[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003168443A - Solid polymer-type fuel cell - Google Patents

Solid polymer-type fuel cell

Info

Publication number
JP2003168443A
JP2003168443A JP2001365819A JP2001365819A JP2003168443A JP 2003168443 A JP2003168443 A JP 2003168443A JP 2001365819 A JP2001365819 A JP 2001365819A JP 2001365819 A JP2001365819 A JP 2001365819A JP 2003168443 A JP2003168443 A JP 2003168443A
Authority
JP
Japan
Prior art keywords
cathode
amount
catalyst layer
ion exchange
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001365819A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kunisa
康弘 国狭
Shinji Terasono
真二 寺園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001365819A priority Critical patent/JP2003168443A/en
Publication of JP2003168443A publication Critical patent/JP2003168443A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer-type fuel cell having a high efficiency and a high output density even in case an entrance-neighboring region of a gas flow passage of a cathode catalyst layer becomes to have a dry atmosphere by supplying an oxidizer gas of a low humidity to the cathode in order to operate the solid polymer-type fuel cell system in the high efficiency. <P>SOLUTION: In the solid polymer-type fuel cell provided with an anode, a cathode, a polymer electrolyte membrane between them, and a separator in which the gas flow passage is formed that is arranged on the exterior side of the cathode and that has the entrance and the exit on a face contacted with the cathode, the catalyst layer of the cathode is made to be constituted so that the amount of platinum (alloy) and/or the amount of an ion exchange resin contained per unit area is larger in the entrance neighboring region than that in the exit neighboring region of the gas flow passage. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池に関する。
TECHNICAL FIELD The present invention relates to a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】水素・酸素燃料電池は、反応生成物が原
理的に水のみであり、地球環境への悪影響がほとんどな
い発電システムとして注目されている。特に、固体高分
子型燃料電池は、近年の研究の急速な進展により出力密
度が高くなりつつあり、実用化がおおいに期待されてい
る。現在検討されている固体高分子型燃料電池は、その
作動温度領域が低く排熱を利用しにくいので、水素等の
アノード反応ガス利用率及び空気等のカソード反応ガス
利用率の高い作動条件下において、高い発電効率、高い
出力密度を得ることのできる性能が要求されている。
2. Description of the Related Art A hydrogen / oxygen fuel cell has attracted attention as a power generation system that has a reaction product of only water in principle and has almost no adverse effect on the global environment. In particular, the polymer electrolyte fuel cell has a high output density due to the rapid progress of research in recent years, and its practical application is highly expected. Since the polymer electrolyte fuel cells currently under study have a low operating temperature range and are difficult to utilize exhaust heat, under operating conditions where the anode reaction gas utilization rate such as hydrogen and the cathode reaction gas utilization rate such as air are high. High power generation efficiency and high output density are required.

【0003】固体高分子型燃料電池に使用されるガス拡
散電極は、通常、触媒層とガス拡散層とからなり、触媒
層には触媒とその触媒を被覆するイオン交換樹脂が含ま
れており、触媒層が高分子電解質膜と接合していて膜と
電極とからなる膜電極接合体を形成している。そして、
高分子電解質膜から連続的に繋がっているイオン交換樹
脂(厳密にいえばイオン交換基の部分)と触媒と反応ガ
スが接している三相界面が電極反応の起こる主要部とな
る。したがって、燃料電池を高出力密度化するために
は、上記三相界面の数を増やすことが重要である。特に
四電子反応で反応過電圧が大きいカソードの反応サイト
を増やすことが高出力密度化につながる。
A gas diffusion electrode used in a polymer electrolyte fuel cell usually comprises a catalyst layer and a gas diffusion layer, and the catalyst layer contains a catalyst and an ion exchange resin coating the catalyst, The catalyst layer is bonded to the polymer electrolyte membrane to form a membrane-electrode assembly including the membrane and the electrode. And
The three-phase interface where the ion exchange resin (strictly speaking, the part of the ion exchange group) that is continuously connected from the polymer electrolyte membrane and the catalyst and the reaction gas are in contact is the main part where the electrode reaction takes place. Therefore, it is important to increase the number of the three-phase interfaces in order to increase the power density of the fuel cell. In particular, increasing the number of reaction sites on the cathode where the reaction overvoltage is large in the four-electron reaction leads to higher power density.

【0004】通常の固体高分子型燃料電池は、例えば図
1に示すようなガス流路2となる溝が両面に形成された
セパレータ1を介して、膜電極接合体が積層されてスタ
ックを構成する。そして、カソードにおいては空気等の
酸化剤ガスがガス流路2の入口21から供給され、ガス
拡散電極の面内を流れてガス流路の出口22から排出さ
れる。なお、図1は、(a)がセパレータをカソード又
はアノードと接する面からみた正面図、(b)は(a)
におけるA−A’の位置で切断したときの断面図であ
る。図1(a)中、矢印はガスの流れる方向を示してい
る。
[0006] In a usual polymer electrolyte fuel cell, for example, a membrane electrode assembly is laminated to form a stack via a separator 1 having grooves on both sides which are gas channels 2 as shown in FIG. To do. At the cathode, an oxidant gas such as air is supplied from the inlet 21 of the gas flow path 2, flows in the plane of the gas diffusion electrode, and is discharged from the outlet 22 of the gas flow path. 1A is a front view of the separator as seen from the surface in contact with the cathode or the anode, and FIG.
FIG. 7 is a cross-sectional view taken along the line AA ′ in FIG. In FIG. 1A, the arrow indicates the direction of gas flow.

【0005】反応効率を重視する場合、膜及び触媒層中
のイオン交換樹脂は導電性を確保するために湿潤してい
ることが好ましいため、反応ガスは加湿して供給され
る。しかし、燃料電池全体のシステムの効率を重視する
場合、酸化剤ガスは緩やかな加湿条件で加湿され電池の
作動温度よりも露点の低い低加湿状態で供給されること
が望ましい。この場合ガス流路の入口近傍領域は乾燥雰
囲気となり、出口近傍領域は触媒層面内で電池反応によ
り生成される水が累積されて比較的湿潤雰囲気となる。
そのため、カソード触媒層はガス流路の入口近傍領域と
出口近傍領域とでは反応効率が異なってくる。しかし従
来は、カソード触媒層は面内で均一な構成をしており、
ガス流路の入口近傍領域と出口近傍領域とで異なる機能
を持たせることはできていなかった。
When the reaction efficiency is important, the ion exchange resin in the membrane and the catalyst layer is preferably moistened in order to ensure conductivity, and therefore the reaction gas is humidified before being supplied. However, when importance is placed on the efficiency of the system of the entire fuel cell, it is desirable that the oxidant gas is humidified under a mild humidification condition and supplied in a low humidification state having a dew point lower than the operating temperature of the cell. In this case, the area near the inlet of the gas flow path has a dry atmosphere, and the area near the outlet has a relatively wet atmosphere due to the accumulation of water produced by the cell reaction within the catalyst layer surface.
Therefore, the cathode catalyst layer has different reaction efficiencies in the region near the inlet and the region near the outlet of the gas flow path. However, conventionally, the cathode catalyst layer has a uniform structure in the plane,
It has not been possible to have different functions in the region near the inlet and the region near the outlet of the gas flow path.

【0006】この対応策として特開平2001−572
18には、ガス拡散層の反応ガス上流部のガス拡散性を
反応ガス下流部よりも低くする(具体的にはガス拡散層
の平均気孔径を小さくする)固体高分子型燃料電池が提
案されている。しかし、この固体高分子型燃料電池で
は、カソードにおけるガス流路の入口近傍領域は、ガス
拡散層の効果により多少湿潤状態にはなるものの本質的
には出口近傍領域よりも乾燥しており、ガス流路の入口
近傍領域において実質的に機能する反応サイト数が少な
く、十分に燃料電池の出力を高めることはできなかっ
た。
As a countermeasure against this, Japanese Patent Laid-Open No. 2001-572
No. 18 proposes a polymer electrolyte fuel cell in which the gas diffusivity of the reaction gas upstream portion of the gas diffusion layer is made lower than that of the reaction gas downstream portion (specifically, the average pore diameter of the gas diffusion layer is made smaller). ing. However, in this polymer electrolyte fuel cell, the region near the inlet of the gas flow path in the cathode is essentially drier due to the effect of the gas diffusion layer, but is essentially drier than the region near the outlet. The number of reaction sites that substantially function in the region near the inlet of the flow channel was small, and the output of the fuel cell could not be sufficiently increased.

【0007】[0007]

【発明が解決しようとする課題】上述のように、カソー
ドに低加湿の酸化剤ガスが供給されると、ガス流路の入
口近傍領域のカソード触媒層は乾燥状態になり、出口近
傍領域は比較的湿潤雰囲気となる。そのため触媒を被覆
しているイオン交換樹脂の含水率は低くなり樹脂内のプ
ロトンの通路が十分に確保できず実質的に機能する三相
界面の数が少なくなる。したがって、カソード触媒層の
面内の構成、すなわち触媒層とイオン交換樹脂との面内
での分布が均一であると、ガス流路の入口近傍領域は出
口近傍領域に比べて実質的に機能する反応サイト数が大
幅に減少する。そのため電極全体としては出力密度が低
くなる。
As described above, when the low-humidification oxidant gas is supplied to the cathode, the cathode catalyst layer in the area near the inlet of the gas flow channel becomes dry, and the area near the outlet is compared. It becomes a moist atmosphere. Therefore, the water content of the ion-exchange resin coating the catalyst is low, the passage of protons in the resin cannot be sufficiently secured, and the number of three-phase interfaces that substantially function is reduced. Therefore, when the in-plane configuration of the cathode catalyst layer, that is, the in-plane distribution of the catalyst layer and the ion exchange resin is uniform, the area near the inlet of the gas flow path substantially functions as compared with the area near the outlet. The number of reaction sites is greatly reduced. Therefore, the output density of the electrode as a whole becomes low.

【0008】そこで本発明は、カソード触媒層の面内に
おいて、ガス流路の入口近傍領域と出口近傍領域におい
て実質的に機能する反応サイト数に大幅な違いがなく、
面内においてほぼ均一に反応が起こって電流密度がほぼ
均一なカソード触媒層を備えることにより、出力特性に
優れる固体高分子型燃料電池を提供することを目的とす
る。
Therefore, according to the present invention, there is no significant difference in the number of reaction sites substantially functioning in the area near the inlet and the area near the outlet of the gas flow path in the plane of the cathode catalyst layer.
It is an object of the present invention to provide a polymer electrolyte fuel cell having excellent output characteristics by providing a cathode catalyst layer having a substantially uniform current density and a substantially uniform current density.

【0009】[0009]

【課題を解決するための手段】本発明者らは、カソード
触媒層のガス流路の入口近傍領域とガス流路の出口近傍
領域とにおいて、触媒層中に単位面積あたりに含まれる
触媒の量又はイオン交換樹脂の量を変えてさまざまなパ
タ−ンでの燃料電池特性を検討した。その結果、ガス流
路の入口近傍領域の触媒(白金)の量及び/又はイオン
交換樹脂の量を出口近傍領域に比べて多くすることで、
入口近傍領域の触媒層の実質的に機能する反応サイトが
十分に確保でき、効率的に固体高分子型燃料電池の出力
密度を高められることを見出し本発明に到達した。
The inventors of the present invention have found that the amount of catalyst contained per unit area in the catalyst layer in the region near the inlet of the gas channel and the region near the outlet of the gas channel of the cathode catalyst layer. Alternatively, the amount of the ion exchange resin was changed and the fuel cell characteristics in various patterns were examined. As a result, by increasing the amount of the catalyst (platinum) and / or the amount of ion exchange resin in the area near the inlet of the gas flow path as compared with the area near the outlet,
The present inventors have found that a reaction site that substantially functions in the catalyst layer in the region near the inlet can be sufficiently secured, and that the power density of the polymer electrolyte fuel cell can be efficiently increased, and the present invention has been completed.

【0010】本発明は、アノードと、カソードと、前記
アノードと前記カソードとの間に配置された高分子電解
質膜と、前記カソードの前記高分子電解質膜と接する面
の反対側に配置され入口と出口とを有するガス流路が前
記カソードと接する面に形成されたセパレータと、を備
える固体高分子型燃料電池であって、前記カソードは、
白金又は白金合金を含む触媒とイオン交換樹脂とを含み
前記高分子電解質膜と隣接する触媒層を有し、前記触媒
層において、前記ガス流路の前記入口の近傍領域に単位
面積あたりに含まれる白金の量が、前記出口の近傍領域
に単位面積あたりに含まれる白金の量より多いことを特
徴とする固体高分子型燃料電池を提供する。
According to the present invention, an anode, a cathode, a polymer electrolyte membrane arranged between the anode and the cathode, and an inlet arranged on the side opposite to the surface of the cathode in contact with the polymer electrolyte membrane. A solid polymer electrolyte fuel cell comprising a separator having a gas flow path having an outlet on a surface in contact with the cathode, wherein the cathode is
It has a catalyst layer containing a catalyst containing platinum or a platinum alloy and an ion exchange resin and is adjacent to the polymer electrolyte membrane, and in the catalyst layer, it is included per unit area in a region near the inlet of the gas flow path. There is provided a polymer electrolyte fuel cell characterized in that the amount of platinum is larger than the amount of platinum contained per unit area in the region near the outlet.

【0011】カソード触媒層の面内分布において、ガス
流路の入口近傍領域の白金の量を出口近傍領域の白金の
量よりも多くすることで、入口近傍領域に潜在的に存在
する反応サイト数の絶対量が出口近傍領域より多くなっ
ていると考えられる。そのため、カソード触媒層のガス
流路の入口近傍領域では露点の低い酸化剤ガスを供給す
ることにより乾燥雰囲気となってイオン交換樹脂が乾燥
したとしても、ある程度の実質的に機能する反応サイト
数を確保できる。
In the in-plane distribution of the cathode catalyst layer, the amount of platinum in the area near the inlet of the gas flow path is made larger than the amount of platinum in the area near the outlet so that the number of reaction sites potentially existing in the area near the inlet is increased. It is considered that the absolute amount of is larger than the area near the exit. Therefore, even if the ion-exchange resin is dried in a dry atmosphere by supplying an oxidant gas having a low dew point in the region near the inlet of the gas flow path of the cathode catalyst layer, the number of reaction sites that substantially function is to some extent. Can be secured.

【0012】一方、ガス流路の出口近傍領域では電池反
応により生成した生成水の累積分があって比較的湿潤雰
囲気となっているため、イオン交換樹脂が含水状態にな
り、入口近傍領域ほど潜在的な反応サイト数を存在させ
ていなくても発電中に実質的に機能する十分な反応サイ
ト数を確保できる。そのため、本発明におけるカソード
触媒層の構成を採用すると、効率的にカソード触媒層の
面内の電流密度分布を均一化でき、燃料電池の出力密度
を高められる。また、ガスの流路の出口近傍領域には不
必要に多量の触媒を含有させないので、効率的に経済的
に膜電極接合体の高出力密度化を図ることができる。
On the other hand, in the area near the outlet of the gas flow path, since there is a cumulative amount of water generated by the cell reaction and the atmosphere is relatively moist, the ion-exchange resin is in a water-containing state, and the area near the inlet is latent. It is possible to secure a sufficient number of reaction sites that substantially function during power generation, even if the number of reaction sites does not exist. Therefore, when the structure of the cathode catalyst layer in the present invention is adopted, the in-plane current density distribution of the cathode catalyst layer can be efficiently made uniform, and the output density of the fuel cell can be increased. Further, since an unnecessarily large amount of catalyst is not contained in the region near the outlet of the gas flow path, it is possible to efficiently and economically increase the power density of the membrane electrode assembly.

【0013】また本発明は、アノードと、カソードと、
前記アノードと前記カソードとの間に配置された高分子
電解質膜と、前記カソードの前記高分子電解質膜と接す
る面の反対側に配置され入口と出口とを有するガス流路
が前記カソードと接する面に形成されたセパレータと、
を備える固体高分子型燃料電池であって、前記カソード
は、白金又は白金合金を含む触媒とイオン交換樹脂とを
含み前記高分子電解質膜と隣接する触媒層を有し、前記
触媒層において、前記ガス流路の前記入口の近傍領域に
単位面積あたりに含まれるイオン交換樹脂の量が、前記
出口の近傍領域に単位面積あたりに含まれるイオン交換
樹脂の量より多いことを特徴とする固体高分子型燃料電
池を提供する。
The present invention also includes an anode, a cathode,
A polymer electrolyte membrane disposed between the anode and the cathode, and a surface on which a gas flow path having an inlet and an outlet disposed on the opposite side of the surface of the cathode in contact with the polymer electrolyte membrane contacts the cathode. A separator formed on the
In the solid polymer electrolyte fuel cell, the cathode has a catalyst layer including a catalyst containing platinum or a platinum alloy and an ion exchange resin, and the catalyst layer is adjacent to the polymer electrolyte membrane. A solid polymer characterized in that the amount of ion exchange resin contained per unit area in the region near the inlet of the gas flow channel is larger than the amount of ion exchange resin contained per unit area in the region near the outlet. Type fuel cell is provided.

【0014】カソード触媒層の面内分布において、ガス
流路の入口近傍領域の触媒を被覆しているイオン交換樹
脂の量を出口近傍領域よりも多くすることで、入口近傍
領域に潜在的に存在する反応サイト数の絶対量を多くす
ることができる。そのため、露点の低い酸化剤ガスを供
給することによりカソード触媒層のガス流路の入口近傍
領域が乾燥雰囲気となりイオン交換樹脂が乾燥したとし
ても、ある程度の実質的に機能する反応サイト数を確保
できる。
In the in-plane distribution of the cathode catalyst layer, the amount of the ion-exchange resin coating the catalyst in the area near the inlet of the gas flow path is set to be larger than that in the area near the outlet, so that it is potentially present in the area near the inlet. The absolute amount of reaction sites can be increased. Therefore, by supplying an oxidant gas having a low dew point, even if the ion exchange resin is dried in a dry atmosphere in the vicinity of the inlet of the gas passage of the cathode catalyst layer, it is possible to secure a certain number of substantially functioning reaction sites. .

【0015】一方、カソード触媒層ではガスの流路の出
口近傍領域は入口近傍領域からの電池反応生成水の累積
分があって比較的湿潤雰囲気となるため、イオン交換樹
脂が含水状態になり、入口近傍領域ほど潜在的な反応サ
イト数を存在させなくても発電中に十分な反応サイト数
を確保できる。
On the other hand, in the cathode catalyst layer, the region near the outlet of the gas flow passage has a cumulative amount of the water produced by the cell reaction from the region near the inlet and becomes a relatively moist atmosphere, so that the ion exchange resin becomes hydrated, It is possible to secure a sufficient number of reaction sites during power generation, even if the potential number of reaction sites does not exist as much as the area near the inlet.

【0016】したがって、カソード触媒層のガス流路の
入口近傍領域のみでイオン交換樹脂の量を多くし、出口
近傍領域には不必要にイオン交換樹脂の量を増やさない
ために、効率的にかつコスト的にも有利に膜電極接合体
の高出力密度化を可能とできる。さらにカソード触媒層
の面内の電流密度分布の不均一を解消することができ
る。
Therefore, the amount of the ion exchange resin is increased only in the region near the inlet of the gas flow path of the cathode catalyst layer, and the amount of the ion exchange resin is not unnecessarily increased in the region near the outlet, so that the efficiency and It is possible to increase the output density of the membrane electrode assembly, advantageously in terms of cost. Further, it is possible to eliminate the nonuniformity of the current density distribution in the plane of the cathode catalyst layer.

【0017】[0017]

【発明の実施の形態】固体高分子型燃料電池において、
全体のシステムの効率化を考慮した場合、カソードには
露点の低い低加湿の酸化剤ガス(例えば空気や酸素)を
供給することが好ましい。しかしこの場合、カソード触
媒層のガスの流路の入口近傍領域は乾燥することにな
る。カソード触媒層は白金を含む触媒と触媒を被覆して
反応サイトを増やすためのイオン交換樹脂を含んでいる
が、イオン交換樹脂は含水状態にならないとプロトン導
電性が得られないため、乾燥した状態では発電中の反応
サイトが大幅に減少する。すなわち、ガスの流路の入口
近傍領域では潜在的に存在する反応サイト数に対して発
電中に実際に機能する反応サイト数は大幅に減少する。
BEST MODE FOR CARRYING OUT THE INVENTION In a polymer electrolyte fuel cell,
Considering the efficiency of the entire system, it is preferable to supply a low-dew point, low-humidification oxidant gas (for example, air or oxygen) to the cathode. However, in this case, the area near the inlet of the gas passage of the cathode catalyst layer is dried. The cathode catalyst layer contains a catalyst containing platinum and an ion exchange resin for coating the catalyst to increase the number of reaction sites, but the ion exchange resin cannot obtain proton conductivity until it becomes hydrated, so it is in a dry state. Then, the number of reaction sites during power generation is greatly reduced. That is, the number of reaction sites actually functioning during power generation is greatly reduced compared to the number of reaction sites potentially existing in the region near the inlet of the gas flow path.

【0018】一方、カソード触媒層のガスの流路の出口
近傍領域では入口近傍領域から累積されてきた分の電池
反応生成水があるため比較的湿潤雰囲気となり、イオン
交換樹脂が含水状態となるため、元々存在していた反応
サイトのほとんどが実質的に反応サイトとして機能する
ことになる。
On the other hand, in the area near the outlet of the gas flow path of the cathode catalyst layer, the amount of water produced by the cell reaction accumulated from the area near the inlet causes a relatively moist atmosphere, and the ion exchange resin becomes hydrated. However, most of the reaction sites that were originally present substantially function as reaction sites.

【0019】通常、カソード触媒層において潜在的に存
在する反応サイト数を決定する要因は種々あるが、カソ
ード触媒層に含まれる触媒とイオン交換樹脂の含有割合
やそれらの絶対量、混合状態、構造等が主な要因となっ
ている。本発明では、触媒を構成する白金及び/又はイ
オン交換樹脂の絶対量に注目したものである。しかし、
白金及び/又はイオン交換樹脂のどちらか一方だけを極
端に多くしても反応サイト数は頭打ちとなるので、反応
サイト数を確実に増やすためには触媒の量とイオン交換
樹脂の量の両方を多くすることが好ましい。
Usually, there are various factors that determine the number of reaction sites potentially existing in the cathode catalyst layer, but the content ratios of the catalyst and the ion exchange resin contained in the cathode catalyst layer, their absolute amounts, the mixed state, and the structure. Etc. is the main factor. The present invention focuses on the absolute amount of platinum and / or ion exchange resin constituting the catalyst. But,
Even if only one of platinum and / or ion exchange resin is extremely increased, the number of reaction sites will reach the ceiling. Therefore, in order to reliably increase the number of reaction sites, both the amount of catalyst and the amount of ion exchange resin should be increased. It is preferable to increase.

【0020】上記観点から、本発明においてカソード触
媒層は、白金の量とイオン交換樹脂の量の両方をガスの
流路の入口近傍領域において多くした場合は、出口近傍
領域に対し大幅に確実に潜在的に存在する反応サイト数
を増やせるので好ましい。この場合、露点の低いガスを
供給することによりガスの流路の入口近傍領域が乾燥雰
囲気になっても、入口近傍領域に十分な量の実質的に機
能できる反応サイトを確保でき、比較的湿潤雰囲気とな
るガスの流路の出口近傍領域には必要以上に白金とイオ
ン交換樹脂の量を多くしない構成とできる。
From the above viewpoint, in the present invention, when the amount of both platinum and ion exchange resin in the cathode catalyst layer is increased in the region near the inlet of the gas flow channel, the cathode catalyst layer is much more reliable than the region near the outlet. It is preferable because the number of reaction sites potentially existing can be increased. In this case, by supplying a gas with a low dew point, even if the area near the inlet of the gas flow channel becomes a dry atmosphere, it is possible to secure a sufficient amount of substantially functional reaction sites in the area near the inlet, and it is relatively wet. The amount of platinum and ion exchange resin may be set not to be unnecessarily large in the region near the outlet of the flow path of the atmosphere gas.

【0021】本発明ではカソード触媒層のガスの流路の
入口近傍領域の単位面積あたりの白金の量は、出口近傍
領域の単位面積あたりの白金の量よりも0.02〜1.
5mg/cm多い構成であることが好ましい。入口近
傍領域の単位面積あたりの白金の量と出口近傍領域の白
金の量との差が0.02mg/cm未満の場合、効率
的に入口近傍領域の反応サイトを増やすことができず、
本発明の構成による効果が小さい。より好ましくは0.
05mg/cm以上である。一方、上記の差が1.5
mg/cmを超える場合、入口近傍領域においては白
金の量が多すぎて不必要にコストが高くなり、また触媒
層の厚さが厚くなりすぎてガス拡散性が低下して逆にセ
ル電圧が低下するおそれがある。より好ましくは0.9
mg/cm以下である。
In the present invention, the amount of platinum per unit area in the region near the inlet of the gas passage of the cathode catalyst layer is 0.02 to 1.
It is preferable that the composition is increased by 5 mg / cm 2 . When the difference between the amount of platinum per unit area in the inlet vicinity region and the amount of platinum in the outlet vicinity region is less than 0.02 mg / cm 2 , the reaction sites in the inlet vicinity region cannot be efficiently increased,
The effect of the configuration of the present invention is small. More preferably 0.
It is at least 05 mg / cm 2 . On the other hand, the above difference is 1.5
If it exceeds mg / cm 2 , the amount of platinum in the area near the inlet is unnecessarily high and the cost becomes unnecessarily high, and the catalyst layer becomes too thick to reduce the gas diffusivity and, conversely, the cell voltage. May decrease. More preferably 0.9
It is mg / cm 2 or less.

【0022】さらに、カソード触媒層のガスの流路の入
口近傍領域の単位面積あたりの白金の量は電池出力の確
保と経済性の点から、0.1〜2.0mg/cmであ
ることが好ましい。なお、カソード触媒層に含まれる触
媒は、白金を含んでいればよく、白金又は白金合金から
なってもよいが、白金又は白金合金がカーボンに担持さ
れた担持触媒であることが好ましい。一方、出口近傍領
域の単位面積あたりの白金の量は0.05〜1.5mg
/cmであることが好ましい。0.05mg/cm
未満であると、白金量が少なすぎて充分な電池出力が得
られないおそれがある。一方1.5mg/cmを超え
ると、白金量が多すぎて不必要にコストが高くなり、ま
た触媒層の厚さが厚くなりすぎてガス拡散性が低下し電
池出力が低下するおそれがある。
Further, the amount of platinum per unit area of the area near the inlet of the gas passage of the cathode catalyst layer is 0.1 to 2.0 mg / cm 2 from the viewpoint of securing the battery output and economical efficiency. Is preferred. The catalyst contained in the cathode catalyst layer may contain platinum, and may be composed of platinum or a platinum alloy. However, it is preferable that the catalyst is a supported catalyst in which platinum or a platinum alloy is supported on carbon. On the other hand, the amount of platinum per unit area in the area near the outlet is 0.05 to 1.5 mg.
/ Cm 2 is preferable. 0.05 mg / cm 2
If it is less than this, the amount of platinum may be too small to obtain a sufficient battery output. On the other hand, if it exceeds 1.5 mg / cm 2 , the amount of platinum is too large, which unnecessarily increases the cost, and the thickness of the catalyst layer becomes too thick, which may reduce the gas diffusivity and the battery output. .

【0023】また、カソード触媒層のガスの流路の出口
近傍領域の単位面積あたりに含まれるイオン交換樹脂の
量は、入口近傍領域の単位面積あたりに含まれるイオン
交換樹脂の量に対して90%以下であり、かつ入口近傍
領域の単位面積あたりに含まれるイオン交換樹脂の量は
0.1〜2.5mg/cmであることが好ましい。出
口近傍領域のイオン交換樹脂の量が入口近傍領域のイオ
ン交換樹脂の量の90%を超える場合、効率的に入口近
傍領域の反応サイトを増やすことができず本発明の効果
が小さい。さらに効率的に入口近傍領域の反応サイトを
確保するためには、上記割合は80%以下がより好まし
い。
The amount of ion exchange resin contained per unit area in the area near the outlet of the gas flow path of the cathode catalyst layer is 90 with respect to the amount of ion exchange resin contained per unit area in the area near the inlet. % Or less, and the amount of the ion exchange resin contained per unit area in the vicinity of the inlet is preferably 0.1 to 2.5 mg / cm 2 . When the amount of ion exchange resin in the area near the outlet exceeds 90% of the amount of ion exchange resin in the area near the inlet, the number of reaction sites in the area near the inlet cannot be increased efficiently, and the effect of the present invention is small. To more efficiently secure the reaction site in the region near the inlet, the above ratio is more preferably 80% or less.

【0024】一方、上記割合は、30%以上、特に50
%以上であることが好ましい。この範囲よりもガスの流
路の出口近傍領域のイオン交換樹脂の量が少ないと、出
口近傍領域においてイオン交換樹脂の量が少なすぎて樹
脂により充分に触媒が被覆されず、十分な電池出力が得
られるだけの反応サイトを確保できないおそれがある。
On the other hand, the above ratio is 30% or more, especially 50%.
% Or more is preferable. If the amount of the ion exchange resin in the area near the outlet of the gas flow path is smaller than this range, the amount of the ion exchange resin in the area near the outlet is too small to sufficiently cover the catalyst with the resin, resulting in sufficient battery output. It may not be possible to secure enough reaction sites.

【0025】また、カソード触媒層のガスの流路の入口
近傍領域の単位面積あたりのイオン交換樹脂の量は、触
媒の量にも左右されるが、燃料電池の初期特性及び耐久
性の点から0.1mg/cm以上、特に0.2mg/
cm以上がより好ましい。一方、入口近傍領域のイオ
ン交換樹脂の量が2.5mg/cmを超えると、イオ
ン交換樹脂の量に追随して触媒の量も増やさなければな
らずコストがかかり、さらにその結果カソード触媒層が
厚くなりすぎて逆に酸化剤ガスのガス拡散性が悪くなり
セル電圧が低下するおそれがある。さらにはカソード触
媒層の細孔がイオン交換樹脂により閉塞されガス拡散性
が低下するおそれもある。性能や触媒層の製造の容易性
を考慮するとより好ましくは1.7mg/cm以下で
ある。
The amount of ion exchange resin per unit area in the region near the inlet of the gas passage of the cathode catalyst layer depends on the amount of catalyst, but from the viewpoint of the initial characteristics and durability of the fuel cell. 0.1 mg / cm 2 or more, particularly 0.2 mg / cm
cm 2 or more is more preferable. On the other hand, if the amount of the ion exchange resin in the region near the inlet exceeds 2.5 mg / cm 2 , the amount of the catalyst must be increased in accordance with the amount of the ion exchange resin, resulting in cost increase. On the contrary, the gas diffusibility of the oxidant gas may worsen and the cell voltage may decrease. Further, the pores of the cathode catalyst layer may be blocked by the ion exchange resin, and the gas diffusibility may be reduced. Considering the performance and the ease of manufacturing the catalyst layer, the amount is more preferably 1.7 mg / cm 2 or less.

【0026】一方、出口近傍領域の単位面積あたりのイ
オン交換樹脂の量は0.09〜2.25mg/cm
あることが好ましい。イオン交換樹脂の量が少なすぎる
と触媒がイオン交換樹脂により充分に被覆されず、充分
な電池出力を得るだけの反応サイトを確保できないおそ
れがある。また、2.25mg/cmより多くすると
カソード触媒層が厚くなりすぎてガス拡散性が低下しセ
ル電圧が低下するおそれがあり、またコストも必要以上
に高まる。さらにはカソード触媒層の細孔がイオン交換
樹脂により閉塞されガス拡散性が低下するおそれもあ
る。
On the other hand, the amount of the ion exchange resin per unit area in the area near the outlet is preferably 0.09 to 2.25 mg / cm 2 . If the amount of the ion exchange resin is too small, the catalyst may not be sufficiently covered with the ion exchange resin, and it may not be possible to secure a reaction site sufficient to obtain a sufficient battery output. On the other hand, if it is more than 2.25 mg / cm 2 , the cathode catalyst layer may be too thick, gas diffusivity may be lowered and cell voltage may be lowered, and the cost may be increased more than necessary. Further, the pores of the cathode catalyst layer may be blocked by the ion exchange resin, and the gas diffusibility may be reduced.

【0027】またカソード触媒層に含有されるイオン交
換樹脂の含有量については、カソード触媒層内のプロト
ン導電性を十分に確保する観点と触媒層内に十分な反応
サイトを確保する観点から、触媒とイオン交換樹脂との
比率(質量比)の範囲が、触媒の質量:イオン交換樹脂
の質量=4.0:6.0〜9.5:0.5であることが
好ましく、触媒の質量:イオン交換樹脂の質量=6.
0:4.0〜8.0:2.0であることがより好まし
い。なおここでいう触媒とは、カーボンなどの担体に担
持された担持触媒の場合にはその担体の質量も含むもの
となる。
Regarding the content of the ion exchange resin contained in the cathode catalyst layer, from the viewpoint of ensuring sufficient proton conductivity in the cathode catalyst layer and the viewpoint of ensuring sufficient reaction sites in the catalyst layer. The mass ratio of the catalyst to the ion exchange resin (mass ratio) is preferably such that the mass of the catalyst: the mass of the ion exchange resin = 4.0: 6.0 to 9.5: 0.5, and the mass of the catalyst: Mass of ion exchange resin = 6.
More preferably, it is 0: 4.0 to 8.0: 2.0. The catalyst referred to here includes the mass of the carrier in the case of a supported catalyst supported on a carrier such as carbon.

【0028】本発明の固体高分子型燃料電池のカソード
触媒層において、触媒の量及び/又はイオン交換樹脂の
量が多いガス流路の入口近傍領域の面積及びそれらの量
が少ない出口近傍領域)の面積は、いずれもカソード触
媒層の全面積に対して5%以上であることが好ましく、
10%以上であることがより好ましく、20%以上であ
ることがさらに好ましい。触媒の量及び/又はイオン交
換樹脂の量が多い領域の面積の割合がカソード触媒層の
全面積に対して5%未満であると、触媒層内の低加湿ガ
スの供給により比較的乾燥雰囲気となっている部分に十
分な反応サイトを確保できず高い電池出力を得られない
おそれがある。逆に95%を超えると、触媒層面内を効
率的に分離することができず効率的に高出力密度を得る
ことができないおそれがある。
In the cathode catalyst layer of the polymer electrolyte fuel cell of the present invention, the area of the gas passage near the inlet where the amount of catalyst and / or the amount of ion exchange resin is large and the area near the outlet where the amount thereof is small) Is preferably 5% or more with respect to the total area of the cathode catalyst layer.
It is more preferably at least 10%, further preferably at least 20%. When the ratio of the area of the region where the amount of the catalyst and / or the amount of the ion exchange resin is large is less than 5% with respect to the total area of the cathode catalyst layer, the low humidification gas in the catalyst layer causes a relatively dry atmosphere. It may not be possible to secure a sufficient reaction site in the area where the battery is charged, and it may not be possible to obtain a high battery output. On the other hand, if it exceeds 95%, the inside of the catalyst layer surface cannot be efficiently separated, and it may not be possible to efficiently obtain a high power density.

【0029】また、カソードの触媒層を触媒の量及び/
又はイオン交換樹脂の量が多い領域(ガスの流路の入口
近傍領域)と少ない領域(ガスの流路の出口近傍領域)
の2つの領域にわけるだけでなく、3つ以上の領域にわ
けて、ガスの流路の入口側から出口側に向かって徐々に
触媒の量及び/又はイオン交換樹脂が少ない領域となっ
ていくようにしてもよい。
Further, the catalyst layer of the cathode is used in an amount of catalyst and / or
Alternatively, an area with a large amount of ion exchange resin (area near the inlet of the gas flow path) and a small area (area near the exit of the gas flow path)
Not only the two regions but also the three or more regions, the amount of the catalyst and / or the ion exchange resin is gradually reduced from the inlet side to the outlet side of the gas flow path. You may do it.

【0030】本発明の構成は、特にカソードに低加湿の
ガスを供給した場合に有効な構成である。すなわち、カ
ソード側のガスの流路に燃料電池の作動温度よりも10
℃以上低い温度の露点を有するガス、さらには燃料電池
の作動温度よりも15℃以上低い温度の露点を有するガ
スが流れている場合に優れた効果を示す。なお、ここで
いう低加湿のガスには無加湿(乾燥状態)のガスも含
む。
The structure of the present invention is particularly effective when a low humidification gas is supplied to the cathode. That is, the temperature of the gas passage on the cathode side is higher than the operating temperature of the fuel cell by 10
An excellent effect is exhibited when a gas having a dew point of a temperature lower than 0 ° C. or a gas having a dew point of a temperature lower than the operating temperature of the fuel cell by 15 ° C. or more flows. The low-humidification gas referred to here includes non-humidified (dry) gas.

【0031】本発明においてカソードに含まれるイオン
交換樹脂としては、湿潤状態で良好なイオン導電性を示
すイオン交換樹脂であれば特に限定されないが、耐久性
及び出力特性の観点からスルホン酸基を有するパーフル
オロカーボン重合体(エーテル結合性の酸素原子等を含
んでもよい)が好ましい。
In the present invention, the ion exchange resin contained in the cathode is not particularly limited as long as it is an ion exchange resin exhibiting good ion conductivity in a wet state, but it has a sulfonic acid group from the viewpoint of durability and output characteristics. Perfluorocarbon polymers (which may contain ether-bonding oxygen atoms and the like) are preferred.

【0032】本発明におけるアノード触媒層は特に限定
されないが、カソードと同様に触媒とイオン交換樹脂を
含むものである。アノード触媒層はカソード触媒層と同
様に触媒層面内で組成の分布が異なっていてもよいが、
面内の組成は均一であってもよい。
The anode catalyst layer in the present invention is not particularly limited, but it contains a catalyst and an ion exchange resin like the cathode. Like the cathode catalyst layer, the anode catalyst layer may have a different composition distribution in the catalyst layer surface,
The in-plane composition may be uniform.

【0033】また、本発明における固体高分子電解質膜
となるイオン交換膜は特に限定されないが、具体的には
例えば、旭硝子社製のフレミオン、旭化成社製のアシプ
レックス、デュポン社製のナフィオン、ジャパンゴアテ
ックス社製のゴアセレクト等が使用できる。これらの膜
は、スルホン酸基を有するパーフルオロカーボン重合体
からなる膜であるが、これら以外に、ホスホン酸基又は
フェノール系水酸基等を有するパーフルオロカーボン重
合体からなる膜も使用できる。また、スルホン酸基やホ
スホン酸基等を有する炭化水素系樹脂又は部分フッ素化
された炭化水素系樹脂からなる膜も使用できる。膜の製
造方法は特に限定されず、押出し成形膜でもよいし、イ
オン交換樹脂を溶媒に溶解又は分散させた液から、キャ
スト法にて得られる膜でもよい。また、イオン交換樹脂
からなる膜を補強材と複合化した補強膜も固体高分子電
解質膜として使用できる。
Further, the ion exchange membrane to be the solid polymer electrolyte membrane in the present invention is not particularly limited, and specifically, for example, Flemion manufactured by Asahi Glass Co., Aciplex manufactured by Asahi Kasei, Nafion manufactured by DuPont, Japan. You can use Gore Select made by Gore-Tex. These films are films made of a perfluorocarbon polymer having a sulfonic acid group, but in addition to these, a film made of a perfluorocarbon polymer having a phosphonic acid group or a phenolic hydroxyl group can also be used. Further, a film made of a hydrocarbon-based resin having a sulfonic acid group, a phosphonic acid group or the like or a partially fluorinated hydrocarbon-based resin can also be used. The method for producing the membrane is not particularly limited, and may be an extrusion-molded membrane or a membrane obtained by a casting method from a liquid obtained by dissolving or dispersing an ion exchange resin in a solvent. Further, a reinforcing membrane obtained by compounding a membrane made of an ion exchange resin with a reinforcing material can also be used as the solid polymer electrolyte membrane.

【0034】イオン交換膜上での触媒層の形成は、触媒
層を基材シート上に形成したものを膜にホットプレス転
写してもよいし、膜状に直接塗工してもよいし、触媒層
をガス拡散層上に形成したものを膜にホットプレス接合
してもよく特には限定されない。
To form the catalyst layer on the ion exchange membrane, the catalyst layer formed on the base material sheet may be hot-press transferred to the membrane, or may be directly applied in a membrane form, The catalyst layer formed on the gas diffusion layer may be hot-press bonded to the film without any particular limitation.

【0035】[0035]

【実施例】以下に、本発明を実施例(例1〜3)及び比
較例(例4)により具体的に説明するが、本発明はこれ
らに限定されない。
EXAMPLES The present invention will be specifically described below with reference to Examples (Examples 1 to 3) and Comparative Examples (Example 4), but the present invention is not limited thereto.

【0036】〔例1〕カソード触媒層に含有させるイオ
ン交換樹脂として、スルホン酸基を有するパーフルオロ
カーボン重合体であるCF=CF/CF=CF−
OCFCF(CF)−OCFCFSOH共重
合体(イオン交換容量Aは1.1ミリ当量/g乾燥樹
脂(以下meq./gとする))を用いた。次に、触媒
としてカーボン(商品名:ケッチェンブラックEC、ラ
イオン社製)に白金が触媒全質量の54%担持された担
持触媒を用い、該触媒と上記共重合体とを質量比で7.
86:2.14となるように、エタノール/水の混合溶
媒(質量比で1/1)中で混合撹拌し、得られる液の固
形分(触媒と樹脂の合量)濃度が10質量%となるよう
に調製した。これを触媒層形成用塗工液1とした。
Example 1 As the ion exchange resin contained in the cathode catalyst layer, CF 2 ═CF 2 / CF 2 ═CF— which is a perfluorocarbon polymer having a sulfonic acid group.
OCF 2 CF (CF 3) -OCF 2 CF 2 SO 3 H copolymer (ion exchange capacity A R 1.1 meq / g dry resin (hereinafter referred to as meq./g)) was used. Next, as a catalyst, a supported catalyst in which carbon (trade name: Ketjen Black EC, manufactured by Lion Corp.) was supported by platinum with 54% of the total mass of the catalyst was used, and the catalyst and the above copolymer were used in a mass ratio of 7.
86: 2.14, mixed and stirred in a mixed solvent of ethanol / water (1/1 by mass ratio), and the solid content (total amount of catalyst and resin) of the resulting liquid was 10% by mass. Was prepared. This was used as a catalyst layer forming coating liquid 1.

【0037】次に、上記担持触媒と上記共重合体とを質
量比で6.47:3.53となるように、エタノール/
水の混合溶媒(質量比で1/1)中で混合撹拌し、得ら
れる液の固形分(触媒と樹脂の合量)濃度が10質量%
となるように調製した。これを触媒層形成用塗工液2と
した。
Next, ethanol / ethanol was added so that the mass ratio of the supported catalyst to the copolymer was 6.47: 3.53.
Mixing and stirring in a mixed solvent of water (1/1 by mass ratio), the solid content (total amount of catalyst and resin) concentration of the resulting liquid is 10% by mass.
Was prepared so that This was used as a catalyst layer forming coating liquid 2.

【0038】次に、図2を参照しながら、触媒層の形成
方法と、膜電極接合体の作製について説明する。まず、
触媒層形成用塗工液2を厚さ50μmのテトラフルオロ
エチレン/エチレン共重合体からなる基材シート(商品
名:アフロンCOP、旭硝子社製)の片面に、白金付着
量が0.3mg/cmとなるようにバーコータで塗布
し、乾燥させこれをアノード触媒層33とした。このア
ノード触媒層が形成された基材シートを、有効電極面積
が25cmとなるように切り出した。
Next, with reference to FIG. 2, the method for forming the catalyst layer and the production of the membrane electrode assembly will be described. First,
The coating liquid 2 for forming a catalyst layer has a platinum adhesion amount of 0.3 mg / cm on one surface of a base sheet (trade name: Aflon COP, manufactured by Asahi Glass Co., Ltd.) made of a tetrafluoroethylene / ethylene copolymer having a thickness of 50 μm. It was applied by a bar coater so as to be 2, and dried to obtain an anode catalyst layer 33. The base sheet on which the anode catalyst layer was formed was cut out so that the effective electrode area was 25 cm 2 .

【0039】次にカソード触媒層の形成は以下のように
行った。カソード触媒層を均等に上下2つの領域にわけ
る、すなわちカソードのセパレータを図1におけるB−
B’の位置で2つにわけた場合にB−B’の位置よりも
上部と接するカソード触媒層、すなわちガスの流路の入
口近傍領域となる部分を領域Pとし、B−B’の位置よ
りも下部と接するカソード触媒層、すなわちガスの流路
の出口近傍領域となる部分を領域Qとなるように以下の
手順で形成した。なお、全カソード触媒層面積(領域P
の面積と領域Qの面積との和)に対する領域Pの面積及
び領域Qの面積の割合(%)はそれぞれ50%とした。
Next, the cathode catalyst layer was formed as follows. The cathode catalyst layer is equally divided into upper and lower regions, that is, the cathode separator is B- in FIG.
When divided into two at the position of B ′, the cathode catalyst layer which is in contact with the upper part of the position of BB ′, that is, a portion which is a region in the vicinity of the inlet of the gas flow path is defined as a region P, and the position of BB ′ The cathode catalyst layer, which is in contact with the lower portion, that is, the portion which is the area in the vicinity of the outlet of the gas passage is formed as the area Q by the following procedure. The total cathode catalyst layer area (region P
The ratio (%) of the area of the region P and the area of the region Q to the sum of the area of 1 and the area of the region Q) was 50%.

【0040】触媒層形成用塗工液1をアノード触媒層3
3を形成した基材シートと同じ材質で別途用意した基材
シートの半分に白金付着量が0.44mg/cm、イ
オン交換樹脂量が0.222mg/cmとなるように
塗布して乾燥させ、これを領域Pとした。次に触媒層形
成用塗工液2を上記基材シートの残りの半分の部分に白
金付着量が0.22mg/cm、イオン交換樹脂量が
0.222mg/cmとなるように塗布して乾燥させ、
これを領域Qとした。そして、領域Pと領域Qとからな
るカソード触媒層32が形成された基材シートを領域P
と領域Qの面積が等しくなるようにして有効電極面積が
25cmとなるように切り出した。
The coating liquid 1 for forming the catalyst layer is applied to the anode catalyst layer 3
3 platinum on amount of 0.44 mg / cm 2 to a half of the base sheet prepared separately of the same material as forms the base sheet, it was applied so that the ion exchange resin amount is 0.222mg / cm 2 dried This was designated as region P. Next, the coating liquid 2 for forming a catalyst layer was applied to the remaining half of the base sheet so that the amount of platinum deposited was 0.22 mg / cm 2 and the amount of ion exchange resin was 0.222 mg / cm 2 . Dried
This was designated as region Q. Then, the base sheet on which the cathode catalyst layer 32 including the regions P and Q is formed is placed in the region P.
And the area Q was made equal to each other and the effective electrode area was cut out to be 25 cm 2 .

【0041】アノード触媒層33が形成された基材シー
トとカソード触媒層32が形成された基材シートとを、
それぞれ触媒層が形成された面を内側に向けて対向さ
せ、間に高分子電解質膜31としてスルホン酸基を有す
るパーフルオロカーボン重合体からなりフィブリル状の
フルオロカーボン重合体で補強されたイオン交換膜(商
品名:フレミオンHEf2、旭硝子社製、A=1.1
meq./g、乾燥膜厚30μm)を挟んで、160℃
でホットプレスした。ホットプレスによりカソード触媒
層32及びアノード触媒層33は高分子電解質膜31に
転写されたので、両面の基材シートを剥離することによ
り膜・触媒層接合体を得た。
The base sheet having the anode catalyst layer 33 formed thereon and the base sheet having the cathode catalyst layer 32 formed thereon are
Ion-exchange membranes made of a perfluorocarbon polymer having a sulfonic acid group as a polymer electrolyte membrane 31 and facing each other with the surfaces on which the catalyst layers are formed facing each other and reinforced with a fibril-like fluorocarbon polymer (commodity). Name: Flemion HEf2, manufactured by Asahi Glass Co., Ltd., A R = 1.1
meq. / G, dry film thickness 30 μm), 160 ° C
Hot-pressed at. Since the cathode catalyst layer 32 and the anode catalyst layer 33 were transferred to the polymer electrolyte membrane 31 by hot pressing, the membrane / catalyst layer assembly was obtained by peeling the substrate sheets on both sides.

【0042】次に、この接合体の両面にガス拡散層とし
て表面がカーボンと撥水剤で目詰めされたカーボンクロ
ス(商品名:カーベルCL、ジャパンゴアテックス社
製)をガス拡散層34、35として配置し、膜電極接合
体を得た。この膜電極接合体を、表面にガスの流路とな
る溝が形成されたセパレータ36、37の2枚で挟み、
図2における左側にガスの入口がくるようにし、右側に
反応ガスの出口がくるようにした。
Next, on both surfaces of this bonded body, carbon cloths (trade name: Carbell CL, manufactured by Japan Gore-Tex Co., Ltd.) whose surfaces are filled with carbon and a water repellent are used as gas diffusion layers 34, 35. Then, a membrane electrode assembly was obtained. The membrane electrode assembly is sandwiched between two separators 36 and 37 each having a groove serving as a gas flow path formed on the surface,
The gas inlet was on the left side in FIG. 2 and the reaction gas outlet was on the right side.

【0043】〔例2〕まず、例1で用いた触媒層形成用
塗工液2を準備した。次に、例1で用いた担持触媒と共
重合体との質量比が8.46:1.54となるようにし
て、エタノール/水の混合溶媒(質量比で1/1)中で
混合撹拌し、得られる液の固形分(触媒と樹脂の合量)
濃度が10質量%となるように調製した。これを触媒層
形成用塗工液3とした。
Example 2 First, the coating liquid 2 for forming a catalyst layer used in Example 1 was prepared. Next, the supported catalyst used in Example 1 and the copolymer were mixed and stirred in a mixed solvent of ethanol / water (mass ratio of 1/1) such that the mass ratio was 8.46: 1.54. Solid content of the resulting liquid (total amount of catalyst and resin)
The concentration was adjusted to 10% by mass. This was designated as Catalyst Layer Forming Coating Liquid 3.

【0044】触媒層形成用塗工液1のかわりに触媒層形
成用塗工液2を用いて白金付着量が0.33mg/cm
、イオン交換樹脂量が0.333mg/cmとなる
ように塗布して領域Pを形成し、触媒層形成用塗工液2
のかわりに触媒層形成用塗工液3を用いて白金付着量が
0.33mg/cm、イオン交換樹脂量が0.111
mg/cmとなるように塗布して領域Qを形成した以
外は例1と同様にしてカソード触媒層を形成した。カソ
ード触媒層として、上述のようにして得られたものを用
いた以外は例1と同様にして膜・触媒層接合体を得て、
例1と同様にして膜電極接合体を作製した。
The catalyst layer forming coating liquid 2 was used in place of the catalyst layer forming coating liquid 1, and the amount of platinum deposited was 0.33 mg / cm 3.
2 , the area P is formed by coating so that the amount of the ion exchange resin is 0.333 mg / cm 2, and the catalyst layer forming coating solution 2
Instead of using the catalyst layer-forming coating liquid 3, the amount of deposited platinum was 0.33 mg / cm 2 , and the amount of ion exchange resin was 0.111.
A cathode catalyst layer was formed in the same manner as in Example 1 except that the region Q was formed by coating so that the amount became mg / cm 2 . A membrane / catalyst layer assembly was obtained in the same manner as in Example 1 except that the cathode catalyst layer obtained as described above was used.
A membrane electrode assembly was produced in the same manner as in Example 1.

【0045】〔例3〕例1で用いた担持触媒と共重合体
との質量比が7.10:2.90となるようにして、エ
タノール/水の混合溶媒(質量比で1/1)中で混合撹
拌し、得られる液の固形分(触媒と樹脂の合量)濃度が
10質量%となるように調製した。これを触媒層形成用
塗工液4とした。
Example 3 A mixed solvent of ethanol / water (mass ratio of 1/1) was used so that the mass ratio of the supported catalyst used in Example 1 and the copolymer was 7.10: 2.90. The mixture was mixed and stirred in such a manner that the concentration of the solid content (total amount of catalyst and resin) of the obtained liquid was adjusted to 10% by mass. This was used as a catalyst layer forming coating liquid 4.

【0046】次に、例1で用いた担持触媒と共重合体と
の質量比が7.86:2.14となるようにして、エタ
ノール/水の混合溶媒(質量比で1/1)中で混合撹拌
し、得られる液の固形分(触媒と樹脂の合量)濃度が1
0質量%となるように調製した。これを触媒層形成用塗
工液5とした。
Then, the mass ratio of the supported catalyst used in Example 1 to the copolymer was adjusted to 7.86: 2.14 in a mixed solvent of ethanol / water (mass ratio of 1/1). Mix and stir at 50 ° C., and the resulting liquid has a solid content (total amount of catalyst and resin) of 1
It was prepared to be 0% by mass. This was used as a catalyst layer forming coating liquid 5.

【0047】触媒層形成用塗工液1のかわりに触媒層形
成用塗工液4を用いて白金付着量が0.44mg/cm
、イオン交換樹脂量が0.333mg/cmとなる
ように塗布して領域Pを形成し、触媒層形成用塗工液2
のかわりに触媒層形成用塗工液5を用いて白金付着量が
0.22mg/cm、イオン交換樹脂量が0.111
mg/cmとなるように塗布して領域Qを形成した以
外は例1と同様にしてカソード触媒層を形成した。カソ
ード触媒層として、上述のようにして得られたものを用
いた以外は例1と同様にして膜・触媒層接合体を得て、
例1と同様にして膜電極接合体を作製した。
The catalyst layer forming coating liquid 4 was used in place of the catalyst layer forming coating liquid 1, and the amount of platinum deposited was 0.44 mg / cm 2.
2 , the area P is formed by coating so that the amount of the ion exchange resin is 0.333 mg / cm 2, and the catalyst layer forming coating solution 2
Instead of using the coating liquid 5 for forming a catalyst layer, the amount of platinum deposited was 0.22 mg / cm 2 , and the amount of ion exchange resin was 0.111.
A cathode catalyst layer was formed in the same manner as in Example 1 except that the region Q was formed by coating so that the amount became mg / cm 2 . A membrane / catalyst layer assembly was obtained in the same manner as in Example 1 except that the cathode catalyst layer obtained as described above was used.
A membrane electrode assembly was produced in the same manner as in Example 1.

【0048】〔例4〕例1で用いた担持触媒と共重合体
との質量比が7.33:2.67となるようにして、エ
タノール/水の混合溶媒(質量比で1/1)中で混合撹
拌し、得られる液の固形分(触媒と樹脂の合量)濃度が
10質量%となるように調製した。これを触媒層形成用
塗工液6とした。
Example 4 A mixed solvent of ethanol / water (mass ratio of 1/1) was used so that the mass ratio of the supported catalyst used in Example 1 and the copolymer was 7.33: 2.67. The mixture was mixed and stirred in such a manner that the concentration of the solid content (total amount of catalyst and resin) of the obtained liquid was adjusted to 10% by mass. This was used as a catalyst layer forming coating liquid 6.

【0049】触媒層形成用塗工液6を基材シート全域に
白金付着量が0.33mg/cm、イオン交換樹脂量
が0.222mg/cmとなるように塗布して乾燥さ
せた。カソード触媒層として、上述のようにして得られ
たものを用いた以外は例1と同様にして膜・触媒層接合
体を得て、例1と同様にして膜電極接合体を作製した。
The catalyst layer-forming coating liquid 6 was applied to the entire area of the substrate sheet so that the amount of platinum deposited was 0.33 mg / cm 2 and the amount of ion exchange resin was 0.222 mg / cm 2, and dried. A membrane / catalyst layer assembly was obtained in the same manner as in Example 1 except that the cathode catalyst layer obtained as described above was used, and a membrane / electrode assembly was prepared in the same manner as in Example 1.

【0050】[電池特性試験]上記の例1〜4の各単位
セル(膜電極接合体)の両外側に図1に示すようなセパ
レータを配置して測定セルとし、電子負荷装置FK40
0L(高砂製作所社製)と直流電源装置EX750L
(高砂製作所社製)を用いて電流電圧特性の測定試験を
行った。測定条件は、水素出口圧力;0.15MPa、
空気出口圧力;0.15MPa、測定セルの作動温度;
75℃とし、カソードに供給する空気の露点は45℃、
アノードに供給する水素の露点は70℃とし、出力電流
密度を0A/cm(OCV)、0.2A/cm
1.0A/cmと変化させた場合における測定セルの
セル電圧(端子間電圧)を測定した。これらの各測定セ
ルの試験結果を表2に示す。
[Battery Characteristic Test] Electronic load device FK40 was prepared by placing separators as shown in FIG. 1 on both outer sides of each unit cell (membrane electrode assembly) of Examples 1 to 4 as a measuring cell.
0L (Takasago Seisakusho) and DC power supply EX750L
Using Takasago Seisakusho, a measurement test of current-voltage characteristics was performed. Measurement conditions are hydrogen outlet pressure; 0.15 MPa,
Air outlet pressure; 0.15 MPa, operating temperature of measuring cell;
75 ° C., the dew point of the air supplied to the cathode is 45 ° C.,
The dew point of hydrogen supplied to the anode is 70 ° C., the output current density is 0 A / cm 2 (OCV), 0.2 A / cm 2 ,
The cell voltage (voltage between terminals) of the measurement cell when changed to 1.0 A / cm 2 was measured. Table 2 shows the test results of each of these measurement cells.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【発明の効果】本発明の構成によれば、ガスの流路の入
口近傍領域に潜在的に存在する反応サイトの絶対量がガ
スの流路の出口近傍領域に比べて多くなる。そのため、
カソード触媒層におけるガスの流路の入口近傍領域はカ
ソード触媒層に低加湿の酸化剤ガスが供給されることに
より乾燥雰囲気になったとしても、発電中においてもあ
る程度十分な有効反応サイトが確保される。一方、ガス
の流路の出口近傍領域は入口近傍領域から累積された電
池反応生成水があるため、湿潤状態が得られる。そのた
め、触媒を被覆するイオン交換樹脂は含水状態となって
いるから、潜在的に存在する反応サイトはガスの流路の
入口近傍領域ほど多くなくても十分に有効反応サイトが
確保される。
According to the structure of the present invention, the absolute amount of reaction sites potentially existing in the region near the inlet of the gas flow channel becomes larger than that in the region near the outlet of the gas flow channel. for that reason,
Even if the area near the inlet of the gas flow path in the cathode catalyst layer becomes a dry atmosphere due to the low-humidification oxidant gas being supplied to the cathode catalyst layer, a sufficient amount of effective reaction sites are secured even during power generation. It On the other hand, in the region near the outlet of the gas flow path, a wet state is obtained because there is water generated by the battery reaction accumulated from the region near the inlet. Therefore, since the ion-exchange resin coating the catalyst is in a water-containing state, an effective reaction site can be sufficiently secured even if the number of potentially existing reaction sites is not as large as the area near the inlet of the gas flow path.

【0054】すなわち、本発明におけるカソード触媒層
の構成は、燃料電池の反応によりガスの流路の入口近傍
領域と出口近傍領域とで潜在的に存在する反応サイト数
を調整している。このような本発明の構成を採用するこ
とにより、経済的で効率よく高性能の固体高分子型燃料
電池が得られる。
That is, in the constitution of the cathode catalyst layer in the present invention, the number of reaction sites potentially existing in the region near the inlet and the region near the outlet of the gas flow passage is adjusted by the reaction of the fuel cell. By adopting such a constitution of the present invention, a high-performance solid polymer fuel cell can be obtained economically and efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】カソード触媒層の面内分布構造に関する本発明
の実施形態を示す図。
FIG. 1 is a diagram showing an embodiment of the present invention relating to an in-plane distribution structure of a cathode catalyst layer.

【図2】本発明の固体高分子型燃料電池の実施形態を示
す図。
FIG. 2 is a diagram showing an embodiment of a polymer electrolyte fuel cell of the present invention.

【符号の説明】[Explanation of symbols]

2:セパレータ 21:ガスの流路の入口 22:ガスの流路の出口 31:高分子電解質膜 32:カソード触媒層 33:アノード触媒層 34、35:ガス拡散層 36、37:セパレータ 2: Separator 21: Inlet of gas flow path 22: Exit of gas flow path 31: Polymer electrolyte membrane 32: cathode catalyst layer 33: Anode catalyst layer 34, 35: Gas diffusion layer 36, 37: Separator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS03 BB01 BB03 BB06 BB08 BB11 BB12 DD06 EE03 EE08 EE18 EE19 HH05 HH08 5H026 AA06 CC03 CX05 EE02 EE08 EE19 HH05 HH08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H018 AA06 AS03 BB01 BB03 BB06                       BB08 BB11 BB12 DD06 EE03                       EE08 EE18 EE19 HH05 HH08                 5H026 AA06 CC03 CX05 EE02 EE08                       EE19 HH05 HH08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】アノードと、カソードと、前記アノードと
前記カソードとの間に配置された高分子電解質膜と、前
記カソードの前記高分子電解質膜と接する面の反対側に
配置され入口と出口とを有するガス流路が前記カソード
と接する面に形成されたセパレータと、を備える固体高
分子型燃料電池であって、 前記カソードは、白金又は白金合金を含む触媒とイオン
交換樹脂とを含み前記高分子電解質膜と隣接する触媒層
を有し、 前記触媒層において、前記ガス流路の前記入口の近傍領
域に単位面積あたりに含まれる白金の量が、前記出口の
近傍領域に単位面積あたりに含まれる白金の量より多い
ことを特徴とする固体高分子型燃料電池。
1. An anode, a cathode, a polymer electrolyte membrane arranged between the anode and the cathode, and an inlet and an outlet arranged on the opposite side of the surface of the cathode in contact with the polymer electrolyte membrane. A solid polymer electrolyte fuel cell comprising a separator having a gas flow path formed on a surface in contact with the cathode, wherein the cathode includes a catalyst containing platinum or a platinum alloy and an ion exchange resin, It has a catalyst layer adjacent to a molecular electrolyte membrane, and in the catalyst layer, the amount of platinum contained per unit area in the region near the inlet of the gas flow channel is contained per unit area in the region near the outlet. The polymer electrolyte fuel cell is characterized in that the amount of platinum contained is greater than that of platinum.
【請求項2】前記入口の近傍領域に単位面積あたりに含
まれる白金の量は、前記出口の近傍領域に単位面積あた
りに含まれる白金の量より0.02〜1.5mg/cm
多い請求項1に記載の固体高分子型燃料電池。
2. The amount of platinum contained per unit area in the region near the inlet is 0.02-1.5 mg / cm2 from the amount of platinum contained per unit area in the region near the outlet.
The polymer electrolyte fuel cell according to claim 1, wherein the amount is two .
【請求項3】アノードと、カソードと、前記アノードと
前記カソードとの間に配置された高分子電解質膜と、前
記カソードの前記高分子電解質膜と接する面の反対側に
配置され入口と出口とを有するガス流路が前記カソード
と接する面に形成されたセパレータと、を備える固体高
分子型燃料電池であって、 前記カソードは、白金又は白金合金を含む触媒とイオン
交換樹脂とを含み前記高分子電解質膜と隣接する触媒層
を有し、 前記触媒層において、前記ガス流路の前記入口の近傍領
域に単位面積あたりに含まれるイオン交換樹脂の量が、
前記出口の近傍領域に単位面積あたりに含まれるイオン
交換樹脂の量より多いことを特徴とする固体高分子型燃
料電池。
3. An anode, a cathode, a polymer electrolyte membrane arranged between the anode and the cathode, and an inlet and an outlet arranged on the opposite side of a surface of the cathode in contact with the polymer electrolyte membrane. A solid polymer electrolyte fuel cell comprising a separator having a gas flow path formed on a surface in contact with the cathode, wherein the cathode includes a catalyst containing platinum or a platinum alloy and an ion exchange resin, Having a catalyst layer adjacent to a molecular electrolyte membrane, in the catalyst layer, the amount of ion exchange resin contained per unit area in the region near the inlet of the gas flow path,
The polymer electrolyte fuel cell is characterized in that the amount of the ion exchange resin contained per unit area in the region near the outlet is larger than that of the polymer electrolyte fuel cell.
【請求項4】前記触媒層において、前記ガス流路の前記
入口の近傍領域に単位面積あたりに含まれるイオン交換
樹脂の量が、前記出口の近傍領域に単位面積あたりに含
まれるイオン交換樹脂の量より多い請求項1又は2に記
載の固体高分子型燃料電池。
4. In the catalyst layer, the amount of ion exchange resin contained per unit area in the region near the inlet of the gas flow channel is equal to that of the ion exchange resin contained per unit area in the region near the outlet. The polymer electrolyte fuel cell according to claim 1 or 2, which is larger than the amount.
【請求項5】前記出口の近傍領域に単位面積あたりに含
まれるイオン交換樹脂の量は、前記入口の近傍領域に単
位面積あたりに含まれるイオン交換樹脂の量に対して9
0%以下であり、かつ前記入口の近傍領域に単位面積あ
たりに含まれるイオン交換樹脂の量が0.1〜2.5m
g/cmである請求項3又は4に記載の固体高分子型
燃料電池。
5. The amount of ion exchange resin contained per unit area in the region near the outlet is 9 with respect to the amount of ion exchange resin contained per unit area in the region near the inlet.
0% or less, and the amount of ion exchange resin contained per unit area in the area near the inlet is 0.1 to 2.5 m.
The polymer electrolyte fuel cell according to claim 3 or 4, which has g / cm 2 .
【請求項6】前記イオン交換樹脂は、スルホン酸基を有
するパーフルオロカーボン重合体からなる請求項1〜5
のいずれかに記載の固体高分子型燃料電池。
6. The ion exchange resin comprises a perfluorocarbon polymer having a sulfonic acid group.
The polymer electrolyte fuel cell according to any one of 1.
【請求項7】前記ガスの流路には、燃料電池の作動温度
よりも10℃以上低い温度の露点を有するガスが流れる
請求項1〜6のいずれかに記載の固体高分子型燃料電
池。
7. The polymer electrolyte fuel cell according to claim 1, wherein a gas having a dew point at a temperature lower than the operating temperature of the fuel cell by 10 ° C. or more flows through the gas flow path.
JP2001365819A 2001-11-30 2001-11-30 Solid polymer-type fuel cell Pending JP2003168443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365819A JP2003168443A (en) 2001-11-30 2001-11-30 Solid polymer-type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365819A JP2003168443A (en) 2001-11-30 2001-11-30 Solid polymer-type fuel cell

Publications (1)

Publication Number Publication Date
JP2003168443A true JP2003168443A (en) 2003-06-13

Family

ID=19175798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365819A Pending JP2003168443A (en) 2001-11-30 2001-11-30 Solid polymer-type fuel cell

Country Status (1)

Country Link
JP (1) JP2003168443A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099001A1 (en) * 2004-03-30 2005-10-20 Nissan Motor Co., Ltd. Fuel cell
JP2006244907A (en) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd Fuel cell
WO2007032903A2 (en) * 2005-09-13 2007-03-22 3M Innovative Properties Company Catalyst layers to enhance uniformity of current density in membrane electrode assemblies
JP2007513466A (en) * 2003-11-03 2007-05-24 ゼネラル・モーターズ・コーポレーション Variable catalyst volume based on flow region geometry
WO2007116842A1 (en) 2006-03-31 2007-10-18 Nissan Motor Co., Ltd. Electrode catalyst for electrochemical cell, method for manufacturing the same, electrochemical cell, unit cell for fuel battery, and fuel battery
JP2008282645A (en) * 2007-05-10 2008-11-20 Toyota Motor Corp Membrane electrode assembly used for fuel cell and its manufacturing method
JP2009004282A (en) * 2007-06-25 2009-01-08 Panasonic Corp Fuel cells, membrane-electrode assembly, and film-catalyst layer assembly
JP2012186105A (en) * 2011-03-08 2012-09-27 Nippon Soken Inc Fuel cell
US8492043B2 (en) 2008-10-29 2013-07-23 Panasonic Corporation Fuel cell, fuel cell system, and method for operating fuel cell
JP2016076496A (en) * 2009-09-30 2016-05-12 フイリツプス66カンパニー Method of producing anode material for large output lithium ion battery
CN113921829A (en) * 2021-10-11 2022-01-11 中汽创智科技有限公司 Anode catalyst layer, membrane electrode and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240204A (en) * 1993-11-23 1995-09-12 Johnson Matthey Plc Porous electrode for fuel cell and its preparation
JP2000277130A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Method for producing solid polymer type fuel cell and electrolyte film
JP2001196068A (en) * 2000-01-11 2001-07-19 Asahi Glass Co Ltd Solid high-polymer fuel cell
JP2001319663A (en) * 2000-05-08 2001-11-16 Fuji Electric Co Ltd Solid polymer type fuel cell and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240204A (en) * 1993-11-23 1995-09-12 Johnson Matthey Plc Porous electrode for fuel cell and its preparation
JP2000277130A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Method for producing solid polymer type fuel cell and electrolyte film
JP2001196068A (en) * 2000-01-11 2001-07-19 Asahi Glass Co Ltd Solid high-polymer fuel cell
JP2001319663A (en) * 2000-05-08 2001-11-16 Fuji Electric Co Ltd Solid polymer type fuel cell and its manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227124B2 (en) 2003-11-03 2012-07-24 GM Global Technology Operations LLC Variable catalyst loading based on flow field geometry
JP4764346B2 (en) * 2003-11-03 2011-08-31 ゼネラル・モーターズ・コーポレーション Variable catalyst volume based on flow region geometry
JP2010251331A (en) * 2003-11-03 2010-11-04 General Motors Corp <Gm> Variable catalytic amount based on flow region shape
JP2007513466A (en) * 2003-11-03 2007-05-24 ゼネラル・モーターズ・コーポレーション Variable catalyst volume based on flow region geometry
US7829239B2 (en) 2003-11-03 2010-11-09 Gm Global Technology Operations, Inc. Variable catalyst loading based on flow field geometry
US7927761B2 (en) 2003-11-03 2011-04-19 GM Global Technology Operations LLC Variable catalyst loading based on flow field geometry
WO2005099001A1 (en) * 2004-03-30 2005-10-20 Nissan Motor Co., Ltd. Fuel cell
JP2006244907A (en) * 2005-03-04 2006-09-14 Nissan Motor Co Ltd Fuel cell
US7790304B2 (en) 2005-09-13 2010-09-07 3M Innovative Properties Company Catalyst layers to enhance uniformity of current density in membrane electrode assemblies
WO2007032903A2 (en) * 2005-09-13 2007-03-22 3M Innovative Properties Company Catalyst layers to enhance uniformity of current density in membrane electrode assemblies
WO2007032903A3 (en) * 2005-09-13 2007-07-12 3M Innovative Properties Co Catalyst layers to enhance uniformity of current density in membrane electrode assemblies
JP2009508318A (en) * 2005-09-13 2009-02-26 スリーエム イノベイティブ プロパティズ カンパニー Catalyst layer for increasing the uniformity of current density in membrane electrode assemblies
US8481185B2 (en) 2005-09-13 2013-07-09 3M Innovative Properties Company Catalyst layers to enhance uniformity of current density in membrane electrode assemblies
JP2014013760A (en) * 2005-09-13 2014-01-23 3M Innovative Properties Co Catalyst layer with enhanced uniformity of current density in membrane electrode assembly
WO2007116842A1 (en) 2006-03-31 2007-10-18 Nissan Motor Co., Ltd. Electrode catalyst for electrochemical cell, method for manufacturing the same, electrochemical cell, unit cell for fuel battery, and fuel battery
US8114538B2 (en) 2006-03-31 2012-02-14 Nissan Motor Co., Ltd. Electrocatalyst for electrochemical cell, method for producing the electrocatalyst, electrochemical cell, single cell of fuel cell, and fuel cell
JP2008282645A (en) * 2007-05-10 2008-11-20 Toyota Motor Corp Membrane electrode assembly used for fuel cell and its manufacturing method
JP2009004282A (en) * 2007-06-25 2009-01-08 Panasonic Corp Fuel cells, membrane-electrode assembly, and film-catalyst layer assembly
US8492043B2 (en) 2008-10-29 2013-07-23 Panasonic Corporation Fuel cell, fuel cell system, and method for operating fuel cell
JP2016076496A (en) * 2009-09-30 2016-05-12 フイリツプス66カンパニー Method of producing anode material for large output lithium ion battery
JP2012186105A (en) * 2011-03-08 2012-09-27 Nippon Soken Inc Fuel cell
CN113921829A (en) * 2021-10-11 2022-01-11 中汽创智科技有限公司 Anode catalyst layer, membrane electrode and preparation method thereof
CN113921829B (en) * 2021-10-11 2023-09-15 中汽创智科技有限公司 Anode catalyst layer, membrane electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4233208B2 (en) Fuel cell
US7745063B2 (en) Fuel cell stack
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP2004193106A (en) Membrane-electrode structure and polymer electrolyte fuel cell using it
JP3459615B2 (en) Electrode for fuel cell and fuel cell
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
WO2002073723A1 (en) Polymer electrolyte type fuel cell
JP2003168443A (en) Solid polymer-type fuel cell
Song et al. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane
JP4907894B2 (en) Fuel cell stack
JP3556171B2 (en) Polymer electrolyte fuel cell and method of manufacturing the same
JPH07326363A (en) Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
JP2007149642A (en) Electrolyte material for polymer electrolyte fuel cell, electrolyte membrane catalyst layer assembly and electrolyte membrane electrode assembly using the same, and fuel cell
US20070202388A1 (en) Membrane Electrode Unit
JPWO2006004120A1 (en) Gas diffusion electrode and polymer electrolyte fuel cell manufacturing method, gas diffusion electrode and polymer electrolyte fuel cell
JP3354550B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JPH11135136A (en) Solid poly electrolyte type fuel cell
Scott Membrane electrode assemblies for polymer electrolyte membrane fuel cells
JP3500086B2 (en) Fuel cell and fuel cell using the same
JP2009043688A (en) Fuel cell
JP2002319421A (en) Starting method and manufacturing method of solid polymer fuel cell
EP2933862B1 (en) Method for producing a fuel cell electrode sheet
JP2003163009A (en) Solid polymer fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219