JP2003171744A - Chromium based stainless steel with double layer structure, and production method therefor - Google Patents
Chromium based stainless steel with double layer structure, and production method thereforInfo
- Publication number
- JP2003171744A JP2003171744A JP2001368775A JP2001368775A JP2003171744A JP 2003171744 A JP2003171744 A JP 2003171744A JP 2001368775 A JP2001368775 A JP 2001368775A JP 2001368775 A JP2001368775 A JP 2001368775A JP 2003171744 A JP2003171744 A JP 2003171744A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- stainless steel
- surface layer
- nitrogen
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、クロム系ステンレ
ス鋼材とその製造方法に関する。特に、本発明は、耐銹
性に優れ、かつばね特性を備えるクロム系ステンレス鋼
材とその製造方法に関する。TECHNICAL FIELD The present invention relates to a chromium-based stainless steel material and a method for manufacturing the same. In particular, the present invention relates to a chromium-based stainless steel material having excellent rust resistance and spring characteristics, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】ばね用クロム系ステンレス鋼には、SUS
420J2−CPS のマルテンサイト系ステンレス鋼が規定さ
れている(JIS −G4313)。しかし、Cr量が12〜14%と
低いために耐銹性が不十分であるという問題がある。2. Description of the Related Art SUS is used for chromium-based stainless steel for springs.
420J2-CPS martensitic stainless steel is specified (JIS-G4313). However, there is a problem that the rust resistance is insufficient because the Cr content is as low as 12 to 14%.
【0003】従来にあっても、例えば、特開平3−5662
1 号公報には、ばね特性に優れたCr量が20重量%に近い
クロム系ステンレス鋼が提案されている。しかし、それ
はフェライト相+マルテンサイト相の混合組織を利用す
るものである。Even in the past, for example, Japanese Patent Laid-Open No. 3-5662
Japanese Patent Publication No. 1 proposes a chrome-based stainless steel which has an excellent spring property and a Cr content close to 20% by weight. However, it utilizes a mixed structure of a ferrite phase and a martensite phase.
【0004】一方、特開2001−140041号公報において、
本件出願人はばね用鋼として表層部と内層部とを備えた
複層組織を提案している。これは、鋼材の表層部がマル
テンサイト相と残留オ−ステナイト相を含む混合組織、
内層部がフェライト相とマルテンサイト相の混合組織か
らなる複層組織クロム系ステンレス鋼である。On the other hand, in Japanese Patent Laid-Open No. 2001-140041,
The applicant of the present application has proposed a multi-layer structure having a surface layer portion and an inner layer portion as spring steel. This is a mixed structure in which the surface layer of the steel material contains a martensite phase and a retained austenite phase,
The inner layer is a multi-layered chromium-based stainless steel having a mixed structure of ferrite phase and martensite phase.
【0005】[0005]
【発明が解決しようとする課題】しかし、最近、自動車
部品メーカーにおいて塗装工程省略によるコストダウン
が検討されており、それに伴いステンレス鋼素材に対し
てより厳しい耐銹性が求められるようになった。例え
ば、自動車用ホーンの振動板には、ばね用クロム系ステ
ンレス鋼が使用されている。しかし、北米、北欧地域に
代表される寒冷地の路面凍結防止のために散布される食
塩に起因する発銹、および隙間部分での塩素イオン濃化
によるpHの低下による腐食に対しては、従来のSUS430
(汎用16Cr鋼)でも十分な抵抗力がない場合が見られ
る。一般に、これら耐銹性は、Cr、Mo量を増加させるこ
とで改善する。しかし、これら元素は高価であり、かつ
フェライト形成元素である。従って、同元素の添加は材
料コストの上昇とばね材に必要な材料強度の低下を招く
という問題がある。Recently, however, automobile parts manufacturers have been studying cost reduction by omitting the painting process, and accordingly, more severe rust resistance has been required for stainless steel materials. For example, chrome-based stainless steel for springs is used for a diaphragm of an automobile horn. However, the rusting caused by salt sprayed to prevent road surface freezing in cold regions such as North America and Northern Europe, and the corrosion caused by a drop in pH due to chloride ion concentration in the gap, SUS430
Even with (general purpose 16Cr steel), there are cases where there is not enough resistance. Generally, these rust resistance is improved by increasing the amounts of Cr and Mo. However, these elements are expensive and are ferrite-forming elements. Therefore, there is a problem that the addition of the same element raises the material cost and lowers the material strength required for the spring material.
【0006】ここに、本発明の課題は、上述した最近の
ユーザー動向を踏まえ、より厳しい耐銹性が求められる
環境に適用しうる安価なクロム系ステンレス鋼材とその
製造方法を提供することである。An object of the present invention is to provide an inexpensive chromium-based stainless steel material applicable to an environment requiring more severe rust resistance and a method for producing the same, in view of the recent trends in users. .
【0007】具体的には、本発明の課題は、多量のNiを
含有する強度・耐銹性に優れた高価なばね用オーステナ
イト系ステンレス鋼(SUS304−CSP)と同等以上の特性
(耐銹性、ばね性、加工性)を備えたクロム系ステンレ
ス鋼材とその製造方法を提供することである。Specifically, the object of the present invention is to provide a property (corrosion resistance) equivalent to or higher than that of an expensive austenitic stainless steel for springs (SUS304-CSP) containing a large amount of Ni and excellent in strength and rust resistance. , A spring property and workability) and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく、種々の検討を重ねた結果、前述の特開
2001−140041号公報において提案した表層部および内層
部を備えた複層組織クロム系ステンレス鋼材において、
その表層部へ必要量のCuを固溶させると、予想外にも、
NaCl環境において腐食の進行を抑制する作用が極めて大
きいとの知見を得、さらに検討を重ね、1.5 〜3.0 %の
Cuを含有するクロム系ステンレス鋼において、表層部の
未固溶Cu粒子の最大粒子径を0.5 μm 以下とすることに
より、複層組織クロム系ステンレス鋼材の耐銹性が著し
く向上することを見出し、本発明を完成した。Means for Solving the Problems The inventors of the present invention have made various studies in order to solve the above problems, and as a result,
In a multi-layer structure chromium-based stainless steel material provided with a surface layer portion and an inner layer portion proposed in 2001-140041,
Unexpectedly, if the required amount of Cu is dissolved in the surface layer,
We obtained the finding that the effect of suppressing the progress of corrosion in a NaCl environment is extremely large, and conducted further studies to find that the effect of 1.5-3.0%
In the chromium-containing stainless steel containing Cu, by finding that the maximum particle size of the undissolved Cu particles in the surface layer is 0.5 μm or less, it was found that the rust resistance of the multi-layer structure chromium-based stainless steel material is significantly improved, The present invention has been completed.
【0009】なお、前述の特開平3−56621 号公報に
も、Cr:10〜20重量%、C:0.01〜0.15重量%、Ni、Mn
またはCuのうち1種または2種以上を0.1 〜4.0 重量%
含有する鋼組成が開示されているが、その場合に添加す
るCuは、NiおよびMnと均等な作用を有し、オーステナイ
ト生成元素として高温でフェライト+オーステナイト二
相組織を得るために添加するのであって、耐食性あるい
は耐銹性の改善については何らの開示も示唆もすること
がない。In the above-mentioned Japanese Patent Laid-Open No. 3-56621, Cr: 10 to 20% by weight, C: 0.01 to 0.15% by weight, Ni, Mn.
Or 0.1 to 4.0% by weight of one or more of Cu
The steel composition to be contained is disclosed, but Cu added in that case has an effect equivalent to that of Ni and Mn, and is added to obtain a ferrite + austenite two-phase structure as an austenite forming element at high temperature. Therefore, there is no disclosure or suggestion of improvement in corrosion resistance or rust resistance.
【0010】また、クロム系ステンレス鋼にCuを添加す
る例は、特開平10−237597号公報にも見られるが、この
場合に添加されるCu:0.4 〜5重量%は、Cuのリッチな
相を構成することで鋼材に抗菌性を付与するためであ
る。An example of adding Cu to chromium-based stainless steel is also found in Japanese Unexamined Patent Publication No. 10-237597. Cu added in this case: 0.4 to 5 wt% is a Cu-rich phase. This is because the steel is provided with antibacterial properties.
【0011】むしろ、これらの従来例では、フェライト
相とマルテンサイト相の混合組織(複相組織) となって
おり、そのような複相化熱処理時の鋭敏化現象により耐
食性が劣化することが危倶される。On the contrary, these conventional examples have a mixed structure of a ferrite phase and a martensite phase (multiphase structure), and it is feared that the corrosion resistance is deteriorated by such a sensitization phenomenon during the heat treatment for multiphase formation. Will be
【0012】よって、本発明は次の通りである。
(1)質量%で、C:0.01〜0.15%、Cr:16〜20%、Cu:
1.5 〜3.0 %を含有し、表層部と内層部との複層組織か
ら成り、表層部がマルテンサイト相と残留オーステナイ
ト相とを含有する混合組織からなり、内層部がフェライ
ト相とマルテンサイト相とを含有する混合組織もしくは
実質的にマルテンサイト単相組織からなり、前記表層部
における未固溶Cu粒子の最大粒子径が0.5 μm 以下であ
ることを特徴とする複層組織クロム系ステンレス鋼材。Therefore, the present invention is as follows. (1)% by mass, C: 0.01 to 0.15%, Cr: 16 to 20%, Cu:
Contains 1.5 to 3.0%, consisting of a multilayer structure of the surface layer portion and the inner layer portion, the surface layer portion is composed of a mixed structure containing a martensite phase and a retained austenite phase, the inner layer portion is a ferrite phase and a martensite phase A multi-layered chromium-based stainless steel material comprising a mixed structure or a substantially single-phase martensite single-phase structure containing, and having a maximum particle diameter of 0.5 μm or less of undissolved Cu particles in the surface layer portion.
【0013】(2)前記表層部における窒素含有量が0.03
〜0.5 質量%である上記(1) に記載の複層組織クロム系
ステンレス鋼材。
(3)質量%で、C:0.01〜0.15%、Cr:16〜20%、Cu:
1.5 〜3.0 %を含有するクロム系ステンレス鋼材を窒素
含有雰囲気中で下記(1) 式で規定される均熱温度Tに均
熱し、前記窒素含有雰囲気中の窒素を鋼材の表層部に吸
収させたのち、1℃/秒以上の冷却速度で冷却する複層
化熱処理を行うことを特徴とする複層組織クロム系ステ
ンレス鋼材の製造方法。(2) The nitrogen content in the surface layer is 0.03
The multi-layered chromium-based stainless steel material according to (1) above, which is ˜0.5 mass%. (3)% by mass, C: 0.01 to 0.15%, Cr: 16 to 20%, Cu:
Chromium-based stainless steel containing 1.5 to 3.0% was soaked in a nitrogen-containing atmosphere to a soaking temperature T defined by the following formula (1), and nitrogen in the nitrogen-containing atmosphere was absorbed by the surface layer of the steel. After that, a method for producing a multi-layer structure chromium-based stainless steel material, which comprises performing a multi-layer heat treatment for cooling at a cooling rate of 1 ° C./second or more.
【0014】
T(℃)≧ 93Cu (質量%)+760 ・・・(1)
(4)前記窒素含有雰囲気は、水素:10体積%以上、窒
素:5体積%以上を含有し、露点:−30℃以下である上
記(3) に記載の複層組織クロム系ステンレス鋼材の製造
方法。T (° C.) ≧ 93Cu (mass%) + 760 (1) (4) The nitrogen-containing atmosphere contains hydrogen: 10 vol% or more, nitrogen: 5 vol% or more, and dew point: −30 The method for producing a multi-layer structure chromium-based stainless steel material according to the above (3), which has a temperature of ℃ or less.
【0015】[0015]
【発明の実施の形態】次に、添付図面を参照して本発明
をさらに具体的に説明する。なお、本明細書において、
化学組成、つまり鋼組成を示す「%」は、とくにことわ
りがない限り、「質量%」を意味する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described more specifically with reference to the accompanying drawings. In the present specification,
Unless otherwise specified, the chemical composition, that is, “%” indicating the steel composition means “mass%”.
【0016】図1は、耐銹性に対する代表的な実験結果
を示すもので、45℃−1.5 %NaCl含有水溶液中(pH塩酸
調整)半浸漬後の腐食減量を示すグラフである。本発明
鋼材は、SUS430(16%Cr鋼)材に2%Cuを添加したもの
であり、Cuが理論上完全に固溶する均熱温度で複層化熱
処理を行い、表層部へ実質的に2%のCuを固溶させた状
態から急冷してから実験に供している。未固溶Cuの最大
粒径は0.1 μm であった。本発明鋼材は、SUS430鋼と比
較して酸性環境(pH2〜1)において腐食の進行が著し
く抑制されており、中性〜酸性の幅広い環境において、
SUS304−CSP(18%Cr−8%Ni鋼)と同等以上の優れた耐
銹性を示すことが分かった。 本発明における上述のメ
カニズムはまだ明確には判明してないが、現状では、以
下のように推察する。FIG. 1 is a graph showing typical experimental results for rust resistance, which is a graph showing the corrosion weight loss after half immersion in an aqueous solution containing 45 ° C.-1.5% NaCl (pH hydrochloric acid adjustment). The steel material of the present invention is obtained by adding 2% Cu to a SUS430 (16% Cr steel) material, and is subjected to a multilayer heat treatment at a soaking temperature at which Cu theoretically completely forms a solid solution, and the surface layer portion is substantially The solid solution of 2% Cu is rapidly cooled before the experiment. The maximum particle size of undissolved Cu was 0.1 μm. The steel material of the present invention has a significantly suppressed progress of corrosion in an acidic environment (pH 2-1) as compared with the SUS430 steel, and in a wide range of neutral to acidic environments,
It was found that SUS304-CSP (18% Cr-8% Ni steel) shows excellent rust resistance equivalent to or better than that. Although the above-mentioned mechanism in the present invention has not been clarified yet, it is presumed as follows at present.
【0017】すなわち、NaCl含有水溶液中において、表
層部の固溶Cuは不働態化効果のあるCuCl皮膜を生成し、
これにより腐食の進行を抑制したものと考える。16%Cr
鋼は、pH2を境界にしてCr皮膜が不働態化状態から活性
溶解状態へ移行する。しかしながら、本発明鋼材では、
Cr皮膜の活性溶解状態においてCuとClイオンの界面反応
により母材の溶解(Feの溶出)が抑制されたものと推察
する。That is, in an aqueous solution containing NaCl, the solid solution Cu in the surface layer forms a CuCl film having a passivation effect,
This is considered to have suppressed the progress of corrosion. 16% Cr
In the steel, the Cr film shifts from the passivated state to the active dissolved state at the boundary of pH 2. However, in the steel material of the present invention,
It is speculated that the dissolution of the base material (Fe elution) was suppressed by the interfacial reaction between Cu and Cl ions in the active dissolution state of the Cr film.
【0018】ここに、本発明において鋼組成を限定する
理由は次の通りである。
Cr:Crはフェライト形成元素であり、耐銹性を確保する
ために必須の元素である。本発明の目標とする耐銹性を
確保するには、Cr量を16%以上とする。他方、Cr量の増
加は鋼材コストの上昇と材料強度の低下を招くため、上
限は20%とする。望ましくは18%以下である。The reason for limiting the steel composition in the present invention is as follows. Cr: Cr is a ferrite-forming element and is an essential element for ensuring rust resistance. In order to secure the rust resistance targeted by the present invention, the amount of Cr is set to 16% or more. On the other hand, an increase in Cr content causes an increase in steel cost and a decrease in material strength, so the upper limit is 20%. It is preferably 18% or less.
【0019】C:Cは代表的なオーステナイト形成元素
であり、マルテンサイト硬化能に大きく影響する。ばね
材に必要な材料強度を得るためには、C量を0.01%以上
とする。他方、C量の増加は、熱間加工性および製品の
加工性の低下を招くために、下限は0.15%とする。C: C is a typical austenite forming element and has a great influence on the martensite hardening ability. In order to obtain the material strength required for the spring material, the C content should be 0.01% or more. On the other hand, an increase in the amount of C causes deterioration in hot workability and product workability, so the lower limit is made 0.15%.
【0020】N:NはCと同様に代表的なオーステナイ
ト形成元素であり、ばね疲労強度の向上に効果的な元素
である。しかし、通常の溶製方法でNを多量に含有させ
るのは困難であり、Nを多量に含有した鋼は熱間加工性
が悪く、熱間圧延時に耳割れ等の表面疵の発生原因とな
る。従って、N量は通常の溶製方法で得られる0.01〜0.
04%でよい。 .
Cu:Cuはオーステナイト形成元素であり、マルテンサイ
ト相の量と硬さを調整するのに有効な元素である。さら
に、本発明の目標とする耐銹性を得るために必須の元素
である。含有量の下限は、目標とする耐銹性を得るため
に1.5 %とする。他方、過度な添加は鋼の熱間加工性を
阻害するために上限は3.0 %とする。望ましくは2 .5%
以下とする。N: N is a typical austenite forming element like C, and is an element effective for improving spring fatigue strength. However, it is difficult to add a large amount of N by an ordinary melting method, and a steel containing a large amount of N has poor hot workability and causes surface defects such as edge cracks during hot rolling. . Therefore, the amount of N is 0.01 to 0, which is obtained by an ordinary melting method.
04% is fine. . Cu: Cu is an austenite forming element and is an element effective in adjusting the amount and hardness of the martensite phase. Furthermore, it is an essential element for obtaining the rust resistance targeted by the present invention. The lower limit of the content is 1.5% to obtain the target rust resistance. On the other hand, excessive addition impairs the hot workability of steel, so the upper limit is 3.0%. Preferably 2.5%
Below.
【0021】Ti:Tiはフェライト形成元素であるととも
に、結晶粒の微細化に効果的な元素である。従って、必
須元素ではないが、含有させても構わない。その場合の
含有量は0.003 %以上とする。他方、Tiを過剰に含有さ
せると経済性を損なうだけでなく、鋼中のC、Nを固定
して強度低下の原因となるので、その上限は0.03%とす
る。Ti: Ti is an element that forms ferrite, and is an element that is effective for refining crystal grains. Therefore, although it is not an essential element, it may be contained. In that case, the content should be 0.003% or more. On the other hand, if Ti is contained excessively, not only the economical efficiency is impaired, but also C and N in the steel are fixed to cause a decrease in strength, so the upper limit is made 0.03%.
【0022】Nb:Nbはフェライト形成元素であるととも
に、C、Nを固定して複層化熱処理で生じる鋭敏化現象
を抑制する作用がある。従って、必須元素ではないが、
含有させても構わない。その場合の含有量は、0.005 %
以上とする。他方、Nbを過剰に含有させると鋼中のC、
N元素を固定して強度低下の原因となるので、その上限
は0.1 %とする。Nb: Nb is a ferrite-forming element, and also has an action of fixing C and N to suppress the sensitization phenomenon caused by the heat treatment for multilayering. Therefore, although not an essential element,
It may be contained. In that case, the content is 0.005%
That is all. On the other hand, when Nb is excessively contained, C in steel,
Since the N element is fixed and causes a decrease in strength, the upper limit is 0.1%.
【0023】Mo:Moはフェライト形成元素であるととも
に、耐銹性を著しく向上させる作用がある。従って、必
須元素ではないが、含有させても構わない。その場合の
含有量は、0.1 %以上とする。しかし、Moは高価であり
過剰に含有させると経済性を損なううえ、ばね材に必要
な強度を低下させるためにその上限は1.0 %とする。Mo: Mo is a ferrite-forming element and has the effect of significantly improving rust resistance. Therefore, although it is not an essential element, it may be contained. In that case, the content shall be 0.1% or more. However, Mo is expensive, and if it is contained in an excessive amount, it impairs economic efficiency, and the upper limit is made 1.0% in order to reduce the strength required for the spring material.
【0024】Ni、Mn:これらは、いずれもオーステナイ
ト形成元素であり、マルテンサイト相の量と硬さを調整
するのに有効な元素である。従って、このような観点か
らは必須元素ではないが、含有させても構わない。その
場合の含有量は、それぞれ0.3 %以上とする。他方、Ni
は過剰に含有させると経済性を損なうので、その上限は
1.0 %とする。Mnは過剰に含有させると耐銹性を低下さ
せる作用があるので、その上限は1.0 %とする。Ni and Mn: All of these are austenite forming elements and are effective elements for adjusting the amount and hardness of the martensite phase. Therefore, although it is not an essential element from such a viewpoint, it may be contained. In that case, the content of each should be 0.3% or more. On the other hand, Ni
Is excessively contained, it impairs economic efficiency, so the upper limit is
1.0% If Mn is contained excessively, it has the effect of lowering rust resistance, so its upper limit is made 1.0%.
【0025】V:Vは強度を得るために効果的な元素で
ある。従って、必須元素ではないが、含有させても構わ
ない。その場合の含有量は0.05%以上とする。しかし、
0.3%を超えると効果が飽和するので、その上限は0.3
%とする。V: V is an effective element for obtaining strength. Therefore, although it is not an essential element, it may be contained. In that case, the content should be 0.05% or more. But,
If it exceeds 0.3%, the effect will be saturated, so the upper limit is 0.3.
%.
【0026】Si:Siは鋼の脱酸剤として用いられる元素
である。しかし、過剰に含有させると鋼の靭性を損なう
ので、その上限は1.0 %とする。
Al:Alは鋼の脱酸剤として有効な元素である。しかし、
Alは窒化物を形成して加工性を低下させるため、含有量
の上限は0.05%とする。Si: Si is an element used as a deoxidizer for steel. However, if it is contained excessively, the toughness of the steel is impaired, so its upper limit is made 1.0%. Al: Al is an element effective as a deoxidizer for steel. But,
Since Al forms a nitride and reduces the workability, the upper limit of the content is 0.05%.
【0027】希土類元素:鋼の耐酸化性を向上させる作
用があるので含有させても構わない。しかし、合計量で
0.1 %を越えて含有させると効果が飽和するうえコスト
が高くなるので0.1 %以下とする。Rare earth element: It may be contained because it has the effect of improving the oxidation resistance of steel. But in total amount
If the content exceeds 0.1%, the effect will be saturated and the cost will increase, so the content should be 0.1% or less.
【0028】残部はFeおよび不可避不純物である。これ
らをまとめると、C:0.01〜0.15%、Cr:16 〜20%、Cu:
1.5〜3.0 %を含有する限り、これによって本発明が特
に制限されるものではないが、本発明にかかる鋼組成は
次のように記述することができる。The balance is Fe and inevitable impurities. Summarizing these, C: 0.01 to 0.15%, Cr: 16 to 20%, Cu:
The present invention is not particularly limited to this as long as it contains 1.5 to 3.0%, but the steel composition according to the present invention can be described as follows.
【0029】C:0.01〜0.15%、Cr:16 〜20%、Cu:1.5〜
3.0 %
あるいは所望により上記組成にさらに下記ないしの
任意の組み合わせ:
フェライト形成元素として、Ti:0.003〜0.03%、Nb:
0.005 〜0.1 %、およびMo:0.1〜1.0 %から成る群から
選んだ少なくとも1種
オーステナイト形成元素として、Ni:0.3〜1.0 %およ
び/またはMn:0.3〜1.0%、
V: 0.05〜0.3 %、
Si:1.0 %以下、
Al:0.05%以下、
希土類元素:0.1%以下。C: 0.01 to 0.15%, Cr: 16 to 20%, Cu: 1.5 to
3.0% or, if desired, any of the following compositions in addition to any of the following compositions: As a ferrite-forming element, Ti: 0.003 to 0.03%, Nb:
At least one austenite forming element selected from the group consisting of 0.005 to 0.1% and Mo: 0.1 to 1.0%, Ni: 0.3 to 1.0% and / or Mn: 0.3 to 1.0%, V: 0.05 to 0.3%, Si : 1.0% or less, Al: 0.05% or less, rare earth element: 0.1% or less.
【0030】かかる態様において、鋼組成の残部はFeお
よび不可避不純物であってもよい。本発明の鋼材は、表
層部においてマルテンサイト相と残留オーステナイト相
を含む混合組織からなり、かつ表層部の金属組織中にお
いて未固溶Cu粒子の最大粒子径を0.5 μm 以下とし、内
層部はフェライト相とマルテンサイト相とからなる2相
混合組織もしくはマルテンサイト単相組織とする。In such an embodiment, the balance of the steel composition may be Fe and inevitable impurities. The steel material of the present invention is composed of a mixed structure containing a martensite phase and a retained austenite phase in the surface layer portion, and the maximum particle diameter of undissolved Cu particles in the metal structure of the surface layer portion is 0.5 μm or less, and the inner layer portion is ferrite. A two-phase mixed structure composed of a phase and a martensite phase or a martensite single-phase structure.
【0031】マルテンサイト相の存在により、鋼の硬さ
と弾性比例限を高めてばね特性を向上させる効果が得ら
れる。この効果を得るにはマルテンサイト相の比率を40
体積%以上とするのが好ましい。より好ましくは50体積
%以上である。他方、マルテンサイト相の比率を過度に
高くすると鋼の延性が低下し、加工性が損なわれるの
で、表層部のマルテンサイト比率を95体積%以下とする
のが好ましい。The presence of the martensite phase has the effect of increasing the hardness and elastic proportionality limit of the steel and improving the spring characteristics. To obtain this effect, the ratio of martensite phase is 40
It is preferable that the content is at least vol%. It is more preferably 50% by volume or more. On the other hand, if the ratio of the martensite phase is excessively high, the ductility of the steel decreases and the workability is impaired, so the martensite ratio of the surface layer portion is preferably 95% by volume or less.
【0032】残留オーステナイト相は、マルテンサイト
相に比べて軟質で加工性に富むうえ、加工を受けた際に
加工誘起変態して組織を極めて強靱にする作用がある。
また、複層化熱処理後の鋼材の靱性を増す作用もある。
さらに、表層部に、C、Nなどの吸収能の大きいオース
テナイト相を配することにより、鋭敏化現象の原因とな
るCやNを吸収して複層化熱処理によって生じる耐銹性
の劣化を抑制することができる。これらの効果を得るた
めに表層部における残留オーステナイト相の比率は3体
積%以上とするのが好ましい。より好ましくは5体積%
以上である。The retained austenite phase is softer and richer in workability than the martensite phase, and has a function of causing work-induced transformation when processed to make the structure extremely tough.
It also has the effect of increasing the toughness of the steel material after the heat treatment for multilayering.
Further, by arranging an austenite phase having a high absorbing ability such as C and N in the surface layer portion, C and N which cause a sensitization phenomenon are absorbed to suppress deterioration of rust resistance caused by the heat treatment for multilayering. can do. In order to obtain these effects, the ratio of the retained austenite phase in the surface layer portion is preferably 3% by volume or more. More preferably 5% by volume
That is all.
【0033】表層部には、上記2相以外に、鋼の特性に
悪影響を及ばさない範囲で、混入するフェライト相が存
在しても差し支えない。フェライト相は、ばね特性およ
び複層化熱処理による耐銹性の低下を招くため、混入す
る場合であっても10体積%以下であることが望ましい。
より好ましくは5体積%以下である。In the surface layer portion, in addition to the above-mentioned two phases, there is no problem even if a ferrite phase to be mixed is present as long as the characteristics of the steel are not adversely affected. The ferrite phase causes deterioration in spring characteristics and rust resistance due to heat treatment for multilayering, and therefore, even when mixed, it is desirable that the content thereof be 10% by volume or less.
It is more preferably 5% by volume or less.
【0034】腐食に関与する表層部(表面〜表皮下0.01
mm) は、低pH環境下における耐銹性を改善するために、
未固溶Cu粒子の最大粒子径を0.5 μm 以下とする。Cu粒
子はステンレス鋼表面の不働態皮膜形成を阻害し、耐銹
性を低下させる。本発明の対象とするクロム系ステンレ
ス鋼は、未固溶Cu粒子の最大粒子径が0.5 μm を越える
と、低pHのNaCl環境下における耐銹性が著しく低下す
る。従って、Cuの固溶による耐銹性の向上効果を得るに
は、未固溶Cu粒子の最大粒子径を0.5 μm 以下とする。
より好ましくは0.1 μm 以下である。もちろん、Cuが完
全に固溶した状態、すなわち未固溶Cu粒子の最大粒子径
が0μmであっても良い。Surface layer part involved in corrosion (surface-subcutaneous 0.01
mm) is for improving rust resistance in a low pH environment.
The maximum particle size of undissolved Cu particles is 0.5 μm or less. Cu particles hinder the formation of a passive film on the surface of stainless steel and reduce rust resistance. When the maximum particle size of the undissolved Cu particles exceeds 0.5 μm, the chrome-based stainless steel to which the present invention is applied has remarkably deteriorated rust resistance in a NaCl environment of low pH. Therefore, in order to obtain the effect of improving the rust resistance by solid solution of Cu, the maximum particle size of undissolved Cu particles is set to 0.5 μm or less.
It is more preferably 0.1 μm or less. Of course, Cu may be in a completely solid solution state, that is, the maximum particle size of undissolved Cu particles may be 0 μm.
【0035】表層部がマルテンサイト相に加え、残留オ
ーステナイト相を含有する混合組織とし、かつCuを主体
とする第2相の析出量が0.2 体積%未満となるように1.
5 〜3.0 %のCuを固溶させることにより、ばね性と加工
性に加え、耐銹性を著しく改善できる。表層部の厚さ
は、上記の有効な効果を得るために5μm 以上とする。
より好ましくは10μm 以上である。15μm を越える場合
は、複層化熱処理の生産性を阻害するとともに、上記の
特性に悪影響を及ぼすこともある。従って表層部の厚さ
は15μm 以下とすることが好ましい。The surface layer has a mixed structure containing a retained austenite phase in addition to the martensite phase, and the precipitation amount of the second phase mainly composed of Cu is less than 0.2% by volume.
By solid solution of Cu of 5 to 3.0%, not only spring property and workability but also rust resistance can be remarkably improved. The thickness of the surface layer is 5 μm or more in order to obtain the above-mentioned effective effects.
More preferably, it is 10 μm or more. If it exceeds 15 μm, the productivity of the multilayer heat treatment is hindered and the above properties may be adversely affected. Therefore, the thickness of the surface layer portion is preferably 15 μm or less.
【0036】内層部の金属組織は、フェライト相とマル
テンサイト相からなる2相混合組織あるいは実質的にマ
ルテンサイト単相組織とする。その理由は、鋼の内層部
では曲げ加工などによる加工変形量が小さく、残留オー
ステナイト相があっても加工誘起変態による強度向上が
期待できないからである。The metal structure of the inner layer portion is a two-phase mixed structure composed of a ferrite phase and a martensite phase or a substantially martensite single phase structure. The reason is that the amount of work deformation due to bending work is small in the inner layer portion of the steel, and the strength improvement due to work-induced transformation cannot be expected even if there is a retained austenite phase.
【0037】内層部のフェライト相の含有は必須ではな
いが、フェライト相があると加工性改善効果がある。し
かしながら、フェライト相の比率が高くなると強度が低
下してばね特性、特にばね疲労特性が損なわれるので、
フェライト相を含有する場合であってもその上限は体積
%で90%とするのが望ましい。The inclusion of the ferrite phase in the inner layer is not essential, but the presence of the ferrite phase has the effect of improving workability. However, if the ratio of the ferrite phase increases, the strength decreases and the spring characteristics, especially the spring fatigue characteristics are impaired, so
Even when the ferrite phase is contained, the upper limit is preferably 90% by volume.
【0038】ここに、本明細書において用いる「表層
部」とは、例えば雰囲気中から吸収した窒素が鋼内部を
拡散することにより形成した鋼表面近傍の高窒素濃度領
域を意味し、一般には、内層部に対する相対的用語であ
って、鋼材の表面を含む領域をいう。そして、上記例示
した場合においては、表層部の厚さは、EPMA装置により
鋼の表面から窒素濃度のプロファイルを測定することに
よって、あるいは断面を腐食した後にSEM 観察等するこ
とによって求めることができ、表層部の組織は、上記高
窒素濃度領域の組織をもって決定され、内層部の組織
は、鋼内部の低窒素濃度領域の組織をもって決定され
る。ここで、高窒素濃度領域とは、複層化熱処理前の被
熱処理材の窒素濃度に対して複層化熱処理により窒素濃
度が高められた領域であり、低窒素濃度領域とは前記高
窒素濃度領域に比して窒素濃度が低い領域である。As used herein, the term "surface layer portion" means, for example, a high nitrogen concentration region near the steel surface formed by diffusion of nitrogen absorbed from the atmosphere inside the steel, and generally, It is a relative term to the inner layer portion and refers to a region including the surface of the steel material. And, in the case exemplified above, the thickness of the surface layer portion can be obtained by measuring the nitrogen concentration profile from the surface of the steel with an EPMA device, or by observing the cross section after SEM observation, etc. The structure of the surface layer part is determined by the structure of the high nitrogen concentration region, and the structure of the inner layer part is determined by the structure of the low nitrogen concentration region inside the steel. Here, the high nitrogen concentration region is a region where the nitrogen concentration is increased by the multilayer heat treatment with respect to the nitrogen concentration of the heat-treated material before the multilayer heat treatment, and the low nitrogen concentration region is the high nitrogen concentration region. It is a region where the nitrogen concentration is lower than the region.
【0039】より具体的には、表層部の金属組織および
未固溶Cu粒子の径は、後述する実施例の記載からも分か
るように、表面研磨により観察される組織をもって決定
し、その領域における未固溶Cu粒子の径は、Tiメッシュ
に抽出して透過型電子顕微鏡で倍率2000倍で観察してと
らえられた未固溶Cu粒子の長径をもって決定すればよ
い。More specifically, the metallographic structure of the surface layer and the diameters of the undissolved Cu particles are determined by the structure observed by surface polishing, as can be seen from the description of the examples described later, and in that region. The diameter of the undissolved Cu particles may be determined by the major axis of the undissolved Cu particles that is extracted by extracting the Ti mesh and observing it with a transmission electron microscope at a magnification of 2000 times.
【0040】また、「複層組織」とは、例えば上記のよ
うに、鋼表層部がマルテンサイト相と残留オーステナイ
ト相とを含有する混合組織であり、内層部がフェライト
相とマルテンサイト相とを含有する混合組織もしくは実
質的にマルテンサイト単相組織である組織をいい、一般
には、表層部の組織と内層部の組織とが異なる組織をい
う。The "multilayer structure" is, for example, as described above, a mixed structure in which the steel surface layer contains a martensite phase and a retained austenite phase, and the inner layer contains a ferrite phase and a martensite phase. It refers to a mixed structure or a structure that is substantially a martensite single-phase structure, and generally refers to a structure in which the surface layer portion structure and the inner layer portion structure are different.
【0041】「複層化熱処理」とは、例えば、質量%
で、C:0.01%以上0.15%以下、Cr:16%以上20%以
下、Cu:1.5 %以上3.0 %以下を含有するクロム系ステ
ンレス鋼を、窒素含有雰囲気中で均熱して少なくとも表
層部をオーステナイト単相とし、前記窒素含有雰囲気中
の窒素を鋼表層部に吸収させたのちに1℃/秒以上の冷
却速度で冷却する熱処理をいい、一般には複層組織を形
成せしめる熱処理をいう。"Multilayer heat treatment" means, for example, mass%
And, C: 0.01% or more and 0.15% or less, Cr: 16% or more and 20% or less, and Cu: 1.5% or more and 3.0% or less are uniformly soaked in a nitrogen-containing atmosphere, and at least the surface layer portion is austenite. This is a heat treatment in which a single phase is used, the nitrogen in the nitrogen-containing atmosphere is absorbed by the steel surface layer portion, and then the steel surface layer portion is cooled at a cooling rate of 1 ° C./sec.
【0042】なお、「実質的にマルテンサイト単相組
織」とは、マルテンサイト相以外に、鋼の特性に悪影響
を及ぼさない範囲で、素材の偏析等に起因して混入する
フェライト相が存在する場合を含む意味である。The term "substantially martensitic single-phase structure" means that, in addition to the martensite phase, a ferrite phase mixed due to segregation of the raw material exists within a range that does not adversely affect the characteristics of the steel. It is meant to include cases.
【0043】本発明にかかる鋼材の形態は、代表的に
は、冷間圧延鋼板や熱間圧延鋼板であるが、それに限定
する必要はなく、箔、線材、条鋼、管材などをも包含す
るものである。要するに、複層組織を有する鋼材であれ
ば、その形態は特に制限はない趣旨である。The form of the steel material according to the present invention is typically a cold-rolled steel sheet or a hot-rolled steel sheet, but it is not limited to this, and includes foils, wire rods, bar steels, pipes and the like. Is. In short, the form is not particularly limited as long as it is a steel material having a multilayer structure.
【0044】本発明のクロム系ステンレス鋼材の製造方
法を、「鋼材」が冷間圧延鋼板である場合を例に説明す
る。すでに述べた鋼組成を備えた鋼のスラブを公知の方
法、例えば、転炉や電気炉で鋼を溶解した後、真空脱ガ
ス処理を施し、連続鋳造法や鋼塊にした後に分塊圧延す
るなどの方法でスラブを製造する。得られたスラブを公
知の方法で熱間圧延して熱間圧延鋼板を製造する。この
熱間圧延鋼板を常法にしたがって焼鈍し、酸洗などの公
知の方法で表面のスケールを除去する。The method for producing a chromium-based stainless steel material of the present invention will be described by taking the case where the "steel material" is a cold rolled steel sheet as an example. A known method for slab of steel having the above-mentioned steel composition, for example, melting steel in a converter or an electric furnace, performing vacuum degassing treatment, and continuously casting or ingot-forming slab rolling Etc. to produce slabs. The obtained slab is hot rolled by a known method to produce a hot rolled steel sheet. This hot rolled steel sheet is annealed according to a conventional method, and the surface scale is removed by a known method such as pickling.
【0045】その後、公知の方法で冷間圧延して鋼板を
製造する。冷間圧延は、中間焼鈍を含む複数回の冷間圧
延を行ってもよいし、中間焼鈍を含まない冷間圧延とし
てもよい。冷間圧延鋼板の寸法は、特に限定するもので
なく、通常使用されている厚さ(例えば0.1 〜2.Omm)と
すればよい。After that, the steel sheet is manufactured by cold rolling by a known method. The cold rolling may be performed multiple times of cold rolling including intermediate annealing, or may be cold rolling that does not include intermediate annealing. The dimension of the cold-rolled steel sheet is not particularly limited, and may be a commonly used thickness (for example, 0.1 to 2.0 mm).
【0046】最終の冷間圧延を施した後、窒素含有雰囲
気中でCuの溶解度が鋼中Cuを完全に固溶する程度とする
均熱温度で均熱する複層化熱処理を行う。複層化熱処理
の均熱温度の上限は、連続焼鈍ラインの通板に必要な鋼
の高温強度を確保するために1200℃とする。ステンレス
鋼中のCuの溶解度は複層化熱処理の均熱温度の上昇によ
り増加する。複層化熱処理の均熱温度は、Cu含有量によ
り次式のように関係づけられる。After the final cold rolling, a multilayer heat treatment is performed in a nitrogen-containing atmosphere at a soaking temperature at which the solubility of Cu completely dissolves Cu in steel. The upper limit of the soaking temperature of the multilayer heat treatment is 1200 ° C in order to secure the high temperature strength of the steel necessary for passing the steel in the continuous annealing line. The solubility of Cu in stainless steel increases with the increase of the soaking temperature of the multilayer heat treatment. The soaking temperature of the multilayer heat treatment is related by the Cu content as follows.
【0047】
T(℃)≧93×Cu(mass%)+760 、T:均熱温度
ここに、上記均熱温度はCuの完全固溶を狙った温度であ
る。均熱後の冷却は、鋭敏化現象の発生と粗大Cu粒子の
析出を抑制するために1℃/秒以上で行う。冷却速度が
1℃/秒未満では、鋭敏化現象の発生と粗大Cu粒子の析
出により耐銹性が劣化する。好ましくは5℃/秒以上で
ある。他方、冷却速度を1000℃/秒超とすることは実質
的に困難であるので、上限は1000℃/ 秒以下とする。好
ましくは50℃/秒以下、より好ましくは25℃/秒以下で
ある。T (° C.) ≧ 93 × Cu (mass%) + 760, T: Soaking temperature Here, the soaking temperature is a temperature aimed at the complete solid solution of Cu. Cooling after soaking is performed at 1 ° C./sec or more in order to suppress the occurrence of a sensitization phenomenon and the precipitation of coarse Cu particles. If the cooling rate is less than 1 ° C / sec, the rust resistance deteriorates due to the sensitization phenomenon and the precipitation of coarse Cu particles. It is preferably 5 ° C./second or more. On the other hand, since it is practically difficult to set the cooling rate to over 1000 ° C / sec, the upper limit is set to 1000 ° C / sec or less. It is preferably 50 ° C./sec or less, more preferably 25 ° C./sec or less.
【0048】上記の窒素含有雰囲気は、複層化熱処理に
おける鋼材表層の金属組織を制御するために、以下のよ
うにすることが望ましい。窒素含有雰囲気中の水素濃度
は、10体積%以上とすることが好ましい。雰囲気中の水
素濃度が10体積%未満の場合は、鋼材表面に厚い酸化皮
膜(>500 Å)が形成し易く、表面の美観を損なうとと
もに、窒素吸収量の制御が困難となる。より好ましくは
50体積%以上である。The above nitrogen-containing atmosphere is preferably set as follows in order to control the metallographic structure of the steel material surface layer in the heat treatment for multilayering. The hydrogen concentration in the nitrogen-containing atmosphere is preferably 10% by volume or more. If the hydrogen concentration in the atmosphere is less than 10% by volume, a thick oxide film (> 500Å) is likely to be formed on the surface of the steel material, impairing the aesthetic appearance of the surface and making it difficult to control the nitrogen absorption amount. More preferably
It is 50% by volume or more.
【0049】窒素含有雰囲気中の窒素濃度は、鋼材表層
の窒素吸収量を制御するために5体積%以上とする。雰
囲気中の窒素濃度が5体積%未満の場合は、複層化組織
とすることができない。The nitrogen concentration in the nitrogen-containing atmosphere is set to 5% by volume or more in order to control the amount of nitrogen absorbed by the steel surface layer. If the nitrogen concentration in the atmosphere is less than 5% by volume, a multilayered structure cannot be obtained.
【0050】上記の窒素含有雰囲気の露点は、−30℃以
下、より好ましくは−40℃以下とする。露点が−30℃を
越える場合は、鋼材表面に厚い酸化皮膜が形成し易く、
表面の美観を損なうとともに、窒素吸収量の制御が困難
となる。The dew point of the above nitrogen-containing atmosphere is -30 ° C or lower, more preferably -40 ° C or lower. If the dew point exceeds -30 ° C, a thick oxide film easily forms on the steel surface,
The appearance of the surface is impaired, and it becomes difficult to control the nitrogen absorption amount.
【0051】ここに、本発明にかかる鋼材において、未
固溶Cu粒子の径は、例えば、複層化熱処理の均熱温度を
変更することによって調整可能である。本明細書で云う
「耐銹性」は一般に云う耐食性に含まれる1つの特性で
あるが、本発明の場合にはNaCl環境における腐食減量を
もって評価する特性を云う。Here, in the steel material according to the present invention, the diameter of the undissolved Cu particles can be adjusted, for example, by changing the soaking temperature of the multilayer heat treatment. The term "corrosion resistance" as used in the present specification is one characteristic generally included in the corrosion resistance, but in the case of the present invention, it is the characteristic evaluated by the corrosion weight loss in the NaCl environment.
【0052】次に、実施例によって本発明の作用効果を
より具体的に説明する。Next, the function and effect of the present invention will be described more specifically with reference to Examples.
【0053】[0053]
【実施例】本例における供試鋼の鋼組成、つまり化学組
成を表1に示す。これらの鋼組成を有するクロム系ステ
ンレス鋼連続鋳造スラブを1150〜1200℃に加熱し、仕上
げ温度900 〜950 ℃で熱間圧延を終了して、厚さ3.2mm
の熱延鋼帯とした。これら熱延鋼帯は750 〜830 ℃で熱
延板焼鈍を施した後、ショットブラストと硝弗酸酸洗を
施して脱スケールした後、中間焼鈍を挟む冷間圧延を施
して厚さが0.25mmの鋼板とし、さらに以下に述べる条件
で複層化熱処理を施した。[Examples] Table 1 shows the steel composition, that is, the chemical composition, of the test steel in this example. A chromium-based stainless steel continuous casting slab having these steel compositions is heated to 1150 to 1200 ° C, hot rolling is completed at a finishing temperature of 900 to 950 ° C, and a thickness of 3.2 mm is obtained.
Hot rolled steel strip. These hot-rolled steel strips are annealed at 750 to 830 ° C, then shot-blasted, pickled with hydrofluoric acid and descaled, and then cold-rolled with an intermediate anneal to give a thickness of 0.25. A steel sheet having a thickness of mm was further subjected to a multilayer heat treatment under the conditions described below.
【0054】[0054]
【表1】 [Table 1]
【0055】複層化熱処理は、連続光輝焼鈍炉を用い
て、均熱雰囲気は窒素5〜25体積%、水素95〜75体積%
からなり、雰囲気露点は−40℃以下に制御した混合ガス
を使用した。均熱時の鋼表面温度は850 〜1050℃とし
た。均熱時間は5〜45秒の範囲とし、均熱後の冷却速度
は10〜25℃/秒とした。比較のために均熱雰囲気は、上
記以外の混合比からなるガスも使用した。For the multilayer heat treatment, a continuous bright annealing furnace is used, and the soaking atmosphere is 5 to 25% by volume of nitrogen and 95 to 75% by volume of hydrogen.
And the atmosphere dew point was -40 ° C or lower. The steel surface temperature during soaking was 850-1050 ℃. The soaking time was in the range of 5 to 45 seconds, and the cooling rate after soaking was 10 to 25 ° C / second. For comparison, a gas having a mixing ratio other than the above was used as the soaking atmosphere.
【0056】本例にあって、未固溶Cu粒子の径は、複層
化熱処理の均熱温度を変更することによって調整した。
比較鋼として、市販のオーステナイト系ばね用ステンレ
ス鋼SUS301−CSP(3/4H仕様材) 、SUS304−CSP(H仕様
材)を準備した。In this example, the diameter of the undissolved Cu particles was adjusted by changing the soaking temperature of the multilayer heat treatment.
As comparative steels, commercially available austenitic spring stainless steels SUS301-CSP (3 / 4H specification material) and SUS304-CSP (H specification material) were prepared.
【0057】表層部のマルテンサイト相の比率は、常法
により研磨・腐食した試料表面を顕微鏡観察して測定し
た。残留オーステナイト相の比率は、試料表面のX線回
折によりα−Feとγ−Feの積分強度を測定し、積分強度
の比率より求めた。残部をフェライト相の比率とした。The ratio of the martensite phase in the surface layer portion was measured by observing the polished and corroded sample surface with a microscope by a conventional method. The ratio of the retained austenite phase was obtained by measuring the integrated intensity of α-Fe and γ-Fe by X-ray diffraction on the sample surface and calculating the ratio of the integrated intensity. The balance was the ratio of the ferrite phase.
【0058】内層部のマルテンサイト相とフェライト相
の体積率は、常法により研磨・腐食した試料断面の顕微
鏡観察により求めた。表層部の窒素含有量は、窒素含有
量測定専用の分光結晶LAD(人工多層膜)を有するEPMA装
置により鏡面研磨した試験片断面において定量した。ま
た、これら窒素含有量の実測値とX線回折から求めたγ
−Feの格子定数を回帰し、下記の関係式を得た。The volume ratios of the martensite phase and the ferrite phase in the inner layer portion were determined by observing the cross section of the sample polished and corroded by a conventional method with a microscope. The nitrogen content in the surface layer portion was quantified in the cross section of the test piece mirror-polished by an EPMA apparatus having a dispersive crystal LAD (artificial multilayer film) dedicated to measuring the nitrogen content. In addition, γ obtained from the measured values of these nitrogen contents and X-ray diffraction
The lattice constant of -Fe was regressed to obtain the following relational expression.
【0059】表層部の窒素含有量[mass%]=(γ−Fe
格子定数[Å]−3.592)/0.0394
表層部の窒素含有量は、X線回折から求めたγ−Feの格
子定数を用いて上式により簡便的に求めることもでき
る。Nitrogen content in surface layer [mass%] = (γ-Fe
Lattice constant [Å] −3.592) /0.0394 The nitrogen content in the surface layer portion can also be simply calculated by the above formula using the lattice constant of γ-Fe obtained from X-ray diffraction.
【0060】表層部の未固溶Cu粒子は、鋼板表面をバフ
研磨後、腐食した試料表面を10%アセチルアセトン−1
%TMAC−メタノール溶液に浸漬し、Tiメッシュに抽出し
た。Tiメッシュに抽出したCu粒子を透過型電子顕微鏡に
より×2000で観察し、観察されるCu粒子の長径の最大値
を測定し、これを未固溶Cu粒子の最大粒子径とした。Cu
粒子の化学組成はEDX 元素分析により確認した。The undissolved Cu particles in the surface layer were obtained by buffing the surface of the steel sheet and then using 10% acetylacetone-1 on the corroded sample surface.
It was immersed in a% TMAC-methanol solution and extracted into a Ti mesh. The Cu particles extracted in the Ti mesh were observed with a transmission electron microscope at × 2000, the maximum value of the major axis of the observed Cu particles was measured, and this was taken as the maximum particle diameter of the undissolved Cu particles. Cu
The chemical composition of the particles was confirmed by EDX elemental analysis.
【0061】表面硬さは、JIS −Z2244 に規定されてい
るビッカース硬さ試験法により、荷重9.8 Nの条件にて
測定した。ばね疲労限界は、圧延方向(L方向)と圧延
垂直方向(T方向)の試験片を使用し、繰り返し平板曲
げ試験機により測定した。ばね疲労限界は、30Hzの一定
振幅の繰り返し平板曲げ試験で107 回を上限として試験
片が破断に至らなかった最大応力とした。The surface hardness was measured by the Vickers hardness test method defined in JIS-Z2244 under a load of 9.8 N. The spring fatigue limit was measured by a repeated plate bending tester using test pieces in the rolling direction (L direction) and the rolling vertical direction (T direction). The spring fatigue limit was the maximum stress at which the test piece did not break, with a maximum of 10 7 times in the repeated flat plate bending test with a constant amplitude of 30 Hz.
【0062】耐銹性は、45℃−1.5 %NaCl水溶液(中
性、pH1:塩酸調整)に100 時間半浸漬した後、発銹状
況を目視観察し、発銹が無い場合を合格(○)と判断し
た。しみが確認された場合は、SUS304と同等(△)とし
た。The rust resistance was evaluated by visually observing the rusting condition after immersing in a 45 ° C.-1.5% NaCl aqueous solution (neutral, pH 1: hydrochloric acid adjusted) for 100 hours and a half. I decided. When stains were confirmed, it was regarded as equivalent (△) to SUS304.
【0063】これらの結果および評価については、表2
および表3にまとめて示す。Table 2 shows these results and evaluation.
And summarized in Table 3.
【0064】[0064]
【表2】 [Table 2]
【0065】[0065]
【表3】 [Table 3]
【0066】表2において、符号A1、B1、B2、C1、D1、
D2は、いずれも必須元素としてC:0.01〜0.15質量%、
Cr:16〜20質量%、Cu:1.5 〜3.0 質量%を含有し、表
層部はマルテンサイト相と残留オーステナイト相を含む
混合組織からなり、かつ表層部の金属組織中に未固溶Cu
粒子の最大粒子径が0.5 μm 以下である複層組織クロム
系ステンレス鋼板である。In Table 2, reference characters A1, B1, B2, C1, D1,
D2 is an essential element, C: 0.01 to 0.15% by mass,
Cr: 16 to 20% by mass, Cu: 1.5 to 3.0% by mass, the surface layer part has a mixed structure containing a martensite phase and a retained austenite phase, and undissolved Cu in the metal structure of the surface layer part.
It is a multi-layered chromium-based stainless steel sheet with a maximum particle size of 0.5 μm or less.
【0067】他方、符号A2、B3、D3は、残留オーステナ
イト相を含まない金属組織である。また、符号A2とD3
は、未固溶Cu粒子の最大粒子径が0.5 μm を越える鋼板
である。符合ElおよびF1は必須元素であるCuを含まない
もしくはその含有量が1.5 %未満である鋼板である。On the other hand, reference numerals A2, B3 and D3 are metallic structures containing no retained austenite phase. Also, the symbols A2 and D3
Is a steel sheet in which the maximum particle size of undissolved Cu particles exceeds 0.5 μm. Codes El and F1 are steel sheets that do not contain the essential element Cu or the content thereof is less than 1.5%.
【0068】表3において符号Al、Bl、B2、Cl、D1、D2
は、比較鋼の301 −CSP(3/4H)および 304−CSP(H) に
相当するばね疲労限界(≧600 N/mm2)と曲げ加工性
(R/t≦2)を兼備し、304 −CSP(H)と同等以上の優
れた耐銹性を有した。In Table 3, symbols Al, Bl, B2, Cl, D1 and D2
Has a spring fatigue limit (≧ 600 N / mm 2 ) and bending workability (R / t ≦ 2) equivalent to the comparative steels 301-CSP (3 / 4H) and 304-CSP (H). -Has excellent rust resistance equivalent to or better than -CSP (H).
【0069】符号A2、B3、D3、El、F1は、目標とする 3
04−CSP(H)と同等以上の耐銹性が得られなかった。Reference numerals A2, B3, D3, El and F1 are target 3
Corrosion resistance equal to or higher than that of 04-CSP (H) was not obtained.
【0070】[0070]
【発明の効果】本発明により、殆どNiを含有しない安価
なばね用クロム系ステンレス鋼材において、SUS304鋼
(18Cr−8Ni)と同等以上の優れた耐銹性が得られる効
果がある。特に、塗装省略を目的とした自動車用ホーン
の振動板として最適である。EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain excellent rust resistance equivalent to or better than SUS304 steel (18Cr-8Ni) in an inexpensive chromium-based stainless steel material for springs containing almost no Ni. In particular, it is most suitable as a diaphragm for automobile horns for the purpose of omitting painting.
【図1】本発明にかかる鋼材の耐銹性を示すグラフであ
る。FIG. 1 is a graph showing rust resistance of a steel material according to the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安達 和彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 青木 正紘 新潟県上越市港町2丁目12番1号 株式会 社住友金属直江津内 (72)発明者 御所窪 賢一 新潟県上越市港町2丁目12番1号 株式会 社住友金属直江津内 Fターム(参考) 4K028 AA02 AB01 AC07 AC08 CC02 CD02 CE02 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kazuhiko Adachi 4-53 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (72) Inventor Masahiro Aoki 2-12-1 Minatomachi, Joetsu City, Niigata Prefecture Stock Association Sumitomo Metals Naoetsu (72) Inventor Kenichi Goshokubo 2-12-1 Minatomachi, Joetsu City, Niigata Prefecture Stock Association Sumitomo Metals Naoetsu F-term (reference) 4K028 AA02 AB01 AC07 AC08 CC02 CD02 CE02
Claims (4)
20%、Cu:1.5 〜3.0 %を含有し、表層部と内層部との
複層組織から成り、表層部がマルテンサイト相と残留オ
ーステナイト相とを含有する混合組織からなり、内層部
がフェライト相とマルテンサイト相とを含有する混合組
織もしくは実質的にマルテンサイト単相組織からなり、
前記表層部における未固溶Cu粒子の最大粒子径が0.5 μ
m 以下であることを特徴とする複層組織クロム系ステン
レス鋼材。1. In mass%, C: 0.01 to 0.15%, Cr: 16 to
20%, Cu: 1.5-3.0%, consisting of a multi-layered structure of a surface layer and an inner layer, a surface layer of a mixed structure containing a martensite phase and a retained austenite phase, and an inner layer of a ferrite phase. And a martensite single-phase structure or a mixed structure containing a martensite phase,
The maximum particle size of undissolved Cu particles in the surface layer is 0.5 μ
A multi-layered chromium-based stainless steel material characterized by having a thickness of m or less.
0.5 質量%である請求項1に記載の複層組織クロム系ス
テンレス鋼材。2. The nitrogen content in the surface layer is 0.03 to
The multi-layer structure chromium-based stainless steel material according to claim 1, which is 0.5% by mass.
20%、Cu:1.5 〜3.0 %を含有するクロム系ステンレス
鋼材を窒素含有雰囲気中で下記(1) 式で規定される均熱
温度Tに均熱し、前記窒素含有雰囲気中の窒素を鋼材の
表層部に吸収させたのち、1 ℃/秒以上の冷却速度で冷
却する複層化熱処理を行うことを特徴とする複層組織ク
ロム系ステンレス鋼材の製造方法。 T(℃)≧ 93Cu (質量%)+760 ・・・(1)3. In mass%, C: 0.01 to 0.15%, Cr: 16 to
A chromium-based stainless steel material containing 20% and Cu: 1.5 to 3.0% is soaked in a nitrogen-containing atmosphere to a soaking temperature T defined by the following formula (1), and the nitrogen in the nitrogen-containing atmosphere is used as the surface layer of the steel material. A method for producing a multi-layered chromium-based stainless steel material, which comprises performing a heat treatment for multi-layering, which is absorbed at a part and then cooled at a cooling rate of 1 ° C / sec or more. T (° C) ≥ 93Cu (mass%) +760 (1)
以上、窒素:5体積%以上を含有し、露点:−30℃以下
である請求項3に記載の複層組織クロム系ステンレス鋼
材の製造方法。4. The nitrogen-containing atmosphere is hydrogen: 10% by volume
As described above, the method for producing a multi-layer structure chromium-based stainless steel material according to claim 3, wherein the content of nitrogen is 5% by volume or more and the dew point is −30 ° C. or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001368775A JP3956683B2 (en) | 2001-12-03 | 2001-12-03 | Multi-layered chromium-based stainless steel and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001368775A JP3956683B2 (en) | 2001-12-03 | 2001-12-03 | Multi-layered chromium-based stainless steel and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003171744A true JP2003171744A (en) | 2003-06-20 |
JP3956683B2 JP3956683B2 (en) | 2007-08-08 |
Family
ID=19178311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001368775A Expired - Fee Related JP3956683B2 (en) | 2001-12-03 | 2001-12-03 | Multi-layered chromium-based stainless steel and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3956683B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108823492A (en) * | 2018-06-15 | 2018-11-16 | 甘肃酒钢集团宏兴钢铁股份有限公司 | A kind of method of CSP thin sheet continuous casting machine production high alloy high intensity peritectic steel |
JP2019501300A (en) * | 2015-12-23 | 2019-01-17 | ポスコPosco | Three-phase stainless steel and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102605257B (en) * | 2012-04-16 | 2013-08-14 | 龙工(上海)桥箱有限公司 | Material of thrust plate for plunger pump, and heat treatment technology thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07316740A (en) * | 1994-05-26 | 1995-12-05 | Nisshin Steel Co Ltd | High strength stainless steel with composite phase structure and its production |
JPH08134595A (en) * | 1994-11-11 | 1996-05-28 | Nippon Steel Corp | High strength stainless steel sheet excellent in stress corrosion cracking resistance |
JPH10237597A (en) * | 1997-02-24 | 1998-09-08 | Nisshin Steel Co Ltd | High strength and high ductility dual-phase stainless steel excellent in antibacterial property and its production |
JP2001107139A (en) * | 1999-10-08 | 2001-04-17 | Kawasaki Steel Corp | Method for producing bolt parts excellent in delayed fracture resistance and seaside weather resistance |
JP2001140041A (en) * | 1999-11-15 | 2001-05-22 | Sumitomo Metal Ind Ltd | Chromium stainless steel with double layer structure for spring and producing method therefor |
-
2001
- 2001-12-03 JP JP2001368775A patent/JP3956683B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07316740A (en) * | 1994-05-26 | 1995-12-05 | Nisshin Steel Co Ltd | High strength stainless steel with composite phase structure and its production |
JPH08134595A (en) * | 1994-11-11 | 1996-05-28 | Nippon Steel Corp | High strength stainless steel sheet excellent in stress corrosion cracking resistance |
JPH10237597A (en) * | 1997-02-24 | 1998-09-08 | Nisshin Steel Co Ltd | High strength and high ductility dual-phase stainless steel excellent in antibacterial property and its production |
JP2001107139A (en) * | 1999-10-08 | 2001-04-17 | Kawasaki Steel Corp | Method for producing bolt parts excellent in delayed fracture resistance and seaside weather resistance |
JP2001140041A (en) * | 1999-11-15 | 2001-05-22 | Sumitomo Metal Ind Ltd | Chromium stainless steel with double layer structure for spring and producing method therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019501300A (en) * | 2015-12-23 | 2019-01-17 | ポスコPosco | Three-phase stainless steel and manufacturing method thereof |
US11021777B2 (en) | 2015-12-23 | 2021-06-01 | Posco | Triple-phase stainless steel and method for producing same |
CN108823492A (en) * | 2018-06-15 | 2018-11-16 | 甘肃酒钢集团宏兴钢铁股份有限公司 | A kind of method of CSP thin sheet continuous casting machine production high alloy high intensity peritectic steel |
Also Published As
Publication number | Publication date |
---|---|
JP3956683B2 (en) | 2007-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5499664B2 (en) | High-strength cold-rolled steel sheet having a tensile maximum strength of 900 MPa or more excellent in fatigue durability, and its manufacturing method, and high-strength galvanized steel sheet and its manufacturing method | |
JP4324072B2 (en) | Lightweight high strength steel with excellent ductility and its manufacturing method | |
EP3564400A1 (en) | High-strength galvanized steel sheet and method for manufacturing same | |
JP4317384B2 (en) | High-strength galvanized steel sheet with excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its manufacturing method | |
EP2548988B1 (en) | Ferrite-based stainless steel for use in components of automobile exhaust system | |
JP7238161B2 (en) | Ferritic stainless steel plate | |
WO2020136988A1 (en) | High-strength hot-dip galvanized steel sheet and method for manufacturing same | |
JP2004332099A (en) | High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, hole-expandability, and ductility and manufacturing method therefor | |
JP2005528519A (en) | Ultra high strength steel composition, manufacturing method of ultra high strength steel product and product obtained | |
JP2004332100A (en) | High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, and hole-expandability and manufacturing method therefor | |
JP3470660B2 (en) | Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same | |
JP7136335B2 (en) | High-strength steel plate and its manufacturing method | |
EP2740813A1 (en) | Hot-dip galvanized steel sheet and production method therefor | |
JP2023507963A (en) | High-strength steel sheet with excellent workability and its manufacturing method | |
JP7359331B1 (en) | High strength steel plate and its manufacturing method | |
JP2004143470A (en) | Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process | |
JP2004292869A (en) | High strength hot dip galvannealed steel sheet having excellent press formability, and production method therefor | |
JP2000212704A (en) | Ferritic stainless steel excellent in workability and corrosion resistance and production of thin steel sheet thereof | |
JP2003171744A (en) | Chromium based stainless steel with double layer structure, and production method therefor | |
JP2002194504A (en) | Chromium stainless steel foil and production method of the same | |
JP3139302B2 (en) | Manufacturing method of hot-rolled steel sheet for automobiles with excellent corrosion resistance | |
JP2005105399A (en) | Method for manufacturing low-yield-ratio high-strength galvannealed steel | |
JP3577930B2 (en) | High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP3285179B2 (en) | Ferritic stainless steel sheet and its manufacturing method | |
JP2006274378A (en) | High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070430 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3956683 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120518 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120518 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140518 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |