[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003171661A - Method for producing phosphor and phosphor - Google Patents

Method for producing phosphor and phosphor

Info

Publication number
JP2003171661A
JP2003171661A JP2001372598A JP2001372598A JP2003171661A JP 2003171661 A JP2003171661 A JP 2003171661A JP 2001372598 A JP2001372598 A JP 2001372598A JP 2001372598 A JP2001372598 A JP 2001372598A JP 2003171661 A JP2003171661 A JP 2003171661A
Authority
JP
Japan
Prior art keywords
phosphor
producing
precursor
particle size
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372598A
Other languages
Japanese (ja)
Inventor
Hideki Hoshino
秀樹 星野
Satoshi Ito
聡 伊藤
Naoko Furusawa
直子 古澤
Takayuki Suzuki
隆行 鈴木
Hisahiro Okada
尚大 岡田
Noriko Hoshino
徳子 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2001372598A priority Critical patent/JP2003171661A/en
Publication of JP2003171661A publication Critical patent/JP2003171661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a phosphor which can be produced by using a liquid phase method, has a small particle diameter and, simultaneously, a narrow particle diameter distribution, and furthermore has a good light emission intensity. <P>SOLUTION: In the method for producing a phosphor to which a liquid phase method is applied, the method comprises a desalting step between the initiation and the completion of forming a precursor. Further, the desalting is preferably carried out by the ultrafiltration treatment. In the method for producing a phosphor to which a liquid phase method is applied, the electric conductivity at least at the time of completing the formation of a precursor is controlled in the range of 0.01-20 mS/cm. In the phosphor produced by the above method, the electric conductivity after firing is in the range of 0.01-5 mS/cm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液相法を用いて製
造された前駆体及び該前駆体から製造された蛍光体、更
には該蛍光体を製造する技術に関する。
TECHNICAL FIELD The present invention relates to a precursor produced by a liquid phase method, a phosphor produced from the precursor, and a technique for producing the phosphor.

【0002】[0002]

【従来の技術】蛍光体の製造方法としては、蛍光体母体
を構成する元素を含む化合物と付活剤元素を含む化合物
を所定量混合し、焼成して固体間反応を行う固相法と、
蛍光体母体を構成する元素を含む溶液と付活剤元素を含
む溶液を混合して溶液中で蛍光体の前駆体の沈殿を生成
させ、この前駆体を固液分離してから焼成する液相法が
ある。
2. Description of the Related Art As a method for producing a phosphor, a solid phase method in which a compound containing an element constituting a phosphor matrix and a compound containing an activator element are mixed in a predetermined amount and baked to cause a solid-solid reaction,
A liquid phase in which a solution containing an element forming the phosphor matrix and a solution containing an activator element are mixed to generate a precipitate of a precursor of the phosphor in the solution, and the precursor is solid-liquid separated and then baked. There is a law.

【0003】蛍光体の収率と発光効率を高めるには、そ
の蛍光体の組成を出来るだけ化学量論的な組成に近づけ
る必要がある。更に、蛍光体の粒子径を小さくするに従
い比表面積が増大する為、発光に寄与する割合が大きく
なる。固相法では純粋に化学量論的な組成を有する蛍光
体を製造することは難しく、固体間反応の結果、反応し
ない余剰の不純物や反応によって生ずる副塩等が残留
し、化学量論的に高純度な蛍光体を得ることが難しい。
又、固体間反応の為、粒子径を小さくすることが難し
い。蛍光体形成後に、粉砕等の処理により微粒化するこ
とが試みられているが、蛍光体粒子へのダメージや粒子
径分布が広くなる等の問題がある。組成的に均一で高純
度な微粒子蛍光体を得るには、固相法よりも液相法の方
が適している。
In order to increase the yield and luminous efficiency of the phosphor, it is necessary to make the composition of the phosphor as close to the stoichiometric composition as possible. Furthermore, the specific surface area increases as the particle size of the phosphor is reduced, so that the ratio contributing to light emission increases. It is difficult to produce a phosphor having a purely stoichiometric composition by the solid phase method, and as a result of the reaction between solids, excess impurities that do not react and side salts generated by the reaction remain, resulting in stoichiometry. It is difficult to obtain a high-purity phosphor.
Further, it is difficult to reduce the particle size because of the reaction between solids. Although it has been attempted to atomize the phosphors by a treatment such as pulverization after forming the phosphors, there are problems such as damage to the phosphor particles and a wide particle size distribution. The liquid phase method is more suitable than the solid phase method in order to obtain a fine particle fluorescent material having a uniform composition and high purity.

【0004】液相法により蛍光体を製造する場合は、ま
ず、蛍光体の前駆体である沈殿を生成させ、これを焼成
して蛍光体とするが、粒子径分布や発光特性などの蛍光
体の特性は前駆体の性状に大きく左右される。その為、
前駆体の粒子径分布の制御や不純物排除に配慮すること
が必要である。
In the case of producing a phosphor by the liquid phase method, first, a precipitate which is a precursor of the phosphor is formed and then fired to obtain a phosphor, which has a particle size distribution and a luminescent property. The properties of s are largely dependent on the properties of the precursor. For that reason,
It is necessary to consider the control of the particle size distribution of the precursor and the exclusion of impurities.

【0005】しかしながら、液相法で得た蛍光体の粒子
径は極めて小さく、洗浄や固液分離が困難となり、粒子
径や粒子径分布の制御が難しく、前駆体沈殿媒体中に存
在する多くの不純物が混入するという問題があった。
However, the particle size of the phosphor obtained by the liquid phase method is extremely small, which makes washing and solid-liquid separation difficult, and it is difficult to control the particle size and particle size distribution. There was a problem that impurities were mixed in.

【0006】それ故、液相法による蛍光体の製造に関す
る改良法が数多く提案されているが、蛍光体の諸性能、
特に発光強度の改善という点では必ずしも充分な改良法
が得られていない。例えば特開2001−172627
号には、希土類燐酸塩蛍光体の製造方法について、希土
類元素のイオン及び燐酸イオンが共存する溶液を特定p
H値の溶液に添加して前駆体を形成している記載があ
る。この方法では、固相法と比べると高純度組成が得ら
れるが、微粒子蛍光体を形成することが困難であり、所
望の諸性能を得る為の更なる改善が望まれていた。
Therefore, although many improved methods for producing a phosphor by the liquid phase method have been proposed, various performances of the phosphor,
Particularly, in terms of improving the emission intensity, a sufficient improvement method has not necessarily been obtained. For example, Japanese Patent Laid-Open No. 2001-172627
No. 3, pp. 187-242, regarding a method for producing a rare earth phosphate phosphor, a solution in which ions of rare earth elements and phosphate ions coexist is specified.
There is a description that it is added to a solution having an H value to form a precursor. With this method, a high-purity composition can be obtained as compared with the solid-phase method, but it is difficult to form a fine particle phosphor, and further improvements have been desired to obtain desired performances.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、液相
法を用いて製造される蛍光体であって、粒子径が小さ
く、かつ粒子径分布が狭く、更には発光強度が良好な蛍
光体の製造方法を提供することにある。
An object of the present invention is to provide a phosphor produced by using a liquid phase method, which has a small particle size, a narrow particle size distribution, and a good emission intensity. It is to provide a method for manufacturing a body.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、液相法による蛍光体の製造方法について
鋭意検討した結果、蛍光体の前駆体の製造条件をコント
ロールすることによって、粒子径が小さく、かつ粒子径
分布が狭い蛍光体を高収率で製造することが出来た。更
には、発光強度の良好な蛍光体が得られることを見い出
し、本発明を完成させるに至った。
[Means for Solving the Problems] The inventors of the present invention have made earnest studies on a method for producing a phosphor by a liquid phase method in order to achieve the above-mentioned object, and as a result, by controlling the production conditions of a precursor of the phosphor, It was possible to produce a phosphor having a small particle size and a narrow particle size distribution with a high yield. Furthermore, they have found that a phosphor having good emission intensity can be obtained, and completed the present invention.

【0009】本発明の構成は次の通りである。 1)液相法を適用する蛍光体の製造方法において、前駆
体形成開始から終了までの間に脱塩工程を含む蛍光体の
製造方法。
The structure of the present invention is as follows. 1) A method for producing a phosphor, which comprises a desalting step between the start and the end of precursor formation in the method for producing a phosphor using a liquid phase method.

【0010】2)脱塩が限外濾過処理によって行われる
1)に記載の蛍光体の製造方法。 3)液相法を適用する蛍光体の製造方法において、少な
くとも前駆体形成終了時の電気伝導度が0.01〜20
mS/cmの範囲に制御される蛍光体の製造方法。
2) The method for producing a phosphor according to 1), wherein desalting is performed by ultrafiltration. 3) In the method for producing a phosphor using the liquid phase method, at least the electric conductivity at the end of precursor formation is 0.01 to 20.
A method for producing a phosphor controlled to a range of mS / cm.

【0011】4)少なくとも前駆体形成終了時の電気伝
導度が0.01〜20mS/cmの範囲に制御される
1)又は2)に記載の蛍光体の製造方法。
4) The method for producing a phosphor according to 1) or 2), wherein the electrical conductivity at least at the end of precursor formation is controlled to be in the range of 0.01 to 20 mS / cm.

【0012】5)液相法で製造された蛍光体において、
焼成後の電気伝導度が0.01〜5mS/cmの範囲で
ある蛍光体。
5) In the phosphor manufactured by the liquid phase method,
A phosphor having an electric conductivity of 0.01 to 5 mS / cm after firing.

【0013】6)1)〜4)の何れか1項に記載の製造
方法で製造された蛍光体において、焼成後の電気伝導度
が0.01〜5mS/cmの範囲である蛍光体。
6) A phosphor manufactured by the manufacturing method according to any one of 1) to 4), wherein the electric conductivity after firing is in the range of 0.01 to 5 mS / cm.

【0014】以下、本発明を更に詳細に説明する。ま
ず、本発明に係る蛍光体の製造方法について説明する。
The present invention will be described in more detail below. First, a method for manufacturing the phosphor according to the present invention will be described.

【0015】本発明においては、蛍光体の前駆体の製造
条件、特に前駆体形成開始から終了までの間の脱塩方法
及び条件をコントロールすることによって、粒子径が小
さく、かつ粒子径分布が狭い蛍光体を高収率で製造する
ことができた。
In the present invention, the particle size is small and the particle size distribution is narrow by controlling the conditions for producing the precursor of the phosphor, particularly the desalting method and conditions from the start to the end of precursor formation. The phosphor could be produced in high yield.

【0016】本発明の蛍光体の製造方法としては、蛍光
体母体を構成する元素を含む溶液と付活剤元素を含む溶
液を混合して溶液中で蛍光体の前駆体の沈殿を生成さ
せ、この前駆体を固液分離してから焼成する液相法が好
ましく用いられる。
As the method for producing the phosphor of the present invention, a solution containing an element constituting the phosphor matrix and a solution containing an activator element are mixed to form a precipitate of the precursor of the phosphor in the solution. A liquid phase method in which this precursor is solid-liquid separated and then calcined is preferably used.

【0017】前駆体の沈殿方法に関しては特に限定はな
いが、2液以上の蛍光体原料溶液を貧溶媒中に液中添加
することが、より微小で粒度分布の狭い蛍光体を製造す
る為には好ましい態様である。又、蛍光体の種類によ
り、添加速度や添加位置、攪拌条件、pH等、諸物性値
を調整することがより好ましい。この様にして、平均粒
径が0.05〜0.5μm程度の粒度分布の狭い単分散
の微粒子が得られる。
The method for precipitating the precursor is not particularly limited, but it is preferable to add two or more phosphor raw material solutions into the poor solvent in order to produce a phosphor having a finer particle size and a narrow particle size distribution. Is a preferred embodiment. Further, it is more preferable to adjust various physical properties such as addition speed, addition position, stirring conditions, pH, etc., depending on the type of phosphor. Thus, monodisperse fine particles having a narrow particle size distribution with an average particle size of about 0.05 to 0.5 μm can be obtained.

【0018】ここで言う平均粒径とは、粒子が立方体あ
るいは八面体の所謂、正常晶の場合には、粒子の稜の長
さを言う。又、正常晶でない場合、例えば球状、棒状あ
るいは平板状粒子の場合には、粒子の体積と同等な球を
考えた時の直径を言う。
The term "average particle size" as used herein means the length of the edges of particles when the particles are cubic or octahedral so-called normal crystals. Further, in the case of non-normal crystals, for example, in the case of spherical, rod-shaped or tabular grains, it means the diameter when considering a sphere equivalent to the volume of the grains.

【0019】又、粒子は単分散であることが好ましい。
ここで言う単分散とは、下記式で求められる単分散度が
40%以下の場合を示す。本発明において、単分散度と
しては30%以下が更に好ましく、0.1〜20%が特
に好ましい。
The particles are preferably monodisperse.
The term “monodispersion” as used herein refers to a case where the monodispersity calculated by the following formula is 40% or less. In the present invention, the monodispersity is more preferably 30% or less, particularly preferably 0.1 to 20%.

【0020】単分散度=(粒径の標準偏差/粒径の平均
値)×100 本発明においては、前駆体形成開始から終了までの間に
脱塩を施すことが望ましい。前駆体形成開始時から終了
までに脱塩を施してもよく、前駆体形成終了時に脱塩を
施してもよい。又、原料の反応程度に応じて、前駆体形
成途中の一定時間施してもよく、複数回施してもよい。
脱塩方法に特に限定はなく、あらゆる方法が適用でき
る。例えば沈降脱塩法、電気透析法、各種膜分離法が好
ましく適用されるが、特に限外濾過処理を行うことが望
ましい。
Monodispersity = (standard deviation of particle size / average value of particle size) × 100 In the present invention, desalting is preferably performed from the start to the end of precursor formation. Desalting may be performed from the beginning to the end of precursor formation, or may be desalted at the end of precursor formation. Further, depending on the degree of reaction of the raw materials, the treatment may be performed for a certain period of time during the precursor formation, or may be performed a plurality of times.
The desalting method is not particularly limited, and any method can be applied. For example, a sedimentation desalting method, an electrodialysis method and various membrane separation methods are preferably applied, but it is particularly preferable to carry out an ultrafiltration treatment.

【0021】本発明における蛍光体の製造方法の一例の
概念図を図1に示す。図1において、反応容器1は最初
に純水2を含有している。攪拌機構3は、回転可能な軸
に翼が付設されたものとして図示してあるが、この機構
を任意の常用の形状とすることが可能である。攪拌機構
を運転しながら、第1の導入管4を通して蛍光体原料
(母体構成元素)溶液Aを反応容器に、そして、これと
同時に第2の導入管5を通して蛍光体原料(不活剤元
素)溶液Bを反応容器に注加する。又、第1の導入管4
もしくは第2の導入管5を通して予め別の反応容器で生
成した結晶核を注加してもよく、更には別の混合機で行
って連続的に反応容器に供給する態様であってもよい。
FIG. 1 shows a conceptual diagram of an example of the method for producing a phosphor according to the present invention. In FIG. 1, the reaction vessel 1 initially contains pure water 2. The agitation mechanism 3 is shown as having a rotatable shaft with blades attached, but the mechanism can be of any conventional shape. While operating the stirring mechanism, the phosphor raw material (matrix constituent element) solution A is introduced into the reaction vessel through the first introduction pipe 4, and at the same time, the phosphor raw material (inhibitor element) is introduced through the second introduction pipe 5. Pour solution B into the reaction vessel. Also, the first introduction pipe 4
Alternatively, the crystal nuclei previously generated in another reaction vessel may be added through the second introduction pipe 5, or may be performed by another mixer and continuously supplied to the reaction vessel.

【0022】又、注加ノズル位置は、任意の位置に設置
することが可能であるが、反応容器下部から液中添加さ
れる位置に設置することが好ましい。反応容器内に含ま
れる物質の容量は、一部を外部循環ライン6(限外濾過
ユニット7に至る)により図示される様にして取り出す
ことによって調節することができる。限外濾過装置は、
排水ライン8により図示される様にして不純物を分離
し、前駆体を外部循環ライン9により図示される様にし
て反応容器に戻す。外部循環ライン6及び9、限外濾過
ユニット7、そして此処では特に説明しないが、取付け
が当業者に自明な任意のその他の構成要素、例えば1個
もしくはそれ以上のバルブ、ポンプ又はメーターは一つ
のグループを構成し、そしてこれらの要素のことを集合
的に限外濾過ループと呼ぶ。
The pouring nozzle position can be set at any position, but it is preferably set at a position where it is added into the liquid from the lower part of the reaction vessel. The volume of the substance contained in the reaction vessel can be adjusted by taking out a part of it through the external circulation line 6 (to the ultrafiltration unit 7) as shown in the figure. The ultrafiltration device
Impurities are separated as shown by drainage line 8 and the precursor is returned to the reaction vessel as shown by external circulation line 9. The external circulation lines 6 and 9, the ultrafiltration unit 7, and any other components not specifically described here that are obvious to a person skilled in the art, such as one or more valves, pumps or meters. They make up groups and these elements are collectively called the ultrafiltration loop.

【0023】本発明においては、少なくとも前駆体形成
終了時の電気伝導度が0.01〜20mS/cmの範囲
で製造された蛍光体であることが望ましい。より好まし
くは0.01〜10mS/cmであり、更に好ましくは
0.01〜5mS/cmである。0.01mS/cm未
満の電気伝導度にしても特に効果は大きくならないが、
生産性が低くなってしまう。20mS/cmを超えると
不純物や副塩が充分に除去できない為に粒子径の粗大化
や粒子径分布が広くなり、発光強度が劣化してしまう。
In the present invention, it is desirable that the phosphor is manufactured so that the electrical conductivity at the end of precursor formation is at least 0.01 to 20 mS / cm. It is more preferably 0.01 to 10 mS / cm, and even more preferably 0.01 to 5 mS / cm. Even if the electric conductivity is less than 0.01 mS / cm, the effect is not particularly large,
Productivity will be low. If it exceeds 20 mS / cm, impurities and by-salts cannot be sufficiently removed, so that the particle size becomes coarse and the particle size distribution becomes wide, and the emission intensity deteriorates.

【0024】前駆体の固液分離方法に特に限定はなく、
デカンテーション、遠心分離、吸引濾過法等が好ましく
用いられる。又、前駆体の乾燥方法にも特に限定はな
く、真空乾燥、気流乾燥、流動層乾燥、噴霧乾燥等、あ
らゆる方法が用いられる。
The solid-liquid separation method of the precursor is not particularly limited,
Decantation, centrifugation, suction filtration and the like are preferably used. The method for drying the precursor is also not particularly limited, and any method such as vacuum drying, gas stream drying, fluidized bed drying, spray drying and the like can be used.

【0025】本発明において、焼成時の温度、時間に特
に限定はなく、蛍光体の種類に応じて適宜選択できる。
更に、焼成時のガス雰囲気は、酸化性雰囲気、還元性雰
囲気又は不活性雰囲気の何れでもよく、目的に応じて適
宜選択できる。焼成装置としても特に限定はなく、あら
ゆる装置を使用することができる。例えば箱型炉や坩堝
炉、ロータリーキルン等が好ましく用いられる。
In the present invention, the temperature and time during firing are not particularly limited and can be appropriately selected according to the type of phosphor.
Furthermore, the gas atmosphere during firing may be any of an oxidizing atmosphere, a reducing atmosphere or an inert atmosphere, and can be appropriately selected according to the purpose. The firing device is not particularly limited, and any device can be used. For example, a box furnace, a crucible furnace, a rotary kiln, etc. are preferably used.

【0026】焼成時に焼結防止剤を添加しても添加しな
くともよい。添加する場合は、前駆体形成時にスラリー
として添加してもよく、又、粉状のものを乾燥済前駆体
と混合して焼成する方法も好ましく用いられる。更に、
焼結防止剤に特に限定はなく、蛍光体の種類、焼成条件
によって適宜選択される。例えば、蛍光体の焼成温度域
によって800℃以下での焼成にはTiO2等の金属酸
化物が、1000℃以下での焼成にはSiO2が、17
00℃以下での焼成にはAl23が、それぞれ好ましく
使用される。
A sintering inhibitor may or may not be added during firing. When it is added, it may be added as a slurry at the time of forming the precursor, or a method in which a powdery material is mixed with a dried precursor and fired is also preferably used. Furthermore,
The sintering inhibitor is not particularly limited and may be appropriately selected depending on the type of phosphor and firing conditions. For example, depending on the firing temperature range of the phosphor, metal oxide such as TiO 2 is used for firing at 800 ° C. or lower, and SiO 2 is used for firing at 1000 ° C. or lower.
Al 2 O 3 is preferably used for firing at 00 ° C. or lower.

【0027】焼成後の電気伝導度は0.01〜5mS/
cmの範囲で製造された蛍光体であることが望ましい。
より好ましくは0.01〜1mS/cmであり、更に好
ましくは0.01〜0.5mS/cmである。焼成後の
電気伝導度とは、蛍光体10gを純水1リットルに一定
時間分散させてから濾別した濾液の電気伝導度を示す。
The electric conductivity after firing is 0.01-5 mS /
It is desirable that the phosphor is manufactured in the range of cm.
It is more preferably 0.01 to 1 mS / cm, and even more preferably 0.01 to 0.5 mS / cm. The electrical conductivity after firing refers to the electrical conductivity of a filtrate obtained by dispersing 10 g of the phosphor in 1 liter of pure water for a certain period of time and then filtering.

【0028】焼成後の蛍光体は洗浄することが望ましい
が、必ずしも洗浄する必要はない。焼成後の電気伝導度
に応じて適宜選択される。
Although it is desirable to wash the phosphor after firing, it is not always necessary to wash it. It is appropriately selected depending on the electric conductivity after firing.

【0029】蛍光体は、液相法で製造することができれ
ば有機物であっても無機物であってもよく、特に制限な
く用いることができる。用いることができる有機蛍光体
としては、例えばbrilliantsulfofla
vine FF、basicyellow HG、eo
sine、rhodamine 6G、rhodami
ne B、ピレン環を有する蛍光物質、ピレントリスル
ホン酸ナトリウムやピレンテトラスルホン酸ナトリウム
及びこれらのヒドロキシ置換体、アミノ置換体、アセト
アミド置換体、C.I.ベーシックレッド1、C.I.
ベーシックレッド2、C.I.ベーシックレッド9、
C.I.ベーシックレッド12、C.I.ベーシックレ
ッド13、C.I.ベーシックレッド14、C.I.ベ
ーシックレッド17、C.I.アシッドレッド51、
C.I.アシッドレッド52、C.I.アシッドレッド
92、C.I.アシッドレッド、C.I.ベーシックバ
イオレット1、C.I.ベーシックバイオレット3、
C.I.ベーシックバイオレット7、C.I.ベーシッ
クバイオレット10、C.I.ベーシックバイオレット
14等が挙げられる。
The phosphor may be an organic substance or an inorganic substance as long as it can be produced by the liquid phase method, and it can be used without any particular limitation. Examples of organic phosphors that can be used include brilliant sulfofla.
vine FF, basic yellow HG, eo
sine, rhodamine 6G, rhodami
ne B, a fluorescent substance having a pyrene ring, sodium pyrene trisulfonate and sodium pyrene tetrasulfonate, and their hydroxy-substituted products, amino-substituted products, acetamide-substituted products, C.I. I. Basic Red 1, C.I. I.
Basic Red 2, C.I. I. Basic Red 9,
C. I. Basic Red 12, C.I. I. Basic Red 13, C.I. I. Basic Red 14, C.I. I. Basic Red 17, C.I. I. Acid Red 51,
C. I. Acid Red 52, C.I. I. Acid Red 92, C.I. I. Acid Red, C.I. I. Basic Violet 1, C.I. I. Basic Violet 3,
C. I. Basic Violet 7, C.I. I. Basic Violet 10, C.I. I. Basic Violet 14 and the like can be mentioned.

【0030】無機蛍光物質としては、例えば特開昭50
−6410号、同61−65226号、同64−229
87号、同64−60671号、特開平1−16891
1号等に記載された蛍光物質、例えばZnS:Ag、C
aWO4、Y2SiO5:Ce、ZnS:Ag,Ga,C
l、Ca259Cl:Eu2+、BaMgAl1423
Eu2+等の青色発光無機蛍光物質;例えばZnS:C
u,Al、(Zn,Cd)S:Cu,Al、ZnS:C
u,Au,Al、Zn2SiO4:Mn、ZnS:Ag,
Cu、(Zn,Cd)S:Cu、ZnS:Cu、Gd2
2S:Tb、La 22S:Tb、Y2SiO5:C
e,Tb、Zn2GeO4:Mn、CeMgAl 1119
Tb、SrGa24:Eu2+、ZnS:Cu,Co、M
gO・nB23:Ce,Tb、LaOBr:Tb,T
m、La22S:Tb等の緑色発光無機蛍光物質;例え
ば、Y23:Eu、YVO4:Eu、Y22S:Eu、
3.5MgO,0.5MgF2GeO2:Mn、(Y,C
d)BO3:Eu等の赤色発光無機蛍光物質が挙げられ
る。又、3波長蛍光物質に使用されている蛍光物質や、
ハロ燐酸カルシウム等も好ましく用いることができる。
Examples of the inorganic fluorescent substance include, for example, Japanese Patent Laid-Open No.
-6410, 61-65226, 64-229.
No. 87, No. 64-60671, JP-A-1-16891.
No. 1, etc., fluorescent materials such as ZnS: Ag, C
aWOFour, Y2SiOFive: Ce, ZnS: Ag, Ga, C
l, Ca2BFiveO9Cl: Eu2+, BaMgAl14Otwenty three:
Eu2+Blue-emitting inorganic fluorescent substances such as ZnS: C
u, Al, (Zn, Cd) S: Cu, Al, ZnS: C
u, Au, Al, Zn2SiOFour: Mn, ZnS: Ag,
Cu, (Zn, Cd) S: Cu, ZnS: Cu, Gd2
O2S: Tb, La 2O2S: Tb, Y2SiO5: C
e, Tb, Zn2GeOFour: Mn, CeMgAl 11O19:
Tb, SrGa2SFour: Eu2+, ZnS: Cu, Co, M
gO ・ nB2O3: Ce, Tb, LaOBr: Tb, T
m, La2O2S: Tb or other green-emitting inorganic fluorescent substance;
If Y2O3: Eu, YVOFour: Eu, Y2O2S: Eu,
3.5MgO, 0.5MgF2GeO2: Mn, (Y, C
d) BO3Examples include red light emitting inorganic fluorescent substances such as Eu.
It In addition, the fluorescent substances used for three-wavelength fluorescent substances,
Calcium halophosphate and the like can also be preferably used.

【0031】[0031]

【実施例】以下、実施例により本発明を説明するが、本
発明の実施態様はこれらに限定されるものではない。
The present invention will be described below with reference to examples, but the embodiments of the present invention are not limited to these.

【0032】実施例1 〈蛍光体H−1の作製〉60℃に加温した純水333.
3ml中に、塩化ストロンチウム(SrCl2・6H
2O)133.3g、硝酸ユーロピウム(Eu(NO3
3・6H2O)2.2gを加え、よく攪拌して完全に溶解
させた。この溶液をA−1とする。
Example 1 <Production of phosphor H-1> Pure water heated to 60 ° C. 333.
During 3 ml, strontium chloride (SrCl 2 · 6H
2 O) 133.3 g, europium nitrate (Eu (NO 3 ))
3 · 6H 2 O) 2.2g was added and well stirred to completely dissolve. This solution is designated as A-1.

【0033】次いで、60℃に加温した純水333.3
ml中に、燐酸二水素カリウム(KH2(PO44
0.8gを加え、よく攪拌して完全に溶解させた。この
溶液をB−1とする。
Next, pure water 333.3 heated to 60 ° C.
In ml, potassium dihydrogen phosphate (KH 2 (PO 4 ) 4 )
0.8 g was added and thoroughly stirred to completely dissolve it. This solution is designated as B-1.

【0034】一方、これとは別に、333.3mlの純
水中に、28%アンモニア水を徐々に加えてpHを9.
5になるように調整した。この溶液をC−1とする。
Separately from this, 28% ammonia water was gradually added to 333.3 ml of pure water to adjust the pH to 9.
Adjusted to 5. This solution is designated as C-1.

【0035】次に、C−1中に、A−1とB−1を同時
に1000ml/minの添加速度で液中添加して沈殿
を生成させた。この時、A−1とB−1の添加と共にC
−1のpHが刻々変化するので、その都度アンモニア水
を同時に加えてC−1のpHを常に約9.5に保つよう
調整した。
Next, A-1 and B-1 were simultaneously added to C-1 in the liquid at an addition rate of 1000 ml / min to form a precipitate. At this time, C was added together with A-1 and B-1.
Since the pH of -1 changes from moment to moment, ammonia water was added each time to adjust the pH of C-1 to be constantly maintained at about 9.5.

【0036】得られた沈殿を濾過して固形分を取出した
後、120℃で6時間乾燥し、乾燥済み前駆体78.4
gを得た。生成された前駆体の組成は、Sr9.9(P
46Cl2:Eu3+ 0.1であった。
The resulting precipitate was filtered to remove the solid content and then dried at 120 ° C. for 6 hours to obtain a dried precursor 78.4.
g was obtained. The composition of the generated precursor is Sr 9.9 (P
O 4) 6 Cl 2: it was Eu 3+ 0.1.

【0037】次に、前駆体50g、アルミナ(Al
23)0.25gを充分に混合して石英坩堝に入れ、5
%の水素を含有する窒素ガス雰囲気下で1050℃で3
時間焼成した。得られた焼成物を比較の蛍光体H−1と
する。H−1の組成はSr9.9(PO46Cl2:Eu2+
0.1であった。
Next, 50 g of the precursor and alumina (Al
2 O 3 ) 0.25g is mixed well and put in a quartz crucible.
% At 3 at 1050 ° C. under nitrogen gas atmosphere containing 3% hydrogen
Burned for hours. The obtained fired product was used as a comparative phosphor H-1. The composition of H-1 is Sr 9.9 (PO 4 ) 6 Cl 2 : Eu 2+
It was 0.1 .

【0038】〈蛍光体K−1の作製〉C−1中に、A−
1とB−1を同時に1000ml/minの添加速度で
液中添加して沈殿を生成させた。この時、A−1とB−
1の添加と共にC−1のpHが刻々変化したので、その
都度アンモニア水を同時に加えてC−1のpHを常に約
9.5になるよう調整した。その後、得られた沈殿をデ
カンテーションにより電気伝導度が30mS/cmに達
するまで洗浄し、濾過して120℃で6時間乾燥した結
果、乾燥済前駆体75.4gを得た。生成された前駆体
の組成は、Sr 9.9(PO46Cl2:Eu3+ 0.1であっ
た。
<Production of Phosphor K-1> In C-1, A-
1 and B-1 simultaneously at an addition rate of 1000 ml / min
Addition in liquid produced a precipitate. At this time, A-1 and B-
Since the pH of C-1 changed with the addition of 1,
Always add ammonia water at the same time to constantly adjust the pH of C-1 to approx.
Adjusted to 9.5. Then, the resulting precipitate is
Electric conductivity reaches 30 mS / cm by cantation
Washed to dryness, filtered and dried at 120 ° C for 6 hours.
As a result, 75.4 g of a dried precursor was obtained. Precursor generated
The composition of Sr 9.9(POFour)6Cl2: Eu3+ 0.1And
It was

【0039】次に、前駆体50g、アルミナ(Al
23)0.25gを充分に混合して石英坩堝に入れて、
5%の水素を含有する窒素ガス雰囲気下で1050℃で
3時間焼成した。得られた焼成物を本発明の蛍光体K−
1とする。K−1の組成はSr9. 9(PO46Cl2:E
2+ 0.1であった。
Next, 50 g of the precursor and alumina (Al
2 O 3 ) 0.25g is mixed thoroughly and put in a quartz crucible,
Baking was performed at 1050 ° C. for 3 hours in a nitrogen gas atmosphere containing 5% hydrogen. The obtained fired product was used as the phosphor K- of the present invention.
Set to 1. The composition of K-1 Sr 9. 9 (PO 4) 6 Cl 2: E
It was u 2+ 0.1 .

【0040】〈蛍光体K−2の作製)得られた沈殿の洗
浄をデカンテーションの代わりに図1で示すような限外
濾過装置(限外濾過膜:日東電工製:NTU―315
0)により行うこと以外はK−1と同様の方法で行い、
本発明の蛍光体K−2を得た。
<Preparation of Phosphor K-2> Instead of decantation, the obtained precipitate was washed by an ultrafiltration device (ultrafiltration membrane: NTU-315 manufactured by Nitto Denko) as shown in FIG.
Perform the same method as K-1 except that
The phosphor K-2 of the present invention was obtained.

【0041】〈蛍光体K−3の作製〉C−1中に、A−
1とB−1を液中添加すると同時に上記限外濾過装置を
起動させて限外濾過膜を通過する液量が200ml/m
inになるよう制御して洗浄を行った。この時、200
ml/minの添加速度でアンモニア水をC−1に加え
ていき、膜通過液量とアンモニア水添加量が同等にな
り、かつpHが9.5になるように制御した。それ以外
は前記K−1と同様の方法で行い、本発明の蛍光体K−
3を得た。
<Preparation of Phosphor K-3> In C-1, A-
1 and B-1 were added to the liquid, and at the same time, the above ultrafiltration device was activated so that the amount of liquid passing through the ultrafiltration membrane was 200 ml / m 2.
The cleaning was performed while controlling to be in. At this time, 200
Ammonia water was added to C-1 at an addition rate of ml / min to control the amount of liquid passing through the membrane and the amount of ammonia water to be equal, and the pH to be 9.5. Otherwise, the same method as in K-1 above was carried out to provide the phosphor K- of the present invention.
Got 3.

【0042】《蛍光体の評価》蛍光体H−1及びK−1
〜3の平均粒径、粒径分布(単分散度)及び365nm
の紫外線を照射した時の発光強度を測定した。平均粒径
及び粒径分布は、TEM撮影により得られた粒子写真か
らランダムに200個を選び、個々の粒子の粒径から算
出した。
<< Evaluation of Phosphors >> Phosphors H-1 and K-1
~ 3 average particle size, particle size distribution (monodispersity) and 365 nm
The emission intensity when irradiated with the ultraviolet rays of was measured. The average particle size and particle size distribution were calculated from the particle size of each particle by randomly selecting 200 particles from the particle photograph obtained by TEM photography.

【0043】発光強度測定は、蛍光光度計(HITAC
HI社製:F3010)を用い、励起波長365nm、
測定温度25℃の条件で測定した。発光強度はH−1の
発光強度を100%とした時の相対値で示した。
The emission intensity is measured by a fluorescence photometer (HITAC
HI: F3010), excitation wavelength 365 nm,
The measurement was performed under the condition of the measurement temperature of 25 ° C. The emission intensity is shown as a relative value when the emission intensity of H-1 is 100%.

【0044】結果を表1に示す。The results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】本発明の蛍光体は、比較の蛍光体に比べて
粒径が小さく、粒径分布が狭く、かつ発光強度に勝って
いる。
The phosphor of the present invention has a smaller particle size, a narrower particle size distribution, and higher emission intensity than the comparative phosphor.

【0047】実施例2 〈蛍光体K−4の作製〉電気伝導度を18mS/cmに
変更すること以外は、蛍光体K−3と同様の方法で行
い、蛍光体K−4を得た。
Example 2 <Production of Phosphor K-4> Phosphor K-4 was obtained in the same manner as phosphor K-3 except that the electric conductivity was changed to 18 mS / cm.

【0048】〈蛍光体K−5の作製〉電気伝導度を5m
S/cmに変更すること以外は、蛍光体K−3と同様の
方法で行い、蛍光体K−5を得た。
<Preparation of Phosphor K-5> Electric conductivity of 5 m
Phosphor K-5 was obtained in the same manner as in phosphor K-3 except that S / cm was changed.

【0049】〈蛍光体K−6の作製〉電気伝導度を0.
8mS/cmに変更すること以外は、蛍光体K−3と同
様の方法で行い、蛍光体K−6を得た。
<Preparation of Phosphor K-6> The electric conductivity is set to 0.
A phosphor K-6 was obtained in the same manner as the phosphor K-3, except that the phosphor K-6 was changed to 8 mS / cm.

【0050】〈蛍光体K−7の作製〉電気伝導度を0.
1mS/cmに変更すること以外は、蛍光体K−3と同
様の方法で行い、蛍光体K−7を得た。
<Preparation of Phosphor K-7> The electric conductivity was set to 0.
A phosphor K-7 was obtained in the same manner as the phosphor K-3, except that the phosphor K-7 was changed to 1 mS / cm.

【0051】《蛍光体の評価》実施例1と同様の方法に
より平均粒径、粒径分布及び発光強度を測定した。結果
を表2に示す。
<< Evaluation of Phosphor >> By the same method as in Example 1, the average particle size, the particle size distribution and the emission intensity were measured. The results are shown in Table 2.

【0052】[0052]

【表2】 [Table 2]

【0053】本発明の蛍光体は何れの評価においても優
れている。尚、平均粒径、粒径分布の値が小さくなる
程、発光強度が増大する。
The phosphor of the present invention is excellent in any evaluation. The emission intensity increases as the values of the average particle size and the particle size distribution decrease.

【0054】実施例3 〈蛍光体K−8の作製〉蛍光体K−3を含む水分散体を
デカンテーションにより電気伝導度が8mS/cmに達
するまで洗浄し、濾過して120℃で1時間乾燥し、蛍
光体K−8を得た。
Example 3 <Preparation of Phosphor K-8> An aqueous dispersion containing phosphor K-3 was washed by decantation until the electric conductivity reached 8 mS / cm, filtered and heated at 120 ° C. for 1 hour. It was dried to obtain a phosphor K-8.

【0055】〈蛍光体K−9の作製〉蛍光体K−3を含
む水分散体をデカンテーションにより電気伝導度が4m
S/cmに達するまで洗浄し、濾過して120℃で1時
間乾燥し、蛍光体K−9を得た。
<Preparation of Phosphor K-9> An aqueous dispersion containing phosphor K-3 was decanted to have an electrical conductivity of 4 m.
It was washed until it reached S / cm, filtered, and dried at 120 ° C. for 1 hour to obtain phosphor K-9.

【0056】〈蛍光体K−10の作製〉蛍光体K−3を
含む水分散体をデカンテーションにより電気伝導度が
0.3mS/cmに達するまで洗浄し、濾過して120
℃で1時間乾燥し、蛍光体K−10を得た。
<Preparation of Phosphor K-10> An aqueous dispersion containing phosphor K-3 was washed by decantation until the electric conductivity reached 0.3 mS / cm, filtered, and filtered.
It was dried at 0 ° C. for 1 hour to obtain phosphor K-10.

【0057】《蛍光体の評価》実施例1と同様の方法に
より平均粒径、粒径分布及び発光強度を測定した。結果
を表3に示す。
<< Evaluation of Phosphor >> The average particle size, particle size distribution and emission intensity were measured by the same method as in Example 1. The results are shown in Table 3.

【0058】[0058]

【表3】 [Table 3]

【0059】本発明の蛍光体は何れの評価においても優
れており、表2と同様の傾向が見られた。
The phosphor of the present invention was excellent in all evaluations, and the same tendency as in Table 2 was observed.

【0060】[0060]

【発明の効果】本発明によれば、粒径が小さく、かつ粒
径分布が狭く、しかも発光強度が良好な蛍光体を提供で
きる。
According to the present invention, it is possible to provide a phosphor having a small particle size, a narrow particle size distribution, and good emission intensity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蛍光体の製造方法の一例を示す概略図
である。
FIG. 1 is a schematic view showing an example of a method for producing a phosphor of the present invention.

【符号の説明】[Explanation of symbols]

A 蛍光体母体構成元素の溶液 B 付活剤元素の溶液 1 反応容器 2 純水 3 撹拌機構 4 第1の導入管 5 第2の導入管 6,9 外部循環ライン 7 限外濾過ユニット 8 排水ライン Solution of phosphor matrix constituent elements B activator element solution 1 reaction vessel 2 pure water 3 stirring mechanism 4 First introduction tube 5 Second introduction pipe 6,9 External circulation line 7 Ultrafiltration unit 8 drainage lines

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 隆行 東京都日野市さくら町1番地コニカ株式会 社内 (72)発明者 岡田 尚大 東京都日野市さくら町1番地コニカ株式会 社内 (72)発明者 星野 徳子 東京都日野市さくら町1番地コニカ株式会 社内 Fターム(参考) 4H001 CA01 CA02 CF02 XA08 XA15 XA17 XA38 YA63    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takayuki Suzuki             Konica Stock Market, 1 Sakura-cho, Hino City, Tokyo             In-house (72) Inventor Naohiro Okada             Konica Stock Market, 1 Sakura-cho, Hino City, Tokyo             In-house (72) Inventor Tokiko Hoshino             Konica Stock Market, 1 Sakura-cho, Hino City, Tokyo             In-house F-term (reference) 4H001 CA01 CA02 CF02 XA08 XA15                       XA17 XA38 YA63

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液相法を適用する蛍光体の製造方法にお
いて、前駆体形成開始から終了までの間に脱塩工程を含
むことを特徴とする蛍光体の製造方法。
1. A method for producing a phosphor using a liquid phase method, which comprises a desalting step between the start and the end of precursor formation.
【請求項2】 脱塩が限外濾過処理によって行われるこ
とを特徴とする請求項1に記載の蛍光体の製造方法。
2. The method for producing a phosphor according to claim 1, wherein desalting is performed by ultrafiltration.
【請求項3】 液相法を適用する蛍光体の製造方法にお
いて、少なくとも前駆体形成終了時の電気伝導度が0.
01〜20mS/cmの範囲に制御されることを特徴と
する蛍光体の製造方法。
3. A method for producing a phosphor using a liquid phase method, wherein the electrical conductivity is at least 0.
A method for producing a phosphor, wherein the phosphor is controlled in a range of 01 to 20 mS / cm.
【請求項4】 少なくとも前駆体形成終了時の電気伝導
度が0.01〜20mS/cmの範囲に制御されること
を特徴とする請求項1又は2に記載の蛍光体の製造方
法。
4. The method for producing a phosphor according to claim 1, wherein the electrical conductivity at least at the end of precursor formation is controlled in the range of 0.01 to 20 mS / cm.
【請求項5】 液相法で製造された蛍光体において、焼
成後の電気伝導度が0.01〜5mS/cmの範囲であ
ることを特徴とする蛍光体。
5. A phosphor produced by a liquid phase method, which has an electric conductivity of 0.01 to 5 mS / cm after firing.
【請求項6】 請求項1〜4の何れか1項に記載の製造
方法で製造された蛍光体において、焼成後の電気伝導度
が0.01〜5mS/cmの範囲であることを特徴とす
る蛍光体。
6. The phosphor manufactured by the manufacturing method according to claim 1, wherein the electric conductivity after firing is in the range of 0.01 to 5 mS / cm. Fluorescent substance.
JP2001372598A 2001-12-06 2001-12-06 Method for producing phosphor and phosphor Pending JP2003171661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372598A JP2003171661A (en) 2001-12-06 2001-12-06 Method for producing phosphor and phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372598A JP2003171661A (en) 2001-12-06 2001-12-06 Method for producing phosphor and phosphor

Publications (1)

Publication Number Publication Date
JP2003171661A true JP2003171661A (en) 2003-06-20

Family

ID=19181461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372598A Pending JP2003171661A (en) 2001-12-06 2001-12-06 Method for producing phosphor and phosphor

Country Status (1)

Country Link
JP (1) JP2003171661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077079A (en) * 2004-09-08 2006-03-23 Konica Minolta Medical & Graphic Inc Preparation process of phosphor, phosphor and primer display panel
JP2007262122A (en) * 2006-03-27 2007-10-11 Mitsubishi Chemicals Corp Phosphor and light-emitting device using the same
EP1867695A1 (en) 2005-04-01 2007-12-19 Mitsubishi Chemical Corporation Alloy powder for raw material of inorganic functional material and phosphor
JP7553831B2 (en) 2022-05-27 2024-09-19 日亜化学工業株式会社 Halophosphate phosphor, its manufacturing method and light-emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077079A (en) * 2004-09-08 2006-03-23 Konica Minolta Medical & Graphic Inc Preparation process of phosphor, phosphor and primer display panel
EP1867695A1 (en) 2005-04-01 2007-12-19 Mitsubishi Chemical Corporation Alloy powder for raw material of inorganic functional material and phosphor
KR101241488B1 (en) 2005-04-01 2013-03-08 미쓰비시 가가꾸 가부시키가이샤 Alloy powder for aw material of inorganic functional material and phosphor
US8460580B2 (en) 2005-04-01 2013-06-11 Mitsubishi Chemical Corporation Alloy powder for raw material of inorganic functional material and phosphor
CN103361046A (en) * 2005-04-01 2013-10-23 三菱化学株式会社 Alloy powder for raw material of inorganic functional material and phosphor
US8801970B2 (en) 2005-04-01 2014-08-12 Mitsubishi Chemical Corporation Europium- and strontium-based phosphor
CN103361046B (en) * 2005-04-01 2016-02-03 三菱化学株式会社 Alloy powder for raw material of inorganic functional material and fluorophor
JP2007262122A (en) * 2006-03-27 2007-10-11 Mitsubishi Chemicals Corp Phosphor and light-emitting device using the same
JP7553831B2 (en) 2022-05-27 2024-09-19 日亜化学工業株式会社 Halophosphate phosphor, its manufacturing method and light-emitting device

Similar Documents

Publication Publication Date Title
JPH07315816A (en) Rare earth element salt particle of phosphoric acid and its production
Bai et al. Effects of Bi3+ ions on luminescence of dumbbell-like SrMoO4 and SrMoO4: Eu3+ microcrystals
EP1108772A2 (en) Rare earth phosphate, its production process and rare earth phosphate phosphor
US4719033A (en) Process for producing europium activated stronium tetraborate UV phosphor
CN111808608B (en) Phosphor compound, preparation method and composition thereof
JP2003171661A (en) Method for producing phosphor and phosphor
JP2010520325A (en) Method for producing green luminescent borate phosphor
Lakshmanan et al. Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes
KR100280369B1 (en) Manufacturing method of green light emitting phosphor
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
Yoon et al. Comparison of YAG: Eu phosphor synthesized by supercritical water and solid-state methods in a batch reactor
CN110590361B (en) Composite phase fluorescent ceramic and preparation method and application thereof
JP2001303039A (en) Inorganic fluorescent substance and method for producing the same
US5068055A (en) Europium activated strontium tetraborate UV phosphors
CN111925683B (en) Fluorescent whitening automobile paint based on BAM EM and preparation method thereof
KR100351636B1 (en) Process for preparing spherical phosphors based on zinc gallate
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates
JP2003261867A (en) Manufacturing method for fluorescent material
KR100424861B1 (en) Preparing process for spherical red phosphor based on borates using hydrolysis
Park et al. Physics of alkaline-earth sulfide phosphors
JP5157446B2 (en) Nanoparticle phosphor of chalcogenite compound and method for producing the same
JPH09255950A (en) Preparation of light-storing luminescent pigment
JP2008101225A (en) Method for producing phosphor
CN115197704A (en) Phosphor compound and preparation method and composition thereof
CN116716106A (en) Preparation method of gadolinium phosphate and rare earth doped gadolinium phosphate fluorescent powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A977 Report on retrieval

Effective date: 20061020

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Effective date: 20061218

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213