JP2003160714A - Epoxy resin composition and hollow package for housing semiconductor device using the same - Google Patents
Epoxy resin composition and hollow package for housing semiconductor device using the sameInfo
- Publication number
- JP2003160714A JP2003160714A JP2002044675A JP2002044675A JP2003160714A JP 2003160714 A JP2003160714 A JP 2003160714A JP 2002044675 A JP2002044675 A JP 2002044675A JP 2002044675 A JP2002044675 A JP 2002044675A JP 2003160714 A JP2003160714 A JP 2003160714A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- mass
- resin composition
- powder
- silica powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 59
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 54
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 54
- 239000004065 semiconductor Substances 0.000 title claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 96
- 239000000843 powder Substances 0.000 claims abstract description 81
- 239000002245 particle Substances 0.000 claims abstract description 41
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 41
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000005350 fused silica glass Substances 0.000 claims abstract description 13
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 11
- 239000011342 resin composition Substances 0.000 claims abstract description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 27
- 238000010521 absorption reaction Methods 0.000 claims description 7
- 239000004593 Epoxy Substances 0.000 claims description 4
- 239000011256 inorganic filler Substances 0.000 abstract description 19
- 229910003475 inorganic filler Inorganic materials 0.000 abstract description 19
- 229910052751 metal Inorganic materials 0.000 abstract description 11
- 239000002184 metal Substances 0.000 abstract description 11
- 239000012535 impurity Substances 0.000 abstract description 10
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 238000001723 curing Methods 0.000 description 13
- 230000005484 gravity Effects 0.000 description 9
- 238000000465 moulding Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 238000001721 transfer moulding Methods 0.000 description 5
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 4
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 235000013869 carnauba wax Nutrition 0.000 description 2
- 238000001444 catalytic combustion detection Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- -1 antimony trioxide Chemical compound 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- UTTHLMXOSUFZCQ-UHFFFAOYSA-N benzene-1,3-dicarbohydrazide Chemical compound NNC(=O)C1=CC=CC(C(=O)NN)=C1 UTTHLMXOSUFZCQ-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000004843 novolac epoxy resin Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- WXAZIUYTQHYBFW-UHFFFAOYSA-N tris(4-methylphenyl)phosphane Chemical compound C1=CC(C)=CC=C1P(C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 WXAZIUYTQHYBFW-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- LPEBYPDZMWMCLZ-CVBJKYQLSA-L zinc;(z)-octadec-9-enoate Chemical compound [Zn+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O LPEBYPDZMWMCLZ-CVBJKYQLSA-L 0.000 description 1
- IJQXGKBNDNQWAT-UHFFFAOYSA-L zinc;docosanoate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCCCCCC([O-])=O IJQXGKBNDNQWAT-UHFFFAOYSA-L 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16195—Flat cap [not enclosing an internal cavity]
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体素子を収納
するための中空パッケージ用として好適な熱伝導性と、
耐湿性、成形性に優れたエポキシ樹脂組成物および該樹
脂組成物からなる半導体素子収納中空パッケージに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal conductivity suitable for a hollow package for accommodating semiconductor elements,
The present invention relates to an epoxy resin composition having excellent moisture resistance and moldability, and a semiconductor element housing hollow package made of the resin composition.
【0002】[0002]
【従来の技術】従来、CCD(Charge Coup
led Device)やCMOS(Compleme
ntary Metal Oxide Semicond
uctor)等の固体撮像素子を収納するための中空パ
ッケージには、セラミックの他に、廉価な樹脂製パッケ
ージが用いられている。一般的に樹脂製中空パッケージ
は、インサート成形によって樹脂成形体と一体化され
た、両端がパッケージの内側と外側に開放されたリード
フレームと、パッケージ中央部に接着剤によって固着さ
れた半導体素子とを、ボンディングワイヤーにより電気
的に連結している。また、樹脂成形体の上面は、透明な
合成樹脂板、ガラス板等の蓋材を接着剤によって固着
し、気密封止構造になっている。2. Description of the Related Art Conventionally, a CCD (Charge Coup) is used.
red Device) and CMOS (Complement)
nary Metal Oxide Semiconductor
In addition to ceramics, inexpensive resin packages are used as hollow packages for accommodating solid-state image pickup devices such as an actuator. Generally, a hollow resin package includes a lead frame which is integrated with a resin molded body by insert molding and has both ends open to the inside and outside of the package, and a semiconductor element fixed to the center of the package with an adhesive. , Are electrically connected by bonding wires. Further, a lid member such as a transparent synthetic resin plate or a glass plate is fixed to the upper surface of the resin molded body with an adhesive to form an airtight sealing structure.
【0003】近年、このような樹脂製中空パッケージを
搭載するビデオカメラ、デジタルカメラ等の映像記録装
置の高画素化、小型化要求が高まる中で、CCDやCM
OS等の固体撮像素子に対する要求性能も高まりつつあ
る。すなわち、高画素化、小型化の進展にともない、半
導体素子の発熱量が増加し、これによって、撮像素子自
体の機能を低下せしめる恐れがある。そのため、中空パ
ッケージの素材からの放熱性を高めることによりこのよ
うな問題を解決すべく、熱伝導率の高い樹脂製中空パッ
ケージが要望されている。In recent years, CCDs and CMs have been developed in response to increasing demands for higher pixel counts and smaller sizes of video recording devices such as video cameras and digital cameras equipped with such resin hollow packages.
Performance requirements for solid-state imaging devices such as OS are also increasing. That is, as the number of pixels is increased and the size is reduced, the amount of heat generated by the semiconductor element is increased, which may reduce the function of the image pickup element itself. Therefore, in order to solve such a problem by improving the heat dissipation from the material of the hollow package, a resin hollow package having high thermal conductivity has been demanded.
【0004】従来、樹脂成形物の熱伝導率を向上させる
手段としては、アルミナ粉をはじめとする高熱伝導性を
有する無機充填剤を添加し、二本ロール、ニーダーまた
は押出し機等の加熱溶融混練機で調製する方法が用いら
れるが、これらの無機充填剤は、硬度が高く、一般的に
破砕状の形状をしているため、混練時に混練機のロール
表面やスクリュ表面が著しく摩耗し、樹脂組成物中に金
属不純物が混入する問題が指摘されていた。Conventionally, as a means for improving the thermal conductivity of a resin molded product, an inorganic filler having a high thermal conductivity such as alumina powder is added, and the mixture is heated and melted and kneaded by a two-roll, kneader or extruder. Although the method of preparing with a machine is used, since these inorganic fillers have high hardness and generally have a crushed shape, the roll surface and screw surface of the kneader are significantly worn during kneading, and It has been pointed out that metal impurities are mixed in the composition.
【0005】また一方で、パッケージが小型化になった
場合、それにともない樹脂成形体の肉厚が薄くなるた
め、大気中の水分が樹脂成形体を通してパッケージ内部
に浸入しやすくなる点も問題とされていた。On the other hand, when the package is downsized, the wall thickness of the resin molded body is reduced accordingly, so that moisture in the atmosphere easily enters the inside of the package through the resin molded body. Was there.
【0006】[0006]
【発明が解決しようとする課題】本発明は、前記問題点
を解決するために提案されたものであって、無機充填剤
を含有したエポキシ樹脂組成物について、従来のものよ
りも熱伝導率が高く、耐湿性に優れ、さらに樹脂組成物
の調製の際、混練機のロール表面やスクリュ表面を組成
物中の無機充填剤によって摩耗させることが少なく、金
属不純物の発生を抑えた樹脂製中空パッケージ用に好適
なエポキシ樹脂組成物を提供し、今後ますます高画素
化、小型化するCCD、CMOS等の固体撮像素子を収
納するための樹脂製中空パッケージを提供することにあ
る。DISCLOSURE OF THE INVENTION The present invention has been proposed in order to solve the above problems, and an epoxy resin composition containing an inorganic filler has a thermal conductivity higher than that of a conventional one. A resin hollow package that is highly resistant to moisture and less likely to wear the roll surface or screw surface of the kneading machine due to the inorganic filler in the composition during the preparation of the resin composition and to suppress the generation of metal impurities. The purpose of the present invention is to provide an epoxy resin composition suitable for use in a resin, and to provide a resin hollow package for accommodating solid-state imaging devices such as CCDs and CMOSs, which have ever-increasingly higher pixel counts and smaller sizes.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記課題
を解決するため、種々検討を行った結果、本願発明を完
成するに至った。即ち、本発明は、
エポキシ樹脂、硬化剤、硬化促進剤、球状アルミナ
粉および低密度球状シリカ粉を含み、加えて球状溶融シ
リカ粉、破砕シリカ粉および窒化アルミニウム粉から選
ばれる少なくとも1種を含むエポキシ樹脂組成物であっ
て、上記球状アルミナ粉は下記(1)式で求めた球形度
が0.9以上、平均粒径が0.1μm以上30μm未
満、かつ組成物の全質量に対する含有量が10質量%以
上80質量%以下であり(但し、球状アルミナ粉および
低密度球状シリカ粉と、球状溶融シリカ粉、破砕シリカ
粉、窒化アルミニウム粉から選ばれる少なくとも1種と
の合計の含有量は、組成物の全質量に対して95質量%
以下である。)、該組成物の硬化物の熱伝導率が1W/
m・K以上であることを特徴とするエポキシ樹脂組成物
を提供する。
球形度=粒子の投影面積/粒子の投影周囲長と同じ円周を持つ真円の面積…(1)The inventors of the present invention have conducted various studies in order to solve the above problems, and as a result, have completed the present invention. That is, the present invention includes an epoxy resin, a curing agent, a curing accelerator, a spherical alumina powder and a low density spherical silica powder, and at least one selected from spherical fused silica powder, crushed silica powder and aluminum nitride powder. In the epoxy resin composition, the spherical alumina powder has a sphericity of 0.9 or more, an average particle diameter of 0.1 μm or more and less than 30 μm, and a content relative to the total mass of the composition. 10 mass% or more and 80 mass% or less (however, the total content of spherical alumina powder and low-density spherical silica powder, and at least one selected from spherical fused silica powder, crushed silica powder, and aluminum nitride powder, 95 mass% relative to the total mass of the composition
It is the following. ), The cured product of the composition has a thermal conductivity of 1 W /
Provided is an epoxy resin composition characterized by having m · K or more. Sphericality = Projected area of particles / Area of a perfect circle having the same circumference as the projected perimeter of particles ... (1)
【0008】 前記低密度球状シリカ粉が、1−ブタ
ノールを媒体として測定した密度が2.10g/cm3
未満、吸湿率が3%以上、かつ平均粒径が0.1μm以
上3μm未満であり、全組成物中に1質量%以上30質
量%以下含有されることを特徴とする前記に記載のエ
ポキシ樹脂組成物は本発明の好ましい態様である。The low-density spherical silica powder has a density of 2.10 g / cm 3 measured using 1-butanol as a medium.
Less than 2%, a moisture absorption rate of 3% or more, an average particle size of 0.1 μm or more and less than 3 μm, and contained in the entire composition in an amount of 1% by mass or more and 30% by mass or less. The composition is a preferred embodiment of the present invention.
【0009】また本発明は、
前記またはに記載のエポキシ樹脂組成物からな
ることを特徴とする半導体素子収納中空パッケージ用エ
ポキシ樹脂組成物を提供する。The present invention also provides an epoxy resin composition for semiconductor device-containing hollow packages, characterized by comprising the above-mentioned epoxy resin composition.
【0010】また本発明は、
前記またはに記載のエポキシ樹脂組成物から成
形されたことを特徴とする半導体素子収納中空パッケー
ジを提供する。The present invention also provides a hollow package for housing a semiconductor device, characterized by being molded from the epoxy resin composition described above or.
【0011】[0011]
【発明の実施の形態】以下に本発明を詳細に説明する。
本発明のエポキシ樹脂組成物は、エポキシ樹脂、硬化
剤、硬化促進剤、球状アルミナ粉および低密度球状シリ
カ粉を含み、加えて球状溶融シリカ粉、破砕シリカ粉お
よび窒化アルミニウム粉から選ばれる少なくとも1種を
含み、硬化物の熱伝導率が1W/m・K以上であるエポ
キシ樹脂組成物である。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The epoxy resin composition of the present invention contains an epoxy resin, a curing agent, a curing accelerator, a spherical alumina powder and a low density spherical silica powder, and at least one selected from spherical fused silica powder, crushed silica powder and aluminum nitride powder. An epoxy resin composition containing a seed and having a thermal conductivity of 1 W / m · K or more.
【0012】<エポキシ樹脂>本発明のエポキシ樹脂と
しては、ビスフェノールA型、ビスフェノールF型、ビ
スフェノールAD型の各エポキシ樹脂、フェノールノボ
ラック型エポキシ樹脂、オルソクレゾールノボラック型
エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、ビフ
ェニル骨格含有エポキシ樹脂が好適に用いられ、これら
のいずれか1種類を単独で使用しても、あるいは2種類
以上を適当な比率で併用してもよい。これらのエポキシ
樹脂のエポキシ当量は300(g/eq)以下が好まし
く、さらには300(g/eq)以下100(g/e
q)以上が好ましい。本発明において、エポキシ樹脂の
全樹脂組成物中における配合量は、通常2質量%以上3
0質量%以下であり、とりわけ3質量%以上15質量%
以下の範囲内にあるのが好ましい。<Epoxy Resin> The epoxy resin of the present invention includes bisphenol A type, bisphenol F type, bisphenol AD type epoxy resins, phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, naphthalene skeleton-containing epoxy resins, A biphenyl skeleton-containing epoxy resin is preferably used, and any one of these may be used alone, or two or more of them may be used in combination at an appropriate ratio. The epoxy equivalent of these epoxy resins is preferably 300 (g / eq) or less, more preferably 300 (g / eq) or less 100 (g / e).
q) or more is preferable. In the present invention, the compounding amount of the epoxy resin in the whole resin composition is usually 2% by mass or more and 3% or more.
0% by mass or less, especially 3% by mass or more and 15% by mass
It is preferably within the following range.
【0013】<硬化剤>本発明で用いられる硬化剤とし
ては、上記エポキシ樹脂と硬化反応するものであれば特
に制限無く使用することができるが、なかでもフェノー
ル樹脂が好ましく、具体的には、フェノールノボラック
樹脂、アラルキルフェノール樹脂が挙げられる。また、
ジアミノジフェニルメタン、ジアミノジフェニルスルホ
ン、m−フェニレンジアミン等のアミン類、無水フタル
酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタ
ル酸等の酸無水物、イソフタル酸ジヒドラジド、アジピ
ン酸ジヒドラジド等の酸ジヒドラジド、ジシアンジアミ
ド、三フッ化ホウ素等が好適なものとして挙げられる。<Curing Agent> The curing agent used in the present invention can be used without particular limitation as long as it is capable of undergoing a curing reaction with the above-mentioned epoxy resin. Among them, a phenol resin is preferable, and specifically, Examples thereof include phenol novolac resin and aralkyl phenol resin. Also,
Amines such as diaminodiphenylmethane, diaminodiphenyl sulfone, m-phenylenediamine, acid anhydrides such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc. acid dihydrazides such as isophthalic acid dihydrazide, adipic acid dihydrazide, dicyandiamide, Suitable examples include boron trifluoride.
【0014】硬化剤の配合量は、耐湿性および機械的特
性の観点から、エポキシ樹脂のエポキシ基に対する化学
当量比が、0.5〜1.5の範囲にあることが好まし
く、さらには0.7〜1.2の範囲にあることが好まし
い。From the viewpoint of moisture resistance and mechanical properties, the compounding amount of the curing agent is preferably such that the chemical equivalent ratio of the epoxy resin to the epoxy groups is in the range of 0.5 to 1.5, and more preferably 0. It is preferably in the range of 7 to 1.2.
【0015】<硬化促進剤>本発明で用いられる硬化促
進剤としては、前記エポキシ樹脂と硬化剤との架橋反応
を促進するものが用いられる。その具体的な例として
は、2−メチルイミダゾール、2−エチル−4−メチル
イミダゾール、2−エチル−4−メチルイミダゾールア
ジン等のイミダゾール類;トリフェニルホスフィン、ト
リ(p−メチルフェニル)ホスフィン等の有機ホスフィ
ン類;1,8−ジアザシクロ(5,4,0)ウンデセン
−7(以下DBUという。)フェノール塩、フェノール
ノボラック塩、炭酸塩などのDBU誘導体;式Ar−N
H−CO−NR2、Ar−(NH−CO−NR2)2(A
rは置換または非置換のアリール基、Rは同一または異
なっていてもよい置換または非置換のアルキル基であ
る。)で表される尿素誘導体が挙げられる。<Curing Accelerator> As the curing accelerator used in the present invention, one that accelerates the crosslinking reaction between the epoxy resin and the curing agent is used. Specific examples thereof include imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole and 2-ethyl-4-methylimidazole azine; triphenylphosphine, tri (p-methylphenyl) phosphine and the like. Organic phosphines; DBU derivatives such as 1,8-diazacyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) phenol salt, phenol novolac salt, and carbonate; Formula Ar-N
H-CO-NR 2, Ar- (NH-CO-NR 2) 2 (A
r is a substituted or unsubstituted aryl group, and R is a substituted or unsubstituted alkyl group which may be the same or different. ) The urea derivative represented by this is mentioned.
【0016】硬化促進剤は、エポキシ樹脂100質量部
に対して、0.1質量部以上20質量部以下で配合され
ることが好ましく、さらには0.1質量部以上10質量
部以下の割合で配合されることが好ましい。The curing accelerator is preferably added in an amount of 0.1 part by mass or more and 20 parts by mass or less, and more preferably 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the epoxy resin. It is preferably blended.
【0017】<無機充填剤>本発明に用いられる無機充
填剤としては、球状アルミナ粉および低密度球状シリカ
粉を含み、加えて球状溶融シリカ粉、破砕シリカ粉およ
び窒化アルミニウム粉から選ばれる少なくとも1種を含
む。<Inorganic Filler> The inorganic filler used in the present invention includes spherical alumina powder and low density spherical silica powder, and at least one selected from spherical fused silica powder, crushed silica powder and aluminum nitride powder. Including seeds.
【0018】本発明で用いられる球状アルミナ粉は、下
記(1)式で求めた球形度が0.9以上のものであり、
平均粒径が0.1μm以上30μm未満のものであり、
好ましくは0.5μm以上30μm未満のものである。
球形度=粒子の投影面積/粒子の投影周囲長と同じ円周
を持つ真円の面積…(1)球形度を求めるには、走査型電
子顕微鏡と画像解析装置を用い、電子顕微鏡で得られた
SEM写真の画像解析を行って測定する。測定粒子数は
100個以上である。平均粒子径はレーザー回折式粒度
分布測定機により測定した。また、球形度がこの範囲の
ものであれば、複数の種類のアルミナ粉を用いてもよ
い。この場合において、複数の種類のアルミナ粉を混合
したアルミナ粉の平均粒径は上記の範囲内である。最大
粒径は200μm以下であることが好ましい。The spherical alumina powder used in the present invention has a sphericity of 0.9 or more determined by the following formula (1),
An average particle size of 0.1 μm or more and less than 30 μm,
It is preferably 0.5 μm or more and less than 30 μm.
Sphericity = projected area of particles / area of a perfect circle having the same circumference as the projected perimeter of particles ... (1) To find the sphericity, use a scanning electron microscope and an image analyzer to obtain the sphericity. The image is analyzed by measuring the SEM photograph. The number of particles measured is 100 or more. The average particle size was measured by a laser diffraction type particle size distribution measuring device. Further, as long as the sphericity is within this range, a plurality of types of alumina powder may be used. In this case, the average particle diameter of the alumina powder obtained by mixing a plurality of types of alumina powder is within the above range. The maximum particle size is preferably 200 μm or less.
【0019】このような、球状アルミナ粉を用いること
により、エポキシ組成物の熱伝導率が高くなるととも
に、樹脂組成物の調製の際、二本のロール、ニーダーま
たは押出機等の混練機のロール表面やスクリュ表面を摩
耗させることが少なく、従来使用されている破砕状アル
ミナ粉に比べて金属不純物の発生を大幅に低減すること
ができる。本発明においては、球状アルミナ粉の組成物
の全質量に対する含有量は、10質量%以上80質量%
以下であり、好ましくは25質量%以上80質量%以下
である。但し、球状アルミナ粉および低密度球状シリカ
粉と、球状溶融シリカ粉、破砕シリカ粉、窒化アルミニ
ウム粉から選ばれる少なくとも1種との合計の含有量
は、組成物の全質量に対して95質量%以下であり、好
ましくは30質量%以上95質量%以下であることが好
ましい。この範囲であると、エポキシ樹脂組成物の成形
性に優れるとともに、機械的強度等の樹脂硬化物の特性
が維持される。By using such spherical alumina powder, the thermal conductivity of the epoxy composition is increased and, at the time of preparing the resin composition, two rolls, rolls of a kneader such as a kneader or an extruder. The surface and the surface of the screw are less likely to be worn, and the generation of metal impurities can be significantly reduced as compared with the conventionally used crushed alumina powder. In the present invention, the content of the spherical alumina powder with respect to the total mass of the composition is 10% by mass or more and 80% by mass.
It is below, preferably 25% by mass or more and 80% by mass or less. However, the total content of spherical alumina powder and low-density spherical silica powder and at least one selected from spherical fused silica powder, crushed silica powder, and aluminum nitride powder is 95% by mass with respect to the total mass of the composition. It is preferably not more than 30% by mass and not more than 95% by mass. Within this range, the moldability of the epoxy resin composition will be excellent, and the properties of the cured resin, such as mechanical strength, will be maintained.
【0020】本発明で用いられる低密度球状シリカ粉
は、1−ブタノールを媒体として測定した密度が2.1
0g/cm3未満であるものが好ましく、さらには1.
55g/cm3以上2.05g/cm3以下であるものが
好ましい。吸湿率は3%以上であるものが好ましく、さ
らには5%以上であるものが好ましい。また、平均粒径
は、0.1μm以上3μm未満であるものが好ましく、
さらには0.2μm以上3μm未満のものが好ましい。The low-density spherical silica powder used in the present invention has a density of 2.1 when measured with 1-butanol as a medium.
It is preferably less than 0 g / cm 3 , more preferably 1.
55 g / cm 3 or more 2.05 g / cm 3 as less is preferred. The moisture absorption rate is preferably 3% or more, more preferably 5% or more. The average particle size is preferably 0.1 μm or more and less than 3 μm,
Further, those having a thickness of 0.2 μm or more and less than 3 μm are preferable.
【0021】本発明において、低密度球状シリカ粉の密
度は、次の方法で測定した。JISR3503で規定さ
れた容量50mlのワードン型比重瓶(質量m0)に、
十分に粉砕し乾燥したシリカ約5gを入れ精秤した。こ
の時の比重瓶とシリカの合計質量をmSとした。予め脱
気した1−ブタノール約10mlを加え、超音波攪拌を
30分間行った。次いで、この比重瓶を減圧デシケータ
ーに移し、少なくとも30mmHgの真空度中に15分
間置き、シリカに1−ブタノールを十分浸透させた。次
に1−ブタノールを比重瓶に満たし、蓋をし、25℃の
恒温相に15分間浸漬放置させた後、質量を測定した。
この時の比重瓶とシリカと1−ブタノールの合計質量を
mS1とした。In the present invention, the density of the low-density spherical silica powder was measured by the following method. In a Wardn-type pycnometer (mass m 0 ) with a capacity of 50 ml specified in JIS R3503,
About 5 g of sufficiently crushed and dried silica was put and precisely weighed. The total mass of the specific gravity bottle and silica at this time was defined as m S. About 10 ml of 1-butanol that had been degassed in advance was added, and ultrasonic stirring was performed for 30 minutes. Then, the pycnometer was transferred to a vacuum desiccator and placed in a vacuum degree of at least 30 mmHg for 15 minutes to sufficiently infiltrate the silica with 1-butanol. Next, 1-butanol was filled in the pycnometer, the lid was closed, the sample was left to immerse in a constant temperature phase at 25 ° C for 15 minutes, and then the mass was measured.
The total mass of the specific gravity bottle, silica, and 1-butanol at this time was defined as m S1 .
【0022】また、これとは別に、比重瓶の体積を測定
する目的で次の操作を行った。比重瓶に予め脱気処理し
た水を満たし、蓋をし、25℃の恒温水槽に15分間浸
漬放置させた後、質量を測定した。この時の比重瓶と水
の合計質量をm1とした。そして、次の計算法により、
25℃におけるシリカの密度ρSを算出した。
ρS=(mS−m0)/{V−(mS1−mS)/ρB}
但しV=(m1−m0)/ρW
ここで、
m0:比重瓶の質量(g)
mS:比重瓶とシリカの合計質量(g)
mS1:比重瓶とシリカと1−ブタノールの合計質量
(g)
m1:比重瓶と水の合計質量(g)
ρS:25℃におけるシリカの密度(g/cm3)
ρB:25℃における1−ブタノールの密度(0.80
60g/cm3)
ρW:25℃における水の密度(0.997047g/
cm3)
V:比重瓶の体積(cm3)
である。なお、測定は2回繰り返し、その平均値を算出
した。Separately, the following operation was performed for the purpose of measuring the volume of the pycnometer. The pycnometer was filled with water that had been degassed in advance, the lid was capped, the sample was left to immerse in a constant temperature water bath at 25 ° C. for 15 minutes, and then the mass was measured. The total mass of the specific gravity bottle and water at this time was m 1 . And by the following calculation method,
The density ρ S of silica at 25 ° C. was calculated. ρ S = (m S −m 0 ) / {V− (m S1 −m S ) / ρ B } where V = (m 1 −m 0 ) / ρ W, where m 0 : mass of specific gravity bottle (g ) M S : total mass of specific gravity bottle and silica (g) m S1 : total mass of specific gravity bottle, silica and 1-butanol (g) m 1 : total mass of specific gravity bottle and water (g) ρ S : at 25 ° C. Density of silica (g / cm 3 ) ρ B : Density of 1-butanol at 25 ° C. (0.80
60 g / cm 3 ) ρ W : Density of water at 25 ° C. (0.997047 g /
cm 3 ) V: Volume of specific gravity bottle (cm 3 ). The measurement was repeated twice and the average value was calculated.
【0023】本発明において、低密度球状シリカ粉の吸
湿率は、次の方法で測定した。十分に乾燥したシリカ約
5gを容器に入れ、精秤し、この時の質量をW0とす
る。次いで、この容器を60℃、90%RH(相対湿
度)の恒温恒湿槽に入れ、24時間放置し、この時の質
量をW1とする。このW0、W1から次の式で吸湿率を計
算した。
吸湿率(%)={(W1−W0)/W0}×100In the present invention, the moisture absorption of the low-density spherical silica powder was measured by the following method. About 5 g of sufficiently dried silica is put in a container and precisely weighed, and the mass at this time is defined as W 0 . Next, this container is placed in a constant temperature and constant humidity tank of 60 ° C. and 90% RH (relative humidity) and left for 24 hours, and the mass at this time is W 1 . The moisture absorption rate was calculated from these W 0 and W 1 by the following formula. Moisture absorption rate (%) = {(W 1 -W 0) / W 0} × 100
【0024】本発明において、低密度球状シリカ粉の平
均粒径は下記の方法によって測定した。シリカ5ないし
50mgを、分散媒10ないし20mlに超音波攪拌機
を用いて分散させた。分散媒としては、粒径に応じて、
水またはポリエチレングリコールを使用した。分散液を
セルに移し、気泡を除いて蓋をし、遠心沈降法粒度分布
測定機(堀場製作所製CAPA−700型)にかけた。
測定機の回転速度は、粒径に応じて500ないし500
0rpmとした。測定機により算出されたD(MEDIAN)
値を平均粒径とした。また、本発明の平均粒径測定にお
いては、粒径に応じてこの他に電子顕微鏡法、レーザー
回折法でも測定した。In the present invention, the average particle size of the low-density spherical silica powder is measured by the following method. 5 to 50 mg of silica was dispersed in 10 to 20 ml of a dispersion medium using an ultrasonic stirrer. As the dispersion medium, depending on the particle size,
Water or polyethylene glycol was used. The dispersion liquid was transferred to a cell, the air bubble was removed, the lid was covered, and the dispersion liquid was applied to a centrifugal sedimentation particle size distribution analyzer (CAPA-700 type manufactured by Horiba, Ltd.).
The rotation speed of the measuring machine is 500 to 500 depending on the particle size.
It was set to 0 rpm. D (MEDIAN) calculated by the measuring machine
The value was defined as the average particle size. In addition, in the measurement of the average particle size of the present invention, other than the above, electron microscopic method and laser diffraction method were also used depending on the particle size.
【0025】このような低密度球形シリカ粉を用いるこ
とにより、樹脂製中空パッケージが小型化され成形体の
肉厚が薄くなっても、大気中の水分のパッケージへの進
入に対して耐湿性を有する。低密度球状シリカ粉の全組
成物中の含有量は、1質量%以上30質量%以下である
ことが好ましく、さらには、1質量%以上20質量%以
下であることが好ましい。By using such a low-density spherical silica powder, even if the hollow resin package is downsized and the thickness of the molded product is reduced, moisture resistance against moisture in the atmosphere entering the package is maintained. Have. The content of the low-density spherical silica powder in the entire composition is preferably 1% by mass or more and 30% by mass or less, and more preferably 1% by mass or more and 20% by mass or less.
【0026】球状溶融シリカ粉は、球状の溶融シリカ粉
であればその球形度は特に限定されない。平均粒径は
0.1μm以上40μm未満のものが好ましく、さらに
は1μm以上35μm未満のものが好ましい。破砕シリ
カ粉は、溶融シリカであっても結晶シリカであってもよ
い。平均粒径は0.1μm以上35μm未満のものが好
ましく、さらには1μm以上30μm未満のものが好ま
しい。窒化アルミニウム粉の平均粒径は、0.1μm以
上30μm未満のものが好ましく、さらには0.1μm
以上20μm未満のものが好ましく用いられる。これら
の球状溶融シリカ粉、破砕シリカ粉、窒化アルミニウム
粉の無機充填材は、硬化物の熱伝導率をコントロールす
るために選択され、配合量が調整される。The spherical fused silica powder is not particularly limited in its sphericity as long as it is spherical fused silica powder. The average particle size is preferably 0.1 μm or more and less than 40 μm, more preferably 1 μm or more and less than 35 μm. The crushed silica powder may be fused silica or crystalline silica. The average particle size is preferably 0.1 μm or more and less than 35 μm, more preferably 1 μm or more and less than 30 μm. The average particle size of the aluminum nitride powder is preferably 0.1 μm or more and less than 30 μm, more preferably 0.1 μm.
Those having a size of 20 μm or more are preferably used. The inorganic fillers such as spherical fused silica powder, crushed silica powder, and aluminum nitride powder are selected to control the thermal conductivity of the cured product, and the blending amount is adjusted.
【0027】<その他の配合剤>本発明においては、必
要に応じ、本発明の目的を損なわない範囲で、その他の
無機充填材としてフェライト粉、水酸化アルミニウム
粉、炭酸カルシウム粉等を配合させることができる。ま
た、離型剤として、モンタン酸、ステアリン酸、ベヘニ
ン酸、オレイン酸等の高級脂肪酸のエステルワックス;
カルナバろう(カルナバワックス);ベヘニン酸亜鉛、
オレイン酸亜鉛、ステアリン酸マグネシウム、ステアリ
ン酸バリウム、ステアリン酸アルミニウムなどの高級脂
肪酸の金属塩;ジンクステアレート等の金属石鹸を配合
させることができる。これらは単独であっても、混合し
て用いても差し支えない。<Other compounding agents> In the present invention, if necessary, ferrite powder, aluminum hydroxide powder, calcium carbonate powder, etc. may be compounded as other inorganic fillers within a range not impairing the object of the present invention. You can Further, as a release agent, ester wax of higher fatty acid such as montanic acid, stearic acid, behenic acid, oleic acid;
Carnauba wax (carnauba wax); zinc behenate,
Metal salts of higher fatty acids such as zinc oleate, magnesium stearate, barium stearate and aluminum stearate; and metal soaps such as zinc stearate can be added. These may be used alone or in combination.
【0028】また、これら以外に、本樹脂組成物に対し
て必要に応じて、シランカップリング剤、ブロム化エポ
キシ樹脂、三酸化アンチモンなどの難燃剤、カーボンブ
ラック、フタロシアニンなどの着色剤、低応力化剤を配
合しても差し支えない。本発明では、これらの全材料を
ヘンシェルミキサー等の通常用いられる混合機により混
合した後、二本ロールやニーダー等により加熱混練し、
続いて冷却、粉砕することで目的とするエポキシ樹脂組
成物を得る。In addition to these, a silane coupling agent, a brominated epoxy resin, a flame retardant such as antimony trioxide, a coloring agent such as carbon black and phthalocyanine, and a low stress may be added to the resin composition, if necessary. There is no problem even if an agent is added. In the present invention, all these materials are mixed by a commonly used mixer such as a Henschel mixer, and then kneaded by heating with a two-roll or kneader,
Subsequently, the desired epoxy resin composition is obtained by cooling and pulverizing.
【0029】このエポキシ樹脂組成物は、CCD、CM
OS等の固体撮像素子を収納するための中空パッケージ
用として優れた適性を示すものであるが、エポキシ樹脂
組成物が一般的に使われる半導体封止や電子部品等にも
使用し得ることはもちろんである。This epoxy resin composition is used for CCD, CM
Although it exhibits excellent suitability for a hollow package for housing a solid-state image sensor such as an OS, it goes without saying that the epoxy resin composition can also be used for semiconductor encapsulation, electronic parts, etc. which are generally used. Is.
【0030】<中空パッケージ>本発明のエポキシ樹脂
組成物によって成形される中空パッケージは、通常、図
1に示すように、上方が開口した箱形の形状1からな
り、その上面はガラスや透明なプラスチックなどの蓋材
2によって、接着剤3を介して密封される。さらにパッ
ケージ中央凹部にはアイランド4が設けられ、そこに載
置された半導体素子5が、ボンディングワイヤー6を介
してリードフレームと連結される。リードフレームはパ
ッケージ成形時にインサート成形により一体成形され、
外部リード7と内部リード8とがパッケージ内に封入さ
れたリードフレームを介して連結されている。<Hollow Package> As shown in FIG. 1, a hollow package molded from the epoxy resin composition of the present invention usually has a box-like shape 1 with an upper opening, and its upper surface is made of glass or transparent. A lid member 2 made of plastic or the like is sealed via an adhesive 3. Further, an island 4 is provided in the central concave portion of the package, and the semiconductor element 5 mounted on the island 4 is connected to a lead frame via a bonding wire 6. The lead frame is integrally molded by insert molding during package molding,
The external lead 7 and the internal lead 8 are connected via a lead frame enclosed in a package.
【0031】本発明の半導体素子収納中空パッケージ
は、前記のエポキシ樹脂組成物を用いて、射出成形法、
トランスファー成形法などの任意の成形方法で成形され
るが、トランスファー成形法が好ましく採用される。ト
ランスファー成形方法による場合、圧力1〜50×10
6Pa(10〜500kg/cm2)、温度150〜20
0℃、時間1〜5分間の成形条件によって成形すること
ができる。The semiconductor element-containing hollow package of the present invention uses the above-mentioned epoxy resin composition and is injection-molded.
The molding is carried out by any molding method such as a transfer molding method, but the transfer molding method is preferably adopted. When using the transfer molding method, the pressure is 1 to 50 × 10.
6 Pa (10~500kg / cm 2) , temperature 150-20
It can be molded under the molding conditions of 0 ° C. and time of 1 to 5 minutes.
【0032】[0032]
【実施例】以下、本発明の優れた効果を実施例により説
明するが、本発明は実施例に限定されるものではない。EXAMPLES The excellent effects of the present invention will be described below with reference to examples, but the present invention is not limited to the examples.
【0033】(実施例1〜5、比較例1〜4)
表1に示す全原料
オルソクレゾールノボラックエポキシ樹脂<エポキシ樹
脂>:日本化薬(株)製、EOCN−1020−70、エ
ポキシ当量=205g/eq、
アラルキルフェノール樹脂<硬化剤>:三井化学(株)
製、ミレックスXLC−3L、
イミダゾール<硬化促進剤>:四国化成(株)製、2E4
MZ−AZINE、
球状アルミナ粉(1)<無機充填材>:平均粒径9.0μ
m、密度3.57g/cm3、球形度0.92、
球状アルミナ粉(2)<無機充填剤>:(a)平均粒径45μ
m、密度3.98g/cm3、球形度0.92のものと
(b)平均粒径4μm、密度3.98g/cm3のものと
(c)平均粒径0.7μm、密度3.98g/cm3のもの
との3種類を(a)/(b)/(c)=5/3/2の割合(質量
比)で混合した、平均粒径14μm、密度3.98g/
cm3の球状アルミナ粉、
破砕状アルミナ粉<無機充填材>:平均粒径12.0μ
m、密度3.98g/cm3、
低密度球状シリカ粉<無機充填材>:平均粒径(遠心沈
降法粒度分布測定機)1.0μm、密度(媒体1−ブタ
ノール)1.78g/cm3、吸湿率11.8%、
球状溶融シリカ粉<無機充填材>:平均粒径26.0μ
m、密度2.21g/cm3、
破砕シリカ粉<無機充填材>:平均粒径14.5μm、
密度2.65g/cm 3、
窒化アルミニウム粉<無機充填材>:平均粒径0.5μ
m、密度3.26g/cm3、(低密度球状シリカ粉以
外の無機充填材の平均粒径は、CILAS社製レーザー
回折式粒度分布測定装置Granulometer M
ODEL920により測定し、密度には、JISで定め
られた方法に従って、ピクノメーターで測定した比重の
値を示した。)
モンタン酸ワックス<離型剤>:クラリアントジャパン
(株)製、リコワックスOP、
シランカップリング剤<難燃剤>:信越化学工業(株)
製、KBM−403、
ブロム化エポキシ樹脂<難燃剤>:日本化薬(株)製、B
REN−S、エポキシ当量=285g/eq、
三酸化アンチモン<難燃剤>:日本精鉱(株)製、PAT
OX−M、
カーボンブラック<着色剤>:三菱化学(株)製、#4
5、
を、表中に記載の重量部の割合でヘンシェルミキサーに
より混合した後、温度90〜110℃の二本ロールで加
熱混練し、次いで冷却粉砕してエポキシ樹脂組成物を得
た。この組成物を用いて、以下の評価方法により物性を
測定した。結果を表1に併せて示した。(Examples 1 to 5, Comparative Examples 1 to 4)
All raw materials shown in Table 1
Orthocresol novolac epoxy resin <epoxy resin
Fat>: Nippon Kayaku Co., Ltd., EOCN-1020-70, D
Poxy equivalent = 205 g / eq,
Aralkylphenol resin <hardener>: Mitsui Chemicals, Inc.
Made, Milex XLC-3L,
Imidazole <Curing accelerator>: Shikoku Kasei Co., Ltd., 2E4
MZ-AZINE,
Spherical alumina powder (1) <Inorganic filler>: Average particle size 9.0μ
m, density 3.57 g / cm3, Sphericity 0.92,
Spherical alumina powder (2) <Inorganic filler>: (a) Average particle size 45μ
m, density 3.98 g / cm3, With a sphericity of 0.92
(b) Average particle size 4 μm, density 3.98 g / cm3With
(c) Average particle size 0.7 μm, density 3.98 g / cm3Things
(A) / (b) / (c) = 5/3/2 ratio (mass
Ratio), average particle size 14 μm, density 3.98 g /
cm3Spherical alumina powder,
Crushed alumina powder <inorganic filler>: average particle size 12.0μ
m, density 3.98 g / cm3,
Low-density spherical silica powder <inorganic filler>: average particle size (centrifugal sedimentation
Falling particle size distribution measuring machine) 1.0 μm, density (medium 1-pig
Nol) 1.78 g / cm3, Moisture absorption rate 11.8%,
Spherical fused silica powder <inorganic filler>: average particle size 26.0 μ
m, density 2.21 g / cm3,
Crushed silica powder <inorganic filler>: average particle size 14.5 μm,
Density 2.65 g / cm 3,
Aluminum nitride powder <inorganic filler>: average particle size 0.5μ
m, density 3.26 g / cm3, (Low-density spherical silica powder
The average particle size of the outer inorganic filler is the laser made by CILAS.
Diffraction Particle Size Analyzer Granulometer M
Measured by ODEL920, and the density is determined by JIS
Of the specific gravity measured with a pycnometer according to the method
Showed the value. )
Montanic acid wax <release agent>: Clariant Japan
Co., Ltd., Lico Wax OP,
Silane coupling agent <flame retardant>: Shin-Etsu Chemical Co., Ltd.
Manufactured by KBM-403,
Brominated epoxy resin <flame retardant>: Nippon Kayaku Co., Ltd., B
REN-S, epoxy equivalent = 285 g / eq,
Antimony trioxide <flame retardant>: PAT manufactured by Nippon Seiko Co., Ltd.
OX-M,
Carbon black <colorant>: Mitsubishi Chemical Co., # 4
5,
In a Henschel mixer at the ratio of parts by weight shown in the table.
After mixing more, add with a two-roll at temperature 90 ~ 110 ℃.
Heat kneading, then cooling and pulverization to obtain an epoxy resin composition.
It was Using this composition, the physical properties were evaluated by the following evaluation methods.
It was measured. The results are also shown in Table 1.
【0034】<評価方法>
(1)スパイラルフロー
EMMI1−66規格に準じた内部がスパイラル状にな
った金型を用い、トランスファー成形にて、金型温度1
50℃、実効圧力6.9×106Pa(70kgf/c
m2)で成形し、180秒間硬化した時の金型内での流
動した長さを測定した。<Evaluation Method> (1) Spiral Flow Using a mold having an internal spiral shape conforming to the EMMI1-66 standard, a mold temperature of 1 is obtained by transfer molding.
50 ° C, effective pressure 6.9 × 10 6 Pa (70 kgf / c
m 2 ), and the flowed length in the mold when cured for 180 seconds was measured.
【0035】(2)熱伝導率
京都電子工業(株)製の迅速熱伝導率計を用いて測定し
た。まず、前記のようにして調製したエポキシ樹脂組成
物を105mm(L)×55mm(W)×15mm(H)のサ
イズに成形し、この成形体を23℃の雰囲気中に12時
間以上放置した。次に、迅速熱伝導率計のプローブを成
形体に乗せ、1分後の値を読み取り熱伝導率とした。(2) Thermal conductivity It was measured using a rapid thermal conductivity meter manufactured by Kyoto Electronics Manufacturing Co., Ltd. First, the epoxy resin composition prepared as described above was molded into a size of 105 mm (L) × 55 mm (W) × 15 mm (H), and this molded body was left in an atmosphere of 23 ° C. for 12 hours or more. Next, the probe of the rapid thermal conductivity meter was placed on the molded body, and the value after 1 minute was read as the thermal conductivity.
【0036】(3)金属不純物濃度
前記のように調製したエポキシ樹脂組成物を、Leem
an Labs社製誘導結合プラズマ発光分光分析装置
を用いて、不純物として組成物中に含まれるFe濃度を
測定した。このFe濃度を、混練時の混練機表面の摩耗
度合の目安とした。(3) Metal Impurity Concentration The epoxy resin composition prepared as described above was added to Leem.
The concentration of Fe contained in the composition as an impurity was measured using an inductively coupled plasma emission spectroscopic analyzer manufactured by an Labs. This Fe concentration was used as a standard for the degree of wear of the surface of the kneading machine during kneading.
【0037】(4)金型摩耗性
金型摩耗性の評価方法は、各社から提案されているが、
測定に長時間要するものが多いため、促進法として、ア
ルミニウム製金型に対する摩耗試験を行った。具体的に
は、図2に示す金型を用い、前記のように調製したエポ
キシ樹脂組成物を90℃に加熱した金型に投入後、7.
8×106Pa(80kgf/cm2)の圧力で加圧し、
アルミニウム製ノズルの直径2mmの先端孔から19c
c吐出させた。その後、ノズル先端孔の内径を三次元座
標測定機で測定し、組成物を吐出させたことにより生じ
た先端孔の内側の摩耗量(体積)を算出した。この値も
上記(3)金属不純物濃度と同様、混練機表面の摩耗度
合の判定基準とした。(4) Mold Wearability A method for evaluating mold wearability has been proposed by various companies.
Since it takes a lot of time for measurement, an abrasion test was performed on an aluminum mold as an acceleration method. Specifically, using the mold shown in FIG. 2, after putting the epoxy resin composition prepared as described above into the mold heated to 90 ° C., 7.
Pressurized with a pressure of 8 × 10 6 Pa (80 kgf / cm 2 ),
19c from 2mm diameter tip hole of aluminum nozzle
c was discharged. Then, the inner diameter of the nozzle tip hole was measured with a three-dimensional coordinate measuring machine, and the amount of wear (volume) inside the tip hole caused by discharging the composition was calculated. This value was also used as a criterion for determining the degree of wear on the surface of the kneader, as in the above (3) Metal impurity concentration.
【0038】(5)比熱
中空パッケージの状態では、プローブ法による熱伝導の
測定が不可能であるため、成形品の比熱でパッケージと
しての熱伝導性の目安とした。前記段落番号[003
1]の中空パッケージ成形条件によって成形した成形品
から、寸法が約3mm×3mmの大きさで、重量が約5
mgの試験片を切り出し、パーキンエルマー社製DSC
−7を用いて測定した。比熱は、常温から10℃/分の
速度で昇温させ、40℃の時の値を示した。(5) Specific heat Since the thermal conductivity cannot be measured by the probe method in the state of the hollow package, the specific heat of the molded product was used as a measure of the thermal conductivity of the package. The paragraph number [003
1] The molded product molded under the hollow package molding conditions of 1] has a size of about 3 mm × 3 mm and a weight of about 5 mm.
Cut out mg test pieces and use DSC manufactured by Perkin Elmer
It measured using -7. The specific heat was raised from room temperature at a rate of 10 ° C./min, and the specific heat value was 40 ° C.
【0039】(6)耐湿性
前記のように調製したエポキシ樹脂組成物を、トランス
ファー成形によって、圧力7×106Pa(70kg/
cm2)、温度180℃、時間2分間の成形条件によっ
て中空パッケージ「A」を成形する。次に中空部を気密シ
ールするためにUV硬化接着剤をガラス板に塗布した蓋
材「a」を用意し、「A」に接着剤塗布側を下にした「a」を
乗せ、UV硬化する。こうして、気密シールした中空の
試験体を得、中空部に浸入する水分量を測定することに
よって耐湿性を評価した。測定は、テレビジョン学会誌
(42(9),959(1988))に記載された方法
を参考にした。すなわち、試験体をプレッシャークッカ
ー試験機に入れ、温度121℃、湿度100%RHの湿
熱環境で10時間暴露した。次いでガラス面を強制冷却
し、中空部内の水分が結露するかどうかを調べた。プレ
ッシャークッカーで結露が認められなかったものを○と
判定した。(6) Moisture resistance The epoxy resin composition prepared as described above was transferred to a pressure of 7 × 10 6 Pa (70 kg / 70 kg / kg) by transfer molding.
cm 2), temperature of 180 ° C., forming a hollow package "A" by the molding conditions Time 2 min. Next, in order to hermetically seal the hollow portion, prepare a lid material “a” coated with a UV curing adhesive on a glass plate, place “a” with the adhesive coating side down on “A”, and UV cure. . In this way, a hermetically sealed hollow test body was obtained, and moisture resistance was evaluated by measuring the amount of water entering the hollow portion. For the measurement, the method described in the Journal of Television Society (42 (9), 959 (1988)) was referred to. That is, the test body was put in a pressure cooker tester and exposed in a moist heat environment with a temperature of 121 ° C. and a humidity of 100% RH for 10 hours. Then, the glass surface was forcibly cooled, and it was examined whether or not the moisture in the hollow portion was condensed. The case where dew condensation was not observed by the pressure cooker was judged as ○.
【0040】[0040]
【表1】 [Table 1]
【0041】表1の結果より、球状アルミナ粉を配合し
たエポキシ樹脂組成物(実施例1〜4)は、1W/m・
K以上の熱伝導率を示し、パッケージ成形品の比熱も小
さいことから、熱伝導性が優れている。また金属不純物
の濃度も低い値を示し、金型摩耗量も、破砕アルミナ粉
や破砕シリカ粉を主体とした組成物(比較例1〜3)に
比べ少ないことから、混練機表面のダメージが少ないこ
とが分かった。さらに耐湿性も良好な結果を示した。比
較例4は、球状シリカ粉のみの組成物であり、金属不純
物濃度と金型摩耗量は少ないものの、熱伝導率が1W/
m・Kを下まわった。From the results shown in Table 1, the epoxy resin compositions containing the spherical alumina powder (Examples 1 to 4) were 1 W / m.
It exhibits a thermal conductivity of K or more, and the specific heat of the package molded product is small, so that the thermal conductivity is excellent. Further, the concentration of metal impurities is low, and the amount of die wear is smaller than that of the composition mainly composed of crushed alumina powder or crushed silica powder (Comparative Examples 1 to 3), and therefore the damage on the kneader surface is small. I found out. Further, the moisture resistance also showed good results. Comparative Example 4 is a composition containing only spherical silica powder, and although the metal impurity concentration and die wear amount are small, the thermal conductivity is 1 W /
I fell below m ・ K.
【0042】[0042]
【発明の効果】本発明のエポキシ樹脂組成物は、耐湿性
に優れ、熱伝導率が高く、CCDやCMOS等の固体撮
像素子を収納するための樹脂製中空パッケージに適して
いる。さらに、破砕状のアルミナをはじめとする高熱伝
導性を与える無機充填剤の問題点とされていた、組成物
を調製する際の混練機ロール表面やスクリュ表面の摩耗
と、金属不純物の混入の点を著しく改善することができ
る。INDUSTRIAL APPLICABILITY The epoxy resin composition of the present invention is excellent in moisture resistance, has high thermal conductivity, and is suitable for a hollow resin package for housing a solid-state image pickup device such as CCD or CMOS. Furthermore, it has been a problem of inorganic fillers that give high thermal conductivity such as crushed alumina, wear of the kneader roll surface and screw surface when preparing the composition, and the point of mixing metal impurities Can be significantly improved.
【図1】本発明のエポキシ樹脂組成物によって成形され
た中空パッケージの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a hollow package molded from the epoxy resin composition of the present invention.
【図2】本発明の実施例で用いた金型摩耗性の測定方法
を説明するための概略図である。FIG. 2 is a schematic diagram for explaining a method for measuring mold wear resistance used in an example of the present invention.
1 中空パッケージ 2 蓋材 3 接着剤 4 アイランド 5 半導体素子 6 ボンディングワイヤー 7 外部リード部 8 内部リード部 9 円筒金型 10 中子(固定型) 11 中子(可動型) 12 アルミニウム製ノズル 13 エポキシ樹脂組成物 14 押し出されるエポキシ樹脂組成物 1 hollow package 2 lid material 3 adhesive 4 islands 5 Semiconductor element 6 Bonding wire 7 External lead section 8 Internal lead section 9 Cylindrical mold 10 cores (fixed type) 11 core (movable type) 12 Aluminum nozzle 13 Epoxy resin composition 14 Epoxy resin composition extruded
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/29 H01L 23/30 R 23/31 Fターム(参考) 4J002 CC032 CD001 CD051 CD061 CD071 DF018 DJ018 EF116 EF126 EN016 EN036 EN076 EQ026 ET017 EU097 EU117 EW017 FA088 FD01 FD09 FD13 FD16 GQ05 4M109 AA01 CA21 EA02 EB03 EB04 EB12 GA01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 23/29 H01L 23/30 R 23/31 F term (reference) 4J002 CC032 CD001 CD051 CD061 CD071 DF018 DJ018 EF116 EF126 EN016 EN036 EN076 EQ026 ET017 EU097 EU117 EW017 FA088 FD01 FD09 FD13 FD16 GQ05 4M109 AA01 CA21 EA02 EB03 EB04 EB12 GA01
Claims (4)
状アルミナ粉および低密度球状シリカ粉を含み、加えて
球状溶融シリカ粉、破砕シリカ粉および窒化アルミニウ
ム粉から選ばれる少なくとも1種を含むエポキシ樹脂組
成物であって、上記球状アルミナ粉は下記(1)式で求
めた球形度が0.9以上、平均粒径が0.1μm以上3
0μm未満、かつ組成物の全質量に対する含有量が10
質量%以上80質量%以下であり(但し、球状アルミナ
粉および低密度球状シリカ粉と、球状溶融シリカ粉、破
砕シリカ粉、窒化アルミニウム粉から選ばれる少なくと
も1種との合計の含有量は、組成物の全質量に対して9
5質量%以下である。)、該組成物の硬化物の熱伝導率
が1W/m・K以上であることを特徴とするエポキシ樹
脂組成物。 球形度=粒子の投影面積/粒子の投影周囲長と同じ円周を持つ真円の面積…(1)1. An epoxy containing an epoxy resin, a curing agent, a curing accelerator, a spherical alumina powder and a low density spherical silica powder, and at least one selected from spherical fused silica powder, crushed silica powder and aluminum nitride powder. The spherical alumina powder, which is a resin composition, has a sphericity of 0.9 or more and an average particle size of 0.1 μm or more as determined by the following formula (1).
Less than 0 μm and content of 10 relative to the total mass of the composition
Mass% or more and 80 mass% or less (however, the total content of spherical alumina powder and low-density spherical silica powder and at least one selected from spherical fused silica powder, crushed silica powder, and aluminum nitride powder is 9 for the total mass of the object
It is 5 mass% or less. ), A cured product of the composition has a thermal conductivity of 1 W / m · K or more. Sphericality = Projected area of particles / Area of a perfect circle having the same circumference as the projected perimeter of particles ... (1)
ールを媒体として測定した密度が2.10g/cm3未
満、吸湿率が3%以上、かつ平均粒径が0.1μm以上
3μm未満であり、全組成物中に1質量%以上30質量
%以下含有されることを特徴とする請求項1に記載のエ
ポキシ樹脂組成物。2. The low-density spherical silica powder has a density of less than 2.10 g / cm 3 measured with 1-butanol as a medium, a moisture absorption rate of 3% or more, and an average particle size of 0.1 μm or more and less than 3 μm. The epoxy resin composition according to claim 1, wherein the total content of the epoxy resin composition is 1% by mass or more and 30% by mass or less.
組成物からなることを特徴とする半導体素子収納中空パ
ッケージ用エポキシ樹脂組成物。3. An epoxy resin composition for a semiconductor element-containing hollow package, comprising the epoxy resin composition according to claim 1 or 2.
組成物から成形されたことを特徴とする半導体素子収納
中空パッケージ。4. A semiconductor element housing hollow package, which is molded from the epoxy resin composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002044675A JP2003160714A (en) | 2001-02-23 | 2002-02-21 | Epoxy resin composition and hollow package for housing semiconductor device using the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001047697 | 2001-02-23 | ||
JP2001-47697 | 2001-02-23 | ||
JP2001-276132 | 2001-09-12 | ||
JP2001276132 | 2001-09-12 | ||
JP2002044675A JP2003160714A (en) | 2001-02-23 | 2002-02-21 | Epoxy resin composition and hollow package for housing semiconductor device using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003160714A true JP2003160714A (en) | 2003-06-06 |
Family
ID=27346082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002044675A Pending JP2003160714A (en) | 2001-02-23 | 2002-02-21 | Epoxy resin composition and hollow package for housing semiconductor device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003160714A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005146157A (en) * | 2003-11-18 | 2005-06-09 | Mitsui Chemicals Inc | Epoxy resin composition and hollow package for housing semiconductor element |
JP2006308504A (en) * | 2005-05-02 | 2006-11-09 | Ishizuka Electronics Corp | Infrared detector |
US7622515B2 (en) | 2003-03-28 | 2009-11-24 | Sumitomo Bakelite Company Limited | Composition of epoxy resin, phenolic resin, silicone compound, spherical alumina and ultrafine silica |
JP2010232243A (en) * | 2009-03-26 | 2010-10-14 | Renesas Electronics Corp | Manufacturing method of semiconductor device |
CN103890936A (en) * | 2012-03-30 | 2014-06-25 | 积水化学工业株式会社 | White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device |
-
2002
- 2002-02-21 JP JP2002044675A patent/JP2003160714A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7622515B2 (en) | 2003-03-28 | 2009-11-24 | Sumitomo Bakelite Company Limited | Composition of epoxy resin, phenolic resin, silicone compound, spherical alumina and ultrafine silica |
US8178599B2 (en) | 2003-03-28 | 2012-05-15 | Sumitomo Bakelite Company, Ltd. | Composition of epoxy resin, spherical alumina, ultrafine silica polyorganosiloxane and phenolic resin |
JP2005146157A (en) * | 2003-11-18 | 2005-06-09 | Mitsui Chemicals Inc | Epoxy resin composition and hollow package for housing semiconductor element |
JP2006308504A (en) * | 2005-05-02 | 2006-11-09 | Ishizuka Electronics Corp | Infrared detector |
JP2010232243A (en) * | 2009-03-26 | 2010-10-14 | Renesas Electronics Corp | Manufacturing method of semiconductor device |
CN103890936A (en) * | 2012-03-30 | 2014-06-25 | 积水化学工业株式会社 | White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4614214B2 (en) | Hollow package for semiconductor device elements | |
CN1854186B (en) | Epoxy resin composition for semiconductor sealing and semiconductor device | |
JPH11310688A (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP4973322B2 (en) | Epoxy resin composition and semiconductor device | |
TW201313806A (en) | Coated magnesium oxide particles, method for producing same, heat-dissipating filler, and resin composition | |
JPH11302506A (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP3468996B2 (en) | Epoxy resin composition and resin-encapsulated semiconductor device | |
US7025905B2 (en) | Black composite particles for semiconductor sealing material, and semiconductor sealing material using the same | |
JP2020125399A (en) | Semiconductor sealing resin composition and semiconductor device | |
JP2003160714A (en) | Epoxy resin composition and hollow package for housing semiconductor device using the same | |
TWI851549B (en) | Epoxy resin composition and electronic device | |
JPH0418445A (en) | Epoxy resin composition and cured product thereof | |
JPS5819136B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JP4111865B2 (en) | Epoxy resin composition and hollow package for housing semiconductor device using the same | |
JP3458196B2 (en) | High thermal conductive resin composition | |
JP2002338788A (en) | Epoxy resin composition and hollow package housing semiconductor element using the composition | |
EP3828220B1 (en) | Encapsulating resin composition and electronic component | |
JPH0496929A (en) | Epoxy resin composition and semiconductor device | |
JP2000129139A (en) | Manufacturing method of granular semiconductor sealing material and granular semiconductor sealing material | |
JP4108893B2 (en) | Manufacturing method of surface-treated inorganic filler | |
JP5547680B2 (en) | Epoxy resin composition for sealing and semiconductor device | |
JP2021138864A (en) | Encapsulating resin composition and electronic devices | |
JPH03140322A (en) | Epoxy resin molding material for semiconductor-sealing and resin-sealed semiconductor device | |
JP2951092B2 (en) | Epoxy resin composition | |
WO2020189711A1 (en) | Resin composition for molding material, molded body, and structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060901 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061219 |