JP2003169668A - L-cysteine-producing microorganism and method for producing l-cysteine - Google Patents
L-cysteine-producing microorganism and method for producing l-cysteineInfo
- Publication number
- JP2003169668A JP2003169668A JP2002271463A JP2002271463A JP2003169668A JP 2003169668 A JP2003169668 A JP 2003169668A JP 2002271463 A JP2002271463 A JP 2002271463A JP 2002271463 A JP2002271463 A JP 2002271463A JP 2003169668 A JP2003169668 A JP 2003169668A
- Authority
- JP
- Japan
- Prior art keywords
- ala
- leu
- gly
- val
- cysteine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、L−システインの
製造法に関し、詳しくはL−システインの製造に好適な
微生物、及びそれを用いたL−システインの製造法に関
する。L−システイン及びL−システインの誘導体は、
医薬品、化粧品及び食品分野で利用されている。TECHNICAL FIELD The present invention relates to a method for producing L-cysteine, and more particularly to a microorganism suitable for producing L-cysteine, and a method for producing L-cysteine using the same. L-cysteine and derivatives of L-cysteine are
It is used in the fields of medicine, cosmetics and food.
【0002】[0002]
【従来の技術】従来、L−システインは、毛髪、角、羽
毛等のケラチン含有物質から抽出することにより、ある
いはDL−2−アミノチアゾリン−4−カルボン酸を前
駆体とする微生物酵素変換により得られている。また、
新規な酵素を用いた固定化酵素法によるL−システイン
の大量生産も計画されている。2. Description of the Related Art Conventionally, L-cysteine has been obtained by extraction from keratin-containing substances such as hair, horns and feathers, or by microbial enzyme conversion using DL-2-aminothiazoline-4-carboxylic acid as a precursor. Has been. Also,
Large-scale production of L-cysteine by an immobilized enzyme method using a novel enzyme is also planned.
【0003】さらに、微生物を用いた発酵法によるL−
システインの生産も試みられている。例えば、本発明者
らは、L−システイン分解系が抑制され、かつ、L−シ
ステインによるフィードバック阻害が低減されたセリン
アセチルトランスフェラーゼ(serine acetyltransfera
se(EC 2.3.1.30):以下、「SAT」ともいう)を保持す
るエシェリヒア属細菌を用いたL−システインの製造法
を開示している(特許文献1)。L−システイン分解系
を抑制する手段としては、細胞中のシステインデスルフ
ヒドラーゼ(以下、「CD」ともいう)活性を低下させる
ことが開示されている。同様に、L−システインによる
フィードバック阻害が低減された特定の変異を有するSA
TをコードするDNA配列により脱制御されたシステイ
ン物質代謝を有する微生物を用いた、L−システインの
製造法が知られている(特許文献2)。Further, L- by a fermentation method using microorganisms
Attempts have also been made to produce cysteine. For example, the inventors of the present invention have suppressed the L-cysteine degradation system and reduced the feedback inhibition by L-cysteine, which is serine acetyltransfera.
se (EC 2.3.1.30): Hereinafter, a method for producing L-cysteine using a bacterium belonging to the genus Escherichia that holds se (EC) is disclosed (Patent Document 1). As a means for suppressing the L-cysteine degradation system, it is disclosed that cysteine desulfhydrase (hereinafter, also referred to as “CD”) activity in cells is reduced. Similarly, SAs with certain mutations have reduced feedback inhibition by L-cysteine.
A method for producing L-cysteine using a microorganism having a cysteine substance metabolism deregulated by a DNA sequence encoding T is known (Patent Document 2).
【0004】また、非特許文献1には、L−システイン
によるフィードバック阻害を受けないシロイヌナズナ由
来のSATアイソザイムをコードする遺伝子を導入したエ
シェリヒア・コリを用いたL−システインの製造法が開
示されている。Non-Patent Document 1 discloses a method for producing L-cysteine using Escherichia coli into which a gene encoding a SAT isozyme derived from Arabidopsis thaliana that is not subject to feedback inhibition by L-cysteine is introduced. .
【0005】一方、抗生物質又は微生物に毒性の物質を
細胞から直接放出するために好適である蛋白質をコード
する遺伝子を過剰発現する微生物を用いたL−システイ
ンの製造法が報告されている(特許文献3)。On the other hand, there has been reported a method for producing L-cysteine using a microorganism which overexpresses a gene encoding a protein suitable for releasing an antibiotic or a substance toxic to the microorganism directly from cells (Patent Reference 3).
【0006】上記のように、SAT等のL−システイン生
合成酵素の活性の増強、及び、L−システイン排出系を
改変したL−システイン生産菌に関し、多くの研究がな
されている。それに対し、L−システイン分解系につい
ては、特にエシェリヒア属細菌においては、詳細な検討
がなされていない。[0006] As described above, many studies have been conducted on the enhancement of the activity of L-cysteine biosynthetic enzymes such as SAT and the L-cysteine producing bacterium in which the L-cysteine excretion system is modified. On the other hand, the L-cysteine degrading system has not been studied in detail, particularly in bacteria belonging to the genus Escherichia.
【0007】エシェリヒア・コリにおいて多少なりとも
CD活性をもつ酵素として、シスタチオニン−β−リアー
ゼ(metC産物。以下、「CBL」ともいう)(非特許文献
2)、及びトリプトファナーゼ(tnaA産物。以下、「TN
ase」ともいう)(非特許文献3)が報告されている。
しかし、CBLはシスタチオニンをホモシステインに変換
する反応を、TNaseはトリプトファンを分解する反応を
それぞれ触媒する酵素であるとされており、実質的にL
−システイン分解系を担う酵素であるか否かについては
知られていなかった。また、特許文献1には、CD活性が
低下した変異株が記載されているが、CD活性を担う酵素
の本体に関しては報告されていない。In Escherichia coli
As an enzyme having CD activity, cystathionine-β-lyase (metC product; hereinafter, also referred to as “CBL”) (Non-patent document 2), and tryptophanase (tnaA product, hereinafter, “TN
(also referred to as “ase”) (Non-Patent Document 3).
However, CBL is an enzyme that catalyzes the reaction of converting cystathionine to homocysteine, and TNase is an enzyme that catalyzes the reaction of degrading tryptophan.
-It was not known whether it was an enzyme responsible for the cysteine degradation system. Further, Patent Document 1 describes a mutant strain having reduced CD activity, but does not report on the main body of the enzyme responsible for CD activity.
【0008】[0008]
【特許文献1】特開平11-155571号[Patent Document 1] JP-A-11-155571
【特許文献2】特表2000-504926号[Patent Document 2] Special Table No. 2000-504926
【特許文献3】特開平11-56381号[Patent Document 3] Japanese Patent Laid-Open No. 11-56381
【非特許文献1】FEMS Microbiol. Lett., 179 (1999)
453-459[Non-Patent Document 1] FEMS Microbiol. Lett., 179 (1999)
453-459
【非特許文献2】Chandra et. al., Biochemistry, 21
(1982) 3064-3069[Non-patent document 2] Chandra et. Al., Biochemistry, 21.
(1982) 3064-3069
【非特許文献3】Austin Newton et. al., J. Biol. Ch
em. 240 (1965) 1211-1218[Non-Patent Document 3] Austin Newton et. Al., J. Biol. Ch.
em. 240 (1965) 1211-1218
【0009】[0009]
【発明が解決しようとする課題】本発明は、CD活性を担
う酵素及びその遺伝子を明らかにし、同遺伝子をL−シ
ステイン生産菌の育種に利用し、新たなL−システイン
の製造法を提供することを課題とする。DISCLOSURE OF THE INVENTION The present invention clarifies an enzyme responsible for CD activity and its gene, and utilizes the same gene for breeding L-cysteine-producing bacteria to provide a new method for producing L-cysteine. This is an issue.
【0010】[0010]
【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を行った結果、CBL及びTNaseがエ
シェリヒア・コリの主要なCD活性を担う酵素であること
を見出し、これらの酵素活性を低下又は消失させること
により、L−システイン生産能を向上させることができ
ることを見出し、本発明を完成させるに至った。すなわ
ち本発明は、以下のとおりである。[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have found that CBL and TNase are the enzymes responsible for the major CD activity of Escherichia coli. It was found that the ability to produce L-cysteine can be improved by reducing or eliminating the enzyme activity of, and thus the present invention has been completed. That is, the present invention is as follows.
【0011】(1)L−システイン生産能を有し、か
つ、シスタチオニン−β−リアーゼ活性が低下又は欠失
するように改変されたエシェリヒア属細菌。
(2)L−システイン生産能を有し、かつ、シスシスタ
チオニン−β−リアーゼ活性及びトリプトファナーゼ活
性が低下又は欠失するように改変されたエシェリヒア属
細菌。
(3)シスタチオニン−β−リアーゼをコードする遺伝
子が破壊された(1)のエシェリヒア属細菌。
(4)シスシスタチオニン−β−リアーゼをコードする
遺伝子及びトリプトファナーゼをコードする遺伝子が破
壊された(2)のエシェリヒア属細菌。
(5)さらにL−システイン生合成系酵素活性が増強さ
れるように改変された(1)〜(4)のいずれかのエシェリヒ
ア属細菌。
(6)セリンアセチルトランスフェラーゼが増強される
ように改変された(5)のエシェリヒア属細菌。
(7)L−システインによるフィードバック阻害に非感
受性のセリンアセチルトランスフェラーゼを保持する
(6)のエシェリヒア属細菌。
(8)エシェリヒア・コリである(1)〜(7)のいずれかの
エシェリヒア属細菌。
(9)(1)〜(8)のいずれかのエシェリヒア属細菌を培地
で培養し、L−システインを培地中に生成蓄積させ、該
培地よりL−システインを採取する、L−システインの
製造法。
(10)エシェリヒア属細菌のシスシスタチオニン−β
−リアーゼ活性もしくはトリプトファナーゼ活性、又は
これらの両方の活性を低下又は消失させることによっ
て、同細菌のL−システイン生産能を高めることを特徴
とする、L−システイン生産菌の製造方法。(1) A bacterium belonging to the genus Escherichia, which has the ability to produce L-cysteine and has been modified so that the cystathionine-β-lyase activity is reduced or deleted. (2) A bacterium belonging to the genus Escherichia, which has L-cysteine producing ability and has been modified so that ciscystathionine-β-lyase activity and tryptophanase activity are reduced or deleted. (3) The Escherichia bacterium of (1), in which the gene encoding cystathionine-β-lyase is disrupted. (4) The bacterium belonging to the genus Escherichia of (2), in which the gene encoding cis-cystathionine-β-lyase and the gene encoding tryptophanase are disrupted. (5) The bacterium of the genus Escherichia according to any one of (1) to (4), which is further modified so that the enzyme activity of the L-cysteine biosynthesis system is enhanced. (6) The Escherichia bacterium according to (5), which has been modified to enhance serine acetyltransferase. (7) Retains serine acetyltransferase that is insensitive to feedback inhibition by L-cysteine
(6) Escherichia bacterium. (8) The Escherichia bacterium according to any one of (1) to (7), which is Escherichia coli. (9) A method for producing L-cysteine, which comprises culturing the Escherichia bacterium according to any one of (1) to (8) in a medium, producing and accumulating L-cysteine in the medium, and collecting L-cysteine from the medium. . (10) cis-cystathionine-β of Escherichia bacterium
-A method for producing an L-cysteine-producing bacterium, which comprises increasing the L-cysteine-producing ability of the bacterium by reducing or eliminating lyase activity or tryptophanase activity, or both of these activities.
【0012】本発明においてL−システイン生産能と
は、本発明のエシェリヒア属細菌を培地に培養したとき
に、培地から回収することができる量のL−システイン
を培地中に蓄積する能力をいう。また、「L−システイ
ンによるフィードバック阻害に非感受性」とは、L−シ
ステインによるフィードバック阻害が低減又は解除され
た場合に加えて、元来フィードバック阻害を受けない場
合を含む。尚、本発明においてL−システインとは、特
記しない限り、還元型L−システインもしくはL−シス
チンまたはこれらの混合物を指す。In the present invention, the L-cysteine producing ability means the ability to accumulate in the medium an amount of L-cysteine that can be recovered from the medium when the Escherichia bacterium of the present invention is cultured in the medium. In addition, "insensitive to feedback inhibition by L-cysteine" includes a case where feedback inhibition by L-cysteine is reduced or canceled and a case where feedback inhibition is not originally caused. In the present invention, L-cysteine refers to reduced L-cysteine or L-cystine or a mixture thereof unless otherwise specified.
【0013】[0013]
【発明の実施の形態】本発明のエシェリヒア属細菌の第
一の形態は、L−システイン生産能を有し、かつ、CBL
活性が低下又は欠失するように改変されたエシェリヒア
属細菌である。本発明のエシェリヒア属細菌の第二の形
態は、L−システイン生産能を有し、かつ、CBL活性及
びTNase活性が低下又は欠失するように改変されたエシ
ェリヒア属細菌である。また、本発明のエシェリヒア属
細菌は、前記第一の形態又は第二の形態において、さら
にL−システイン生合成系酵素活性が増強されるように
改変されたエシェリヒア属細菌である。このようなエシ
ェリヒア属細菌は、CBL活性、又はCBL活性及びTNase活
性が低下又は欠失したエシェリヒア属細菌において、L
−システイン生合成系酵素活性を増強することによって
得られる。また、L−システイン生合成系酵素活性を増
強したエシェリヒア属細菌において、CBL活性、又はCBL
活性及びTNase活性を低下又は欠失させることによって
も、本発明のエシェリヒア属細菌を取得することができ
る。BEST MODE FOR CARRYING OUT THE INVENTION The first embodiment of the bacterium belonging to the genus Escherichia of the present invention has L-cysteine producing ability and CBL.
It is a bacterium belonging to the genus Escherichia modified so that the activity is reduced or deleted. The second form of the Escherichia bacterium of the present invention is an Escherichia bacterium which has L-cysteine producing ability and has been modified so that CBL activity and TNase activity are reduced or deleted. The Escherichia bacterium of the present invention is the Escherichia bacterium modified in the first form or the second form so that the L-cysteine biosynthesis enzyme activity is further enhanced. Such an Escherichia bacterium has a LBL in the Escherichia bacterium in which CBL activity or CBL activity and TNase activity is reduced or deleted.
-It is obtained by enhancing the enzyme activity of cysteine biosynthesis system. In addition, in Escherichia bacterium with enhanced L-cysteine biosynthesis enzyme activity, CBL activity or CBL
The Escherichia bacterium of the present invention can also be obtained by reducing or deleting the activity and TNase activity.
【0014】<1>CBL活性又はTNase活性の低下又は消
失
エシェリヒア属細菌のCBL活性又はTNase活性を低下又は
消失させるには、例えば、エシェリヒア属細菌を紫外線
照射またはN−メチル−N'−ニトロ−N−ニトロソグアニ
ジン(NTG)もしくは亜硝酸等の通常変異処理に用いら
れている変異剤によって処理し、CBL活性又はTNase活性
が低下した変異株を選択する方法が挙げられる。また、
CBL活性又はTNase活性が低下したエシェリヒア属細菌
は、変異処理の他に、遺伝子破壊によっても取得するこ
とができる。CBL活性又はTNase活性を確実に低下又は消
失させるためには、遺伝子破壊による方法が好ましい。
エシェリヒア・コリでは、CBLはmetC遺伝子、TNaseはtn
aA遺伝子によってそれぞれコードされている。<1> Reduction or elimination of CBL activity or TNase activity To reduce or eliminate CBL activity or TNase activity of Escherichia bacterium, for example, Escherichia bacterium is irradiated with ultraviolet rays or N-methyl-N′-nitro-. Examples include a method of treating with a mutagen such as N-nitrosoguanidine (NTG) or nitrous acid, which is usually used for mutagenesis, and selecting a mutant having a decreased CBL activity or TNase activity. Also,
Bacteria belonging to the genus Escherichia with reduced CBL activity or TNase activity can be obtained by gene disruption as well as mutation treatment. In order to surely reduce or eliminate CBL activity or TNase activity, a method by gene disruption is preferable.
In Escherichia coli, CBL is metC gene, TNase is tn
Each is encoded by the aA gene.
【0015】エシェリヒア・コリのmetC遺伝子(GenBan
k accession M12858、Proc. Natl.Acad. Sci. U.S.A. 8
3, 867-871 (1986))及びtnaA遺伝子(GenBank accessi
onK00032、J. Bacteriol. 147, 787-796 (1981)、J. Ba
cteriol. 151, 942-951 (1982))の塩基配列は報告され
ており、それぞれの配列の基づいて合成したプライマー
を用い、エシェリヒア・コリ染色体DNAを鋳型とする
PCR(PCR:polymerase chain reaction; White,T.J. e
t al., Trends Genet. 5, 185 (1989)参照)によって、
各々の遺伝子を含むDNA断片を取得することができ
る。また、CBLをコードする遺伝子の内部を欠失し、正
常に機能するCBLを産生しないように改変したmetC遺伝
子(欠失型metC遺伝子)、及びTNaseをコードする遺伝
子の内部を欠失し、正常に機能するTNaseを産生しない
ように改変したtnaA遺伝子(欠失型tnaA遺伝子)は、実
施例に示したプライマーを用いたPCRにより取得するこ
とができる。参考として、metC遺伝子の塩基配列及びコ
ードされるアミノ酸配列を、配列番号10及び11に示
す。また、tnaA遺伝子の塩基配列及びコードされるアミ
ノ酸配列を、配列番号12及び13に示す。Escherichia coli metC gene (GenBan
k accession M12858, Proc. Natl. Acad. Sci. USA 8
3, 867-871 (1986)) and tnaA gene (GenBank accessi
onK00032, J. Bacteriol. 147, 787-796 (1981), J. Ba
cteriol. 151, 942-951 (1982)) has been reported, using primers synthesized on the basis of the respective sequences and using Escherichia coli chromosomal DNA as a template.
PCR (PCR: polymerase chain reaction; White, TJ e
t al., Trends Genet. 5, 185 (1989)),
A DNA fragment containing each gene can be obtained. In addition, the inside of the gene encoding CBL was deleted, and the inside of the gene encoding TNase was deleted by deleting the metC gene (deleting type metC gene) modified so as not to produce a normally functioning CBL. The tnaA gene (deletion type tnaA gene) modified so that it does not produce TNase that functions as described above can be obtained by PCR using the primers shown in the examples. For reference, the nucleotide sequence of the metC gene and the encoded amino acid sequence are shown in SEQ ID NOs: 10 and 11. The nucleotide sequence of the tnaA gene and the encoded amino acid sequence are shown in SEQ ID NOs: 12 and 13.
【0016】以下に、CBLをコードする遺伝子を破壊す
る方法を説明するが、同様にしてTNaseをコードする遺
伝子を破壊することができる。CBLをコードする遺伝子
の内部を欠失し、正常に機能するCBLを産生しないよう
に改変したmetC遺伝子(欠失型metC遺伝子)を含むDN
Aでエシェリヒア属細菌を形質転換し、欠失型metC遺伝
子と染色体上のmetC遺伝子との間で組換えを起こさせる
ことにより、染色体上のmetC遺伝子を破壊することがで
きる。このような相同組換えを利用した遺伝子置換によ
る遺伝子破壊は既に確立しており、直鎖DNAを用いる
方法や温度感受性複製起点を含むプラスミドを用いる方
法などがある。The method for destroying the gene encoding CBL will be described below, but the gene encoding TNase can be similarly destroyed. DN containing the metC gene (deleted metC gene) modified so that the inside of the gene encoding CBL is deleted and does not produce a normally functioning CBL
By transforming a bacterium belonging to the genus Escherichia with A and causing recombination between the deleted metC gene and the metC gene on the chromosome, the metC gene on the chromosome can be destroyed. Gene disruption by gene replacement utilizing such homologous recombination has already been established, and there are methods such as a method using linear DNA and a method using a plasmid containing a temperature-sensitive replication origin.
【0017】欠失型metC遺伝子を、宿主染色体上のmetC
遺伝子と置換するには、例えば以下のようにすればよ
い。温度感受性複製起点と、欠失型metC遺伝子と、アン
ピシリン又はクロラムフェニコール等の薬剤に耐性を示
すマーカー遺伝子とをベクターに挿入して組換えDNA
を調製し、この組換えDNAでエシェリヒア属細菌を形
質転換し、温度感受性複製起点が機能しない温度で形質
転換株を培養し、続いてこれを薬剤を含む培地で培養す
ることにより、組換えDNAが染色体DNAに組み込ま
れた形質転換株が得られる。The deletion type metC gene is replaced with metC on the host chromosome.
To replace with a gene, for example, the following may be performed. Recombinant DNA obtained by inserting a temperature-sensitive origin of replication, a deletion type metC gene, and a marker gene resistant to a drug such as ampicillin or chloramphenicol into a vector
And transforming Escherichia bacterium with this recombinant DNA, culturing the transformant strain at a temperature at which the temperature-sensitive origin of replication does not function, and then culturing this in a medium containing a drug to give the recombinant DNA. A transformant in which is integrated into the chromosomal DNA is obtained.
【0018】こうして染色体に組換えDNAが組み込ま
れた株は、染色体上にもともと存在するmetC遺伝子配列
との組換えを起こし、染色体metC遺伝子と欠失型metC遺
伝子との融合遺伝子2個が組換えDNAの他の部分(ベ
クター部分、温度感受性複製起点及び薬剤耐性マーカ
ー)を挟んだ状態で染色体に挿入されている。したがっ
て、この状態では正常なmetC遺伝子が優性であるので、
形質転換株は正常なmetCを発現する。The strain in which the recombinant DNA has been integrated into the chromosome thus undergoes recombination with the metC gene sequence originally existing on the chromosome, and two fusion genes of the chromosomal metC gene and the deletion type metC gene are recombined. It is inserted into the chromosome with the other part of the DNA (vector part, temperature-sensitive origin of replication and drug resistance marker) sandwiched. Therefore, in this condition, the normal metC gene is dominant,
The transformant expresses normal metC.
【0019】次に、染色体DNA上に欠失型metC遺伝子
のみを残すために、2個のmetC遺伝子の組換えにより1
コピーのmetC遺伝子を、ベクター部分(温度感受性複製
起点及び薬剤耐性マーカーを含む)とともに染色体DN
Aから脱落させる。その際、正常なmetC遺伝子が染色体
DNA上に残され、欠失型metC遺伝子が切り出される場
合と、反対に欠失型metC遺伝子が染色体DNA上に残さ
れ、正常なmetC遺伝子が切り出される場合がある。いず
れの場合も、温度感受性複製起点が機能する温度で培養
すれば、切り出されたDNAはプラスミド状で細胞内に
保持される。次に、温度感受性複製起点が機能しない温
度で培養すると、プラスミド上のmetC遺伝子は、プラス
ミドとともに細胞から脱落する。そして、PCRまたはサ
ザンハイブリダイゼーション等により、染色体上に欠失
型metC遺伝子が残った株を選択することによって、metC
遺伝子が破壊された株を取得することができる。Next, in order to leave only the deleted metC gene on the chromosomal DNA, the two metC genes were recombined to 1
Copy metC gene along with vector part (including temperature sensitive origin of replication and drug resistance marker) on chromosome DN
Remove from A. At that time, there are cases where the normal metC gene is left on the chromosomal DNA and the deletion type metC gene is excised, and conversely, the deletion type metC gene is left on the chromosomal DNA and the normal metC gene is excised. is there. In either case, the excised DNA is retained inside the cell in the form of a plasmid if it is cultured at a temperature at which the temperature-sensitive replication origin functions. Then, when the cells are cultured at a temperature at which the temperature-sensitive replication origin does not function, the metC gene on the plasmid is shed from the cells together with the plasmid. Then, by selecting a strain in which the deleted metC gene remained on the chromosome by PCR or Southern hybridization, metC
A strain in which the gene has been disrupted can be obtained.
【0020】遺伝子破壊株又は変異株のCBL活性が低下
又は消失していることは、候補株の菌体抽出液につい
て、Guggenheim,S.の方法(Methods Enzymol., 17, 439
-442 (1971)の方法等によりCBL活性を測定し、親株のC
BL活性と比較することにより確認することができる。The fact that the CBL activity of the gene-disrupted strain or mutant strain is reduced or eliminated means that the cell extract of the candidate strain was subjected to the method of Guggenheim, S. (Methods Enzymol., 17, 439).
-442 (1971) and other methods to measure CBL activity,
It can be confirmed by comparison with BL activity.
【0021】エシェリヒア・コリ用の温度感受性複製起
点を含むプラスミドとしては、例えばpMAN031(Yasued
a, H. et al, Appl. Microbiol. Biotechnol., 36, 211
(1991))、pMAN997(WO 99/03988号)、及びpEL3(K.
A. Armstrong et. al., J. Mol. Biol. (1984) 175, 33
1-347)が挙げられる。As a plasmid containing a temperature-sensitive replication origin for Escherichia coli, for example, pMAN031 (Yasued
a, H. et al, Appl. Microbiol. Biotechnol., 36, 211
(1991)), pMAN997 (WO 99/03988), and pEL3 (K.
A. Armstrong et. Al., J. Mol. Biol. (1984) 175, 33
1-347).
【0022】上記と同様にして、tnaA遺伝子破壊株を取
得することができる。tnaA遺伝子破壊株又は変異株のTN
ase活性が低下又は消失していることは、候補株の菌体
抽出液について、Newton, W. A. らの方法(J. Biol. C
hem., 240, 1211-1218 (1965))の方法等によりTNase活
性を測定し、親株のTNase活性と比較することにより確
認することができる。遺伝子破壊に用いる欠失型metC遺
伝子及び欠失型tnaA遺伝子は、目的とするエシェリヒア
属細菌の染色体DNA上のmetC遺伝子及びtnaA遺伝子と
相同組換えを起こす程度の相同性を有していればよい。
このような相同性は、好ましくは70%以上、より好ま
しくは80%以上、特に好ましくは90%以上である。
また、ストリンジェントな条件下でハイブリダイズし得
るDNA同士であれば、相同組換えは起こり得る。A tnaA gene-disrupted strain can be obtained in the same manner as described above. TN of tnaA gene disrupted strain or mutant strain
The decrease or disappearance of the ase activity indicates that the bacterial cell extract of the candidate strain was subjected to the method of Newton, WA et al. (J. Biol.
hem., 240, 1211-1218 (1965)) and the like, and can be confirmed by comparing the TNase activity with that of the parent strain. The deletion-type metC gene and the deletion-type tnaA gene used for gene disruption may have homology enough to cause homologous recombination with the metC gene and tnaA gene on the chromosomal DNA of the target Escherichia bacterium. .
Such homology is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more.
In addition, homologous recombination can occur as long as the DNAs can hybridize under stringent conditions.
【0023】<2>SAT活性の増強
エシェリヒア属細菌細胞内のSAT活性の増強は、SATをコ
ードする遺伝子のコピー数を高めることによって達成さ
れる。例えば、SATをコードする遺伝子断片を、エシェ
リヒア属細菌で機能するベクター、好ましくはマルチコ
ピー型のベクターと連結して組換えDNAを作製し、これ
を宿主エシェリヒア属細菌に導入して形質転換すればよ
い。<2> Enhancement of SAT activity Enhancement of SAT activity in Escherichia bacterium cells is achieved by increasing the copy number of the gene encoding SAT. For example, a gene fragment encoding SAT, a vector that functions in Escherichia bacterium, preferably a multi-copy type vector is ligated to produce a recombinant DNA, which is introduced into a host Escherichia bacterium and transformed. Good.
【0024】SAT遺伝子は、エシェリヒア属細菌由来の
遺伝子および他の生物由来の遺伝子のいずれも使用する
ことができる。エシェリヒア・コリのSATをコードする
遺伝子として、cysEが野生株及びL−システイン分泌変
異株よりクローニングされ、塩基配列が明らかになって
いる(Denk, D. and Boeck, A., J. General Microbio
l., 133, 515-525 (1987))。したがって、その塩基配
列に基づいて作製したプライマーを用いて、エシェリヒ
ア属細菌の染色体DNAを鋳型とするPCRによって、SAT遺
伝子を取得することができる(特開平11-155571号参
照)。他の生物のSATをコードする遺伝子も、同様にし
て取得され得る。参考として、配列番号14及び15
に、報告されている野生型cysEの塩基配列及びコードさ
れるSATのアミノ酸配列(Denk, D. and Bock, A., J. g
eneral Microbiol., 133, 515-525 (1987))を示す。SA
T遺伝子としては、野生型SAT遺伝子の他に、アセチル−
CoAによるL−セリンの活性化を触媒する活性を実質
的に損なわないような1若しくは数個のアミノ酸残基の
置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列
を有するものであってもよい。ここで、「数個」とは、
アミノ酸残基のタンパク質の立体構造における位置や種
類によっても異なるが、好ましくは2から50個、より
好ましくは2から40個、特に好ましくは2から30個
である。As the SAT gene, both a gene derived from a bacterium belonging to the genus Escherichia and a gene derived from another organism can be used. As a gene encoding SAT of Escherichia coli, cysE was cloned from a wild strain and an L-cysteine secretion mutant strain, and the nucleotide sequence has been revealed (Denk, D. and Boeck, A., J. General Microbio.
l., 133, 515-525 (1987)). Therefore, the SAT gene can be obtained by PCR using a primer prepared based on the nucleotide sequence and PCR using the chromosomal DNA of Escherichia bacterium as a template (see Japanese Patent Laid-Open No. 11-155571). Genes encoding SAT of other organisms can be obtained in the same manner. For reference, SEQ ID NOS: 14 and 15
, The wild-type cysE nucleotide sequence and the encoded SAT amino acid sequence (Denk, D. and Bock, A., J. g.
eneral Microbiol., 133, 515-525 (1987)). SA
As the T gene, in addition to the wild-type SAT gene, acetyl-
It has an amino acid sequence containing substitution, deletion, insertion, addition, or inversion of one or several amino acid residues that does not substantially impair the activity of CoA for catalyzing the activation of L-serine. May be. Here, "several" means
The number of amino acid residues is preferably 2 to 50, more preferably 2 to 40, and particularly preferably 2 to 30, though it depends on the position and type of the protein in the three-dimensional structure.
【0025】上記のようなSATと実質的に同一のタンパ
ク質をコードするDNAとしては、配列番号14の塩基
番号223〜1047からなる塩基配列又は同塩基配列
から調製され得るプローブとストリンジェントな条件下
でハイブリダイズし、かつSATと同様の活性を有するタ
ンパク質をコードするDNAが挙げられる。「ストリン
ジェントな条件」とは、いわゆる特異的なハイブリッド
が形成され、非特異的なハイブリッドが形成されない条
件をいう。この条件を明確に数値化することは困難であ
るが、一例を示せば、相同性が高いDNA同士、例えば
50%以上の相同性を有するDNA同士がハイブリダイ
ズし、それより相同性が低いDNA同士がハイブリダイ
ズしない条件、あるいは通常のサザンハイブリダイゼー
ションの洗いの条件である60℃、1×SSC,0.1
%SDS、好ましくは、0.1×SSC、0.1%SD
Sに相当する塩濃度でハイブリダイズする条件が挙げら
れる。As a DNA encoding a protein substantially the same as the SAT as described above, a base sequence consisting of base numbers 223 to 1047 of SEQ ID NO: 14 or a probe which can be prepared from the same base sequence and stringent conditions are used. And a DNA encoding a protein having the same activity as SAT. The “stringent conditions” are conditions under which so-called specific hybrid is formed and non-specific hybrid is not formed. Although it is difficult to quantify this condition clearly, as an example, DNAs having high homology, for example, DNAs having 50% or more homology, are hybridized, and DNAs having lower homology 60 ° C, 1 x SSC, 0.1, which is a condition that does not hybridize with each other, or is a condition for washing in ordinary Southern hybridization.
% SDS, preferably 0.1 × SSC, 0.1% SD
The conditions under which hybridization occurs at a salt concentration corresponding to S are mentioned.
【0026】染色体DNAは、DNA供与体である細菌
から、例えば、斎藤、三浦の方法(H. Saito and K.Miu
ra, Biochem.B iophys. Acta, 72, 619 (1963)、生物工
学実験書、日本生物工学会編、97〜98頁、培風館、
1992年参照)等により調製することができる。Chromosomal DNA can be obtained from bacteria that are DNA donors, for example, by the method of Saito and Miura (H. Saito and K. Miu).
ra, Biochem. Biophys. Acta, 72, 619 (1963), Biotechnology Experiment Book, Japan Society for Biotechnology, pages 97-98, Baifukan,
1992) and the like.
【0027】PCR法により増幅されたSAT遺伝子を含むD
NA断片をエシェリヒア属細菌に導入するには、通常の
タンパク質発現に用いられる種々のベクターを用いるこ
とができる。このようなベクターとしては、pUC19、pUC
18、pHSG299, pHSG399, pHSG398, RSF1010, pBR322, pA
CYC184, pMW219等が挙げられる。D containing the SAT gene amplified by the PCR method
To introduce the NA fragment into a bacterium belonging to the genus Escherichia, various vectors used for ordinary protein expression can be used. Such vectors include pUC19, pUC
18, pHSG299, pHSG399, pHSG398, RSF1010, pBR322, pA
Examples include CYC184 and pMW219.
【0028】SAT遺伝子を含む組換えベクターをエシェ
リヒア属細菌に導入するには、D.A.Morrisonの方法(Me
thods in Enzymology 68, 326 (1979))あるいは受容菌
細胞を塩化カルシウムで処理してDNAの透過性を増す
方法(Mandel,M. and Higa,A.,J.Mol.Biol.,53,159(197
0))等、エシェリヒア属細菌の形質転換に通常用いられ
ている方法により行うことができる。To introduce a recombinant vector containing the SAT gene into Escherichia bacteria, the method of DA Morrison (Me
thods in Enzymology 68, 326 (1979)) or a method of increasing the permeability of DNA by treating recipient cells with calcium chloride (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (197).
0)) and the like, which are commonly used for transformation of Escherichia bacteria.
【0029】SAT遺伝子のコピー数を高めることは、SAT
遺伝子をエシェリヒア属細菌の染色体DNA上に多コピー
存在させることによっても達成できる。エシェリヒア属
細菌の染色体DNA上にSAT遺伝子を多コピーで導入するに
は、染色体DNA上に多コピー存在する配列を標的に利用
して相同組換えにより行う。染色体DNA上に多コピー存
在する配列としては、レペティティブDNA、転移因子の
端部に存在するインバーテッド・リピートが利用でき
る。あるいは、特開平2-109985号公報に開示されている
ように、SAT遺伝子をトランスポゾンに搭載してこれを
転移させて染色体DNA上に多コピー導入することも可能
である。Increasing the copy number of the SAT gene is called SAT
It can also be achieved by allowing multiple copies of the gene to be present on the chromosomal DNA of Escherichia bacteria. To introduce multiple copies of the SAT gene into the chromosomal DNA of Escherichia bacterium, homologous recombination is carried out using a sequence present in multiple copies on the chromosomal DNA as a target. Repetitive DNA and inverted repeats present at the ends of transposable elements can be used as the sequences present in multiple copies on the chromosomal DNA. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 2-109985, it is also possible to incorporate the SAT gene into a transposon, transfer it, and introduce multiple copies of it into chromosomal DNA.
【0030】SAT活性の増強は、上記の遺伝子増幅によ
る以外に、染色体DNA上またはプラスミド上のSAT遺伝子
のプロモーター等の発現調節配列を強力なものに置換す
ることによっても達成される(特開平1-215280号公報参
照)。例えば、lacプロモーター、trpプロモーター、tr
cプロモーター等が強力なプロモーターとして知られて
いる。発現調節配列の置換は、例えば温度感受性プラス
ミドを用いた遺伝子置換によっても行うことができる。In addition to the above-mentioned gene amplification, the enhancement of SAT activity can also be achieved by substituting a strong expression control sequence such as a promoter of the SAT gene on the chromosomal DNA or on a plasmid (Japanese Patent Laid-Open No. Hei 1). -See 215280). For example, lac promoter, trp promoter, tr
The c promoter and the like are known as strong promoters. The replacement of the expression control sequence can also be carried out by gene replacement using, for example, a temperature sensitive plasmid.
【0031】また、国際公開WO00/18935に開示されてい
るように、SAT遺伝子のプロモーター領域に数塩基の塩
基置換を導入し、より強力なものに改変することも可能
である。これらのプロモーター置換または改変によりSA
T遺伝子の発現が増強され、SAT活性が増強される。これ
ら発現調節配列の改変は、SAT遺伝子のコピー数を高め
ることと組み合わせてもよい。Further, as disclosed in WO00 / 18935, it is also possible to introduce a base substitution of several bases into the promoter region of the SAT gene to modify it into a stronger one. SA by replacing or modifying these promoters
Expression of the T gene is enhanced and SAT activity is enhanced. Modification of these expression control sequences may be combined with increasing the copy number of the SAT gene.
【0032】さらに、SAT遺伝子の発現に抑制機構が存
在する場合には、抑制が解除又は低減されるように、発
現調節配列又は抑制に関与する遺伝子を改変することに
よっても、SAT遺伝子の発現を増強することができる。Further, when there is a mechanism for suppressing the expression of the SAT gene, the expression of the SAT gene can also be expressed by modifying the expression control sequence or the gene involved in the suppression so that the suppression is canceled or reduced. Can be enhanced.
【0033】エシェリヒア属細菌細胞内のSAT活性は、
L−システインによるフィードバック阻害が低減又は解
除されたSAT(以下、「変異型SAT」ともいう)をエシェ
リヒア属細菌に保持させることによっても、上昇させる
ことができる。変異型SATとしては、野生型SATの256
位のメチオニン残基に相当するアミノ酸残基をリジン残
基及びロイシン残基以外のアミノ酸残基に置換する変
異、又は256位のメチオニン残基に相当するアミノ酸
残基からC末端側の領域を欠失させる変異を有するSAT
が挙げられる。前記リジン残基及びロイシン残基以外の
アミノ酸残基としては、通常のタンパク質を構成するア
ミノ酸のうち、メチオニン残基、リジン残基及びロイシ
ン残基を除く17種類のアミノ酸残基が挙げられる。よ
り具体的にはイソロイシン残基が挙げられる。野生型SA
T遺伝子に所望の変異を導入する方法としては、部位特
異的変異が挙げられる。変異型SAT遺伝子としては、エ
シェリヒア・コリの変異型SATをコードする変異型cysE
が知られている(WO 97/15673号国際公開パンフレッ
ト、特開平11-155571号参照)。256位のメチオニン
残基をグルタミン酸残基に置換した変異型SATをコード
する変異型cysEを含むプラスミドpCEM256Eを保持するエ
シェリヒア・コリJM39-8株(E. coli JM39-8(pCEM256
E)、プライベートナンバー:AJ13391)は、平成9年11
月20日より工業技術院生命工学工業技術研究所(現 独
立行政法人 産業技術総合研究所 特許生物寄託センタ
ー、〒305-8566 日本国茨城県つくば市東1丁目1番地
1中央第6)に、FERM P-16527の受託番号のもとで寄託
され、2002年7月8日にブダペスト条約に基づく国際寄
託に移管され、受託番号FERM BP-8112が付与されてい
る。The SAT activity in Escherichia bacterial cells is
It can also be increased by allowing a bacterium belonging to the genus Escherichia to hold SAT in which feedback inhibition by L-cysteine is reduced or canceled (hereinafter, also referred to as “mutant SAT”). As the mutant SAT, 256 of the wild-type SAT
A mutation that substitutes an amino acid residue corresponding to the methionine residue at the position with an amino acid residue other than a lysine residue and a leucine residue, or lacks a region on the C-terminal side from the amino acid residue corresponding to the methionine residue at position 256. SAT with a mutation that causes it to disappear
Is mentioned. Examples of the amino acid residues other than the lysine residue and the leucine residue include 17 kinds of amino acid residues excluding the methionine residue, the lysine residue, and the leucine residue among the amino acids constituting a normal protein. More specifically, an isoleucine residue can be mentioned. Wild type SA
Examples of the method for introducing a desired mutation into the T gene include site-specific mutation. As a mutant SAT gene, a mutant cysE encoding a mutant SAT of Escherichia coli
Are known (see WO 97/15673, International Publication Pamphlet, JP-A-11-155571). The Escherichia coli JM39-8 strain (E. coli JM39-8 (pCEM256
E), private number: AJ13391)
From the 20th of March, FERM to Institute of Biotechnology, Institute of Biotechnology (now National Institute of Advanced Industrial Science and Technology, Patent Biological Depository Center, 1-chome, 1-chome, 1-chome, Higashi Tsukuba, Ibaraki, 305-8566, Japan) It was deposited under the accession number of P-16527, transferred to an international deposit under the Budapest Treaty on July 8, 2002, and is given accession number FERM BP-8112.
【0034】また、シロイヌナズナのSATは、L−シス
テインによるフィードバック阻害を受けないことが知ら
れており、本発明に好適に用いることができる。シロイ
ヌナズナ由来のSAT遺伝子含有プラスミドとして、pEAS-
m(FEMS Microbiol. Lett.,179 (1999) 453-459)が知
られている。It is known that SAT of Arabidopsis thaliana is not subject to feedback inhibition by L-cysteine and can be preferably used in the present invention. As a plasmid containing SAT gene derived from Arabidopsis thaliana, pEAS-
m (FEMS Microbiol. Lett., 179 (1999) 453-459) is known.
【0035】変異型SATとしては、上記のL−システイ
ンによるフィードバック阻害を低減する変異に加えて、
アセチル−CoAによるL−セリンの活性化を触媒する
活性を実質的に損なわないような1若しくは数個のアミ
ノ酸残基の置換、欠失、挿入、付加、又は逆位を含むア
ミノ酸配列を有するものであってもよい。そのような変
異を有するSATにおいては、256位のメチオニン残基
の位置が変わっている場合もあるが、そのような場合で
あっても、256位のメチオニン残基に相当するアミノ
酸残基をリジン残基及びロイシン残基以外のアミノ酸残
基に置換することによって、L−システインによるフィ
ードバック阻害が低減した変異型SATが取得され得る。The mutant SAT includes, in addition to the above-mentioned mutation that reduces feedback inhibition by L-cysteine,
Those having an amino acid sequence containing substitution, deletion, insertion, addition, or inversion of one or several amino acid residues that do not substantially impair the activity of catalyzing the activation of L-serine by acetyl-CoA May be In the SAT having such a mutation, the position of the methionine residue at the 256th position may be changed, but even in such a case, the amino acid residue corresponding to the methionine residue at the 256th position is changed to lysine. By substituting amino acid residues other than the residue and leucine residue, mutant SAT with reduced feedback inhibition by L-cysteine can be obtained.
【0036】また、エシェリヒア属細菌に変異型SATを
保持させるには、細胞内のSAT遺伝子に、コードされるS
ATのL−システインによるフィードバック阻害が解除さ
れるような変異を導入することによって行うことができ
る。変異の導入は、紫外線照射またはN−メチル−N'−
ニトロ−N−ニトロソグアニジン(NTG)もしくは亜硝酸
等の通常の突然変異に用いられている変異剤による処理
によって行うことができる。Further, in order for Escherichia bacteria to retain a mutant SAT, S encoded by the intracellular SAT gene is used.
This can be done by introducing a mutation that eliminates the feedback inhibition of AT by L-cysteine. The mutation was introduced by ultraviolet irradiation or N-methyl-N'-
It can be carried out by treatment with mutating agents such as nitro-N-nitrosoguanidine (NTG) or nitrous acid, which are commonly used for mutation.
【0037】<3>L−システインの生産
上記のようにして得られる本発明のエシェリヒア属細菌
を好適な培地で培養し、該培養物中にL−システインを
生産蓄積せしめ、該培養物からL−システインを採取す
ることにより、L−システインを効率よく、かつ、安定
に製造することができる。尚、本発明の方法により製造
されるL−システインには、還元型のシステインに加え
てシスチンも含まれる場合があるが、本発明の製造法の
対象物にはシスチン又は還元型のシステイン及びシスチ
ンの混合物も含まれる。<3> Production of L-Cysteine The Escherichia bacterium of the present invention obtained as described above is cultivated in a suitable medium, L-cysteine is produced and accumulated in the culture, and L-cysteine is produced from the culture. -L-cysteine can be efficiently and stably produced by collecting cysteine. The L-cysteine produced by the method of the present invention may contain cystine in addition to the reduced cysteine, but the subject of the production method of the present invention is cystine or reduced cysteine and cystine. Mixtures of are also included.
【0038】使用する培地としては、炭素源、窒素源、
イオウ源、無機イオン及び必要に応じその他の有機成分
を含有する通常の培地が挙げられる。炭素源としては、
グルコース、フラクトース、シュクロース、糖蜜やでん
ぷんの加水分解物などの糖類、フマール酸、クエン酸、
コハク酸等の有機酸類を用いることができる。The medium used is a carbon source, a nitrogen source,
There may be mentioned conventional media containing a sulfur source, inorganic ions and optionally other organic components. As a carbon source,
Glucose, fructose, sucrose, sugars such as molasses and starch hydrolysates, fumaric acid, citric acid,
Organic acids such as succinic acid can be used.
【0039】窒素源としては、硫酸アンモニウム、塩化
アンモニウム、リン酸アンモニウム等の無機アンモニウ
ム塩、大豆加水分解物などの有機窒素、アンモニアガ
ス、アンモニア水等を用いることができる。As the nitrogen source, it is possible to use inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas and aqueous ammonia.
【0040】イオウ源としては、硫酸塩、亜硫酸塩、硫
化物、次亜硫酸塩、チオ硫酸塩等の無機硫黄化合物が挙
げられる、有機微量栄養源としては、ビタミンB1など
の要求物質または酵母エキス等を適量含有させることが
望ましい。これらの他に、必要に応じてリン酸カリウ
ム、硫酸マグネシウム、鉄イオン、マンガンイオン等が
少量添加される。Examples of sulfur sources include inorganic sulfur compounds such as sulfates, sulfites, sulfides, hyposulfites, and thiosulfates. Organic trace nutrient sources include required substances such as vitamin B1 and yeast extract. It is desirable to contain an appropriate amount. In addition to these, small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added as necessary.
【0041】培養は好気的条件下で30〜90時間実施する
のがよく、培養温度は25℃〜37℃に、培養中pHは
5〜8に制御することが好ましい。尚、pH調整には無
機あるいは有機の酸性あるいはアルカリ性物質、更にア
ンモニアガス等を使用することができる。培養物からの
L−システインの採取は通常のイオン交換樹脂法、沈澱
法その他の公知の方法を組み合わせることにより実施で
きる。Cultivation is preferably carried out under aerobic conditions for 30 to 90 hours, preferably at a culture temperature of 25 to 37 ° C. and at a pH of 5 to 8 during the culture. Inorganic or organic acidic or alkaline substances, ammonia gas, etc. can be used for pH adjustment. Collection of L-cysteine from the culture can be carried out by combining a conventional ion exchange resin method, precipitation method and other known methods.
【0042】[0042]
【実施例】以下、本発明を実施例によりさらに具体的に
説明する。EXAMPLES The present invention will be described in more detail below with reference to examples.
【0043】<1>エシェリヒア・コリにおけるCD活性
を担う酵素の同定
(1)エシェリヒア・コリ菌体抽出液の電気泳動及びCD
活性染色
エシェリヒア・コリのSAT欠損株であるエシェリヒア・
コリJM39(F+ cysE51tfr-8)(Denk, D. and Bock,
A., J. Gene. Microbiol, 133, 515-525(1987))、及
び、CD活性低下株JM39-8(特開平11-155571号)の細胞
抽出液を、非変性ポリアクリルアミドゲル電気泳動(Na
tive-PAGE)に供し、CD活性染色を行い、CD活性の主体
について解析した。JM39-8株は、JM39株をNTG処理
し、L−システイン非資化性株として分離された変異株
である(特開平11-155571号)。<1> Identification of enzyme responsible for CD activity in Escherichia coli (1) Electrophoresis of Escherichia coli cell extract and CD
SAT-deficient strain of Escherichia coli
Kori JM39 (F + cysE51tfr-8) (Denk, D. and Bock,
A., J. Gene. Microbiol, 133, 515-525 (1987)) and a cell extract of a CD activity-decreasing strain JM39-8 (Japanese Patent Laid-Open No. 11-155571) were subjected to non-denaturing polyacrylamide gel electrophoresis ( Na
tive-PAGE), CD activity staining was performed, and the main components of CD activity were analyzed. The JM39-8 strain is a mutant strain isolated as an L-cysteine non-assimilating strain by treating the JM39 strain with NTG (JP-A-11-155571).
【0044】各菌株を、0.3%のL−システイン添加、あ
るいは無添加のLB培地(トリプトン10g/L、Yeast Extra
ct 5g/L、NaCl 5g/L (pH7.0))に植菌後、37℃、終夜培
養した。菌体を遠心集菌後0.85%NaClで洗浄し、得られ
た湿菌体を約3ml菌体破壊用Buffer(10mM Tris-HCl (pH
8.6)、10μM PLP、100μM DTT)に懸濁してCOSMOBIO社B
ioruptorで30分超音波菌体破壊を行った。12,000rpm、1
0分間遠心し、得られた上清を菌体抽出液とした。Prote
in Assay Kit (Bio-Rad社)を使用してタンパク濃度を定
量した。LB medium with or without addition of 0.3% L-cysteine (tryptone 10 g / L, Yeast Extra
The cells were inoculated into ct 5g / L, NaCl 5g / L (pH 7.0)) and cultured at 37 ° C overnight. The bacterial cells were collected by centrifugation, washed with 0.85% NaCl, and the resulting wet bacterial cells were treated with about 3 ml of Buffer for cell destruction (10 mM Tris-HCl (pH
8.6), 10 μM PLP, 100 μM DTT) and suspend it in COSMOBIO B
Ultrasonic cell destruction was performed for 30 minutes with an ioruptor. 12,000 rpm, 1
After centrifugation for 0 minute, the obtained supernatant was used as a cell extract. Prote
The protein concentration was quantified using in Assay Kit (Bio-Rad).
【0045】各菌体抽出液(各々30μgタンパク質)
を、2×Native-PAGE buffer(Glycine14.43g/L、Tris
3.0 g/L、pH8.6(HCl))に懸濁し、定法に従い非変性ポ
リアクリルアミドゲル電気泳動(Native-PAGE)を実施
した。得られた電気泳動ゲルを用い、CD活性染色を実施
した。反応溶液(Tris・HCl 100mM、EDTA 10mM、PLP(Py
ridoxal-5-phosphate) 20μM、L-Cys 50mM、pH8.6に調
製後、100mlにフィルアップし、塩化ビスマス(BiCl3)
を50mg加えた)に、ゲルの両端のレーンのみを切り出し
て浸し、室温で振盪してバンドが見えてくるまで放置し
たところ、主なバンドが2本検出された(図1A)。な
お、ゲルの中央部のレーンは、アミノ酸配列決定に用い
た。JM39-8株では、上記の2つのバンドのうち、分子量
が大きい方のバンドが、JM39株に比べて弱かった。Each bacterial cell extract (30 μg protein each)
2 x Native-PAGE buffer (Glycine14.43g / L, Tris
It was suspended in 3.0 g / L, pH 8.6 (HCl)) and subjected to non-denaturing polyacrylamide gel electrophoresis (Native-PAGE) according to a standard method. CD activity staining was performed using the obtained electrophoretic gel. Reaction solution (Tris ・ HCl 100 mM, EDTA 10 mM, PLP (Py
ridoxal-5-phosphate) 20 μM, L-Cys 50 mM, adjusted to pH 8.6, filled up to 100 ml, and bismuth chloride (BiCl 3 ).
Lanes at both ends of the gel were cut out and dipped, and the mixture was shaken at room temperature and allowed to stand until bands were visible, and two main bands were detected (Fig. 1A). The lane in the center of the gel was used for amino acid sequence determination. In the JM39-8 strain, the one having the larger molecular weight was weaker than the JM39 strain in the above two bands.
【0046】(2)CBLのCD活性を担う酵素としての同
定
エシェリヒア・コリにおいてCD活性をもつ酵素として、
CBL(metC産物)が報告されている(Chandra et. al., B
iochemistry, 21 (1982) 3064-3069)。上記バンドがCB
Lである可能性を検証するため、metC欠損株及びmetC遺
伝子をマルチコピープラスミドにて増幅したエシェリヒ
ア・コリを用いて、上記と同様な実験を実施した。(2) Identification of CBL as an enzyme responsible for CD activity As an enzyme having CD activity in Escherichia coli,
CBL (metC product) has been reported (Chandra et. Al., B
iochemistry, 21 (1982) 3064-3069). The band above is CB
To verify the possibility of L, an experiment similar to the above was carried out using a metC-deficient strain and Escherichia coli in which the metC gene was amplified with a multicopy plasmid.
【0047】metC欠損株EZ5(metC:Tn10Tets rpsL add-
uid-man uraA:Tn10)、及びmetCを搭載したプラスミドp
IP29(フランス・パスツール研究所のSaint-Girons博士
より供与された。Belfaiza et. al., Proc. Natl. Aca
d. Sci. 83 (1986) 867-871参照)をEZ5に導入した菌株
を用いて、Native-PAGE、及びCD活性染色を実施した。
その結果、metC欠損株では、分子量の小さい方のバンド
が欠失しており、pIP29の導入によってそのバンドが大
きく増幅されることが判明した(図1B)。この結果よ
り、分子量の小さい方のバンドは、CBLであると結論付
けた。MetC-deficient strain EZ5 (metC: Tn10Tet s rpsL add-
uid-man uraA: Tn10), and plasmid p carrying metC
IP29 (Granted by Dr. Saint-Girons, Institute of Pasteur, France. Belfaiza et. Al., Proc. Natl. Aca
d. Sci. 83 (1986) 867-871) was introduced into EZ5, and Native-PAGE and CD activity staining were performed.
As a result, it was revealed that in the metC-deficient strain, the band with the smaller molecular weight was deleted, and that the band was greatly amplified by the introduction of pIP29 (FIG. 1B). From this result, it was concluded that the band with the smaller molecular weight was CBL.
【0048】(3)TNaseのCD活性を担う酵素としての
同定
活性染色で認められた前記2本のバンドのうち分子量の
大きい方のバンドに相当するタンパク質の精製を行っ
た。電気泳動ゲルから、分子量の大きい方のバンドをゲ
ルより切り出し、定法により抽出、濃縮した。得られた
CD活性を持つ画分をについてSDS-ポリアクリルアミドゲ
ル電気泳動(SDS-PAGE)を行い、染色は行わずに、PVDF
膜(Bio-Rad)にブロッティングを行った。転写が終わ
った膜を蒸留水で5分間洗浄し、0.025% CBB(クマシー
ブリリアントブルー)R-250を含む40%メタノールで5分
間染色した。脱色は50%メタノールで行い、確認した目
的酵素のバンドを切り取って、Protein Sequencer 476A
(Applied Biosystems 社)を用いた自動エドマン分解
法により、N末端アミノ酸配列を決定した。(3) Identification of TNase as an enzyme responsible for the CD activity The protein corresponding to the band having the higher molecular weight of the two bands observed by the activity staining was purified. From the electrophoretic gel, the band with the larger molecular weight was cut out from the gel, extracted and concentrated by a conventional method. Got
The fractions with CD activity were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and PVDF was used without staining.
Blotting was performed on the membrane (Bio-Rad). The transferred film was washed with distilled water for 5 minutes and stained with 40% methanol containing 0.025% CBB (Coomassie Brilliant Blue) R-250 for 5 minutes. Decolorization was performed with 50% methanol, and the confirmed target enzyme band was cut off to remove Protein Sequencer 476A.
The N-terminal amino acid sequence was determined by the automated Edman degradation method using (Applied Biosystems).
【0049】結果を配列番号1に示す。この配列を、若
干のCD活性を有することが報告されている(Austin New
ton et. al., J. Biol. Chem. 240 (1965) 1211-1218)
エシェリヒア・コリのTNaseのアミノ酸配列と比較した
ところ、15残基中14残基が一致した。配列番号1の
アミノ酸配列において10位のメチオニンは、報告され
ているアミノ酸配列ではプロリンであった。この結果か
ら、分子量の大きい方のバンドは、TNaseである可能性
が高いと考えられた。また、この結果から、JM39-8株で
はTNaseの発現が低下していると推定された。The results are shown in SEQ ID NO: 1. This sequence has been reported to have some CD activity (Austin New
ton et. al., J. Biol. Chem. 240 (1965) 1211-1218)
When compared with the amino acid sequence of TNase of Escherichia coli, 14 out of 15 residues were in agreement. The methionine at position 10 in the amino acid sequence of SEQ ID NO: 1 was proline in the reported amino acid sequence. From this result, it was considered that the band with the larger molecular weight is likely to be TNase. Moreover, from this result, it was estimated that the expression of TNase was reduced in the JM39-8 strain.
【0050】<2>エシェリヒア・コリのtnaA欠損株及
びmetC欠損株の構築
上記のようにして、エシェリヒア・コリにおけるCD活性
を担う酵素としてCBL及びTNaseが同定されたので、それ
らの活性低下のL−システイン生産に対する効果を調べ
るために、CBLをコードする遺伝子metC又はTNaseをコー
ドする遺伝子tnaAの破壊株、及びこれらの両方の遺伝子
の破壊株を作製した(図2)。具体的には、以下のよう
にして行った。<2> Construction of tnaA-deficient strain and metC-deficient strain of Escherichia coli As described above, CBL and TNase were identified as enzymes responsible for the CD activity in Escherichia coli. -To examine the effect on cysteine production, disrupted strains of the gene encoding metBL or the gene encoding tNAA encoding TNase, and disrupted strains of both of these genes were prepared (Fig. 2). Specifically, it was performed as follows.
【0051】(1)tnaA欠損株の構築
エシェリヒア・コリJM109株の染色体DNAを鋳型に、配列
番号2及び3に示す塩基配列を有するプライマーと、配
列番号4及び5に示す塩基配列を有するプライマーとを
用いて、それぞれPCRを実施した。次に、各PCR産物をHi
ndIIIで切断した後ライゲーションした。この反応液を
鋳型として、配列番号2及び5に示す塩基配列を有する
プライマーを用いてPCRを実施し、約1.6kbの断片を得
た。この断片をBamHIにて消化し、温度感受性プラスミ
ドpEL3(K. A. Armstrong et. al.,J. Mol. Biol. (198
4) 175, 331-347)のBamHIサイトに組み込み、tnaA破壊
用プラスミドpEL3ΔtnaAを構築した。(1) Construction of tnaA deficient strain Using the chromosomal DNA of Escherichia coli JM109 strain as a template, a primer having the nucleotide sequences shown in SEQ ID NOs: 2 and 3 and a primer having the nucleotide sequences shown in SEQ ID NOs: 4 and 5 were used. Was used to perform PCR. Next, set each PCR product to Hi
After cutting with ndIII, ligation was performed. PCR was carried out using the reaction solution as a template and the primers having the nucleotide sequences shown in SEQ ID NOS: 2 and 5 to obtain a fragment of about 1.6 kb. This fragment was digested with BamHI and the temperature sensitive plasmid pEL3 (KA Armstrong et. Al., J. Mol. Biol. (198
4) Incorporated into the BamHI site of 175, 331-347) to construct plasmid pEL3ΔtnaA for destroying tnaA.
【0052】JM39株を、プラスミドpEL3ΔtnaAを用いて
形質転換し、30℃にてアンピシリン耐性を示すクローン
を得た。本クローンの培養液を適宜希釈してアンピシリ
ン添加LB寒天培地に塗布し、42℃にて一夜培養し、pEL3
ΔtnaAがJM39株染色体に組み込まれた株を得た。次い
で、本株をアンピシリン無添加LB培地にて37℃経代培養
し、アンピシリン感受性のクローンを分離した。分離ク
ローンについて、ゲノミックPCRによって染色体上のtna
A遺伝子周辺を解析し、野生型のtnaAは有しておらず、p
EL3ΔtnaA上にクローニングされた破壊型tnaA遺伝子の
みを有する株を選択した。こうして、JM39株由来のtnaA
遺伝子破壊株JM39ΔtnaAを得た。The JM39 strain was transformed with the plasmid pEL3ΔtnaA to obtain a clone showing ampicillin resistance at 30 ° C. Appropriately dilute the culture solution of this clone on LB agar medium containing ampicillin, incubate at 42 ° C overnight, and pEL3
A strain in which ΔtnaA was integrated into the JM39 strain chromosome was obtained. Next, this strain was subcultured at 37 ° C. in ampicillin-free LB medium to isolate ampicillin-sensitive clones. For isolated clones, tna on the chromosome was analyzed by genomic PCR.
We analyzed around the A gene and did not have wild type tnaA.
A strain having only the disrupted tnaA gene cloned on EL3ΔtnaA was selected. Thus, tnaA derived from JM39 strain
A gene disruption strain JM39ΔtnaA was obtained.
【0053】(2)metC欠損株の構築
エシェリヒア・コリJM109株の染色体DNAを鋳型に、配列
番号6及び7に示す塩基配列を有するプライマー、及び
配列番号8及び9に示す塩基配列を有するプライマーを
用いて、それぞれPCRを実施した。次に、各PCR産物をKp
nIで切断した後ライゲーションした。この反応液を鋳型
として、配列番号6及び9に示す塩基配列を有するプラ
イマーを用いてPCRを実施し、約1.4kbの断片を得た。こ
の断片をBamHIにて消化し、pEL3のBamHIサイトに組み込
み、metC破壊用プラスミドpEL3ΔmetCを構築した。(2) Construction of metC-deficient strain Using the chromosomal DNA of the Escherichia coli JM109 strain as a template, primers having the nucleotide sequences shown in SEQ ID NOs: 6 and 7 and primers having the nucleotide sequences shown in SEQ ID NOs: 8 and 9 were prepared. PCR was carried out respectively. Next, Kp each PCR product
It was ligated after cutting with nI. PCR was carried out using the reaction solution as a template and the primers having the nucleotide sequences shown in SEQ ID NOs: 6 and 9 to obtain a fragment of about 1.4 kb. This fragment was digested with BamHI and integrated into the BamHI site of pEL3 to construct the plasmid pEL3ΔmetC for disrupting metC.
【0054】JM39株又はJM39ΔtnaAを、プラスミドpEL3
ΔmetCを用いて形質転換し、30℃にてアンピシリン耐性
を示すクローンを得た。本クローンの培養液を適宜希釈
してアンピシリン添加LB寒天培地に塗布し、42℃にて一
夜培養し、pEL3ΔmetCがJM39株染色体に組み込まれた株
を得た。次いで、本株をアンピシリン無添加LB培地にて
37℃経代培養し、アンピシリン感受性のクローンを分離
した。分離クローンについて、ゲノミックPCRによって
染色体上のmetC遺伝子周辺を解析し、野生型のmetCは有
しておらず、pEL3ΔmetC上にクローニングされた破壊型
metC遺伝子のみを有する株を選択した。こうして、JM39
株由来のmetC遺伝子破壊株JM39ΔmetC、及びJM39ΔtnaA
株由来のmetC遺伝子破壊株JM39ΔtnaAΔmetCを得た。JM39 strain or JM39ΔtnaA was added to plasmid pEL3
Transformation was performed with ΔmetC to obtain a clone showing ampicillin resistance at 30 ° C. The culture solution of this clone was appropriately diluted, applied on LB agar medium containing ampicillin, and cultured overnight at 42 ° C. to obtain a strain in which pEL3ΔmetC was integrated into the JM39 strain chromosome. Then, this strain was added to ampicillin-free LB medium.
After subculture at 37 ° C., ampicillin-sensitive clones were isolated. The isolated clone was analyzed around the metC gene on the chromosome by genomic PCR, and it had no wild-type metC and was cloned on pEL3ΔmetC.
A strain having only the metC gene was selected. Thus, JM39
Strain-derived metC gene-disrupted strains JM39ΔmetC and JM39ΔtnaA
A metC gene-disrupted strain JM39ΔtnaAΔmetC derived from the strain was obtained.
【0055】(3)遺伝子破壊の確認
次に、JM39ΔtnaA株及びJM39ΔmetC株について、電気泳
動及び活性染色によって、CD活性を有するバンドの有無
を調べた (図3)。その結果、tnaA破壊株では分子量の
大きな方のバンドが、metC破壊株では分子量の小さな方
のバンドが、tnaA/metC 両破壊株では両方のバンドが完
全に消失していた。(3) Confirmation of Gene Disruption Next, the JM39ΔtnaA strain and JM39ΔmetC strain were examined for the presence or absence of a band having CD activity by electrophoresis and activity staining (FIG. 3). As a result, the tnaA-disrupted strain had a larger molecular weight band, the metC-disrupted strain had a smaller molecular weight band, and both tnaA / metC-disrupted strains had both bands completely disappeared.
【0056】<3>フィードバック阻害非感受性SAT遺
伝子の導入
上記で得られた各遺伝子破壊株に、シロイヌナズナ由来
のフィードバック阻害非感受性SAT遺伝子を導入した。<3> Introduction of feedback inhibition insensitive SAT gene A feedback inhibition insensitive SAT gene derived from Arabidopsis was introduced into each of the gene-disrupted strains obtained above.
【0057】シロイヌナズナ由来のSAT遺伝子含有プラ
スミドpEAS-m(FEMS Microbiol. Lett., 179 (1999) 45
3-459)を使用した。プラスミドpES-mは、特開平11-155
571号公報に記載されているE. coli由来cysE遺伝子の導
入に用いたプラスミドpCEをベースとして、E. coli由来
cysE遺伝子の代わりにシロイヌナズナ由来フィードバッ
ク阻害非感受性SAT遺伝子を挿入したものであり、以下
のような方法で構築可能である。まず、FEMS Microbio
l. Lett., 179 (1999) 453-459に記載された方法で、pC
EのcysE遺伝子の開始コドンの直前及び終止コドンの直
後にNcoIサイトを導入したプラスミドpCE(NcoI)を構築
する。このプラスミドのNcoI消化によってcysE遺伝子を
除去し、代わりにシロイヌナズナのSAT遺伝子にNcoIリ
ンカーを付加したものを導入する。シロイヌナズナのSA
T遺伝子はその構造が既知であり(Plant Molecular Bio
logy, 30, 1041-1049, 1996)、化学合成又はPCR等によ
って取得することができる。pEAS-mは、Plant Molecula
r Biology, 30, 1041-1049, 1996のFig.2に記載されて
いる塩基配列中189−1201位の配列の前後にNcoIサイト
を付加したDNA断片をpCEのNcoIサイトに導入して得られ
たものである。SAT gene-containing plasmid pEAS-m derived from Arabidopsis thaliana (FEMS Microbiol. Lett., 179 (1999) 45
3-459) was used. The plasmid pES-m is described in JP-A-11-155.
Based on the plasmid pCE used to introduce the cysE gene derived from E. coli described in Japanese Patent No. 571,
The CYsE gene is replaced with an Arabidopsis thaliana-derived feedback inhibition-insensitive SAT gene, which can be constructed by the following method. First, FEMS Microbio
l. Lett., 179 (1999) 453-459.
A plasmid pCE (NcoI) having an NcoI site introduced immediately before the start codon and immediately after the stop codon of the cysE gene of E is constructed. The cysE gene is removed by NcoI digestion of this plasmid, and instead, the SAT gene of Arabidopsis thaliana with an NcoI linker added is introduced. SA of Arabidopsis
The T gene has a known structure (Plant Molecular Bio
logy, 30, 1041-1049, 1996), chemical synthesis, PCR or the like. pEAS-m is Plant Molecula
r Biology, 30, 1041-1049, 1996, obtained by introducing a DNA fragment with NcoI sites added before and after the sequence at positions 189-1201 in the nucleotide sequence shown in Fig. 2 into pCE NcoI site. It is a thing.
【0058】JM39、JM39ΔtnaA、JM39ΔmetC、及びJM39
ΔtnaAΔmetCを、上記プラスミドpEAS-mで形質転換し
た。得られた各形質転換株を、アンピシリン50mg/Lを含
むLBプレート培地で30℃、24時間培養した後、菌体1白
金耳を、アンピシリン50mg/Lを添加したC1培地(グルコ
ース 30g/L、NH4Cl 10g/L、KH2PO4 2g/L、MgSO4・7H2O 1
g/L、FeSO4・7H2O 10mg/L、MnCl2・4H2O 10mg/L、CaCO3 2
0g/L)20mlを入れた坂口フラスコに接種し、30℃で48時
間および72時間培養した。培養後の上清のL−システイ
ン含量をバイオアッセイで定量したところ、全ての破壊
株で野生株を上回り、tnaA及びmetCの破壊がL−システ
イン生産性の向上に効果のあることが確認された(図
4)。JM39, JM39ΔtnaA, JM39ΔmetC, and JM39
ΔtnaAΔmetC was transformed with the above plasmid pEAS-m. Each of the obtained transformants was cultured in an LB plate medium containing 50 mg / L of ampicillin at 30 ° C. for 24 hours, and then a platinum loop of cells 1 was added to C1 medium (glucose 30 g / L, glucose 30 g / L, NH 4 Cl 10g / L, KH 2 PO 4 2g / L, MgSO 4 · 7H 2 O 1
g / L, FeSO 4 · 7H 2 O 10mg / L, MnCl 2 · 4H 2 O 10mg / L, CaCO 3 2
0 g / L) 20 ml was inoculated into a Sakaguchi flask and cultured at 30 ° C. for 48 hours and 72 hours. When the L-cysteine content of the supernatant after culturing was quantified by a bioassay, it was confirmed that all the disrupted strains exceeded the wild strain, and that disruption of tnaA and metC was effective in improving L-cysteine productivity. (Fig. 4).
【0059】[0059]
【発明の効果】本発明により、エシェリヒア属細菌のL
−システイン生産性を向上させることができる。INDUSTRIAL APPLICABILITY According to the present invention, L of Escherichia bacteria is
-It is possible to improve cysteine productivity.
【0060】[0060]
【配列表】 SEQUENCE LISTING <110> 味の素株式会社(Ajinomoto Co., Inc.) <120> L−システイン生産菌及びL−システインの製造法(L-Cysteine- Producing Bacterium and Method for Producing L-Cysteine) <130> P-B0293 <140> <141> 2002-09-18 <150> JP 2001-302008 <151> 2001-09-28 <160> 15 <170> PatentIn Ver. 2.0 <210> 1 <211> 15 <212> PRT <213> Escherichia coli <400> 1 Met Glu Asn Phe Lys His Leu Pro Glu Met Phe Arg Ile Arg Val 1 5 10 15 <210> 2 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 2 cgcggatcca agccgcattc tgactg 26 <210> 3 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 3 cccaagcttc tgactcgggc taacgca 27 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 4 cccaagcttg ccggtttcac tggcaa 26 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 5 ctatggatcc ttatagccac tctgtag 27 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 6 cgcggatcca acagagcttc tgcgatacc 29 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 7 cggggtacca ctagcatgaa tattcgcgg 29 <210> 8 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 8 cggggtacct accgcctata taaccagcc 29 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 9 aatatgagga tccgccagc 19 <210> 10 <211> 1880 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (499)..(1686) <400> 10 aagcttttgc taccaaaatc agcggcgata tcgttggcct ggtttaagga acgcgcttca 60 gccagcagtt gctgctcgcg cttaagggac gcttctgatt gaagaactct acgctcttac 120 tgaagaagat tgcccaggtg actacggagg ccaaaataag cccaatcatc acgcacttaa 180 cgacaatatc ggcgtgctga tacatacccc agacggaaag gtccgtctgc attaaattat 240 tacccactgt gtatctccag gacgcaagtc acaaaatctg cgcataataa tatcaaaacg 300 acgtcgaatt gatagtcgtt ctcattacta tttgcatact gccgtacctt tgctttcttt 360 tccttgcgtt tacgcagtaa aaaagtcacc agcacgccat ttgcgaaaat tttctgcttt 420 atgccaattc ttcaggatgc gcccgcgaat attcatgcta gtttagacat ccagacgtat 480 aaaaacagga atcccgac atg gcg gac aaa aag ctt gat act caa ctg gtg 531 Met Ala Asp Lys Lys Leu Asp Thr Gln Leu Val 1 5 10 aat gca gga cgc agc aaa aaa tac act ctc ggc gcg gta aat agc gtg 579 Asn Ala Gly Arg Ser Lys Lys Tyr Thr Leu Gly Ala Val Asn Ser Val 15 20 25 att cag cgc gct tct tcg ctg gtc ttt gac agt gta gaa gcc aaa aaa 627 Ile Gln Arg Ala Ser Ser Leu Val Phe Asp Ser Val Glu Ala Lys Lys 30 35 40 cac gcg aca cgt aat cgc gcc aat gga gag ttg ttc tat gga cgg cgc 675 His Ala Thr Arg Asn Arg Ala Asn Gly Glu Leu Phe Tyr Gly Arg Arg 45 50 55 gga acg tta acc cat ttc tcc tta caa caa gcg atg tgt gaa ctg gaa 723 Gly Thr Leu Thr His Phe Ser Leu Gln Gln Ala Met Cys Glu Leu Glu 60 65 70 75 ggt ggc gca ggc tgc gtg cta ttt ccc tgc ggg gcg gca gcg gtt gct 771 Gly Gly Ala Gly Cys Val Leu Phe Pro Cys Gly Ala Ala Ala Val Ala 80 85 90 aat tcc att ctt gct ttt atc gaa cag ggc gat cat gtg ttg atg acc 819 Asn Ser Ile Leu Ala Phe Ile Glu Gln Gly Asp His Val Leu Met Thr 95 100 105 aac acc gcc tat gaa ccg agt cag gat ttc tgt agc aaa atc ctc agc 867 Asn Thr Ala Tyr Glu Pro Ser Gln Asp Phe Cys Ser Lys Ile Leu Ser 110 115 120 aaa ctg ggc gta acg aca tca tgg ttt gat ccg ctg att ggt gcc gat 915 Lys Leu Gly Val Thr Thr Ser Trp Phe Asp Pro Leu Ile Gly Ala Asp 125 130 135 atc gtt aag cat ctg cag cca aac act aaa atc gtg ttt ctg gaa tcg 963 Ile Val Lys His Leu Gln Pro Asn Thr Lys Ile Val Phe Leu Glu Ser 140 145 150 155 cca ggc tcc atc acc atg gaa gtc cac gac gtt ccg gcg att gtt gcc 1011 Pro Gly Ser Ile Thr Met Glu Val His Asp Val Pro Ala Ile Val Ala 160 165 170 gcc gta cgc agt gtg gtg ccg gat gcc atc att atg atc gac aac acc 1059 Ala Val Arg Ser Val Val Pro Asp Ala Ile Ile Met Ile Asp Asn Thr 175 180 185 tgg gca gcc ggt gtg ctg ttt aag gcg ctg gat ttt ggc atc gat gtt 1107 Trp Ala Ala Gly Val Leu Phe Lys Ala Leu Asp Phe Gly Ile Asp Val 190 195 200 tct att caa gcc gcc acc aaa tat ctg gtt ggg cat tca gat gcg atg 1155 Ser Ile Gln Ala Ala Thr Lys Tyr Leu Val Gly His Ser Asp Ala Met 205 210 215 att ggc act gcc gtg tgc aat gcc cgt tgc tgg gag cag cta cgg gaa 1203 Ile Gly Thr Ala Val Cys Asn Ala Arg Cys Trp Glu Gln Leu Arg Glu 220 225 230 235 aat gcc tat ctg atg ggc cag atg gtc gat gcc gat acc gcc tat ata 1251 Asn Ala Tyr Leu Met Gly Gln Met Val Asp Ala Asp Thr Ala Tyr Ile 240 245 250 acc agc cgt ggc ctg cgc aca tta ggt gtg cgt ttg cgt caa cat cat 1299 Thr Ser Arg Gly Leu Arg Thr Leu Gly Val Arg Leu Arg Gln His His 255 260 265 gaa agc agt ctg aaa gtg gct gaa tgg ctg gca gaa cat ccg caa gtt 1347 Glu Ser Ser Leu Lys Val Ala Glu Trp Leu Ala Glu His Pro Gln Val 270 275 280 gcg cga gtt aac cac cct gct ctg cct ggc agt aaa ggt cac gaa ttc 1395 Ala Arg Val Asn His Pro Ala Leu Pro Gly Ser Lys Gly His Glu Phe 285 290 295 tgg aaa cga gac ttt aca ggc agc agc ggg cta ttt tcc ttt gtg ctt 1443 Trp Lys Arg Asp Phe Thr Gly Ser Ser Gly Leu Phe Ser Phe Val Leu 300 305 310 315 aag aaa aaa ctc aat aat gaa gag ctg gcg aac tat ctg gat aac ttc 1491 Lys Lys Lys Leu Asn Asn Glu Glu Leu Ala Asn Tyr Leu Asp Asn Phe 320 325 330 agt tta ttc agc atg gcc tac tcg tgg ggc ggg tat gaa tcg ttg atc 1539 Ser Leu Phe Ser Met Ala Tyr Ser Trp Gly Gly Tyr Glu Ser Leu Ile 335 340 345 ctg gca aat caa cca gaa cat atc gcc gcc att cgc cca caa ggc gag 1587 Leu Ala Asn Gln Pro Glu His Ile Ala Ala Ile Arg Pro Gln Gly Glu 350 355 360 atc gat ttt agc ggg acc ttg att cgc ctg cat att ggt ctg gaa gat 1635 Ile Asp Phe Ser Gly Thr Leu Ile Arg Leu His Ile Gly Leu Glu Asp 365 370 375 gtc gac gat ctg att gcc gat ctg gac gcc ggt ttt gcg cga att gta 1683 Val Asp Asp Leu Ile Ala Asp Leu Asp Ala Gly Phe Ala Arg Ile Val 380 385 390 395 taa cattgccact tttggacaat tttgcagaca ttttattgtg aaaagtctta 1736 aattgttgcg tccgggatca aggcgtcccg gacgattcag gagtacaata ggcagataaa 1796 ggcttaaacg ctgttccaca ggaaagtcca tggctgttat tcaagatatc atcgctgcgc 1856 tctggcaaca cgactttgcc gcgc 1880 <210> 11 <211> 395 <212> PRT <213> Escherichia coli <400> 11 Met Ala Asp Lys Lys Leu Asp Thr Gln Leu Val Asn Ala Gly Arg Ser 1 5 10 15 Lys Lys Tyr Thr Leu Gly Ala Val Asn Ser Val Ile Gln Arg Ala Ser 20 25 30 Ser Leu Val Phe Asp Ser Val Glu Ala Lys Lys His Ala Thr Arg Asn 35 40 45 Arg Ala Asn Gly Glu Leu Phe Tyr Gly Arg Arg Gly Thr Leu Thr His 50 55 60 Phe Ser Leu Gln Gln Ala Met Cys Glu Leu Glu Gly Gly Ala Gly Cys 65 70 75 80 Val Leu Phe Pro Cys Gly Ala Ala Ala Val Ala Asn Ser Ile Leu Ala 85 90 95 Phe Ile Glu Gln Gly Asp His Val Leu Met Thr Asn Thr Ala Tyr Glu 100 105 110 Pro Ser Gln Asp Phe Cys Ser Lys Ile Leu Ser Lys Leu Gly Val Thr 115 120 125 Thr Ser Trp Phe Asp Pro Leu Ile Gly Ala Asp Ile Val Lys His Leu 130 135 140 Gln Pro Asn Thr Lys Ile Val Phe Leu Glu Ser Pro Gly Ser Ile Thr 145 150 155 160 Met Glu Val His Asp Val Pro Ala Ile Val Ala Ala Val Arg Ser Val 165 170 175 Val Pro Asp Ala Ile Ile Met Ile Asp Asn Thr Trp Ala Ala Gly Val 180 185 190 Leu Phe Lys Ala Leu Asp Phe Gly Ile Asp Val Ser Ile Gln Ala Ala 195 200 205 Thr Lys Tyr Leu Val Gly His Ser Asp Ala Met Ile Gly Thr Ala Val 210 215 220 Cys Asn Ala Arg Cys Trp Glu Gln Leu Arg Glu Asn Ala Tyr Leu Met 225 230 235 240 Gly Gln Met Val Asp Ala Asp Thr Ala Tyr Ile Thr Ser Arg Gly Leu 245 250 255 Arg Thr Leu Gly Val Arg Leu Arg Gln His His Glu Ser Ser Leu Lys 260 265 270 Val Ala Glu Trp Leu Ala Glu His Pro Gln Val Ala Arg Val Asn His 275 280 285 Pro Ala Leu Pro Gly Ser Lys Gly His Glu Phe Trp Lys Arg Asp Phe 290 295 300 Thr Gly Ser Ser Gly Leu Phe Ser Phe Val Leu Lys Lys Lys Leu Asn 305 310 315 320 Asn Glu Glu Leu Ala Asn Tyr Leu Asp Asn Phe Ser Leu Phe Ser Met 325 330 335 Ala Tyr Ser Trp Gly Gly Tyr Glu Ser Leu Ile Leu Ala Asn Gln Pro 340 345 350 Glu His Ile Ala Ala Ile Arg Pro Gln Gly Glu Ile Asp Phe Ser Gly 355 360 365 Thr Leu Ile Arg Leu His Ile Gly Leu Glu Asp Val Asp Asp Leu Ile 370 375 380 Ala Asp Leu Asp Ala Gly Phe Ala Arg Ile Val 385 390 395 <210> 12 <211> 2083 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (539)..(1954) <400> 12 gtaaaccgcg catacagccg cattctgact gtcagatgcg cttcgcttca ttgttaccgc 60 tcctgttatt cctcaaccct ttttttaaac attaaaattc ttacgtaatt tataatcttt 120 aaaaaaagca tttaatattg ctccccgaac gattgtgatt cgattcacat ttaaacaatt 180 tcagaataga caaaaactct gagtgtaata atgtagcctc gtgtcttgcg aggataagtg 240 cattatgaat atcttacata tatgtgtgac ctcaaaatgg ttcaatattg acaacaaaat 300 tgtcgatcac cgcccttgat ttgcccttct gtagccatca ccagagccaa accgattgat 360 tcaatgtgtt ctatttgttt gctatatctt aattttgcct tttgcaaagg tcatctctcg 420 tttatttact tgttttagta aatgatggtg cttgcatata tatctggcga attaatcggt 480 atagcagatg taatattcac agggatcact gtaattaaaa taaatgaagg attatgta 538 atg gaa aac ttt aaa cat ctc cct gaa ccg ttc cgc att cgt gtt att 586 Met Glu Asn Phe Lys His Leu Pro Glu Pro Phe Arg Ile Arg Val Ile 1 5 10 15 gag cca gta aaa cgt acc act cgc gct tat cgt gaa gag gca att att 634 Glu Pro Val Lys Arg Thr Thr Arg Ala Tyr Arg Glu Glu Ala Ile Ile 20 25 30 aaa tcc ggt atg aac ccg ttc ctg ctg gat agc gaa gat gtt ttt atc 682 Lys Ser Gly Met Asn Pro Phe Leu Leu Asp Ser Glu Asp Val Phe Ile 35 40 45 gat tta ctg acc gac agc ggc acc ggg gcg gtg acg cag agc atg cag 730 Asp Leu Leu Thr Asp Ser Gly Thr Gly Ala Val Thr Gln Ser Met Gln 50 55 60 gct gcg atg atg cgc ggc gac gaa gcc tac agc ggc agt cgt agc tac 778 Ala Ala Met Met Arg Gly Asp Glu Ala Tyr Ser Gly Ser Arg Ser Tyr 65 70 75 80 tat gcg tta gcc gag tca gtg aaa aat atc ttc ggt tat caa tac acc 826 Tyr Ala Leu Ala Glu Ser Val Lys Asn Ile Phe Gly Tyr Gln Tyr Thr 85 90 95 att ccg act cac cag ggc cgt ggc gca gag caa atc tat att ccg gta 874 Ile Pro Thr His Gln Gly Arg Gly Ala Glu Gln Ile Tyr Ile Pro Val 100 105 110 ctg att aaa aaa cgc gag cag gaa aaa ggc ctg gat cgc agc aaa atg 922 Leu Ile Lys Lys Arg Glu Gln Glu Lys Gly Leu Asp Arg Ser Lys Met 115 120 125 gtg gcg ttc tct aac tat ttc ttt gat acc acg cag ggc cat agc cag 970 Val Ala Phe Ser Asn Tyr Phe Phe Asp Thr Thr Gln Gly His Ser Gln 130 135 140 atc aac ggc tgt acc gtg cgt aac gtc tat atc aaa gaa gcc ttc gat 1018 Ile Asn Gly Cys Thr Val Arg Asn Val Tyr Ile Lys Glu Ala Phe Asp 145 150 155 160 acg ggc gtg cgt tac gac ttt aaa ggc aac ttt gac ctt gag gga tta 1066 Thr Gly Val Arg Tyr Asp Phe Lys Gly Asn Phe Asp Leu Glu Gly Leu 165 170 175 gaa cgc ggt att gaa gaa gtt ggt ccg aat aac gtg ccg tat atc gtt 1114 Glu Arg Gly Ile Glu Glu Val Gly Pro Asn Asn Val Pro Tyr Ile Val 180 185 190 gca acc atc acc agt aac tct gca ggt ggt cag ccg gtt tca ctg gca 1162 Ala Thr Ile Thr Ser Asn Ser Ala Gly Gly Gln Pro Val Ser Leu Ala 195 200 205 aac tta aaa gcg atg tac agc atc gcg aag aaa tac gat att ccg gtg 1210 Asn Leu Lys Ala Met Tyr Ser Ile Ala Lys Lys Tyr Asp Ile Pro Val 210 215 220 gta atg gac tcc gcg cgc ttt gct gaa aac gcc tat ttc att aag cag 1258 Val Met Asp Ser Ala Arg Phe Ala Glu Asn Ala Tyr Phe Ile Lys Gln 225 230 235 240 cgt gaa gca gaa tac aaa gac tgg acc atc gag cag atc acc cgc gaa 1306 Arg Glu Ala Glu Tyr Lys Asp Trp Thr Ile Glu Gln Ile Thr Arg Glu 245 250 255 acc tac aaa tat gcc gat atg ctg gcg atg tcc gcc aag aaa gat gcg 1354 Thr Tyr Lys Tyr Ala Asp Met Leu Ala Met Ser Ala Lys Lys Asp Ala 260 265 270 atg gtg ccg atg ggc ggc ctg ctg tgc atg aaa gac gac agc ttc ttt 1402 Met Val Pro Met Gly Gly Leu Leu Cys Met Lys Asp Asp Ser Phe Phe 275 280 285 gat gtg tac acc gag tgc aga acc ctt tgc gtg gtg cag gaa ggc ttc 1450 Asp Val Tyr Thr Glu Cys Arg Thr Leu Cys Val Val Gln Glu Gly Phe 290 295 300 ccg aca tat ggc ggc cta gaa ggc ggc gcg atg gag cgt ctg gcg gta 1498 Pro Thr Tyr Gly Gly Leu Glu Gly Gly Ala Met Glu Arg Leu Ala Val 305 310 315 320 ggt ctg tat gac ggc atg aat ctc gac tgg ctg gct tat cgt atc gcg 1546 Gly Leu Tyr Asp Gly Met Asn Leu Asp Trp Leu Ala Tyr Arg Ile Ala 325 330 335 cag gta cag tat ctg gtc gat ggt ctg gaa gag att ggc gtt gtc tgc 1594 Gln Val Gln Tyr Leu Val Asp Gly Leu Glu Glu Ile Gly Val Val Cys 340 345 350 cag cag gcg ggc ggt cac gcg gca ttc gtt gat gcc ggt aaa ctg ttg 1642 Gln Gln Ala Gly Gly His Ala Ala Phe Val Asp Ala Gly Lys Leu Leu 355 360 365 ccg cat atc ccg gca gac cag ttc ccg gca aca ggc ctg gcc tgc gag 1690 Pro His Ile Pro Ala Asp Gln Phe Pro Ala Thr Gly Leu Ala Cys Glu 370 375 380 ctg tat aaa gtc gcc ggt atc cgt gcg gta gaa att ggc tct ttc ctg 1738 Leu Tyr Lys Val Ala Gly Ile Arg Ala Val Glu Ile Gly Ser Phe Leu 385 390 395 400 tta ggc cgc gat ccg aaa acc ggt aaa caa ctg cca tgc ccg gct gaa 1786 Leu Gly Arg Asp Pro Lys Thr Gly Lys Gln Leu Pro Cys Pro Ala Glu 405 410 415 ctg ctg cgt tta acc att ccg cgc gca aca tat act caa aca cat atg 1834 Leu Leu Arg Leu Thr Ile Pro Arg Ala Thr Tyr Thr Gln Thr His Met 420 425 430 gac ttc att att gaa gcc ttt aaa cat gtg aaa gag aac gcg gcg aat 1882 Asp Phe Ile Ile Glu Ala Phe Lys His Val Lys Glu Asn Ala Ala Asn 435 440 445 att aaa gga tta acc ttt acg tac gaa ccg aaa gta ttg cgt cac ttc 1930 Ile Lys Gly Leu Thr Phe Thr Tyr Glu Pro Lys Val Leu Arg His Phe 450 455 460 acc gca aaa ctt aaa gaa gtt taa ttaatactac agagtggcta taaggatgtt 1984 Thr Ala Lys Leu Lys Glu Val 465 470 agccactctc ttaccctaca tcctcaataa caaaaatagc cttcctctaa aggtggcatc 2044 atgactgttc aagctgaaaa aaagcactct gcattttgg 2083 <210> 13 <211> 471 <212> PRT <213> Escherichia coli <400> 13 Met Glu Asn Phe Lys His Leu Pro Glu Pro Phe Arg Ile Arg Val Ile 1 5 10 15 Glu Pro Val Lys Arg Thr Thr Arg Ala Tyr Arg Glu Glu Ala Ile Ile 20 25 30 Lys Ser Gly Met Asn Pro Phe Leu Leu Asp Ser Glu Asp Val Phe Ile 35 40 45 Asp Leu Leu Thr Asp Ser Gly Thr Gly Ala Val Thr Gln Ser Met Gln 50 55 60 Ala Ala Met Met Arg Gly Asp Glu Ala Tyr Ser Gly Ser Arg Ser Tyr 65 70 75 80 Tyr Ala Leu Ala Glu Ser Val Lys Asn Ile Phe Gly Tyr Gln Tyr Thr 85 90 95 Ile Pro Thr His Gln Gly Arg Gly Ala Glu Gln Ile Tyr Ile Pro Val 100 105 110 Leu Ile Lys Lys Arg Glu Gln Glu Lys Gly Leu Asp Arg Ser Lys Met 115 120 125 Val Ala Phe Ser Asn Tyr Phe Phe Asp Thr Thr Gln Gly His Ser Gln 130 135 140 Ile Asn Gly Cys Thr Val Arg Asn Val Tyr Ile Lys Glu Ala Phe Asp 145 150 155 160 Thr Gly Val Arg Tyr Asp Phe Lys Gly Asn Phe Asp Leu Glu Gly Leu 165 170 175 Glu Arg Gly Ile Glu Glu Val Gly Pro Asn Asn Val Pro Tyr Ile Val 180 185 190 Ala Thr Ile Thr Ser Asn Ser Ala Gly Gly Gln Pro Val Ser Leu Ala 195 200 205 Asn Leu Lys Ala Met Tyr Ser Ile Ala Lys Lys Tyr Asp Ile Pro Val 210 215 220 Val Met Asp Ser Ala Arg Phe Ala Glu Asn Ala Tyr Phe Ile Lys Gln 225 230 235 240 Arg Glu Ala Glu Tyr Lys Asp Trp Thr Ile Glu Gln Ile Thr Arg Glu 245 250 255 Thr Tyr Lys Tyr Ala Asp Met Leu Ala Met Ser Ala Lys Lys Asp Ala 260 265 270 Met Val Pro Met Gly Gly Leu Leu Cys Met Lys Asp Asp Ser Phe Phe 275 280 285 Asp Val Tyr Thr Glu Cys Arg Thr Leu Cys Val Val Gln Glu Gly Phe 290 295 300 Pro Thr Tyr Gly Gly Leu Glu Gly Gly Ala Met Glu Arg Leu Ala Val 305 310 315 320 Gly Leu Tyr Asp Gly Met Asn Leu Asp Trp Leu Ala Tyr Arg Ile Ala 325 330 335 Gln Val Gln Tyr Leu Val Asp Gly Leu Glu Glu Ile Gly Val Val Cys 340 345 350 Gln Gln Ala Gly Gly His Ala Ala Phe Val Asp Ala Gly Lys Leu Leu 355 360 365 Pro His Ile Pro Ala Asp Gln Phe Pro Ala Thr Gly Leu Ala Cys Glu 370 375 380 Leu Tyr Lys Val Ala Gly Ile Arg Ala Val Glu Ile Gly Ser Phe Leu 385 390 395 400 Leu Gly Arg Asp Pro Lys Thr Gly Lys Gln Leu Pro Cys Pro Ala Glu 405 410 415 Leu Leu Arg Leu Thr Ile Pro Arg Ala Thr Tyr Thr Gln Thr His Met 420 425 430 Asp Phe Ile Ile Glu Ala Phe Lys His Val Lys Glu Asn Ala Ala Asn 435 440 445 Ile Lys Gly Leu Thr Phe Thr Tyr Glu Pro Lys Val Leu Arg His Phe 450 455 460 Thr Ala Lys Leu Lys Glu Val 465 470 <210> 14 <211> 1134 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (223)..(1047) <400> 14 tccgcgaact ggcgcatcgc ttcggcgttg aaatgccaat aaccgaggaa atttatcaag 60 tattatattg cggaaaaaac gcgcgcgagg cagcattgac tttactaggt cgtgcacgca 120 aggacgagcg cagcagccac taaccccagg gaacctttgt taccgctatg acccggcccg 180 cgcagaacgg gccggtcatt atctcatcgt gtggagtaag ca atg tcg tgt gaa 234 Met Ser Cys Glu 1 gaa ctg gaa att gtc tgg aac aat att aaa gcc gaa gcc aga acg ctg 282 Glu Leu Glu Ile Val Trp Asn Asn Ile Lys Ala Glu Ala Arg Thr Leu 5 10 15 20 gcg gac tgt gag cca atg ctg gcc agt ttt tac cac gcg acg cta ctc 330 Ala Asp Cys Glu Pro Met Leu Ala Ser Phe Tyr His Ala Thr Leu Leu 25 30 35 aag cac gaa aac ctt ggc agt gca ctg agc tac atg ctg gcg aac aag 378 Lys His Glu Asn Leu Gly Ser Ala Leu Ser Tyr Met Leu Ala Asn Lys 40 45 50 ctg tca tcg cca att atg cct gct att gct atc cgt gaa gtg gtg gaa 426 Leu Ser Ser Pro Ile Met Pro Ala Ile Ala Ile Arg Glu Val Val Glu 55 60 65 gaa gcc tac gcc gct gac ccg gaa atg atc gcc tct gcg gcc tgt gat 474 Glu Ala Tyr Ala Ala Asp Pro Glu Met Ile Ala Ser Ala Ala Cys Asp 70 75 80 att cag gcg gtg cgt acc cgc gac ccg gca gtc gat aaa tac tca acc 522 Ile Gln Ala Val Arg Thr Arg Asp Pro Ala Val Asp Lys Tyr Ser Thr 85 90 95 100 ccg ttg tta tac ctg aag ggt ttt cat gcc ttg cag gcc tat cgc atc 570 Pro Leu Leu Tyr Leu Lys Gly Phe His Ala Leu Gln Ala Tyr Arg Ile 105 110 115 ggt cac tgg ttg tgg aat cag ggg cgt cgc gca ctg gca atc ttt ctg 618 Gly His Trp Leu Trp Asn Gln Gly Arg Arg Ala Leu Ala Ile Phe Leu 120 125 130 caa aac cag gtt tct gtg acg ttc cag gtc gat att cac ccg gca gca 666 Gln Asn Gln Val Ser Val Thr Phe Gln Val Asp Ile His Pro Ala Ala 135 140 145 aaa att ggt cgc ggt atc atg ctt gac cac gcg aca ggc atc gtc gtt 714 Lys Ile Gly Arg Gly Ile Met Leu Asp His Ala Thr Gly Ile Val Val 150 155 160 ggt gaa acg gcg gtg att gaa aac gac gta tcg att ctg caa tct gtg 762 Gly Glu Thr Ala Val Ile Glu Asn Asp Val Ser Ile Leu Gln Ser Val 165 170 175 180 acg ctt ggc ggt acg ggt aaa tct ggt ggt gac cgt cac ccg aaa att 810 Thr Leu Gly Gly Thr Gly Lys Ser Gly Gly Asp Arg His Pro Lys Ile 185 190 195 cgt gaa ggt gtg atg att ggc gcg ggc gcg aaa atc ctc ggc aat att 858 Arg Glu Gly Val Met Ile Gly Ala Gly Ala Lys Ile Leu Gly Asn Ile 200 205 210 gaa gtt ggg cgc ggc gcg aag att ggc gca ggt tcc gtg gtg ctg caa 906 Glu Val Gly Arg Gly Ala Lys Ile Gly Ala Gly Ser Val Val Leu Gln 215 220 225 ccg gtg ccg ccg cat acc acc gcc gct ggc gtt ccg gct cgt att gtc 954 Pro Val Pro Pro His Thr Thr Ala Ala Gly Val Pro Ala Arg Ile Val 230 235 240 ggt aaa cca gac agc gat aag cca tca atg gat atg gac cag cat ttc 1002 Gly Lys Pro Asp Ser Asp Lys Pro Ser Met Asp Met Asp Gln His Phe 245 250 255 260 aac ggt att aac cat aca ttt gag tat ggg gat ggg atc taa tgt 1047 Asn Gly Ile Asn His Thr Phe Glu Tyr Gly Asp Gly Ile Cys 265 270 275 cctgtgatcg tgccggatgc gatgtaatca tctatccggc ctacagtaac taatctctca 1107 ataccgctcc cgatacccca actgtcg 1134 <210> 15 <211> 273 <212> PRT <213> Escherichia coli <400> 15 Met Ser Cys Glu Glu Leu Glu Ile Val Trp Asn Asn Ile Lys Ala Glu 1 5 10 15 Ala Arg Thr Leu Ala Asp Cys Glu Pro Met Leu Ala Ser Phe Tyr His 20 25 30 Ala Thr Leu Leu Lys His Glu Asn Leu Gly Ser Ala Leu Ser Tyr Met 35 40 45 Leu Ala Asn Lys Leu Ser Ser Pro Ile Met Pro Ala Ile Ala Ile Arg 50 55 60 Glu Val Val Glu Glu Ala Tyr Ala Ala Asp Pro Glu Met Ile Ala Ser 65 70 75 80 Ala Ala Cys Asp Ile Gln Ala Val Arg Thr Arg Asp Pro Ala Val Asp 85 90 95 Lys Tyr Ser Thr Pro Leu Leu Tyr Leu Lys Gly Phe His Ala Leu Gln 100 105 110 Ala Tyr Arg Ile Gly His Trp Leu Trp Asn Gln Gly Arg Arg Ala Leu 115 120 125 Ala Ile Phe Leu Gln Asn Gln Val Ser Val Thr Phe Gln Val Asp Ile 130 135 140 His Pro Ala Ala Lys Ile Gly Arg Gly Ile Met Leu Asp His Ala Thr 145 150 155 160 Gly Ile Val Val Gly Glu Thr Ala Val Ile Glu Asn Asp Val Ser Ile 165 170 175 Leu Gln Ser Val Thr Leu Gly Gly Thr Gly Lys Ser Gly Gly Asp Arg 180 185 190 His Pro Lys Ile Arg Glu Gly Val Met Ile Gly Ala Gly Ala Lys Ile 195 200 205 Leu Gly Asn Ile Glu Val Gly Arg Gly Ala Lys Ile Gly Ala Gly Ser 210 215 220 Val Val Leu Gln Pro Val Pro Pro His Thr Thr Ala Ala Gly Val Pro 225 230 235 240 Ala Arg Ile Val Gly Lys Pro Asp Ser Asp Lys Pro Ser Met Asp Met 245 250 255 Asp Gln His Phe Asn Gly Ile Asn His Thr Phe Glu Tyr Gly Asp Gly 260 265 270 Ile[Sequence list] SEQUENCE LISTING <110> Ajinomoto Co., Inc. <120> L-Cysteine-producing bacterium and method for producing L-cysteine (L-Cysteine- Producing Bacterium and Method for Producing L-Cysteine) <130> P-B0293 <140> <141> 2002-09-18 <150> JP 2001-302008 <151> 2001-09-28 <160> 15 <170> PatentIn Ver. 2.0 <210> 1 <211> 15 <212> PRT <213> Escherichia coli <400> 1 Met Glu Asn Phe Lys His Leu Pro Glu Met Phe Arg Ile Arg Val 1 5 10 15 <210> 2 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 2 cgcggatcca agccgcattc tgactg 26 <210> 3 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 3 cccaagcttc tgactcgggc taacgca 27 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 4 cccaagcttg ccggtttcac tggcaa 26 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 5 ctatggatcc ttatagccac tctgtag 27 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 6 cgcggatcca acagagcttc tgcgatacc 29 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 7 cggggtacca ctagcatgaa tattcgcgg 29 <210> 8 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 8 cggggtacct accgcctata taaccagcc 29 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 9 aatatgagga tccgccagc 19 <210> 10 <211> 1880 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (499) .. (1686) <400> 10 aagcttttgc taccaaaatc agcggcgata tcgttggcct ggtttaagga acgcgcttca 60 gccagcagtt gctgctcgcg cttaagggac gcttctgatt gaagaactct acgctcttac 120 tgaagaagat tgcccaggtg actacggagg ccaaaataag cccaatcatc acgcacttaa 180 cgacaatatc ggcgtgctga tacatacccc agacggaaag gtccgtctgc attaaattat 240 tacccactgt gtatctccag gacgcaagtc acaaaatctg cgcataataa tatcaaaacg 300 acgtcgaatt gatagtcgtt ctcattacta tttgcatact gccgtacctt tgctttcttt 360 tccttgcgtt tacgcagtaa aaaagtcacc agcacgccat ttgcgaaaat tttctgcttt 420 atgccaattc ttcaggatgc gcccgcgaat attcatgcta gtttagacat ccagacgtat 480 aaaaacagga atcccgac atg gcg gac aaa aag ctt gat act caa ctg gtg 531 Met Ala Asp Lys Lys Leu Asp Thr Gln Leu Val 1 5 10 aat gca gga cgc agc aaa aaa tac act ctc ggc gcg gta aat agc gtg 579 Asn Ala Gly Arg Ser Lys Lys Tyr Thr Leu Gly Ala Val Asn Ser Val 15 20 25 att cag cgc gct tct tcg ctg gtc ttt gac agt gta gaa gcc aaa aaa 627 Ile Gln Arg Ala Ser Ser Leu Val Phe Asp Ser Val Glu Ala Lys Lys 30 35 40 cac gcg aca cgt aat cgc gcc aat gga gag ttg ttc tat gga cgg cgc 675 His Ala Thr Arg Asn Arg Ala Asn Gly Glu Leu Phe Tyr Gly Arg Arg 45 50 55 gga acg tta acc cat ttc tcc tta caa caa gcg atg tgt gaa ctg gaa 723 Gly Thr Leu Thr His Phe Ser Leu Gln Gln Ala Met Cys Glu Leu Glu 60 65 70 75 ggt ggc gca ggc tgc gtg cta ttt ccc tgc ggg gcg gca gcg gtt gct 771 Gly Gly Ala Gly Cys Val Leu Phe Pro Cys Gly Ala Ala Ala Val Ala 80 85 90 aat tcc att ctt gct ttt atc gaa cag ggc gat cat gtg ttg atg acc 819 Asn Ser Ile Leu Ala Phe Ile Glu Gln Gly Asp His Val Leu Met Thr 95 100 105 aac acc gcc tat gaa ccg agt cag gat ttc tgt agc aaa atc ctc agc 867 Asn Thr Ala Tyr Glu Pro Ser Gln Asp Phe Cys Ser Lys Ile Leu Ser 110 115 120 aaa ctg ggc gta acg aca tca tgg ttt gat ccg ctg att ggt gcc gat 915 Lys Leu Gly Val Thr Thr Ser Trp Phe Asp Pro Leu Ile Gly Ala Asp 125 130 135 atc gtt aag cat ctg cag cca aac act aaa atc gtg ttt ctg gaa tcg 963 Ile Val Lys His Leu Gln Pro Asn Thr Lys Ile Val Phe Leu Glu Ser 140 145 150 155 cca ggc tcc atc acc atg gaa gtc cac gac gtt ccg gcg att gtt gcc 1011 Pro Gly Ser Ile Thr Met Glu Val His Asp Val Pro Ala Ile Val Ala 160 165 170 gcc gta cgc agt gtg gtg ccg gat gcc atc att atg atc gac aac acc 1059 Ala Val Arg Ser Val Val Pro Asp Ala Ile Ile Met Ile Asp Asn Thr 175 180 185 tgg gca gcc ggt gtg ctg ttt aag gcg ctg gat ttt ggc atc gat gtt 1107 Trp Ala Ala Gly Val Leu Phe Lys Ala Leu Asp Phe Gly Ile Asp Val 190 195 200 tct att caa gcc gcc acc aaa tat ctg gtt ggg cat tca gat gcg atg 1155 Ser Ile Gln Ala Ala Thr Lys Tyr Leu Val Gly His Ser Asp Ala Met 205 210 215 att ggc act gcc gtg tgc aat gcc cgt tgc tgg gag cag cta cgg gaa 1203 Ile Gly Thr Ala Val Cys Asn Ala Arg Cys Trp Glu Gln Leu Arg Glu 220 225 230 235 aat gcc tat ctg atg ggc cag atg gtc gat gcc gat acc gcc tat ata 1251 Asn Ala Tyr Leu Met Gly Gln Met Val Asp Ala Asp Thr Ala Tyr Ile 240 245 250 acc agc cgt ggc ctg cgc aca tta ggt gtg cgt ttg cgt caa cat cat 1299 Thr Ser Arg Gly Leu Arg Thr Leu Gly Val Arg Leu Arg Gln His His 255 260 265 gaa agc agt ctg aaa gtg gct gaa tgg ctg gca gaa cat ccg caa gtt 1347 Glu Ser Ser Leu Lys Val Ala Glu Trp Leu Ala Glu His Pro Gln Val 270 275 280 gcg cga gtt aac cac cct gct ctg cct ggc agt aaa ggt cac gaa ttc 1395 Ala Arg Val Asn His Pro Ala Leu Pro Gly Ser Lys Gly His Glu Phe 285 290 295 tgg aaa cga gac ttt aca ggc agc agc ggg cta ttt tcc ttt gtg ctt 1443 Trp Lys Arg Asp Phe Thr Gly Ser Ser Gly Leu Phe Ser Phe Val Leu 300 305 310 315 aag aaa aaa ctc aat aat gaa gag ctg gcg aac tat ctg gat aac ttc 1491 Lys Lys Lys Leu Asn Asn Glu Glu Leu Ala Asn Tyr Leu Asp Asn Phe 320 325 330 agt tta ttc agc atg gcc tac tcg tgg ggc ggg tat gaa tcg ttg atc 1539 Ser Leu Phe Ser Met Ala Tyr Ser Trp Gly Gly Tyr Glu Ser Leu Ile 335 340 345 ctg gca aat caa cca gaa cat atc gcc gcc att cgc cca caa ggc gag 1587 Leu Ala Asn Gln Pro Glu His Ile Ala Ala Ile Arg Pro Gln Gly Glu 350 355 360 atc gat ttt agc ggg acc ttg att cgc ctg cat att ggt ctg gaa gat 1635 Ile Asp Phe Ser Gly Thr Leu Ile Arg Leu His Ile Gly Leu Glu Asp 365 370 375 gtc gac gat ctg att gcc gat ctg gac gcc ggt ttt gcg cga att gta 1683 Val Asp Asp Leu Ile Ala Asp Leu Asp Ala Gly Phe Ala Arg Ile Val 380 385 390 395 taa cattgccact tttggacaat tttgcagaca ttttattgtg aaaagtctta 1736 aattgttgcg tccgggatca aggcgtcccg gacgattcag gagtacaata ggcagataaa 1796 ggcttaaacg ctgttccaca ggaaagtcca tggctgttat tcaagatatc atcgctgcgc 1856 tctggcaaca cgactttgcc gcgc 1880 <210> 11 <211> 395 <212> PRT <213> Escherichia coli <400> 11 Met Ala Asp Lys Lys Leu Asp Thr Gln Leu Val Asn Ala Gly Arg Ser 1 5 10 15 Lys Lys Tyr Thr Leu Gly Ala Val Asn Ser Val Ile Gln Arg Ala Ser 20 25 30 Ser Leu Val Phe Asp Ser Val Glu Ala Lys Lys His Ala Thr Arg Asn 35 40 45 Arg Ala Asn Gly Glu Leu Phe Tyr Gly Arg Arg Gly Thr Leu Thr His 50 55 60 Phe Ser Leu Gln Gln Ala Met Cys Glu Leu Glu Gly Gly Ala Gly Cys 65 70 75 80 Val Leu Phe Pro Cys Gly Ala Ala Ala Val Ala Asn Ser Ile Leu Ala 85 90 95 Phe Ile Glu Gln Gly Asp His Val Leu Met Thr Asn Thr Ala Tyr Glu 100 105 110 Pro Ser Gln Asp Phe Cys Ser Lys Ile Leu Ser Lys Leu Gly Val Thr 115 120 125 Thr Ser Trp Phe Asp Pro Leu Ile Gly Ala Asp Ile Val Lys His Leu 130 135 140 Gln Pro Asn Thr Lys Ile Val Phe Leu Glu Ser Pro Gly Ser Ile Thr 145 150 155 160 Met Glu Val His Asp Val Pro Ala Ile Val Ala Ala Val Arg Ser Val 165 170 175 Val Pro Asp Ala Ile Ile Met Ile Asp Asn Thr Trp Ala Ala Gly Val 180 185 190 Leu Phe Lys Ala Leu Asp Phe Gly Ile Asp Val Ser Ile Gln Ala Ala 195 200 205 Thr Lys Tyr Leu Val Gly His Ser Asp Ala Met Ile Gly Thr Ala Val 210 215 220 Cys Asn Ala Arg Cys Trp Glu Gln Leu Arg Glu Asn Ala Tyr Leu Met 225 230 235 240 Gly Gln Met Val Asp Ala Asp Thr Ala Tyr Ile Thr Ser Arg Gly Leu 245 250 255 Arg Thr Leu Gly Val Arg Leu Arg Gln His His Glu Ser Ser Leu Lys 260 265 270 Val Ala Glu Trp Leu Ala Glu His Pro Gln Val Ala Arg Val Asn His 275 280 285 Pro Ala Leu Pro Gly Ser Lys Gly His Glu Phe Trp Lys Arg Asp Phe 290 295 300 Thr Gly Ser Ser Gly Leu Phe Ser Phe Val Leu Lys Lys Lys Leu Asn 305 310 315 320 Asn Glu Glu Leu Ala Asn Tyr Leu Asp Asn Phe Ser Leu Phe Ser Met 325 330 335 Ala Tyr Ser Trp Gly Gly Tyr Glu Ser Leu Ile Leu Ala Asn Gln Pro 340 345 350 Glu His Ile Ala Ala Ile Arg Pro Gln Gly Glu Ile Asp Phe Ser Gly 355 360 365 Thr Leu Ile Arg Leu His Ile Gly Leu Glu Asp Val Asp Asp Leu Ile 370 375 380 Ala Asp Leu Asp Ala Gly Phe Ala Arg Ile Val 385 390 395 <210> 12 <211> 2083 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (539) .. (1954) <400> 12 gtaaaccgcg catacagccg cattctgact gtcagatgcg cttcgcttca ttgttaccgc 60 tcctgttatt cctcaaccct ttttttaaac attaaaattc ttacgtaatt tataatcttt 120 aaaaaaagca tttaatattg ctccccgaac gattgtgatt cgattcacat ttaaacaatt 180 tcagaataga caaaaactct gagtgtaata atgtagcctc gtgtcttgcg aggataagtg 240 cattatgaat atcttacata tatgtgtgac ctcaaaatgg ttcaatattg acaacaaaat 300 tgtcgatcac cgcccttgat ttgcccttct gtagccatca ccagagccaa accgattgat 360 tcaatgtgtt ctatttgttt gctatatctt aattttgcct tttgcaaagg tcatctctcg 420 tttatttact tgttttagta aatgatggtg cttgcatata tatctggcga attaatcggt 480 atagcagatg taatattcac agggatcact gtaattaaaa taaatgaagg attatgta 538 atg gaa aac ttt aaa cat ctc cct gaa ccg ttc cgc att cgt gtt att 586 Met Glu Asn Phe Lys His Leu Pro Glu Pro Phe Arg Ile Arg Val Ile 1 5 10 15 gag cca gta aaa cgt acc act cgc gct tat cgt gaa gag gca att att 634 Glu Pro Val Lys Arg Thr Thr Arg Ala Tyr Arg Glu Glu Ala Ile Ile 20 25 30 aaa tcc ggt atg aac ccg ttc ctg ctg gat agc gaa gat gtt ttt atc 682 Lys Ser Gly Met Asn Pro Phe Leu Leu Asp Ser Glu Asp Val Phe Ile 35 40 45 gat tta ctg acc gac agc ggc acc ggg gcg gtg acg cag agc atg cag 730 Asp Leu Leu Thr Asp Ser Gly Thr Gly Ala Val Thr Gln Ser Met Gln 50 55 60 gct gcg atg atg cgc ggc gac gaa gcc tac agc ggc agt cgt agc tac 778 Ala Ala Met Met Arg Gly Asp Glu Ala Tyr Ser Gly Ser Arg Ser Tyr 65 70 75 80 tat gcg tta gcc gag tca gtg aaa aat atc ttc ggt tat caa tac acc 826 Tyr Ala Leu Ala Glu Ser Val Lys Asn Ile Phe Gly Tyr Gln Tyr Thr 85 90 95 att ccg act cac cag ggc cgt ggc gca gag caa atc tat att ccg gta 874 Ile Pro Thr His Gln Gly Arg Gly Ala Glu Gln Ile Tyr Ile Pro Val 100 105 110 ctg att aaa aaa cgc gag cag gaa aaa ggc ctg gat cgc agc aaa atg 922 Leu Ile Lys Lys Arg Glu Gln Glu Lys Gly Leu Asp Arg Ser Lys Met 115 120 125 gtg gcg ttc tct aac tat ttc ttt gat acc acg cag ggc cat agc cag 970 Val Ala Phe Ser Asn Tyr Phe Phe Asp Thr Thr Gln Gly His Ser Gln 130 135 140 atc aac ggc tgt acc gtg cgt aac gtc tat atc aaa gaa gcc ttc gat 1018 Ile Asn Gly Cys Thr Val Arg Asn Val Tyr Ile Lys Glu Ala Phe Asp 145 150 155 160 acg ggc gtg cgt tac gac ttt aaa ggc aac ttt gac ctt gag gga tta 1066 Thr Gly Val Arg Tyr Asp Phe Lys Gly Asn Phe Asp Leu Glu Gly Leu 165 170 175 gaa cgc ggt att gaa gaa gtt ggt ccg aat aac gtg ccg tat atc gtt 1114 Glu Arg Gly Ile Glu Glu Val Gly Pro Asn Asn Val Pro Tyr Ile Val 180 185 190 gca acc atc acc agt aac tct gca ggt ggt cag ccg gtt tca ctg gca 1162 Ala Thr Ile Thr Ser Asn Ser Ala Gly Gly Gln Pro Val Ser Leu Ala 195 200 205 aac tta aaa gcg atg tac agc atc gcg aag aaa tac gat att ccg gtg 1210 Asn Leu Lys Ala Met Tyr Ser Ile Ala Lys Lys Tyr Asp Ile Pro Val 210 215 220 gta atg gac tcc gcg cgc ttt gct gaa aac gcc tat ttc att aag cag 1258 Val Met Asp Ser Ala Arg Phe Ala Glu Asn Ala Tyr Phe Ile Lys Gln 225 230 235 240 cgt gaa gca gaa tac aaa gac tgg acc atc gag cag atc acc cgc gaa 1306 Arg Glu Ala Glu Tyr Lys Asp Trp Thr Ile Glu Gln Ile Thr Arg Glu 245 250 255 acc tac aaa tat gcc gat atg ctg gcg atg tcc gcc aag aaa gat gcg 1354 Thr Tyr Lys Tyr Ala Asp Met Leu Ala Met Ser Ala Lys Lys Asp Ala 260 265 270 atg gtg ccg atg ggc ggc ctg ctg tgc atg aaa gac gac agc ttc ttt 1402 Met Val Pro Met Gly Gly Leu Leu Cys Met Lys Asp Asp Ser Phe Phe 275 280 285 gat gtg tac acc gag tgc aga acc ctt tgc gtg gtg cag gaa ggc ttc 1450 Asp Val Tyr Thr Glu Cys Arg Thr Leu Cys Val Val Gln Glu Gly Phe 290 295 300 ccg aca tat ggc ggc cta gaa ggc ggc gcg atg gag cgt ctg gcg gta 1498 Pro Thr Tyr Gly Gly Leu Glu Gly Gly Ala Met Glu Arg Leu Ala Val 305 310 315 320 ggt ctg tat gac ggc atg aat ctc gac tgg ctg gct tat cgt atc gcg 1546 Gly Leu Tyr Asp Gly Met Asn Leu Asp Trp Leu Ala Tyr Arg Ile Ala 325 330 335 cag gta cag tat ctg gtc gat ggt ctg gaa gag att ggc gtt gtc tgc 1594 Gln Val Gln Tyr Leu Val Asp Gly Leu Glu Glu Ile Gly Val Val Cys 340 345 350 cag cag gcg ggc ggt cac gcg gca ttc gtt gat gcc ggt aaa ctg ttg 1642 Gln Gln Ala Gly Gly His Ala Ala Phe Val Asp Ala Gly Lys Leu Leu 355 360 365 ccg cat atc ccg gca gac cag ttc ccg gca aca ggc ctg gcc tgc gag 1690 Pro His Ile Pro Ala Asp Gln Phe Pro Ala Thr Gly Leu Ala Cys Glu 370 375 380 ctg tat aaa gtc gcc ggt atc cgt gcg gta gaa att ggc tct ttc ctg 1738 Leu Tyr Lys Val Ala Gly Ile Arg Ala Val Glu Ile Gly Ser Phe Leu 385 390 395 400 tta ggc cgc gat ccg aaa acc ggt aaa caa ctg cca tgc ccg gct gaa 1786 Leu Gly Arg Asp Pro Lys Thr Gly Lys Gln Leu Pro Cys Pro Ala Glu 405 410 415 ctg ctg cgt tta acc att ccg cgc gca aca tat act caa aca cat atg 1834 Leu Leu Arg Leu Thr Ile Pro Arg Ala Thr Tyr Thr Gln Thr His Met 420 425 430 gac ttc att att gaa gcc ttt aaa cat gtg aaa gag aac gcg gcg aat 1882 Asp Phe Ile Ile Glu Ala Phe Lys His Val Lys Glu Asn Ala Ala Asn 435 440 445 att aaa gga tta acc ttt acg tac gaa ccg aaa gta ttg cgt cac ttc 1930 Ile Lys Gly Leu Thr Phe Thr Tyr Glu Pro Lys Val Leu Arg His Phe 450 455 460 acc gca aaa ctt aaa gaa gtt taa ttaatactac agagtggcta taaggatgtt 1984 Thr Ala Lys Leu Lys Glu Val 465 470 agccactctc ttaccctaca tcctcaataa caaaaatagc cttcctctaa aggtggcatc 2044 atgactgttc aagctgaaaa aaagcactct gcattttgg 2083 <210> 13 <211> 471 <212> PRT <213> Escherichia coli <400> 13 Met Glu Asn Phe Lys His Leu Pro Glu Pro Phe Arg Ile Arg Val Ile 1 5 10 15 Glu Pro Val Lys Arg Thr Thr Arg Ala Tyr Arg Glu Glu Ala Ile Ile 20 25 30 Lys Ser Gly Met Asn Pro Phe Leu Leu Asp Ser Glu Asp Val Phe Ile 35 40 45 Asp Leu Leu Thr Asp Ser Gly Thr Gly Ala Val Thr Gln Ser Met Gln 50 55 60 Ala Ala Met Met Arg Gly Asp Glu Ala Tyr Ser Gly Ser Arg Ser Tyr 65 70 75 80 Tyr Ala Leu Ala Glu Ser Val Lys Asn Ile Phe Gly Tyr Gln Tyr Thr 85 90 95 Ile Pro Thr His Gln Gly Arg Gly Ala Glu Gln Ile Tyr Ile Pro Val 100 105 110 Leu Ile Lys Lys Arg Glu Gln Glu Lys Gly Leu Asp Arg Ser Lys Met 115 120 125 Val Ala Phe Ser Asn Tyr Phe Phe Asp Thr Thr Gln Gly His Ser Gln 130 135 140 Ile Asn Gly Cys Thr Val Arg Asn Val Tyr Ile Lys Glu Ala Phe Asp 145 150 155 160 Thr Gly Val Arg Tyr Asp Phe Lys Gly Asn Phe Asp Leu Glu Gly Leu 165 170 175 Glu Arg Gly Ile Glu Glu Val Gly Pro Asn Asn Val Pro Tyr Ile Val 180 185 190 Ala Thr Ile Thr Ser Asn Ser Ala Gly Gly Gln Pro Val Ser Leu Ala 195 200 205 Asn Leu Lys Ala Met Tyr Ser Ile Ala Lys Lys Tyr Asp Ile Pro Val 210 215 220 Val Met Asp Ser Ala Arg Phe Ala Glu Asn Ala Tyr Phe Ile Lys Gln 225 230 235 240 Arg Glu Ala Glu Tyr Lys Asp Trp Thr Ile Glu Gln Ile Thr Arg Glu 245 250 255 Thr Tyr Lys Tyr Ala Asp Met Leu Ala Met Ser Ala Lys Lys Asp Ala 260 265 270 Met Val Pro Met Gly Gly Leu Leu Cys Met Lys Asp Asp Ser Phe Phe 275 280 285 Asp Val Tyr Thr Glu Cys Arg Thr Leu Cys Val Val Gln Glu Gly Phe 290 295 300 Pro Thr Tyr Gly Gly Leu Glu Gly Gly Ala Met Glu Arg Leu Ala Val 305 310 315 320 Gly Leu Tyr Asp Gly Met Asn Leu Asp Trp Leu Ala Tyr Arg Ile Ala 325 330 335 Gln Val Gln Tyr Leu Val Asp Gly Leu Glu Glu Ile Gly Val Val Cys 340 345 350 Gln Gln Ala Gly Gly His Ala Ala Phe Val Asp Ala Gly Lys Leu Leu 355 360 365 Pro His Ile Pro Ala Asp Gln Phe Pro Ala Thr Gly Leu Ala Cys Glu 370 375 380 Leu Tyr Lys Val Ala Gly Ile Arg Ala Val Glu Ile Gly Ser Phe Leu 385 390 395 400 Leu Gly Arg Asp Pro Lys Thr Gly Lys Gln Leu Pro Cys Pro Ala Glu 405 410 415 Leu Leu Arg Leu Thr Ile Pro Arg Ala Thr Tyr Thr Gln Thr His Met 420 425 430 Asp Phe Ile Ile Glu Ala Phe Lys His Val Lys Glu Asn Ala Ala Asn 435 440 445 Ile Lys Gly Leu Thr Phe Thr Tyr Glu Pro Lys Val Leu Arg His Phe 450 455 460 Thr Ala Lys Leu Lys Glu Val 465 470 <210> 14 <211> 1134 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (223) .. (1047) <400> 14 tccgcgaact ggcgcatcgc ttcggcgttg aaatgccaat aaccgaggaa atttatcaag 60 tattatattg cggaaaaaac gcgcgcgagg cagcattgac tttactaggt cgtgcacgca 120 aggacgagcg cagcagccac taaccccagg gaacctttgt taccgctatg acccggcccg 180 cgcagaacgg gccggtcatt atctcatcgt gtggagtaag ca atg tcg tgt gaa 234 Met Ser Cys Glu 1 gaa ctg gaa att gtc tgg aac aat att aaa gcc gaa gcc aga acg ctg 282 Glu Leu Glu Ile Val Trp Asn Asn Ile Lys Ala Glu Ala Arg Thr Leu 5 10 15 20 gcg gac tgt gag cca atg ctg gcc agt ttt tac cac gcg acg cta ctc 330 Ala Asp Cys Glu Pro Met Leu Ala Ser Phe Tyr His Ala Thr Leu Leu 25 30 35 aag cac gaa aac ctt ggc agt gca ctg agc tac atg ctg gcg aac aag 378 Lys His Glu Asn Leu Gly Ser Ala Leu Ser Tyr Met Leu Ala Asn Lys 40 45 50 ctg tca tcg cca att atg cct gct att gct atc cgt gaa gtg gtg gaa 426 Leu Ser Ser Pro Ile Met Pro Ala Ile Ala Ile Arg Glu Val Val Glu 55 60 65 gaa gcc tac gcc gct gac ccg gaa atg atc gcc tct gcg gcc tgt gat 474 Glu Ala Tyr Ala Ala Asp Pro Glu Met Ile Ala Ser Ala Ala Cys Asp 70 75 80 att cag gcg gtg cgt acc cgc gac ccg gca gtc gat aaa tac tca acc 522 Ile Gln Ala Val Arg Thr Arg Asp Pro Ala Val Asp Lys Tyr Ser Thr 85 90 95 100 ccg ttg tta tac ctg aag ggt ttt cat gcc ttg cag gcc tat cgc atc 570 Pro Leu Leu Tyr Leu Lys Gly Phe His Ala Leu Gln Ala Tyr Arg Ile 105 110 115 ggt cac tgg ttg tgg aat cag ggg cgt cgc gca ctg gca atc ttt ctg 618 Gly His Trp Leu Trp Asn Gln Gly Arg Arg Ala Leu Ala Ile Phe Leu 120 125 130 caa aac cag gtt tct gtg acg ttc cag gtc gat att cac ccg gca gca 666 Gln Asn Gln Val Ser Val Thr Phe Gln Val Asp Ile His Pro Ala Ala 135 140 145 aaa att ggt cgc ggt atc atg ctt gac cac gcg aca ggc atc gtc gtt 714 Lys Ile Gly Arg Gly Ile Met Leu Asp His Ala Thr Gly Ile Val Val 150 155 160 ggt gaa acg gcg gtg att gaa aac gac gta tcg att ctg caa tct gtg 762 Gly Glu Thr Ala Val Ile Glu Asn Asp Val Ser Ile Leu Gln Ser Val 165 170 175 180 acg ctt ggc ggt acg ggt aaa tct ggt ggt gac cgt cac ccg aaa att 810 Thr Leu Gly Gly Thr Gly Lys Ser Gly Gly Asp Arg His Pro Lys Ile 185 190 195 cgt gaa ggt gtg atg att ggc gcg ggc gcg aaa atc ctc ggc aat att 858 Arg Glu Gly Val Met Ile Gly Ala Gly Ala Lys Ile Leu Gly Asn Ile 200 205 210 gaa gtt ggg cgc ggc gcg aag att ggc gca ggt tcc gtg gtg ctg caa 906 Glu Val Gly Arg Gly Ala Lys Ile Gly Ala Gly Ser Val Val Leu Gln 215 220 225 ccg gtg ccg ccg cat acc acc gcc gct ggc gtt ccg gct cgt att gtc 954 Pro Val Pro Pro His Thr Thr Ala Ala Gly Val Pro Ala Arg Ile Val 230 235 240 ggt aaa cca gac agc gat aag cca tca atg gat atg gac cag cat ttc 1002 Gly Lys Pro Asp Ser Asp Lys Pro Ser Met Asp Met Asp Gln His Phe 245 250 255 260 aac ggt att aac cat aca ttt gag tat ggg gat ggg atc taa tgt 1047 Asn Gly Ile Asn His Thr Phe Glu Tyr Gly Asp Gly Ile Cys 265 270 275 cctgtgatcg tgccggatgc gatgtaatca tctatccggc ctacagtaac taatctctca 1107 ataccgctcc cgatacccca actgtcg 1134 <210> 15 <211> 273 <212> PRT <213> Escherichia coli <400> 15 Met Ser Cys Glu Glu Leu Glu Ile Val Trp Asn Asn Ile Lys Ala Glu 1 5 10 15 Ala Arg Thr Leu Ala Asp Cys Glu Pro Met Leu Ala Ser Phe Tyr His 20 25 30 Ala Thr Leu Leu Lys His Glu Asn Leu Gly Ser Ala Leu Ser Tyr Met 35 40 45 Leu Ala Asn Lys Leu Ser Ser Pro Ile Met Pro Ala Ile Ala Ile Arg 50 55 60 Glu Val Val Glu Glu Ala Tyr Ala Ala Asp Pro Glu Met Ile Ala Ser 65 70 75 80 Ala Ala Cys Asp Ile Gln Ala Val Arg Thr Arg Asp Pro Ala Val Asp 85 90 95 Lys Tyr Ser Thr Pro Leu Leu Tyr Leu Lys Gly Phe His Ala Leu Gln 100 105 110 Ala Tyr Arg Ile Gly His Trp Leu Trp Asn Gln Gly Arg Arg Ala Leu 115 120 125 Ala Ile Phe Leu Gln Asn Gln Val Ser Val Thr Phe Gln Val Asp Ile 130 135 140 His Pro Ala Ala Lys Ile Gly Arg Gly Ile Met Leu Asp His Ala Thr 145 150 155 160 Gly Ile Val Val Gly Glu Thr Ala Val Ile Glu Asn Asp Val Ser Ile 165 170 175 Leu Gln Ser Val Thr Leu Gly Gly Thr Gly Lys Ser Gly Gly Asp Arg 180 185 190 His Pro Lys Ile Arg Glu Gly Val Met Ile Gly Ala Gly Ala Lys Ile 195 200 205 Leu Gly Asn Ile Glu Val Gly Arg Gly Ala Lys Ile Gly Ala Gly Ser 210 215 220 Val Val Leu Gln Pro Val Pro Pro His Thr Thr Ala Ala Gly Val Pro 225 230 235 240 Ala Arg Ile Val Gly Lys Pro Asp Ser Asp Lys Pro Ser Met Asp Met 245 250 255 Asp Gln His Phe Asn Gly Ile Asn His Thr Phe Glu Tyr Gly Asp Gly 260 265 270 Ile
【図面の簡単な説明】[Brief description of drawings]
【図1】 エシェリヒア・コリ細胞抽出液Native-PAGE
のCD活性染色の結果を示す図。A:SAT欠損株JM39、及
び、CD活性低下株JM39-8B:metC欠損株EZ5、及びmetC
を搭載したプラスミドpIP29を導入したEZ5[Figure 1] Escherichia coli cell extract Native-PAGE
The figure which shows the result of CD activity staining. A: SAT-deficient strain JM39 and CD activity-reduced strain JM39-8B: metC-deficient strain EZ5 and metC
EZ5 with plasmid pIP29
【図2】 エシェリヒア・コリのmetC破壊株、tnaA破壊
株、及びmetC/tnaA破壊株の構築過程を示す図。
「A」、「B」は遺伝子の末端領域、「X」は欠失領域
を示す。FIG. 2 is a diagram showing the construction process of Escherichia coli metC-disrupted strain, tnaA-disrupted strain, and metC / tnaA-disrupted strain.
“A” and “B” indicate the terminal region of the gene, and “X” indicates the deleted region.
【図3】 metC破壊株、tnaA破壊株、及びmetC/tnaA破
壊株の遺伝子破壊を確認する電気泳動及びCD活性染色の
結果を示す写真。FIG. 3 is a photograph showing the results of electrophoresis and CD activity staining for confirming gene disruption of metC-disrupted strain, tnaA-disrupted strain, and metC / tnaA-disrupted strain.
【図4】 metC破壊株、tnaA破壊株、及びmetC/tnaA破
壊株のL−システイン生産性を示す図。FIG. 4 shows L-cysteine productivity of metC-disrupted strain, tnaA-disrupted strain, and metC / tnaA-disrupted strain.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中森 茂 福井県吉田郡松岡町兼定島38−7 B− 103 Fターム(参考) 4B064 AE14 CA02 CA19 CC24 DA01 DA20 4B065 AA26X AA89Y AB01 AC14 BA02 BA23 BA25 CA17 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Shigeru Nakamori 38-7 Kanejojima, Matsuoka-cho, Yoshida-gun, Fukui Prefecture B- 103 F term (reference) 4B064 AE14 CA02 CA19 CC24 DA01 DA20 4B065 AA26X AA89Y AB01 AC14 BA02 BA23 BA25 CA17
Claims (10)
スタチオニン−β−リアーゼ活性が低下又は欠失するよ
うに改変されたエシェリヒア属細菌。1. A bacterium belonging to the genus Escherichia, which has L-cysteine producing ability and has been modified so as to have a decreased or deleted cystathionine-β-lyase activity.
スシスタチオニン−β−リアーゼ活性及びトリプトファ
ナーゼ活性が低下又は欠失するように改変されたエシェ
リヒア属細菌。2. A bacterium belonging to the genus Escherichia, which has an L-cysteine producing ability and has been modified so that the ciscystathionine-β-lyase activity and the tryptophanase activity are reduced or deleted.
する遺伝子が破壊された請求項1記載のエシェリヒア属
細菌。3. The Escherichia bacterium according to claim 1, wherein the gene encoding cystathionine-β-lyase is disrupted.
ードする遺伝子及びトリプトファナーゼをコードする遺
伝子が破壊された請求項2に記載のエシェリヒア属細
菌。4. The Escherichia bacterium according to claim 2, wherein the gene encoding cis-cystathionine-β-lyase and the gene encoding tryptophanase are disrupted.
が増強されるように改変された請求項1〜4のいずれか
一項に記載のエシェリヒア属細菌。5. The bacterium belonging to the genus Escherichia according to any one of claims 1 to 4, which is further modified so that the enzyme activity of the L-cysteine biosynthesis system is enhanced.
強されるように改変された請求項5記載のエシェリヒア
属細菌。6. The bacterium of the genus Escherichia according to claim 5, which has been modified so that serine acetyltransferase is enhanced.
害に非感受性のセリンアセチルトランスフェラーゼを保
持する請求項6記載のエシェリヒア属細菌。7. The Escherichia bacterium according to claim 6, which retains a serine acetyltransferase that is insensitive to feedback inhibition by L-cysteine.
のいずれか一項に記載のエシェリヒア属細菌。8. The method according to claim 1, which is Escherichia coli.
The bacterium belonging to the genus Escherichia according to any one of 1.
シェリヒア属細菌を培地で培養し、L−システインを培
地中に生成蓄積させ、該培地よりL−システインを採取
する、L−システインの製造法。9. An Escherichia bacterium according to any one of claims 1 to 8 is cultured in a medium, L-cysteine is produced and accumulated in the medium, and L-cysteine is collected from the medium. Method for producing cysteine.
ニン−β−リアーゼ活性もしくはトリプトファナーゼ活
性、又はこれらの両方の活性を低下又は消失させること
によって、同細菌のL−システイン生産能を高めること
を特徴とする、エシェリヒア属細菌のL−システイン生
産菌の製造方法。10. A method for enhancing L-cysteine production ability of a bacterium belonging to the genus Escherichia by reducing or eliminating cis-cystathionine-β-lyase activity or tryptophanase activity or both of these activities. A method for producing an L-cysteine-producing bacterium of Escherichia bacterium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002271463A JP4186564B2 (en) | 2001-09-28 | 2002-09-18 | L-cysteine producing bacterium and method for producing L-cysteine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001302008 | 2001-09-28 | ||
JP2001-302008 | 2001-09-28 | ||
JP2002271463A JP4186564B2 (en) | 2001-09-28 | 2002-09-18 | L-cysteine producing bacterium and method for producing L-cysteine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003169668A true JP2003169668A (en) | 2003-06-17 |
JP4186564B2 JP4186564B2 (en) | 2008-11-26 |
Family
ID=26623338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002271463A Expired - Lifetime JP4186564B2 (en) | 2001-09-28 | 2002-09-18 | L-cysteine producing bacterium and method for producing L-cysteine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4186564B2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1571223A2 (en) | 2004-03-04 | 2005-09-07 | Ajinomoto Co., Inc. | L-cysteine-producing microorganism and a method for producing L-cysteine |
JP2005287333A (en) * | 2004-03-31 | 2005-10-20 | Ajinomoto Co Inc | L-cysteine producing bacteria and method for producing l-cysteine |
WO2008093829A1 (en) | 2007-02-01 | 2008-08-07 | Ajinomoto Co., Inc. | Method for production of l-amino acid |
WO2009104731A1 (en) | 2008-02-21 | 2009-08-27 | 味の素株式会社 | L-cysteine-producing bacterium, and method for production of l-cysteine |
EP2133429A1 (en) | 2008-03-06 | 2009-12-16 | Ajinomoto Co., Inc. | An L-cysteine-producing bacterium and a method for producing L-cysteine |
JP2010099086A (en) * | 2010-01-18 | 2010-05-06 | Ajinomoto Co Inc | L-cysteine producing bacteria and method for producing l-cysteine |
EP2230302A1 (en) | 2009-03-12 | 2010-09-22 | Ajinomoto Co., Inc. | An L-cysteine-producing bacterium and a method for producing L-cysteine |
WO2011065469A1 (en) | 2009-11-30 | 2011-06-03 | 味の素株式会社 | L-cysteine-producing bacterium, and process for production of l-cysteine |
WO2012036151A1 (en) | 2010-09-14 | 2012-03-22 | 味の素株式会社 | Sulfur amino acid-producing bacteria and method for producing sulfur amino acids |
WO2012114802A1 (en) | 2011-02-22 | 2012-08-30 | 味の素株式会社 | L-cysteine-producing bacterium and method for producing l-cysteine |
WO2012137689A1 (en) | 2011-04-01 | 2012-10-11 | 味の素株式会社 | Method for producing l-cysteine |
US8293506B2 (en) | 2009-02-25 | 2012-10-23 | Ajinomoto Co., Inc. | L-cysteine-producing bacterium and a method for producing L-cysteine |
WO2012144472A1 (en) | 2011-04-18 | 2012-10-26 | 味の素株式会社 | Process for producing l-cysteine |
US8383372B2 (en) | 2008-03-06 | 2013-02-26 | Ajinomoto Co., Inc. | L-cysteine producing bacterium and a method for producing L-cysteine |
WO2015005406A1 (en) | 2013-07-09 | 2015-01-15 | 味の素株式会社 | Method for manufacturing useful substance |
WO2015060314A1 (en) | 2013-10-21 | 2015-04-30 | 味の素株式会社 | Method for producing l-amino acid |
US9234223B2 (en) | 2011-04-01 | 2016-01-12 | Ajinomoto Co., Inc. | Method for producing L-cysteine |
US9458206B2 (en) | 2009-02-16 | 2016-10-04 | Ajinomoto Co., Inc. | L-amino acid-producing bacterium and a method for producing an L-amino acid |
EP3385389A1 (en) | 2017-04-03 | 2018-10-10 | Ajinomoto Co., Inc. | Method for producing l-amino acid from fructose |
WO2020071538A1 (en) | 2018-10-05 | 2020-04-09 | Ajinomoto Co., Inc. | Method for producing target substance by bacterial fermentation |
WO2020171227A1 (en) | 2019-02-22 | 2020-08-27 | Ajinomoto Co., Inc. | METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE |
WO2020204179A1 (en) | 2019-04-05 | 2020-10-08 | Ajinomoto Co., Inc. | Method of producing l-amino acids |
WO2021060438A1 (en) | 2019-09-25 | 2021-04-01 | Ajinomoto Co., Inc. | Method for producing l-amino acids by bacterial fermentation |
WO2021220970A1 (en) * | 2020-04-28 | 2021-11-04 | 株式会社カネカ | Microbe that produces useful substance, and production method |
-
2002
- 2002-09-18 JP JP2002271463A patent/JP4186564B2/en not_active Expired - Lifetime
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1571223A2 (en) | 2004-03-04 | 2005-09-07 | Ajinomoto Co., Inc. | L-cysteine-producing microorganism and a method for producing L-cysteine |
JP2005287333A (en) * | 2004-03-31 | 2005-10-20 | Ajinomoto Co Inc | L-cysteine producing bacteria and method for producing l-cysteine |
JP4604537B2 (en) * | 2004-03-31 | 2011-01-05 | 味の素株式会社 | L-cysteine producing bacterium and method for producing L-cysteine |
WO2008093829A1 (en) | 2007-02-01 | 2008-08-07 | Ajinomoto Co., Inc. | Method for production of l-amino acid |
US8278075B2 (en) | 2008-02-21 | 2012-10-02 | Ajinomoto Co., Inc. | L-cysteine-producing bacterium and a method for producing L-cysteine |
WO2009104731A1 (en) | 2008-02-21 | 2009-08-27 | 味の素株式会社 | L-cysteine-producing bacterium, and method for production of l-cysteine |
EP2133429A1 (en) | 2008-03-06 | 2009-12-16 | Ajinomoto Co., Inc. | An L-cysteine-producing bacterium and a method for producing L-cysteine |
US8383372B2 (en) | 2008-03-06 | 2013-02-26 | Ajinomoto Co., Inc. | L-cysteine producing bacterium and a method for producing L-cysteine |
US8008048B2 (en) | 2008-03-06 | 2011-08-30 | Ajinomoto Co., Inc. | L-cysteine-producing bacterium and a method for producing L-cysteine |
US9458206B2 (en) | 2009-02-16 | 2016-10-04 | Ajinomoto Co., Inc. | L-amino acid-producing bacterium and a method for producing an L-amino acid |
US8293506B2 (en) | 2009-02-25 | 2012-10-23 | Ajinomoto Co., Inc. | L-cysteine-producing bacterium and a method for producing L-cysteine |
EP2230302A1 (en) | 2009-03-12 | 2010-09-22 | Ajinomoto Co., Inc. | An L-cysteine-producing bacterium and a method for producing L-cysteine |
WO2011065469A1 (en) | 2009-11-30 | 2011-06-03 | 味の素株式会社 | L-cysteine-producing bacterium, and process for production of l-cysteine |
US8647847B2 (en) | 2009-11-30 | 2014-02-11 | Ajinomoto Co., Inc. | L-cysteine-producing bacterium and a method for producing L-cysteine |
JP2010099086A (en) * | 2010-01-18 | 2010-05-06 | Ajinomoto Co Inc | L-cysteine producing bacteria and method for producing l-cysteine |
WO2012036151A1 (en) | 2010-09-14 | 2012-03-22 | 味の素株式会社 | Sulfur amino acid-producing bacteria and method for producing sulfur amino acids |
US8962284B2 (en) | 2010-09-14 | 2015-02-24 | Ajinomoto Co., Inc. | Sulfur-containing amino acid-producing bacterium and method for producing sulfur-containing amino acid |
WO2012114802A1 (en) | 2011-02-22 | 2012-08-30 | 味の素株式会社 | L-cysteine-producing bacterium and method for producing l-cysteine |
US9234223B2 (en) | 2011-04-01 | 2016-01-12 | Ajinomoto Co., Inc. | Method for producing L-cysteine |
WO2012137689A1 (en) | 2011-04-01 | 2012-10-11 | 味の素株式会社 | Method for producing l-cysteine |
WO2012144472A1 (en) | 2011-04-18 | 2012-10-26 | 味の素株式会社 | Process for producing l-cysteine |
WO2015005406A1 (en) | 2013-07-09 | 2015-01-15 | 味の素株式会社 | Method for manufacturing useful substance |
EP3521433A1 (en) | 2013-07-09 | 2019-08-07 | Ajinomoto Co., Inc. | Process for producing l-glutamic acid |
WO2015060314A1 (en) | 2013-10-21 | 2015-04-30 | 味の素株式会社 | Method for producing l-amino acid |
EP3385389A1 (en) | 2017-04-03 | 2018-10-10 | Ajinomoto Co., Inc. | Method for producing l-amino acid from fructose |
WO2020071538A1 (en) | 2018-10-05 | 2020-04-09 | Ajinomoto Co., Inc. | Method for producing target substance by bacterial fermentation |
WO2020171227A1 (en) | 2019-02-22 | 2020-08-27 | Ajinomoto Co., Inc. | METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE |
WO2020204179A1 (en) | 2019-04-05 | 2020-10-08 | Ajinomoto Co., Inc. | Method of producing l-amino acids |
WO2021060438A1 (en) | 2019-09-25 | 2021-04-01 | Ajinomoto Co., Inc. | Method for producing l-amino acids by bacterial fermentation |
WO2021220970A1 (en) * | 2020-04-28 | 2021-11-04 | 株式会社カネカ | Microbe that produces useful substance, and production method |
Also Published As
Publication number | Publication date |
---|---|
JP4186564B2 (en) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4186564B2 (en) | L-cysteine producing bacterium and method for producing L-cysteine | |
JP4479283B2 (en) | L-cysteine producing bacterium and method for producing L-cysteine | |
JP4604537B2 (en) | L-cysteine producing bacterium and method for producing L-cysteine | |
KR100337959B1 (en) | Mutant Phosphoenolpyruvate Carboxylases, Genes and Amino Acids | |
JP4110641B2 (en) | Method for producing L-methionine by fermentation | |
KR101720836B1 (en) | Feedback-resistant acetohydroxy acid synthase variants and a method of producing L-valine using the same | |
JP4088982B2 (en) | Method for producing L-amino acid by fermentation | |
CN103396976B (en) | Pidolidone amino acid produces microorganism and amino acid whose production method | |
JP5287904B2 (en) | Production method of target substances | |
JP4881739B2 (en) | Process for producing L-arginine, L-ornithine or L-citrulline | |
CZ174697A3 (en) | Gene encoding lysinedecarboxylase, micro-organism and process for preparing l-lysine | |
JP2009529856A (en) | Method for producing novel aldolase and 4-hydroxy-L-isoleucine | |
US6946268B2 (en) | L-cysteine producing bacterium and method for producing L-cysteine | |
KR101704199B1 (en) | A microorganism of escherichia genus having l-tryptophan producing activity and method for producing l-tryptophan using the same | |
KR20080052593A (en) | Method for producing amino acids using micro-organisms | |
JP2010022215A (en) | Method for producing l-cysteine | |
JP5579456B2 (en) | L-cysteine producing bacterium and method for producing L-cysteine | |
KR20160144017A (en) | Microorganisms producing O-acetyl-homoserine and the method of producing O-Acetyl-homoserine using the same | |
JP3680324B2 (en) | Mutant phosphoenolpyruvate carboxylase, gene and amino acid production method thereof | |
JP2003189863A (en) | Method for producing aspartic acid amide and derivative thereof | |
JP2005333855A (en) | Method for producing pyruvic acid and method for producing l-valine | |
JP4742521B2 (en) | Production method of target substances | |
JP2006129840A (en) | Method for producing l-glutamic acid | |
RU2133772C1 (en) | Modified phosphoenolpyruvate carboxylase, dna fragment, strain escherichia coli, recombinant dna, method of preparing amino acid (variants), method of escherichia coli cells selection, method of preparing modified phosphoenolpyruvate carboxylase, method of preparing dna fragment and method of microorganism preparing | |
JPWO2003078620A1 (en) | Mutant isopropylmalate isomerase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080520 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4186564 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |