すが、図1は
低倍率で観察対象を観察している状態を示し、図2は高
倍率で観察対象を観察している状態を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIGS. 1 and 2
The surgical microscope according to the first embodiment of the present invention will be described with reference to FIG. 1 and 2 each show a schematic configuration of a surgical microscope as viewed from the side, FIG. 1 shows a state in which an observation target is observed at a low magnification, and FIG. 2 shows an observation target at a high magnification. Shows the state of being observed.

【0017】この手術用顕微鏡のような実体顕微鏡の観
察手段は、観察者の左右の眼に対応した視差を与えるべ
く対物レンズより後方の光学系は左右一対の観察光学系
を構成しているが、図1及び図2においては手術用顕微
鏡を側方から見た図であるため、その片方の観察光学系
のみが表されている。
In the observation means of a stereoscopic microscope such as this surgical microscope, the optical system behind the objective lens constitutes a pair of left and right observation optical systems so as to give parallax corresponding to the left and right eyes of the observer. Since FIGS. 1 and 2 are views of the surgical microscope as viewed from the side, only one of the observation optical systems is shown.

【0018】図1及び図2において示す符号1は、観察
光学系(観察手段)の対物レンズであり、この対物レン
ズ1は観察対象(術部)2を焦点位置とする。対物レン
ズ1はこれに入射した光束をアフォーカルな光束として
変倍レンズ系3に出射する。図1及び図2のように手術
用顕微鏡を側方から見たときは前記対物レンズ1と変倍
レンズ系3の光軸(観察光軸L1)は左右一対のものが
同一直線で一致して見える。
Reference numeral 1 shown in FIGS. 1 and 2 denotes an objective lens of an observation optical system (observation means), and the objective lens 1 has an observation object (operative part) 2 as a focal position. The objective lens 1 outputs the light flux incident on it to the variable power lens system 3 as an afocal light flux. When the surgical microscope is viewed from the side as shown in FIGS. 1 and 2, the optical axes (observation optical axis L1) of the objective lens 1 and the variable power lens system 3 are aligned on the same straight line. appear.

【0019】前記対物レンズ1と前記観察対象2との間
における光束の画角は低倍率で観察している場合(図
1)と、高倍率で観察している場合(図2)とでは異な
っており、低倍率で観察している図1のときの画角は
「A」であり、高倍率で観察している図2のときの画角
は「A’」である。一般に手術用顕微鏡では瞳の位置が
対物レンズ1から離れた位置にあるため、高倍率で観察
する状態における光束の画角「A’」に対して低倍率で
観察しているときの光束の画角「A」の幅が広い。
The angle of view of the light beam between the objective lens 1 and the observation object 2 is different between when observed at low magnification (FIG. 1) and when observed at high magnification (FIG. 2). The view angle in FIG. 1 observed at low magnification is “A”, and the view angle in FIG. 2 observed at high magnification is “A ′”. Generally, in a surgical microscope, the position of the pupil is away from the objective lens 1, so the image of the light flux when observing at a low magnification with respect to the angle of view “A ′” of the light flux in the state of observing at a high magnification. The width of the corner "A" is wide.

【0020】観察光学系の変倍レンズ系3は前記対物レ
ンズ1から入射した光束についてアフォーカル変倍を行
なって再びアフォーカル光束として接眼光学系4に出射
するものである。
The variable power lens system 3 of the observation optical system performs afocal variable power on the light beam incident from the objective lens 1 and outputs it again to the eyepiece optical system 4 as an afocal light beam.

【0021】接眼光学系4は結像レンズ5と接眼レンズ
6を含んで構成される。結像レンズ5は前記光軸L1上
に配置され、これには前記変倍レンズ系3から出射され
たアフォーカルな光束が入射される。前記結像レンズ5
から出射される光束は反射部材8及び反射部材9を経て
結像位置7に結像される。接眼レンズ6は前記結像位置
7に結ばれた像を拡大して術者に観察させる。
The eyepiece optical system 4 comprises an image forming lens 5 and an eyepiece lens 6. The imaging lens 5 is arranged on the optical axis L1, and the afocal light beam emitted from the variable power lens system 3 is incident on this. The imaging lens 5
The light flux emitted from the image pickup device passes through the reflecting member 8 and the reflecting member 9 and is imaged at the image forming position 7. The eyepiece lens 6 magnifies the image formed at the image forming position 7 so that the operator can observe it.

【0022】前記変倍レンズ系3は3つのレンズ3a,
3b,3cを備え、特に両端のレンズ3a及び3cは図
示しない固定レンズ枠を介して鏡体ハウジング10に固
着され、中間に位置するレンズ3bは前記観察光軸L1
に沿って移動可能な移動レンズ枠11に固着されてい
る。前記移動レンズ枠11はガイド軸12a及び12b
によって前記観察光軸L1に沿って移動すべく案内され
る。前記移動レンズ枠11には該ガイド軸12a及び1
2bが貫通する図示しない嵌合孔が設けられている。ガ
イド軸12a及び12bは鏡体ハウジング10内におい
て観察光軸L1の左右に配設され、且つ観察光軸L1と
平行に配設されている。ガイド軸12a及び12bの両
端は前記鏡体ハウジング10に支持されている。
The variable power lens system 3 includes three lenses 3a,
Lenses 3a and 3c at both ends are fixed to the mirror housing 10 through fixed lens frames (not shown), and the lens 3b located in the middle is the observation optical axis L1.
It is fixed to a movable lens frame 11 which can be moved along. The movable lens frame 11 includes guide shafts 12a and 12b.
Is guided to move along the observation optical axis L1. The moving lens frame 11 has the guide shafts 12a and 1a.
A fitting hole (not shown) through which 2b penetrates is provided. The guide shafts 12a and 12b are arranged on the left and right sides of the observation optical axis L1 in the mirror housing 10 and are arranged in parallel with the observation optical axis L1. Both ends of the guide shafts 12a and 12b are supported by the mirror housing 10.

【0023】鏡体ハウジング10内には一方のガイド軸
12aに隣接し、そのガイド軸12aに平行に回転中心
軸を配置したカム筒13が設置され、このカム筒13は
鏡体ハウジング10に図1中矢印B方向へ回転自在に支
持されている。カム筒13の外周にはカム溝14が形成
され、このカム溝14には前記移動レンズ枠11に一方
端が埋設固着された従動ピン15の他方突出端が嵌り込
んで係合している。カム筒13は図示しない外部の入力
手段によって制御されるモーター16によって回転駆動
される。モーター16は前記カム筒13と同軸上に配置
した出力軸17を有してなり、この出力軸17が前記カ
ム筒13に同軸的に連結されている。モーター16の本
体は前記鏡体ハウジング10に固着されている。
A cam barrel 13 is installed in the body housing 10 adjacent to one of the guide shafts 12a, and a center axis of rotation is arranged in parallel with the guide shaft 12a. 1 is rotatably supported in the direction of the middle arrow B. A cam groove 14 is formed on the outer circumference of the cam barrel 13, and the other protruding end of a driven pin 15 having one end embedded and fixed in the movable lens frame 11 is fitted into and engaged with the cam groove 14. The cam barrel 13 is rotationally driven by a motor 16 controlled by an external input means (not shown). The motor 16 has an output shaft 17 arranged coaxially with the cam barrel 13, and the output shaft 17 is coaxially connected to the cam barrel 13. The main body of the motor 16 is fixed to the mirror housing 10.

【0024】一方、前記鏡体ハウジング10の前面には
後述する照明光学系の照明光源等を収納する略筒状の照
明ハウジング21が傾斜角度を変更自在に取り付けられ
ている。この照明ハウジング21内には反射鏡22を備
えた照明光源23、コンデンサレンズ24、前記照明光
源23から発せられた照明光の出射方向を観察対象2に
向かわせるための反射部材25等が設けられている。図
1及び図2に示すように、該反射部材25から出射して
前記観察対象2に向かう照明光束の光軸(照明光軸)L
2は照明ハウジング21内に配置された反射鏡22と照
明光源23及びコンデンサレンズ24による光学系の光
軸L3に比べて鏡体ハウジング10近くに片偏って隣接
する。そして、この照明光学系は前記対物レンズ1と前
記観察対象2との間の空間に配置され、その空間の側方
から照明光を導入し、反射部材25により前記観察対象
2に向けて照射するようになっている。
On the other hand, a substantially cylindrical illumination housing 21 for accommodating an illumination light source of an illumination optical system, which will be described later, is attached to the front surface of the mirror housing 10 so that the inclination angle can be changed. An illumination light source 23 having a reflecting mirror 22, a condenser lens 24, a reflecting member 25 for directing the emission direction of the illumination light emitted from the illumination light source 23 to the observation target 2 and the like are provided in the illumination housing 21. ing. As shown in FIGS. 1 and 2, the optical axis (illumination optical axis) L of the illumination light flux emitted from the reflecting member 25 and directed to the observation target 2.
Reference numeral 2 is adjacent to the reflector 22 disposed inside the illumination housing 21 in a biased manner near the mirror housing 10 as compared with the optical axis L3 of the optical system formed by the illumination light source 23 and the condenser lens 24. Then, this illumination optical system is arranged in a space between the objective lens 1 and the observation target 2, and the illumination light is introduced from the side of the space and is irradiated toward the observation target 2 by the reflecting member 25. It is like this.

【0025】反射部材25を組み込んだ照明ハウジング
21の先端部21aは他のハウジング部分よりも前記鏡
体ハウジング10側に向かって突き出すように屈曲して
おり、その先端部21aは前記対物レンズ1と観察対象
2の間の空間において観察光軸L1に向かって突き出し
ている。照明光学系に関係する光軸L2,L3は平行で
ある。尚、前記反射部材25はミラーでもプリズムであ
ってもよい。
The front end portion 21a of the illumination housing 21 incorporating the reflecting member 25 is bent so as to project toward the mirror housing 10 side from other housing portions, and the front end portion 21a and the objective lens 1 are formed. It protrudes toward the observation optical axis L1 in the space between the observation objects 2. The optical axes L2 and L3 related to the illumination optical system are parallel. The reflecting member 25 may be a mirror or a prism.

【0026】次に、照明ハウジング21の傾斜角度を変
更し、照明角度Xを変更することにより前記対物レンズ
1の観察光軸L1との相対位置を変更する照明光照射角
度変更手段について説明する。照明ハウジング21の上
端側と下端側には従動ピン31a,31bが設けられ、
各従動ピン31a,31bは前記鏡体ハウジング10か
ら突設された翼状部位32a,32bに形成された長孔
33a,33bにそれぞれ対応するものが別々に嵌め込
まれている。翼状部位32a,32bに形成された長孔
33a,33bは各々、観察対象2の一点に中心を一致
させた円弧形状に形成されている。前記長孔33a,3
3bにはそれぞれ対応する前記従動ピン31a,31b
がスライド自在に嵌着されており、これによって、前記
照明ハウジング21は前記鏡体ハウジング10に支持さ
れると同時に観察対象2の位置を中心として傾動自在で
ある。
Next, the illumination light irradiation angle changing means for changing the relative angle of the objective lens 1 to the observation optical axis L1 by changing the inclination angle of the illumination housing 21 and changing the illumination angle X will be described. Driven pins 31a and 31b are provided on the upper end side and the lower end side of the illumination housing 21,
The driven pins 31a and 31b are respectively fitted into corresponding ones of the long holes 33a and 33b formed in the wing-shaped portions 32a and 32b projecting from the body housing 10. The long holes 33a and 33b formed in the wing-shaped portions 32a and 32b are each formed in an arc shape whose center coincides with one point of the observation target 2. The long holes 33a, 3
3b respectively correspond to the driven pins 31a and 31b.
Is slidably fitted, whereby the illumination housing 21 is supported by the mirror housing 10 and at the same time tiltable about the position of the observation object 2.

【0027】鏡体ハウジング10と照明ハウジング21
には向き合って各々バネ掛け部35,36が配設されて
いる。バネ掛け部35,36には引っ張りバネ37が架
設されている。つまり、引っ張りバネ37の一端は前記
鏡体ハウジング10のバネ掛け部35に掛けられ、引っ
張りバネ37の他端は前記照明ハウジング21のバネ掛
け部36に掛けられている。引っ張りバネ37は照明ハ
ウジング21を鏡体ハウジング10に寄せるように常に
牽引付勢している。
Mirror housing 10 and lighting housing 21
Are provided with spring hooking portions 35 and 36 facing each other. A tension spring 37 is installed on the spring hooks 35 and 36. That is, one end of the tension spring 37 is hooked on the spring hooking portion 35 of the mirror housing 10, and the other end of the tension spring 37 is hooked on the spring hooking portion 36 of the illumination housing 21. The tension spring 37 constantly pulls and biases the lighting housing 21 so as to move it toward the lens housing 10.

【0028】前記変倍レンズ系3の移動レンズ枠11に
は規制用突出部38が一体に形成され、規制用突出部3
8は照明ハウジング21に向けて突出している。そして
規制用突出部38は鏡体ハウジング10の側壁に開口さ
れた窓39を通り突き抜け、該鏡体ハウジング10の外
部に露出し、その先端は前記照明ハウジング21の側面
に突き当たって接している。規制用突出部38の長さ
は、それ自体変わらないが、移動レンズ枠11と共に上
下に移動することにより、照明ハウジング21を適宜傾
動させる。そして、低倍率で観察しているときの画角
「A」の幅の観察光束にも、高倍率で観察しているとき
の画角「A’」の幅の観察光束にも重ならない範囲で常
に前記照明ハウジング21の先端部21aが観察光束に
極力近くなるように規制すべき長さに設定される。すな
わち、低倍率で観察している図1の状態では移動レンズ
枠11が降下し、前記照明ハウジング21の押し出し量
が変わることにより、前記照明ハウジング21の先端部
21aが、画角が「A」の観察光束の領域に重ならない
までも、その観察光束の領域に極力近づき、高倍率で観
察している図2の状態では画角が「A’」の観察光束の
領域に重ならないまでも、その観察光束の領域に極力近
くに位置する。
A restricting projection 38 is integrally formed on the movable lens frame 11 of the variable power lens system 3, and the restricting projection 3 is formed.
Reference numeral 8 projects toward the lighting housing 21. The restricting protrusion 38 penetrates through the window 39 opened in the side wall of the lens housing 10 to be exposed to the outside of the lens housing 10, and its tip abuts against the side surface of the illumination housing 21 and is in contact therewith. The length of the restricting protrusion 38 does not change per se, but the illumination housing 21 is appropriately tilted by moving up and down together with the movable lens frame 11. Within a range that does not overlap with the observation light flux having the width of the angle of view "A" when observing at low magnification, nor the observation light flux having the width of the angle of view "A '" when observing at high magnification. The length should be regulated so that the tip 21a of the illumination housing 21 is always as close as possible to the observation light beam. That is, in the state of FIG. 1 under observation at a low magnification, the movable lens frame 11 descends and the pushing amount of the illumination housing 21 changes, so that the distal end portion 21a of the illumination housing 21 has an angle of view of "A". Even if it does not overlap with the region of the observation light flux, it comes as close as possible to the region of the observation light flux, and in the state of FIG. It is located as close as possible to the region of the observation light flux.

【0029】次に、本実施形態の手術用顕微鏡の作用に
ついて説明する。照明光源23から出射された光はコン
デンサレンズ24、反射部材25を介して、前記対物レ
ンズ1と前記観察対象2との間で観察光軸L1の側方か
ら斜めに観察対象2を照明する。また、観察対象2で反
射した照明光は対物レンズ1に入射した後、変倍レンズ
系3及び結像レンズ5を通り、接眼レンズ6によって結
像位置7に視差付きの状態で像が結ばれ、術者40はそ
の像を拡大観察する。
Next, the operation of the surgical microscope of this embodiment will be described. The light emitted from the illumination light source 23 illuminates the observation target 2 obliquely from the side of the observation optical axis L1 between the objective lens 1 and the observation target 2 via the condenser lens 24 and the reflecting member 25. Further, the illumination light reflected by the observation object 2 enters the objective lens 1, then passes through the variable power lens system 3 and the imaging lens 5, and an eyepiece 6 forms an image at the imaging position 7 with parallax. The operator 40 magnifies and observes the image.

【0030】ところで、図1で示す低倍率での観察状態
では前記観察光軸L1と前記照明光軸L2との成す角度
Xが観察光束の画角Aの幅に応じて比較的大きい。この
状態から高倍率で観察する状態に変換する場合は図示し
ない外部の入力手段によって、モーター16を駆動す
る。すると、モーター16に連結されたカム筒13が回
転する。このカム筒13の回転すると、カム溝14に係
合している従動ピン15を介して、ガイド軸12a,1
2bと嵌合した移動レンズ枠11が観察光軸L1に沿っ
て上方へ移動し、その結果、移動レンズ枠11は図2に
示された上方の位置に位置する。前記移動レンズ枠11
の移動に伴って、該移動レンズ枠11と一体の突出部3
8も変位するので、該突出部38に当接している照明ハ
ウジング21も傾動変位する。
By the way, in the observation state at a low magnification shown in FIG. 1, the angle X formed by the observation optical axis L1 and the illumination optical axis L2 is relatively large according to the width of the angle of view A of the observation light beam. When converting from this state to the state of observing at high magnification, the motor 16 is driven by an external input means (not shown). Then, the cam cylinder 13 connected to the motor 16 rotates. When the cam barrel 13 rotates, the guide shafts 12a, 1a are driven through the driven pin 15 engaged with the cam groove 14.
The movable lens frame 11 fitted with 2b moves upward along the observation optical axis L1, and as a result, the movable lens frame 11 is located at the upper position shown in FIG. The moving lens frame 11
Along with the movement of the moving lens frame 11
Since 8 is also displaced, the illumination housing 21 in contact with the protruding portion 38 is also displaced by tilting.

【0031】この照明ハウジング21が傾動変位する動
作は以下の通りに行なわれる。まず、突出部38は前記
観察光軸L1に対し平行に上方へ移動するため、突出部
38は図2に示す如く、観察光軸L1に対して角度を有
して傾斜して配置されている照明ハウジング21の側面
からさらに離れるようになる。しかし、照明ハウジング
21は前記引っ張りバネ37によって鏡体ハウジング1
0側へ引き寄せられるように付勢されているため、照明
ハウジング21は前記突出部38の先端に接した状態で
常に変位しようとする。また、前記従動ピン31a,3
1bが、前記円弧形状の長孔33aと33bに係合して
いるので、該従動ピン31a,31bは観察対象2の位
置を中心とするべく形成された長孔33a,33bの円
弧形状を辿る。その結果、前記照明光軸L2が常に観察
対象2の中心を通るように前記照明ハウジング21は傾
動する。
The operation of tilting displacement of the illumination housing 21 is carried out as follows. First, since the protrusion 38 moves upward in parallel to the observation optical axis L1, the protrusion 38 is arranged at an angle with respect to the observation optical axis L1 as shown in FIG. The lighting housing 21 is further separated from the side surface thereof. However, the illumination housing 21 is attached to the mirror housing 1 by the tension spring 37.
Since the lighting housing 21 is biased so as to be pulled toward the 0 side, the lighting housing 21 always tries to be displaced while being in contact with the tip of the protrusion 38. Also, the driven pins 31a, 3
Since 1b is engaged with the arc-shaped long holes 33a and 33b, the driven pins 31a and 31b trace the arc shape of the long holes 33a and 33b formed so as to center on the position of the observation target 2. . As a result, the illumination housing 21 tilts so that the illumination optical axis L2 always passes through the center of the observation target 2.

【0032】そして、照明ハウジング21が図1の状態
から図2の状態に変位する。すると、照明光軸L2と観
察光軸L1とのなす角度は小さくなり、その角度を図2
に記号Yで示す。この場合、前記照明ハウジング21の
一部である最も突き出す先端部21aは前記観察光軸L
1に近づく。しかし、この図2に示すように高倍率観察
状態での観察光束の画角A’は図1に示す低倍率観察状
態での観察光束の画角Aに対して小さいため、観察光束
をけることはなく、観察を妨げない。従って、術者40
は高倍率で観察対象2を明瞭に観察することができる。
Then, the illumination housing 21 is displaced from the state of FIG. 1 to the state of FIG. Then, the angle formed by the illumination optical axis L2 and the observation optical axis L1 becomes smaller.
Is indicated by the symbol Y. In this case, the most protruding tip portion 21a which is a part of the illumination housing 21 is the observation optical axis L.
Approaching 1 However, as shown in FIG. 2, the angle of view A ′ of the observation light beam in the high magnification observation state is smaller than the angle of view A of the observation light beam in the low magnification observation state shown in FIG. And does not interfere with the observation. Therefore, the surgeon 40
Can clearly observe the observation target 2 at high magnification.

【0033】以上の如く、本実施形態の照明光照射角度
変更手段によれば、術者が観察倍率を低倍率から高倍率
に変更することに連動して観察光軸L1に対する照明光
軸L2の角度が小さくなり、観察光軸L1に照明光軸L
2が近づいていくことになるので、高倍率で観察するこ
との多い深い穴となった術部中を観察する場合であって
も観察対象2の部位に十分な照明光を照射して観察でき
る。また、各倍率の観察において照明光学系の部材が観
察光束をけらない位置まで退避しているので観察を妨げ
ることが無い。さらに、前記対物レンズ1と前記観察対
象2との間の空間に照明光学系が配置されるため、照明
光束は対物レンズ1の下に配置された反射部材25によ
って観察対象2に向けられ、対物レンズ1を通らないた
め、フレアー等の対物レンズ1の表面反射による観察系
への悪影響が生じない。
As described above, according to the illumination light irradiation angle changing means of the present embodiment, the illumination optical axis L2 with respect to the observation optical axis L1 is linked to the operator changing the observation magnification from low magnification to high magnification. The angle becomes smaller and the observation optical axis L1 becomes the illumination optical axis L
Since 2 is approaching, it is possible to illuminate the site of the observation target 2 with sufficient illumination light even when observing the inside of the surgical site that is a deep hole that is often observed at high magnification. . Further, since the member of the illumination optical system is retracted to a position where the observation light beam is not blocked during the observation at each magnification, the observation is not disturbed. Further, since the illumination optical system is arranged in the space between the objective lens 1 and the observation target 2, the illumination light flux is directed to the observation target 2 by the reflecting member 25 arranged below the objective lens 1, Since it does not pass through the lens 1, adverse effects on the observation system due to surface reflection of the objective lens 1 such as flare do not occur.

【0034】(第2の実施形態)図3から図6を参照し
ながら本発明の第2の実施形態に係わる手術用顕微鏡に
ついて説明する。図3は観察対象を低倍率で観察してい
るときの手術用顕微鏡を側方から見た図であり、図4は
図3で示す一部分を上方から見た図であり、図5は本実
施形態の制御系を示すブロック図であり、図6は観察対
象を高倍率で観察しているときの観察光学系の説明図で
ある。本実施形態において前述した第1の実施形態のも
のと共通する構成部分については同一符号を付してその
説明を省略する。
(Second Embodiment) A surgical microscope according to a second embodiment of the present invention will be described with reference to FIGS. 3 to 6. FIG. 3 is a side view of the surgical microscope when observing an observation object at a low magnification, FIG. 4 is a view of a portion shown in FIG. 3 from above, and FIG. FIG. 6 is a block diagram showing a control system of the form, and FIG. 6 is an explanatory diagram of an observation optical system when observing an observation target at high magnification. In this embodiment, the same components as those of the first embodiment described above are designated by the same reference numerals and the description thereof will be omitted.

【0035】本実施形態では鏡体ハウジング41に観察
光学系と照明光学系の両方を内蔵する。変倍レンズ系3
のレンズ3bを支持するレンズ枠42は第1の実施形態
で記した移動レンズ枠11とは異なり、突出部38を有
しない。また、カム筒13はその一端部分に第1ギヤ4
3を設けている。第1ギヤ43には第1モーター45の
出力軸46に固定された第2ギヤ47が噛み合ってい
る。第1モーター45は図示していない外部の入力手段
によって制御され、駆動されたとき、第1ギヤ43及び
第2ギヤ47を介してカム筒13を回転する。カム筒1
3の一端にはエンコーダー48の入力軸49が連結さ
れ、このエンコーダー48によって該カム筒13の回転
角度を検出するようになっている。
In this embodiment, both the observation optical system and the illumination optical system are built in the mirror housing 41. Variable magnification lens system 3
Unlike the movable lens frame 11 described in the first embodiment, the lens frame 42 that supports the lens 3b does not have the protruding portion 38. The cam cylinder 13 has a first gear 4 at one end thereof.
3 is provided. A second gear 47 fixed to the output shaft 46 of the first motor 45 meshes with the first gear 43. The first motor 45 is controlled by an external input means (not shown), and when driven, rotates the cam cylinder 13 via the first gear 43 and the second gear 47. Cam barrel 1
An input shaft 49 of an encoder 48 is connected to one end of the encoder 3, and the encoder 48 detects the rotation angle of the cam barrel 13.

【0036】前記照明光学系は観察対象に照明光を照射
可能なものであって、前記対物レンズ1と前記観察対象
2との間の空間に配置されている。照明光学系はコンデ
ンサレンズ24から出射された照明光を観察対象2に向
かうべく偏向させるためのプリズムからなる反射部材5
1を設け、この反射部材51はプリズム枠52に支持さ
れている。前記対物レンズ1の近辺でかつ対物レンズ1
よりも下方に位置して前記対物レンズ1と前記観察対象
2との間の空間に配置されている。
The illumination optical system is capable of irradiating an observation object with illumination light, and is arranged in a space between the objective lens 1 and the observation object 2. The illumination optical system is a reflecting member 5 including a prism for deflecting the illumination light emitted from the condenser lens 24 toward the observation target 2.
1 is provided, and the reflecting member 51 is supported by the prism frame 52. Near the objective lens 1 and the objective lens 1
It is located below and is arranged in the space between the objective lens 1 and the observation target 2.

【0037】前記プリズム枠52は紙面に垂直な方向に
向かう回転軸53を有すると共に、プリズム枠52の回
動端部には第3ギヤ54が形成されている。照明光学系
を内蔵する照明ハウジング55には前記プリズム枠52
の回転軸53を嵌合する嵌合孔56が設けられている。
照明ハウジング55には前記嵌合孔56とは別の嵌合孔
57が設けられており、該嵌合孔57には第4ギヤ58
の回転軸59が嵌合している。第4ギヤ58は前記第3
ギヤ54と噛み合う関係にあり、第4ギヤ58の回転軸
59にはその軸中心と同軸上において配置された第2モ
ーター61の出力軸が連結されている。前記第2モータ
ー61は第1制御回路62によって前記エンコーダー4
8のカウンター値に応じた回転角度に制御される。
The prism frame 52 has a rotating shaft 53 extending in a direction perpendicular to the plane of the drawing, and a third gear 54 is formed at the rotating end of the prism frame 52. The prism frame 52 is provided in an illumination housing 55 that incorporates an illumination optical system.
A fitting hole 56 into which the rotary shaft 53 is fitted is provided.
The lighting housing 55 is provided with a fitting hole 57 different from the fitting hole 56, and the fitting gear 57 has a fourth gear 58.
The rotary shaft 59 of is fitted. The fourth gear 58 is the third
The rotation shaft 59 of the fourth gear 58 is in mesh with the gear 54, and the output shaft of a second motor 61 coaxially arranged with the rotation shaft 59 is connected to the rotation shaft 59. The second motor 61 controls the encoder 4 by the first control circuit 62.
The rotation angle is controlled according to the counter value of 8.

【0038】前記鏡体ハウジング41には照明光軸63
に平行に配置されるべく支持された2本のガイド軸64
a,64bが設けられ、各ガイド軸64a,64bは各
々前記照明ハウジング55に照明光軸63と平行に形成
された嵌合孔65a,65bとスライド自在に嵌合して
いる。従って、照明ハウジング55は各ガイド軸64
a,64bに沿って照明光軸63の方向へ全体がスライ
ド自在である。
The mirror housing 41 has an illumination optical axis 63.
Two guide shafts 64 supported to be arranged parallel to the
a and 64b are provided, and the guide shafts 64a and 64b are slidably fitted in fitting holes 65a and 65b formed in the illumination housing 55 in parallel with the illumination optical axis 63, respectively. Therefore, the illumination housing 55 has the guide shafts 64
The whole is slidable in the direction of the illumination optical axis 63 along a and 64b.

【0039】前記照明ハウジング55の外面にはラック
71が設けられ、このラック71は鏡体ハウジング41
に配設されたピニオン72に噛み合っている。ピニオン
72の回転軸73は第3モーター67の出力軸に連結さ
れている。そして、第3モーター67は前記エンコーダ
ー48のカウンター値に応じて第2制御回路75によっ
て回転角度が制御される。これによって、前記照明光学
系を移動し、前記対物レンズ1の光軸との相対的位置を
変更する変更手段を構成している。
A rack 71 is provided on the outer surface of the illumination housing 55. The rack 71 is a mirror housing 41.
Meshes with the pinion 72 arranged at. The rotating shaft 73 of the pinion 72 is connected to the output shaft of the third motor 67. The rotation angle of the third motor 67 is controlled by the second control circuit 75 according to the counter value of the encoder 48. This constitutes a changing means for moving the illumination optical system and changing the relative position of the objective lens 1 to the optical axis.

【0040】次に、本実施形態の照明光照射角度変更手
段の作用について説明する。外部の入力手段によって第
1モーター45が駆動されると、該第1モーター45の
出力軸46に固定された第2ギヤ47が回転する。該第
2ギヤ47の回転は第1ギヤ43に伝えられ、カム筒1
3が回転する。カム筒13が回転すると、変倍レンズ系
3のレンズ3bを支持したレンズ枠42が移動させられ
るために観察倍率の変更が行われる。このとき、カム筒
13の回転した角度がエンコーダー48によって検出さ
れ、その情報は第1制御回路62及び第2制御回路75
に伝達される。第1制御回路62と第2制御回路75は
エンコーダー48から送られてきた情報を基に夫々が後
述する所定の計算を行ない、得られた計算結果に基づく
角度だけ第2モーター61と第3モーター67を回転さ
せる。
Next, the operation of the illumination light irradiation angle changing means of this embodiment will be described. When the first motor 45 is driven by the external input means, the second gear 47 fixed to the output shaft 46 of the first motor 45 rotates. The rotation of the second gear 47 is transmitted to the first gear 43, and the cam cylinder 1
3 rotates. When the cam barrel 13 rotates, the lens frame 42 supporting the lens 3b of the variable power lens system 3 is moved, so that the observation magnification is changed. At this time, the angle of rotation of the cam barrel 13 is detected by the encoder 48, and the information is stored in the first control circuit 62 and the second control circuit 75.
Be transmitted to. The first control circuit 62 and the second control circuit 75 respectively perform predetermined calculations described below based on the information sent from the encoder 48, and the second motor 61 and the third motor are rotated by an angle based on the obtained calculation result. Rotate 67.

【0041】まず、第2モーター61が回転すると、第
4ギヤ58が回転し、その回転は第3ギヤ54に伝達さ
れる。これによって、前記プリズム枠52は回転軸53
を中心として回転するので、プリズム枠52に支持され
た反射部材51も同時に回転する。従って、該反射部材
51から出射される照明光76の角度は図3の矢印C方
向に変更されることになる。
First, when the second motor 61 rotates, the fourth gear 58 rotates, and the rotation is transmitted to the third gear 54. As a result, the prism frame 52 is rotated by the rotating shaft 53.
Since it rotates around, the reflecting member 51 supported by the prism frame 52 also rotates at the same time. Therefore, the angle of the illumination light 76 emitted from the reflecting member 51 is changed in the direction of arrow C in FIG.

【0042】また、第3モーター67が回転すると、照
明ハウジング55のラック71に噛み合うピニオン72
が回転し、それによって、照明ハウジング55がガイド
軸64a,64bに沿って水平方向に移動する。また、
前記反射部材51はプリズム枠52を介してその照明ハ
ウジング55に支持されているため、照明ハウジング5
5と共に移動することになる。従って、図3に示すよう
に該反射部材51から出射される照明光76の向きが矢
印D方向に変わる。
When the third motor 67 rotates, the pinion 72 that meshes with the rack 71 of the lighting housing 55.
Rotates, which causes the illumination housing 55 to move horizontally along the guide shafts 64a and 64b. Also,
Since the reflecting member 51 is supported by the lighting housing 55 via the prism frame 52, the lighting housing 5
Will move with 5. Therefore, as shown in FIG. 3, the direction of the illumination light 76 emitted from the reflecting member 51 changes to the direction of arrow D.

【0043】前述したように、第2モーター61と第3
モーター67の回転によって、前記照明光学系と前記対
物レンズ1の光軸との相対位置が変更され、同時に照明
光軸L2は回転と水平移動を達成することになるが、い
かなる状態においても常に照明光軸L2が観察対象2へ
向かうように、前記第1制御回路62と前記第2制御回
路75が前記第2モーター61と第3モーター67の回
転角度を制御する。従って、低倍率の観察状態を示した
先の図3に記載した観察光軸L1と照明光軸L2とのな
す角度X’は図6に示す高倍率の観察状態においては前
記角度X’に比して小さい角度Y’となる。
As described above, the second motor 61 and the third motor 61
The rotation of the motor 67 changes the relative position between the illumination optical system and the optical axis of the objective lens 1, and at the same time the illumination optical axis L2 achieves rotation and horizontal movement. The first control circuit 62 and the second control circuit 75 control the rotation angles of the second motor 61 and the third motor 67 so that the optical axis L2 is directed to the observation target 2. Therefore, the angle X ′ formed by the observation optical axis L1 and the illumination optical axis L2 shown in FIG. 3 showing the low magnification observation state is higher than the angle X ′ in the high magnification observation state shown in FIG. And a small angle Y'is obtained.

【0044】以上の如く、本実施形態の照明光照射角度
変更手段によれば、第1の実施形態と同様に術者40が
観察倍率を低倍率から高倍率に変更する操作に連動して
観察光軸L1に対する照明光軸L2の角度が近づいてい
くことになる。このため、高倍率で観察することの多い
深い穴の中の術部を観察する場合にも観察対象部位に十
分に照明光を照射した状態で観察を行なうことができる
とともに、低倍率での観察においては照明光学系の部材
によって観察光束の通過を妨げることが無い。さらに、
照明光束は対物レンズ1の下に配置された照明光学系の
反射部材51によって観察対象に向けられ、対物レンズ
1を通らないため、フレアー等の対物レンズ1の表面反
射による観察系への悪影響が生じない。照明ハウジング
55を鏡体ハウジング41に内蔵しているので装置全体
がコンパクトになる。
As described above, according to the illumination light irradiation angle changing means of the present embodiment, as in the first embodiment, the operator 40 observes in conjunction with the operation of changing the observation magnification from low magnification to high magnification. The angle of the illumination optical axis L2 with respect to the optical axis L1 approaches. Therefore, even when observing a surgical site in a deep hole that is often observed at high magnification, it is possible to perform observation with the illumination light sufficiently radiated to the observation target site and at low magnification. In the above, the passage of the observation light flux is not obstructed by the members of the illumination optical system. further,
The illumination light flux is directed toward the observation target by the reflection member 51 of the illumination optical system arranged below the objective lens 1 and does not pass through the objective lens 1. Therefore, the surface reflection of the objective lens 1 such as flare may adversely affect the observation system. Does not happen. Since the illumination housing 55 is built in the mirror housing 41, the entire apparatus becomes compact.

【0045】(第3の実施形態)図7及び図8を参照し
ながら本発明の第3の実施形態に係わる手術用顕微鏡に
ついて説明する。図7は観察対象部位を低倍率で観察す
る状態での手術用顕微鏡を側方から見た説明図であり、
図8は観察対象部位を高倍率で観察する状態での手術用
顕微鏡を側方から見た説明図である。本実施形態におい
て、第1の実施形態及び第2の実施形態に共通する構成
部分については同一符号を付し、それらの説明を省略す
る。
(Third Embodiment) A surgical microscope according to a third embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is an explanatory view of the surgical microscope as viewed from the side in a state in which the observation target site is observed at a low magnification,
FIG. 8 is an explanatory view of the surgical microscope as viewed from the side in a state where the observation target site is observed at high magnification. In the present embodiment, constituent parts common to the first and second embodiments are designated by the same reference numerals, and description thereof will be omitted.

【0046】本実施形態に係わる手術用顕微鏡では反射
部材51を支持するプリズム枠52の回転軸53を支持
する前記嵌合孔56が移動部材81に設けられる。この
移動部材81は水平に配置したボールネジ82に支持さ
れている。ボールネジ82は鏡体ハウジング10に設け
た軸受部83a,83bによって両端が支持される。ま
た、ボールネジ82は照明光学系の照明光軸63と平行
である。
In the surgical microscope according to this embodiment, the moving member 81 is provided with the fitting hole 56 that supports the rotating shaft 53 of the prism frame 52 that supports the reflecting member 51. The moving member 81 is supported by a horizontally arranged ball screw 82. Both ends of the ball screw 82 are supported by bearing portions 83a and 83b provided on the mirror housing 10. The ball screw 82 is parallel to the illumination optical axis 63 of the illumination optical system.

【0047】ボールネジ82の一端にはモーター84の
出力軸が連結されていて、モーター84の回転する角度
は前記エンコーダー48からの情報によって制御される
ようになっている。移動部材81はボールネジ82にね
じ込まれるネジ孔85と平面部86が形成されている。
平面部86は前記鏡体ハウジング10に設けられたガイ
ド平面87に面接合しており、これにより移動部材81
自体の回転が阻止される。両面部86,87は前記ボー
ルネジ82の軸に平行であるため、移動部材81の移動
を阻止することはない。ボールネジ82をモーター84
によって回転することにより、移動部材81は照明光学
系の照明光軸63と平行な方向に移動するのみであり、
平面部86とガイド平面87が接しているため、前記移
動部材81が前記ボールネジ82に対して回転しない。
The output shaft of the motor 84 is connected to one end of the ball screw 82, and the rotation angle of the motor 84 is controlled by the information from the encoder 48. The moving member 81 has a screw hole 85 screwed into the ball screw 82 and a flat surface portion 86.
The flat surface portion 86 is surface-bonded to the guide flat surface 87 provided on the mirror housing 10, whereby the moving member 81 is formed.
The rotation of itself is blocked. Since the double-sided portions 86 and 87 are parallel to the axis of the ball screw 82, they do not prevent the movement of the moving member 81. Ball screw 82 to motor 84
By rotating the moving member 81, the moving member 81 only moves in a direction parallel to the illumination optical axis 63 of the illumination optical system.
Since the flat surface portion 86 and the guide flat surface 87 are in contact with each other, the moving member 81 does not rotate with respect to the ball screw 82.

【0048】図8及び図9に示すように反射部材51を
支持するプリズム枠52の一端と移動部材81には引っ
張りバネ88が架設されている。プリズム枠52の一端
と移動部材81にはそれぞれ引っ張りバネ88を掛ける
バネ掛け部91,92が設けられている。引っ張りバネ
88の一端はプリズム枠52のバネ掛け部91に掛けら
れ、引っ張りバネ88の他端は移動部材81のバネ掛け
部92に掛けられる。このため、プリズム枠52は移動
部材81側に引かれ、図7中Fで示す向きに回動するよ
うに付勢されている。
As shown in FIGS. 8 and 9, a tension spring 88 is provided on one end of the prism frame 52 supporting the reflecting member 51 and the moving member 81. One end of the prism frame 52 and the moving member 81 are provided with spring hook portions 91 and 92 for hooking tension springs 88, respectively. One end of the tension spring 88 is hooked on the spring hooking portion 91 of the prism frame 52, and the other end of the tension spring 88 is hooked on the spring hooking portion 92 of the moving member 81. Therefore, the prism frame 52 is pulled toward the moving member 81 and is biased to rotate in the direction indicated by F in FIG.

【0049】プリズム枠52の他方の下方端には一体に
規制片93が突設されている。この規制片93は前記鏡
体ハウジング41に設けられた位置決めピン94に当
り、前記引っ張りバネ88の付勢作用によって前記規制
片93が位置決めピン94に対して常に当接する。位置
決めピン94との当接作用によって前記プリズム枠52
は前記回転軸53を中心とする回転する向きの回転角度
が規制されている。ここで、該位置決めピン94の位置
は前記移動部材81がボールネジ82の回転によって移
動させられるいかなる位置であっても、常に反射部材5
1から出射される照明光束が観察対象2に向かう態勢に
ある位置になるように規制する特定の場所に配設されて
いる。前記照明光学系は対物レンズ1と観察対象2との
間の空間に配置され、前記観察対象2に照明光を照射可
能である。
At the other lower end of the prism frame 52, a restricting piece 93 is integrally projected. The restricting piece 93 hits the positioning pin 94 provided on the mirror housing 41, and the restricting piece 93 is always in contact with the positioning pin 94 by the urging action of the tension spring 88. The prism frame 52 is contacted with the positioning pin 94.
The rotation angle in the direction of rotation about the rotation shaft 53 is restricted. Here, the position of the positioning pin 94 is always the reflecting member 5 regardless of the position where the moving member 81 is moved by the rotation of the ball screw 82.
It is arranged at a specific place where the illumination light flux emitted from the device 1 is regulated so as to be positioned so as to be directed to the observation target 2. The illumination optical system is arranged in a space between the objective lens 1 and the observation target 2 and can illuminate the observation target 2 with illumination light.

【0050】次に、本実施形態の照明光照射角度変更手
段の作用について説明する。エンコーダー48からの情
報によってモーター84が回転すると、前記ボールネジ
82はモーター84の出力軸に固定されているため、同
じ角度だけ回転する。ボールネジ82が回転すると、該
ボールネジ82と螺合するネジ部95を有する移動部材
81は照明光軸63と平行な図7に示す矢印E方向へ移
動する。
Next, the operation of the illumination light irradiation angle changing means of this embodiment will be described. When the motor 84 rotates according to the information from the encoder 48, the ball screw 82 is fixed to the output shaft of the motor 84 and therefore rotates by the same angle. When the ball screw 82 rotates, the moving member 81 having the screw portion 95 that is screwed with the ball screw 82 moves in the direction of arrow E shown in FIG.

【0051】このように移動部材81が移動すると、該
移動部材81に支持された前記プリズム枠52も共に移
動しようとするが、前記規制片93が前記位置決めピン
94に当接しているため、該プリズム枠52は移動と同
時に回転軸53を中心とする矢印F方向への回転を生
じ、その結果、図7に示した低倍率の観察状態であった
ものが、図8に示す高倍率の観察状態に変更させられ
る。
When the moving member 81 moves in this way, the prism frame 52 supported by the moving member 81 also tries to move together. However, since the regulating piece 93 is in contact with the positioning pin 94, The prism frame 52 is rotated about the rotation axis 53 in the direction of the arrow F at the same time as the prism frame 52 is moved, and as a result, the low magnification observation state shown in FIG. 7 is changed to the high magnification observation state shown in FIG. Can be changed to the state.

【0052】以上説明した如く、本実施形態の照明光照
射角度変更手段によれば、前述した第1の実施形態及び
第2の実施形態と同様観察倍率が低倍率から高倍率に変
更されることに連動して観察光軸に対して照明光軸が近
づいていくことになるので、高倍率で観察することの多
い深い穴の中を観察する場合でも観察対象部位に十分に
照明光を照射でき、明るい照明状態で観察することがで
きるとともに、低倍率での観察においても照明光学系の
部材によって観察光束をけり、観察を妨げることが無
い。さらに、照明光束は対物レンズ1の下に配置された
反射部材51によって観察対象に向けられていて対物レ
ンズ1は通過しないため、フレアー等の対物レンズ1の
表面反射による観察系への悪影響が生じない。また、照
明系を移動させるためのモーターの数が1つで済むな
ど、照明光の照射角度変更手段を安価に構成することが
できる。
As described above, according to the illumination light irradiation angle changing means of the present embodiment, the observation magnification is changed from the low magnification to the high magnification as in the first and second embodiments described above. Since the illumination optical axis will move closer to the observation optical axis in conjunction with, it is possible to sufficiently illuminate the observation target site even when observing inside a deep hole that is often observed at high magnification. It is possible to observe in a bright illumination state, and even when observing at a low magnification, the observation light flux is not blocked by the member of the illumination optical system and the observation is not disturbed. Further, since the illumination light flux is directed to the observation target by the reflecting member 51 arranged below the objective lens 1 and does not pass through the objective lens 1, adverse effects on the observation system due to surface reflection of the objective lens 1 such as flare occur. Absent. Further, the irradiation light irradiation angle changing means can be configured at low cost, such that only one motor is required to move the illumination system.

【0053】(第4の実施形態)図9を参照しながら本
発明の第4の実施形態に係わる手術用顕微鏡について説
明する。図9は手術用顕微鏡を側方から見た図であり、
図10はこれを下方から見た図である。本実施形態にお
いて、前述した第1〜3の実施形態のものと共通する構
成部分については同一符号を付してその説明を省略す
る。ここでは前記対物レンズ1と前記観察対象2との間
の空間に配置され、前記観察対象に向けて照明光を照射
するようにした照明光学系を中心に説明する。
(Fourth Embodiment) A surgical microscope according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a side view of the surgical microscope,
FIG. 10 is a view of this from below. In this embodiment, the same components as those in the first to third embodiments described above are designated by the same reference numerals and the description thereof will be omitted. Here, an illumination optical system arranged in a space between the objective lens 1 and the observation target 2 and illuminating the observation target with illumination light will be mainly described.

【0054】図9において、L1’及びL1”はそれぞ
れ立体視するための視差を有した左右の観察光束の中心
軸をそれぞれ示しており、同図9(b)中で示す符号1
00,101は低倍率観察時におけるこれらの観察光束
L1’及びL1”の径をそれぞれ表している。また、同
図9(b)中で示す符号102,103は高倍率観察時
におけるこれらの観察光束L1’及びL1”の径を表し
ている。
In FIG. 9, L1 'and L1 "respectively indicate the central axes of the left and right observation light beams having a parallax for stereoscopic viewing, and reference numeral 1 shown in FIG. 9 (b).
00 and 101 represent the diameters of these observation light fluxes L1 'and L1 "during low-magnification observation. Reference numerals 102 and 103 in FIG. 9B indicate these observations during high-magnification observation. The diameters of the light fluxes L1 ′ and L1 ″ are shown.

【0055】同図9中で示す符号104は照明手段の照
明光源23から出射された光の進む方向を観察対象2へ
向けて折り曲げるための反射部材である。該反射部材1
04は接着などによってプリズム枠105に固定的に保
持されている。プリズム枠105は図示しないガイド軸
などの水平移動機構によって支持されており、前記観察
光束L1に直交する水平な向きに移動自在な変更手段を
構成する。プリズム枠105の一部、例えば後端にはレ
バー106が形成されており、該レバー106は図示し
ていない顕微鏡本体の外部に突き出しており、このレバ
ー106を用いてプリズム枠105を移動操作できるよ
うになっている。また、このレバー106の操作に観察
系が連動して高倍率及び低倍率に変わる制御が行なわれ
る。
Reference numeral 104 shown in FIG. 9 is a reflecting member for bending the traveling direction of the light emitted from the illumination light source 23 of the illumination means toward the observation object 2. The reflection member 1
04 is fixedly held by the prism frame 105 by adhesion or the like. The prism frame 105 is supported by a horizontal moving mechanism such as a guide shaft (not shown), and constitutes a changing unit that is movable in a horizontal direction orthogonal to the observation light beam L1. A lever 106 is formed on a part of the prism frame 105, for example, at the rear end, and the lever 106 projects to the outside of the microscope main body (not shown). The lever 106 can be used to move the prism frame 105. It is like this. Further, the observation system is interlocked with the operation of the lever 106, and control is performed to change the magnification to high and low.

【0056】図9(b)に示すように、反射部材104
には左右の観察光束L1’及びL1”の中間位置に向け
て突き出した突出部120が一体に延長形成され、この
突出部120も照明光学系を構成する一部の反射部材と
しての機能の一部を担う。突出部120の形状は左右の
観察光束L1’及びL1”の中心位置の間に向けて突き
出し、先端側の幅が狭い、例えば、図9(b)に示すよ
うな三角形のものである。そして、突出部120は前記
2つの観察光束L1’及びL1”の間に挿入できるよう
にした光学素子を構成する。
As shown in FIG. 9B, the reflecting member 104
Is integrally formed with a protrusion 120 protruding toward an intermediate position between the left and right observation light beams L1 ′ and L1 ″, and this protrusion 120 also has a function as a part of a reflection member constituting the illumination optical system. The protrusion 120 has a shape protruding toward the center between the left and right observation light beams L1 ′ and L1 ″ and having a narrow width on the tip side, for example, a triangular shape as shown in FIG. Is. Then, the protrusion 120 constitutes an optical element that can be inserted between the two observation light beams L1 ′ and L1 ″.

【0057】次に、観察者が低倍率にて観察対象2を観
察する場合、前記反射部材104は図9中実線にて表さ
れた位置に配置されている。立体視を形成するための左
右の観察光束L1’及びL1”は高倍時においての場合
よりも大きいが、前記反射部材104が観察光軸L1か
ら後退した位置にあるため、反射部材104が観察光束
L1’及びL1”を遮ることはない。
Next, when the observer observes the observation object 2 at a low magnification, the reflecting member 104 is arranged at the position shown by the solid line in FIG. The left and right observation light fluxes L1 ′ and L1 ″ for forming a stereoscopic view are larger than those at the time of high magnification, but since the reflecting member 104 is at the position retracted from the observation optical axis L1, the reflection member 104 causes the observation light flux. It does not block L1 'and L1 ".

【0058】また、高倍率で観察対象2を観察すべく変
倍レンズ系3を制御したい場合には観察者はレバー10
6を図中矢印G方向に移動させる。その結果、前記反射
部材104は図9中破線で表された位置へとその配置が
変更され、反射部材104は観察光束L1’及びL1”
を遮ることがない位置までその観察光軸L1’及びL
1”に近づく。しかし、高倍時においては立体視を形成
するための左右の観察光束L1’及びL1”は低倍時の
場合よりも小さいため、前記反射部材104が観察光軸
L1’及びL1”により近くまで近づくことができる。
When it is desired to control the variable power lens system 3 in order to observe the object 2 to be observed at a high magnification, the observer uses the lever 10
6 is moved in the direction of arrow G in the figure. As a result, the arrangement of the reflecting member 104 is changed to the position shown by the broken line in FIG. 9, and the reflecting member 104 is changed to the observation light beams L1 ′ and L1 ″.
The observation optical axes L1 'and L up to a position that does not block
However, since the left and right observation light beams L1 ′ and L1 ″ for forming a stereoscopic view are smaller than those at low magnification at high magnification, the reflecting member 104 causes the observation optical axes L1 ′ and L1. "You can get closer to you.

【0059】以上説明した如く、本実施形態によれば、
対物レンズ1に近接する照明光学系の反射部材104の
一部を2つの観察光束L1’及びL1”の間に入り込
み、2つの観察光束L1’及びL1”を避け得る効果的
な形状としているため、術者が観察倍率を低倍率から高
倍率に変更した場合において変更手段によって照明光束
の位置を、より観察光束L1’及びL1”の近くにより
近づけることができる。従って、高倍率で観察すること
の多い深い穴の中を観察する場合にあっても観察対象部
位に照明光を十分に照射した状態で観察することができ
ると共に低倍率での観察においても照明光学系の部材に
よって観察光束L1’及びL1”の通過を妨げない。
As described above, according to this embodiment,
Since a part of the reflecting member 104 of the illumination optical system that is close to the objective lens 1 enters between the two observation light beams L1 ′ and L1 ″, and has an effective shape that can avoid the two observation light beams L1 ′ and L1 ″. When the operator changes the observation magnification from the low magnification to the high magnification, the position of the illumination light flux can be brought closer to the observation light fluxes L1 ′ and L1 ″ by the changing means. Even when observing in a deep hole with a lot of light, it is possible to observe with a sufficient irradiation of the illumination light on the observation target site, and also at the time of observation at a low magnification, the observation light flux L1 ′ by the member of the illumination optical system. And does not prevent the passage of L1 ″.

【0060】また、反射部材104の突出部120は左
右の観察光束L1’及びL1”をけらない範囲でその観
察光束L1’及びL1”の間に入り込むため、観察光束
L1’及びL1”が占めない領域に突出部120を位置
させることができ、その観察光束L1’及びL1”の間
のデッドスペースを有効に利用し、反射効率を高めると
同時に突出部120のない場合に比べて照明光束の中心
が観察光束L1’及びL1”に近づけることができる。
Further, since the projection 120 of the reflecting member 104 enters the left and right observation light beams L1 'and L1 "between the observation light beams L1' and L1" within a range that does not fall, the observation light beams L1 'and L1 "occupy. The protrusion 120 can be located in a non-existing region, and the dead space between the observation light beams L1 ′ and L1 ″ can be effectively used to enhance the reflection efficiency, and at the same time, the illumination light flux of the illumination light beam can be increased as compared with the case without the protrusion 120. The center can be brought close to the observation light beams L1 ′ and L1 ″.

【0061】前述した実施形態と同様に観察倍率が低倍
率から高倍率に変更されることに連動して観察光軸に対
して照明光軸が近づいていくことになる。従って、高倍
率で観察することの多い深い穴の中を観察する場合でも
観察対象部位に十分に照明光を照射できる。また、低倍
率での観察においても照明光学系の部材によって観察光
束をけり、観察を妨げることがない。
Similar to the above-described embodiment, the illumination optical axis approaches the observation optical axis in association with the change of the observation magnification from low magnification to high magnification. Therefore, even when observing the inside of a deep hole that is often observed at a high magnification, it is possible to sufficiently illuminate the observation target site. Further, even when observing at a low magnification, the observation light flux is not obstructed by the member of the illumination optical system and the observation is not disturbed.

【0062】(第5の実施形態)図10及び図11を参
照しながら本発明の第5の実施形態に係わる手術用顕微
鏡について説明する。図10(a)は観察対象2を低倍
率で観察しているときの状態の手術用顕微鏡を側方から
見た概略図であり、図10(b)はこれを下方から見た
概略図である。図11(a)は観察対象を高倍率で観察
しているときの状態の手術用顕微鏡を側方から見た概略
図であり、図11(b)はこれを下方から見た図であ
る。尚、本実施形態において前述した第1〜4の実施形
態のものと共通する構成部分については同一符号を付し
てその説明を省略する。ここでは前記対物レンズ1と前
記観察対象2との間の空間に配置され、前記観察対象に
照明光を照射可能な照明光学系を中心に説明する。
(Fifth Embodiment) A surgical microscope according to a fifth embodiment of the present invention will be described with reference to FIGS. 10 and 11. FIG. 10 (a) is a schematic view of the surgical microscope in a state in which the observation target 2 is observed at a low magnification, and FIG. 10 (b) is a schematic view of the same viewed from below. is there. FIG. 11A is a schematic view of the surgical microscope as viewed from the side when the observation target is observed at high magnification, and FIG. 11B is a view of the same viewed from below. In this embodiment, the same components as those in the first to fourth embodiments described above are designated by the same reference numerals and the description thereof will be omitted. Here, an explanation will be given centering on an illumination optical system that is arranged in a space between the objective lens 1 and the observation target 2 and is capable of irradiating the observation target with illumination light.

【0063】同図中符号107は照明手段においての照
明光源23から出射された光を観察対象2へ向けて折り
曲げるための反射部材であり、この反射部材107は前
記低倍率観察時における観察光束L1’及びL1”の径
100及び101に近接すべく固定的に配設されてい
る。ここで、前記反射部材107を出射して観察対象2
へ向かう光束の光軸をL3で示す。
In the figure, reference numeral 107 is a reflecting member for bending the light emitted from the illumination light source 23 in the illuminating means toward the observation object 2, and this reflecting member 107 is the observation light flux L1 at the time of the low magnification observation. It is fixedly arranged so as to be close to the diameters 100 and 101 of “and L1”.
The optical axis of the light beam going toward is indicated by L3.

【0064】前記反射部材107の下方には平面から見
た外形が平行四辺形のプリズム108が配設されてい
る。この平行四辺形プリズム108は接着などによって
プリズム枠109に取着保持されている。プリズム枠1
09は観察光束L1に対して直交する水平な向きに移動
自在なものであり、後述する変更手段によって観察光束
L1に対して直交する水平な向きに移動させられるよう
になっている。図10(b)に示すように平行四辺形プ
リズム108の左右幅は高倍率観察時における観察光束
L1’及びL1”の間にその観察光束L1’及びL1”
をけることなく入り込める大きさである。そして、この
平行四辺形プリズム108は前記2つの観察光束L1’
及びL1”の間に挿入できるようにした前記照明光学系
の光学素子を構成している。
Below the reflecting member 107, a prism 108 having an outer shape of a parallelogram when seen from a plane is arranged. The parallelogram prism 108 is attached and held to the prism frame 109 by adhesion or the like. Prism frame 1
Reference numeral 09 is movable in a horizontal direction orthogonal to the observation light beam L1, and can be moved in a horizontal direction orthogonal to the observation light beam L1 by a changing unit described later. As shown in FIG. 10B, the horizontal width of the parallelogram prism 108 is between the observation light beams L1 ′ and L1 ″ during the observation at high magnification.
It is a size that can enter without breaking. Then, the parallelogram prism 108 has the two observation light fluxes L1 ′.
And L1 ″, the optical element of the illumination optical system is configured.

【0065】前記プリズム枠109の底面にはラック1
10が形成されている。このプリズム枠109の下側に
は前記ラック110に噛み合うピニオン111が配置さ
れている。ピニオン111の回転軸112は図示してい
ない顕微鏡本体に回転可能に支持されている。前記回転
軸112は顕微鏡本体の外部に突き出しており、その突
出端部には図示しない回転操作つまみが固定されてい
る。
The rack 1 is provided on the bottom surface of the prism frame 109.
10 are formed. A pinion 111 that meshes with the rack 110 is arranged below the prism frame 109. The rotating shaft 112 of the pinion 111 is rotatably supported by a microscope body (not shown). The rotary shaft 112 projects to the outside of the microscope body, and a rotary operation knob (not shown) is fixed to the projecting end portion.

【0066】次に、本実施形態の作用について説明す
る。観察者が観察対象2を低倍率で観察するとき、平行
四辺形プリズム108は図11で示された位置、すなわ
ち反射部材107の出射面121と重ならない位置にあ
る。従って、照明光源23から出射された光は平行四辺
形プリズム108には入射されず、その結果、観察光軸
L1と照明光軸L3とのなす角度X’である。
Next, the operation of this embodiment will be described. When the observer observes the observation target 2 at a low magnification, the parallelogram prism 108 is at the position shown in FIG. 11, that is, at the position not overlapping the emission surface 121 of the reflecting member 107. Therefore, the light emitted from the illumination light source 23 is not incident on the parallelogram prism 108, and as a result, the angle is X ′ between the observation optical axis L1 and the illumination optical axis L3.

【0067】観察者が変倍レンズ系3を制御し、観察対
象2を高倍率で観察する場合においては観察者は前記図
示しない操作つまみを図11(a)中矢印H方向に回転
させる。操作つまみに与えられた回転によりピニオン1
11が回転するので、ピニオン111に噛み合うラック
110を備えたプリズム枠109は図中11(a)中矢
印J方向に移動する。これにより、前記平行四辺形プリ
ズム108は前記対物レンズ1の下方領域に入り込み、
図10で示す状態、即ち平行四辺形プリズム108の入
射面113が前記反射部材107の下方に位置し、且つ
平行四辺形プリズム108の先端に形成された2つ目の
反射面114が観察光軸L1上に配置された状態とな
る。
When the observer controls the variable power lens system 3 and observes the observation object 2 at a high magnification, the observer rotates the operation knob (not shown) in the direction of arrow H in FIG. 11 (a). Pinion 1 by rotation given to the operation knob
Since 11 rotates, the prism frame 109 including the rack 110 that meshes with the pinion 111 moves in the direction of arrow J in FIG. As a result, the parallelogram prism 108 enters the lower region of the objective lens 1,
In the state shown in FIG. 10, that is, the incident surface 113 of the parallelogram prism 108 is located below the reflecting member 107, and the second reflecting surface 114 formed at the tip of the parallelogram prism 108 is the observation optical axis. It is placed on L1.

【0068】観察対象2を高倍率で観察すると、前記光
束の径102及び103は低倍率で観察した場合の光束
の径100及び101に対してその径は小さく、前記平
行四辺形プリズム108はこれらの光束を遮ることな
く、その光束の間に配置され得る。従って、反射部材1
07を出射した照明光束の一部は、前記平行四辺形プリ
ズム108に入射することになり、入射した光束は該平
行四辺形プリズム108で2回反射された後、前記観察
光軸L1と同じ軸を持つ光束として観察対象2へ向けて
出射する。
When the observation target 2 is observed at a high magnification, the diameters 102 and 103 of the light fluxes are smaller than the diameters 100 and 101 of the light fluxes when observed at a low magnification, and the parallelogram prism 108 Can be placed between the light fluxes without interrupting the light fluxes. Therefore, the reflection member 1
A part of the illumination light flux emitted from No. 07 is incident on the parallelogram prism 108, the incident light flux is reflected twice by the parallelogram prism 108, and then the same axis as the observation optical axis L1. And is emitted toward the observation target 2.

【0069】以上説明した如く、本実施形態によれば、
術者が観察倍率を低倍率に変更した場合に観察光束に対
する照明光束の位置を近づけることができるので、高倍
率で観察することの多い深い穴の中を観察する場合にも
観察対象部位に十分に照明光を照射した状態で観察する
ことができると共に、低倍率での観察においても照明光
学系の部材によって観察光束の通過を妨げることがな
い。特に、本実施形態においては、高倍率で観察する場
合、実態顕微鏡の観察光学系を構成する左右一対の光学
系の間から照明光を観察対象に向けることができるの
で、深い穴の中を観察する場合の照明効果は格段に向上
する。
As described above, according to this embodiment,
When the operator changes the observation magnification to a low magnification, the position of the illumination light flux can be brought closer to the observation light flux, so even when observing inside a deep hole that is often observed at high magnification, it is sufficient for the observation target site. It is possible to observe in a state where the illumination light is radiated on, and even when observing at a low magnification, the passage of the observation light flux is not obstructed by the member of the illumination optical system. In particular, in this embodiment, when observing at a high magnification, it is possible to direct the illumination light to the observation target from between the pair of left and right optical systems forming the observation optical system of the real-life microscope, so that the inside of the deep hole is observed. The lighting effect when doing is significantly improved.

【0070】尚、本発明は前述した各実施形態に限定さ
れるものではなく、他の形態にも適用が可能である。前
述した説明によれば、以下に列挙する事項及び以下に列
挙した事項を任意に組み合わせた事項のものが得られ
る。
The present invention is not limited to the above-mentioned embodiments, but can be applied to other forms. According to the above description, items listed below and items obtained by arbitrarily combining the items listed below can be obtained.

【0071】(付記1)観察対象からの光束が入射され
る対物レンズと、前記対物レンズからの光束が入射さ
れ、前記観察対象の観察倍率を変更する変倍レンズ系
と、前記変倍レンズ系からの光束に基づいて形成される
光学像を観察するための観察手段と、前記対物レンズと
前記観察対象との間の空間に配置され、前記観察対象に
照明光を照射可能な照明光学系と、前記照明光学系の少
なくとも一部と前記対物レンズの光軸との相対位置を変
更する変更手段と、を具備する手術用顕微鏡。
(Supplementary Note 1) An objective lens to which a light beam from an observation object is incident, a variable magnification lens system to which a light beam from the objective lens is incident and which changes the observation magnification of the observation object, and the variable magnification lens system. An observing means for observing an optical image formed based on a light flux from, and an illumination optical system arranged in a space between the objective lens and the observation target and capable of irradiating the observation target with illumination light. A surgical microscope including: a changing unit that changes a relative position between at least a part of the illumination optical system and an optical axis of the objective lens.

【0072】(付記2)観察対象からの光束が入射され
る対物レンズと、前記観察対象に照明光を照射する照明
光学系と、前記対物レンズからの光束が入射され、前記
観察対象の観察倍率を変更する変倍レンズ系と、立体像
を得るための視差を有した2つの観察光束を形成する観
察光学系と、前記観察光学系からの前記2つの観察光束
に基づいて形成される光学像を観察するための観察手段
と、前記変倍レンズ系の前記観察対象に対する変倍動作
に伴い前記2つの観察光束の間に前記照明光学系の少な
くとも一つの光学素子を挿入し、前記光学素子と前記対
物レンズの光軸との相対位置を変更する変更手段と、を
具備する手術用顕微鏡。
(Supplementary Note 2) An objective lens on which a light beam from the observation target is incident, an illumination optical system for irradiating the observation target with illumination light, and a light beam from the objective lens are incident on the observation target to observe the light. A variable magnification lens system for changing the optical axis, an observation optical system for forming two observation light beams having a parallax for obtaining a stereoscopic image, and an optical image formed based on the two observation light beams from the observation optical system. And at least one optical element of the illumination optical system is inserted between the two observation light fluxes in accordance with the variable power operation of the variable power lens system with respect to the observation target. A surgical microscope comprising: a changing unit that changes the relative position of the objective lens with respect to the optical axis.

【0073】(付記3)前記変更手段は、前記変倍レン
ズ系の動作に基づいた低倍率観察から高倍率観察への変
倍動作に連動して、前記照明光学系の少なくとも一部を
前記対物レンズの光軸に近づけるべく変位させることを
特徴とする、付記1または付記2に記載の手術用顕微
鏡。
(Supplementary Note 3) The changing means operates at least a part of the illumination optical system in association with the zooming operation from the low magnification observation to the high magnification observation based on the operation of the zoom lens system. The surgical microscope according to appendix 1 or 2, wherein the surgical microscope is displaced so as to approach the optical axis of the lens.

【0074】(付記4)前記変更手段は、前記対物レン
ズの光軸に対する観察対象に向かう照明光軸の相対角度
および相対距離を変更することを特徴とする、付記1ま
たは付記2に記載の手術用顕微鏡。
(Supplementary note 4) The surgery according to Supplementary note 1 or Supplementary note 2, wherein the changing means changes the relative angle and relative distance of the illumination optical axis toward the observation target with respect to the optical axis of the objective lens. Microscope.

【0075】(付記5)前記変更手段は、前記照明光学
系から出射される照明光を、前記観察対象の略中心位置
を基準に傾斜させるべく、前記照明光学系の全体が前記
観察対象の略中心を基準に円弧状に移動することを特徴
とする、付記1または付記2に記載の手術用顕微鏡。
(Supplementary Note 5) In order to tilt the illumination light emitted from the illumination optical system with the approximate center position of the observation target as a reference, the entire of the illumination optical system is substantially equal to the observation target. The surgical microscope according to appendix 1 or 2, wherein the surgical microscope moves in an arc shape with the center as a reference.

【0076】(付記6)前記変更手段は、前記照明光学
系の有する反射部材を、該反射部材から照射され、前記
観察対象に向かう照明光の光軸と前記対物レンズの光軸
の相対的な角度を変更すべく回転させるとともに、且つ
前記照明光学系の全体または一部を、前記対物レンズの
光軸に対して直交する方向に移動させ、これら回転及び
移動によって前記照明光の光軸を前記観察対象の略中心
を基準に傾斜させるようにした、付記1または付記2に
記載の手術用顕微鏡。
(Supplementary Note 6) The changing means makes a reflection member of the illumination optical system relative to an optical axis of illumination light irradiated from the reflection member and directed toward the observation object and an optical axis of the objective lens. While rotating so as to change the angle, the whole or a part of the illumination optical system is moved in a direction orthogonal to the optical axis of the objective lens, and the optical axis of the illumination light is changed by the rotation and movement. The surgical microscope according to appendix 1 or 2, which is tilted with respect to a substantially center of an observation target.

【0077】(付記7)前記視差を有した2つの観察光
軸の間に挿入される照明光学系を構成する部材の幅は、
前記2つの観察光束それぞれの有する光束径の間の間隔
よりも小さい、付記2に記載の手術用顕微鏡。
(Supplementary Note 7) The width of the member constituting the illumination optical system inserted between the two observation optical axes having the parallax is:
The surgical microscope according to appendix 2, which is smaller than a distance between light flux diameters of the two observation light fluxes.

【0078】(付記8)前記視差を有した2つの観察光
束の間に挿入される照明光学系を構成する部材は、前記
2つの観察光束を避けるべく先端に近づくほど細くなる
形状をなしている、付記2に記載の手術用顕微鏡。
(Supplementary Note 8) The member constituting the illumination optical system inserted between the two observation light fluxes having the parallax has a shape that becomes narrower toward the tip to avoid the two observation light fluxes. The surgical microscope according to Appendix 2.

【0079】(付記9)観察対象からの光束が入射さ
れ、アフォーカルな光束を形成する対物レンズと、複数
のレンズ群からなり、前記対物レンズからの光束を入射
し、前記複数のレンズ群に含まれる移動レンズを変位さ
せることによって変倍を行なう変倍レンズ系と、前記変
倍レンズ系からの光束を入射して像を結像する結像レン
ズ及びこの結像された像を拡大する接眼レンズとを含ん
だ接眼光学系とからなる観察光学系と、前記観察対象に
照明光を照射する照明光学系と、前記変倍レンズ系の有
する移動レンズの変位に伴って、前記観察光学系の観察
光軸に対する前記照明光学系の照明光軸の相対角度を変
更させると共に、低倍率の観察時に比べて高倍率の観察
時に照明光軸を観察光軸に近づけるようにした照明光照
射角度変更手段を具備したことを特徴とする手術用顕微
鏡。
(Supplementary note 9) An objective lens which receives a light beam from an object to be observed and forms an afocal light beam, and a plurality of lens groups. The light beam from the objective lens is incident on the plurality of lens groups. A variable power lens system that performs variable power by displacing a moving lens included therein, an imaging lens that forms an image by entering a light beam from the variable power lens system, and an eyepiece that magnifies the formed image. An observation optical system including an eyepiece optical system including a lens, an illumination optical system that irradiates the observation target with illumination light, and a displacement of a moving lens included in the variable power lens system, the observation optical system Illuminating light irradiation angle changing means for changing the relative angle of the illuminating optical axis of the illuminating optical system with respect to the observing optical axis and for bringing the illuminating optical axis closer to the observing optical axis during high-magnification observation as compared to during low-magnification observation. The ingredients Surgical microscope, characterized in that the.

【0080】(付記10)前記照明光照射角度変更手段
は、前記変倍レンズ系の有する移動レンズの変位に伴
い、前記照明光学系の部材を、前記観察光学系の光軸に
対する距離が変化するように変位する、付記9に記載の
手術用顕微鏡。
(Supplementary Note 10) In the illumination light irradiation angle changing means, the distance of the member of the illumination optical system to the optical axis of the observation optical system changes with the displacement of the moving lens of the variable power lens system. The operating microscope according to Appendix 9, which is displaced as described above.

【0081】(付記11)前記照明光照射角度変更手段
は、前記照明光学系から出射される照明光を、前記観察
対象の略中心位置を基準に傾斜させるべく、照明光学系
の全体が前記観察対象の略中心を基準に円弧状に移動す
る、付記9、10に記載の手術用顕微鏡。
(Supplementary Note 11) The illumination light irradiation angle changing means causes the entire illumination optical system to observe the illumination light emitted from the illumination optical system with reference to a substantially central position of the observation target. 11. The surgical microscope according to appendices 9 and 10, which moves in an arc shape with the substantially center of the object as a reference.

【0082】(付記12)前記照明光照射角度変更手段
は、前記照明光学系の有する反射部材を、該反射部材か
ら照射され前記観察対象に向かう照明光の光軸と前記対
物レンズの光軸の相対的な角度を変更すべく回転させる
と共に、且つ前記反射部材を含まない照明光学系の部材
を、前記対物レンズの光軸に対して直交する方向に移動
させ、これら回転及び移動によって前記照明光の光軸を
前記観察対象の略中心を基準に傾斜させるようにした、
付記9、10,11に記載の手術用顕微鏡。
(Supplementary Note 12) The illumination light irradiation angle changing means controls the reflection member of the illumination optical system so that the reflection member has an optical axis of the illumination light emitted from the reflection member toward the observation target and an optical axis of the objective lens. While rotating so as to change the relative angle, the member of the illumination optical system that does not include the reflecting member is moved in a direction orthogonal to the optical axis of the objective lens, and the illumination light is rotated and moved. The optical axis of is inclined with respect to the approximate center of the observation target,
The surgical microscope according to supplementary notes 9, 10 and 11.

【0083】(付記13)前記照明光学系は、前記対物
レンズより下部に配設された反射部材を有するととも
に、前記照明光源から出射された照明光は、前記反射部
材によって観察対象に向かうべく偏向される、付記9、
10,11,12に記載の手術用顕微鏡。
(Supplementary Note 13) The illumination optical system has a reflecting member disposed below the objective lens, and the illumination light emitted from the illumination light source is deflected by the reflecting member toward the observation target. Appendix 9,
The operating microscope according to 10, 11, or 12.

【0084】[0084]

【発明の効果】以上説明したように、本発明によれば、
高倍率時において観察することの多い、深く細い穴の中
でも十分に照明光を術部に到達させることができるとと
もに、低倍率での観察においては照明光学系によって観
察光束の通過を妨げることが無いために、術者は常に明
るい視野を確保しながら手術を行なうことができる。従
って、従来に比べて格段に手術効率を向上させることが
できる。
As described above, according to the present invention,
The illumination light can reach the surgical site sufficiently even in deep and thin holes that are often observed at high magnification, and the illumination optical system does not obstruct the passage of the observation light flux during observation at low magnification. Therefore, the operator can always perform an operation while ensuring a bright field of view. Therefore, the surgical efficiency can be significantly improved as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態に係わる手術用顕微鏡
の観察対象を低倍率で観察しているときの側方から見た
説明図。
FIG. 1 is an explanatory view seen from a side when observing an observation target of a surgical microscope according to a first embodiment of the present invention at a low magnification.

【図2】同じく本発明の第1の実施形態に係わる手術用
顕微鏡の観察対象を高倍率で観察しているときの側方か
ら見た説明図。
FIG. 2 is an explanatory view seen from the side when observing an observation object of the surgical microscope according to the first embodiment of the present invention at a high magnification.

【図3】本発明の第2の実施形態に係わる手術用顕微鏡
の観察対象を低倍率で観察しているときの側方から見た
説明図。
FIG. 3 is an explanatory view seen from a side when observing an observation object of the surgical microscope according to the second embodiment of the present invention at a low magnification.

【図4】同じく本発明の第2の実施形態に係わる手術用
顕微鏡の一部分を上方から見た図。
FIG. 4 is a view of a part of the surgical microscope according to the second embodiment of the present invention seen from above.

【図5】同じく本発明の第2の実施形態に係わる手術用
顕微鏡の制御系を示すブロック図。
FIG. 5 is a block diagram showing a control system of the surgical microscope according to the second embodiment of the present invention.

【図6】同じく本発明の第2の実施形態に係わる手術用
顕微鏡の観察対象を高倍率で観察したときの観察光学系
の説明図。
FIG. 6 is an explanatory diagram of an observation optical system when an observation target of the surgical microscope according to the second embodiment of the present invention is observed at high magnification.

【図7】本発明の第3の実施形態に係わる手術用顕微鏡
の観察対象を低倍率で観察しているときの側方から見た
説明図。
FIG. 7 is an explanatory view seen from a side when observing an observation object of the surgical microscope according to the third embodiment of the present invention at a low magnification.

【図8】同じく本発明の第3の実施形態に係わる手術用
顕微鏡の観察対象を高倍率で観察しているときの側方か
ら見た説明図。
FIG. 8 is an explanatory view seen from the side when observing an observation target of the surgical microscope according to the third embodiment of the present invention at a high magnification.

【図9】(a)は本発明の第4の実施形態に係わる手術
用顕微鏡を側方から見た説明図、(b)はこれを下方か
ら見た説明図。
9A is an explanatory view of a surgical microscope according to a fourth embodiment of the present invention seen from a side, and FIG. 9B is an explanatory view seen from below.

【図10】(a)は本発明の第4の実施形態に係わる手
術用顕微鏡を側方から見た説明図、(b)はこれを下方
から見た説明図。
FIG. 10A is an explanatory view of a surgical microscope according to a fourth embodiment of the present invention seen from a side, and FIG. 10B is an explanatory view seen from below.

【図11】(a)は本発明の第4の実施形態に係わる手
術用顕微鏡を側方から見た説明図、(b)はこれを下方
から見た説明図。
FIG. 11A is an explanatory view of a surgical microscope according to a fourth embodiment of the present invention seen from a side, and FIG. 11B is an explanatory view seen from below.

【符号の説明】[Explanation of symbols]

L1…観察光軸 L2…照明光軸 A…画角 Y…角度 1…対物レンズ 2…観察対象 3…変倍レンズ系 4…接眼光学系 8…反射部材 10…鏡体ハウジング 11…移動レンズ枠 13…カム筒 15…従動ピン 16…モーター 21…照明ハウジング 23…照明光源 24…コンデンサレンズ 25…反射部材 L1 ... Observation optical axis L2 ... Illumination optical axis A ... Angle of view Y ... angle 1 ... Objective lens 2 ... Observation target 3 ... Variable magnification lens system 4 ... Eyepiece optical system 8 ... Reflective member 10 ... Mirror housing 11 ... Moving lens frame 13 ... Cam tube 15 ... driven pin 16 ... motor 21 ... Lighting housing 23 ... Illumination light source 24 ... Condenser lens 25 ... Reflective member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 観察対象からの光束が入射される対物レ
ンズと、 前記対物レンズからの光束が入射され、前記観察対象の
観察倍率を変更する変倍レンズ系と、 前記変倍レンズ系からの光束に基づいて形成される光学
像を観察するための観察手段と、 前記対物レンズと前記観察対象との間の空間に配置さ
れ、前記観察対象に照明光を照射可能な照明光学系と、 前記照明光学系の少なくとも一部と前記対物レンズの光
軸との相対位置を変更する変更手段と、 を具備する手術用顕微鏡。
1. An objective lens to which a light flux from an observation target is incident, a variable magnification lens system to which a light flux from the objective lens is incident to change the observation magnification of the observation target, and a variable magnification lens system to An observation unit for observing an optical image formed based on a light flux, an illumination optical system arranged in a space between the objective lens and the observation target, and capable of irradiating the observation target with illumination light, A surgical microscope comprising: a changing unit that changes a relative position between at least a part of an illumination optical system and an optical axis of the objective lens.
【請求項2】 観察対象からの光束が入射される対物レ
ンズと、 前記観察対象に照明光を照射する照明光学系と、 前記対物レンズからの光束が入射され、前記観察対象の
観察倍率を変更する変倍レンズ系と、 立体像を得るための視差を有した2つの観察光束を形成
する観察光学系と、 前記観察光学系からの前記2つの観察光束に基づいて形
成される光学像を観察するための観察手段と、 前記変倍レンズ系の前記観察対象に対する変倍動作に伴
い前記2つの観察光束の間に前記照明光学系の少なくと
も一つの光学素子を挿入し、前記光学素子と前記対物レ
ンズの光軸との相対位置を変更する変更手段と、 を具備する手術用顕微鏡。
2. An objective lens into which a light flux from an observation target is incident, an illumination optical system that irradiates the observation target with illumination light, and a light flux from the objective lens is incident to change the observation magnification of the observation target. A variable magnification lens system, an observation optical system that forms two observation light beams having a parallax for obtaining a stereoscopic image, and an optical image formed based on the two observation light beams from the observation optical system And an objective lens for inserting the at least one optical element of the illumination optical system between the two observation light beams in accordance with the magnification changing operation of the magnification varying lens system with respect to the observation target. And a changing means for changing the relative position to the optical axis of the surgical microscope.
【請求項3】 前記変更手段は、前記変倍レンズ系の動
作に基づいた低倍率観察から高倍率観察への変倍動作に
連動して、前記照明光学系の少なくとも一部を前記対物
レンズの光軸に近づけるべく変位させることを特徴とす
る、請求項1または請求項2に記載の手術用顕微鏡。
3. The changing means operates at least a part of the illumination optical system of the objective lens in association with a zooming operation from low-magnification observation to high-magnification observation based on the operation of the zooming lens system. The surgical microscope according to claim 1 or 2, wherein the surgical microscope is displaced so as to approach the optical axis.
JP2002122972A 2001-10-05 2002-04-24 Surgical microscope Expired - Lifetime JP3730934B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002122972A JP3730934B2 (en) 2001-10-05 2002-04-24 Surgical microscope
US10/375,490 US20030201378A1 (en) 2002-04-24 2003-02-27 Operating microscope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001310231 2001-10-05
JP2001-310231 2001-10-05
JP2002122972A JP3730934B2 (en) 2001-10-05 2002-04-24 Surgical microscope

Publications (2)

Publication Number Publication Date
JP2003177326A true JP2003177326A (en) 2003-06-27
JP3730934B2 JP3730934B2 (en) 2006-01-05

Family

ID=26623769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122972A Expired - Lifetime JP3730934B2 (en) 2001-10-05 2002-04-24 Surgical microscope

Country Status (1)

Country Link
JP (1) JP3730934B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218206A (en) * 2005-02-14 2006-08-24 Olympus Corp Microscope for operation
JP2007233248A (en) * 2006-03-03 2007-09-13 Nippon Telegr & Teleph Corp <Ntt> Optical observation device
JP2009110004A (en) * 2007-10-29 2009-05-21 Leica Microsystems (Schweiz) Ag Illumination device for light microscope and light microscope with illumination device
WO2023150125A1 (en) * 2022-02-04 2023-08-10 Lumileds Llc Parallax correction for illumination system and method
US12363410B2 (en) 2023-01-31 2025-07-15 Lumileds Llc Parallax correction for illumination system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218206A (en) * 2005-02-14 2006-08-24 Olympus Corp Microscope for operation
JP2007233248A (en) * 2006-03-03 2007-09-13 Nippon Telegr & Teleph Corp <Ntt> Optical observation device
JP2009110004A (en) * 2007-10-29 2009-05-21 Leica Microsystems (Schweiz) Ag Illumination device for light microscope and light microscope with illumination device
WO2023150125A1 (en) * 2022-02-04 2023-08-10 Lumileds Llc Parallax correction for illumination system and method
US12363410B2 (en) 2023-01-31 2025-07-15 Lumileds Llc Parallax correction for illumination system and method

Also Published As

Publication number Publication date
JP3730934B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP4422394B2 (en) Stereo microscope
JP5066094B2 (en) Optical medical treatment system and method using virtual image aiming device
US8382743B2 (en) Ophthalmic laser treatment apparatus
US4871245A (en) Surgical microscope
JP2516007Y2 (en) Surgical microscope
EP0928981A2 (en) Surgical microscope
JP3597896B2 (en) Switchable illumination device for operating microscope
JP2005321657A5 (en)
JP2007034301A (en) Microscope having surgical slit lamp having laser light source
JP5400787B2 (en) Surgical microscope with illumination system and illumination system control unit
EP1326116B1 (en) Variable magnification microscope
JP2744615B2 (en) Binocular microscope
JP3730934B2 (en) Surgical microscope
JP2001142003A (en) Microscope for operation
JP3552737B2 (en) Surgical microscope
US20030201378A1 (en) Operating microscope
US8634133B2 (en) Surgical microscope with a movable illumination part
CN110187485B (en) Surgical microscope with movable beam deflector, method of operating same and retrofit kit
JP4615840B2 (en) Surgical observation device
JP3006910B2 (en) Laser irradiation device
JP4472284B2 (en) Surgical microscope
JP2016202431A (en) Surgical microscope
JPH07124175A (en) Microscope for operation
JP2003310637A (en) Operation microscope device
US20220331042A1 (en) Slit projector arrangement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051007

R151 Written notification of patent or utility model registration

Ref document number: 3730934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term