[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003157790A - Micro ruggedness value measurement device and scanning electron microscope - Google Patents

Micro ruggedness value measurement device and scanning electron microscope

Info

Publication number
JP2003157790A
JP2003157790A JP2001354221A JP2001354221A JP2003157790A JP 2003157790 A JP2003157790 A JP 2003157790A JP 2001354221 A JP2001354221 A JP 2001354221A JP 2001354221 A JP2001354221 A JP 2001354221A JP 2003157790 A JP2003157790 A JP 2003157790A
Authority
JP
Japan
Prior art keywords
sample
electron
electrons
backscattered
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001354221A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Asaki
三之 朝木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2001354221A priority Critical patent/JP2003157790A/en
Publication of JP2003157790A publication Critical patent/JP2003157790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a micro ruggedness value measurement device which can measure depth H or the like of a concave part in case of a large aspect ratio. SOLUTION: The micro ruggedness value measurement device for measuring depth or height of sample by scanning its surface is provided with an in-lens reflective electron detecting means for shape measurement which receives only reflected electrons within a given angle region from those passing inside an object lens based on incident electrons irradiating the sample and converts them into electric signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、被測定試料の表
面上に形成されている微細な凹凸の深さや高さの量(高
さや深さ)を測定する微細凹凸量測定装置及び走査型電
子顕微鏡に関する。特に、走査型電子顕微鏡において試
料へ一次電子を照射し、この照射点から放出される反射
電子から試料表面の微細な凹凸量を測定する微細凹凸量
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine concavo-convex amount measuring device for measuring the depth and height amount (height and depth) of fine concavo-convex formed on the surface of a sample to be measured, and a scanning electron. Regarding the microscope. In particular, the present invention relates to a fine unevenness amount measuring device for irradiating a sample with a primary electron in a scanning electron microscope and measuring the fine unevenness amount of the sample surface from the reflected electrons emitted from this irradiation point.

【0002】[0002]

【従来の技術】図1は反射電子の適用に基づく走査型電
子顕微鏡(SEM:Scanning Electron Microscope)の
原理構造図である。この要部構成要素は、電子ビームを
集光するコンデンサレンズ60と、反射電子を受ける反
射電子検出器(BSE検出器)31、32と、試料へ入
射させる入射電子e1を所望の場所に照射するために偏
向制御するスキャンコイル70と、試料表面へ照射する
入射電子e1の焦点を結ばせ、そのZ軸方向の焦点位置
を調整制御する対物レンズ20と、試料をXY軸水平方
向とZ軸垂直方向へ移動させるステージ100とを備え
る。ここで、走査型電子顕微鏡は公知であり技術的に良
く知られている為、本願に係る要部を除き、その他の信
号や構成要素、及びその詳細説明については省略する。
2. Description of the Related Art FIG. 1 is a principle structural diagram of a scanning electron microscope (SEM) based on the application of backscattered electrons. The main constituent elements irradiate a desired position with a condenser lens 60 that collects an electron beam, backscattered electron detectors (BSE detectors) 31 and 32 that receive backscattered electrons, and incident electrons e1 that are incident on a sample. For this purpose, the scan coil 70 for deflection control, the objective lens 20 for focusing and controlling the focal position of the incident electron e1 irradiating the sample surface in the Z-axis direction, the sample in the XY-axis horizontal direction and the Z-axis vertical direction. And a stage 100 that moves in the direction. Here, since the scanning electron microscope is publicly known and well known in the art, other signals and components, and detailed description thereof will be omitted except for the main part of the present application.

【0003】図2は所定の走査により試料の凸部形状の
高さHを測定する原理説明図である。ここで、発生する
反射電子はエネルギーが高く、全方向へ直進するものと
する。また、試料は図2(a、b)に示すように、高さ
Hの直角の凸部エッジと仮定する。図2(c)は入射電
子e1を走査して照射点をA、B、C方向へ移動させて
いったときに反射電子検出器32が受信する電気信号レ
ベルの推移を示す関係図である。先ず、図2(a)の照
射点Aの状態では受信する電気信号レベルは最大レベル
であり、ここから減少開始していく。試料の反射電子と
反射電子検出器32の受信面との空間中において試料凸
部でじゃまされて反射電子の影(シャドウ)が生じてく
る。即ち、遮蔽される反射電子e4の部分が増加してい
く。ここで、反射電子検出器32は角度θ1からθ2の
角度範囲の反射電子e3を受信可能な配設条件と仮定す
る。このとき、角度θ1、θ2は既知で一定角度であ
る。この照射点Aから右方向への走査で、受信される電
気信号レベルは図2(c)に示す特異点A1〜B1の区
間を低下していく。次に、図2(b)照射点Bの状態で
は受信量がゼロとなることを示している。このとき、受
信される電気信号レベルは、図2(c)に示す特異点B
1に示すように、ほぼゼロレベルである。以後、照射点
Cまでの走査区間は、ほぼゼロレベルである。その直後
には入射電子e1が凸部の上面に照射されるので、図2
(c)の特異点D1に示すように、電気信号レベルは元
の最大レベルに戻る。
FIG. 2 is an explanatory view of the principle of measuring the height H of the convex shape of the sample by a predetermined scan. Here, it is assumed that the generated reflected electrons have high energy and travel straight in all directions. Further, the sample is assumed to be a right angle convex edge having a height H as shown in FIGS. FIG. 2C is a relationship diagram showing a transition of the electric signal level received by the backscattered electron detector 32 when the irradiation point is moved in the A, B, and C directions by scanning the incident electron e1. First, in the state of the irradiation point A in FIG. 2A, the electric signal level received is the maximum level, and starts decreasing from here. In the space between the backscattered electrons of the sample and the receiving surface of the backscattered electron detector 32, a shadow of the backscattered electrons is generated by being disturbed by the convex portion of the sample. That is, the portion of the shielded reflected electron e4 increases. Here, it is assumed that the backscattered electron detector 32 has an arrangement condition in which the backscattered electron detector 32 can receive backscattered electrons e3 in the angle range of θ1 to θ2. At this time, the angles θ1 and θ2 are known and constant angles. By scanning from the irradiation point A to the right, the received electric signal level decreases in the section of the singular points A1 to B1 shown in FIG. Next, FIG. 2B shows that the reception amount becomes zero in the state of the irradiation point B. At this time, the received electric signal level is the singular point B shown in FIG.
As shown in 1, the level is almost zero. After that, the scanning section up to the irradiation point C is at almost zero level. Immediately after that, since the incident electrons e1 are irradiated on the upper surface of the convex portion,
As shown by the singular point D1 in (c), the electric signal level returns to the original maximum level.

【0004】上述の走査によって取得された電気信号デ
ータ(反射電子信号プロファイル)に基づいて凸部の高
さHを求める。即ち、先ず特異点B1、D1を特定し、
これから両区間の真影シャドウ長Lfを求める。この真
影シャドウ長Lfと既知の角度θ2から凸部の高さH
は、H=Lf×tanθ2、として算出できる。また、特
異点A1、D1の区間の半影シャドウ長Lhと既知の角
度θ1から凸部の高さHは、H=Lh×tanθ1、とし
て算出できる。
The height H of the convex portion is obtained based on the electric signal data (reflected electron signal profile) obtained by the above-mentioned scanning. That is, first, the singular points B1 and D1 are specified,
From this, the true shadow length Lf of both sections is obtained. From this true shadow length Lf and the known angle θ2, the height H of the convex portion
Can be calculated as H = Lf × tan θ2. Further, the height H of the convex portion can be calculated from the penumbra shadow length Lh in the section of the singular points A1 and D1 and the known angle θ1 as H = Lh × tan θ1.

【0005】次に、図3はスキャンコイルの走査により
試料の凹部形状の溝の深さHを測定する走査説明図であ
る。先ず、図3(a)は溝の幅Wと溝の深さHのアスペ
クト比H/Wが小さい場合、即ち溝の幅Wが広い場合で
ある。上述図2と同様にして測定した結果、図3(c)
に示す電気信号データが取得できる。これによれば、特
異点B1と特異点D1とが得られるからして、これから
凹部の深さHは、H=Lf×tanθ2、として支障無く
算出できることとなる。次に、図3(b)は溝の幅Wと
溝の深さHのアスペクト比H/Wが大きな場合である。
上述図2と同様にして測定した結果、図3(d)に示す
電気信号データが取得できる。この場合には、溝の中を
走査区間中において反射電子は全く受信できない。この
受信不良は特異点A1からB1区間に走査した走査距離
の減少若しくは欠落から判る。この結果、特異点B1は
正当な特異点ではない。従って、アスペクト比の大きな
場合における凹部の深さHを求めることができない不具
合を生じる。尚、反射電子検出器32の受信領域範囲W
Dを幅広くすることでθ2を大きくすることは可能であ
るが、分解能が劣化するため好ましくない。
Next, FIG. 3 is a scanning explanatory view for measuring the depth H of the concave groove of the sample by the scanning of the scanning coil. First, FIG. 3A shows a case where the aspect ratio H / W of the groove width W and the groove depth H is small, that is, the groove width W is wide. As a result of measurement performed in the same manner as in FIG. 2 described above, FIG.
The electric signal data shown in can be acquired. According to this, since the singular point B1 and the singular point D1 are obtained, the depth H of the concave portion can be calculated from this as H = Lf × tan θ2 without any trouble. Next, FIG. 3B shows the case where the aspect ratio H / W of the groove width W and the groove depth H is large.
As a result of measurement in the same manner as in FIG. 2 described above, the electric signal data shown in FIG. 3D can be acquired. In this case, backscattered electrons cannot be received at all during the scanning section in the groove. This poor reception can be understood from the reduction or lack of the scanning distance scanned from the singular point A1 to the section B1. As a result, the singular point B1 is not a valid singular point. Therefore, there arises a problem that the depth H of the concave portion cannot be obtained when the aspect ratio is large. The reception area range W of the backscattered electron detector 32
It is possible to increase θ2 by widening D, but this is not preferable because the resolution is deteriorated.

【0006】[0006]

【発明が解決しようとする課題】上述したように、アス
ペクト比の大きな場合には、従来の走査型電子顕微鏡等
の微細凹凸量測定装置では凹部の深さHを求めることが
できない。一方で、反射電子検出器31、32は中央部
に配設されている対物レンズ20の関係で、反射電子検
出器を中央部に配設することが困難である。そこで、本
発明が解決しようとする課題は、アスペクト比の大きな
場合における凹部位の深さH等を測定することが可能な
微細凹凸量測定装置を提供することである。また、アス
ペクト比の大きな場合における凹部位の深さH等を測定
することが可能な微細凹凸量測定装置を備える走査型電
子顕微鏡を提供することである。
As described above, when the aspect ratio is large, the depth H of the concave portion cannot be obtained by a conventional fine unevenness measuring device such as a scanning electron microscope. On the other hand, it is difficult to arrange the backscattered electron detectors 31 and 32 in the center because of the objective lens 20 disposed in the center. Therefore, the problem to be solved by the present invention is to provide a fine unevenness amount measuring apparatus capable of measuring the depth H and the like of the concave portion when the aspect ratio is large. Another object of the present invention is to provide a scanning electron microscope equipped with a fine unevenness amount measuring device capable of measuring the depth H of the recessed portion when the aspect ratio is large.

【0007】[0007]

【課題を解決するための手段】第1の解決手段を示す。
上記課題を解決するために、被観察対象(試料)の表面
を所定の既知距離区間を電子ビームによって走査して試
料の頂部と底部とを特定し、これに基づいて試料の深さ
若しくは高さである凹凸量を測定する微細凹凸量測定装
置において、試料に照射した入射電子e1の反射による
反射電子の中の、対物レンズの内側を通過する反射電子
の中で、所定角度領域内の反射電子のみを受けて電気信
号に変換する形状計測用インレンズ型の反射電子検出手
段(例えば二次電子変換板40と二次電子検出器41、
42)を備えて、アスペクト比の大きな凹凸部位を測定
可能とする、ことを特徴とする微細凹凸量測定装置であ
る。上記発明によれば、アスペクト比の大きな場合にお
ける凹部位の深さHや凸部の高さ等を測定することが可
能な微細凹凸量測定装置が実現できる。
A first solution will be described.
In order to solve the above-mentioned problem, the surface of the object to be observed (sample) is scanned with a predetermined known distance section by an electron beam to identify the top and bottom of the sample, and the depth or height of the sample is determined based on this. In the fine unevenness amount measuring device for measuring the unevenness amount, the reflected electrons within the predetermined angle region among the reflected electrons passing through the inside of the objective lens among the reflected electrons due to the reflection of the incident electrons e1 irradiated on the sample. In-lens type backscattered electron detecting means for shape measurement (for example, secondary electron conversion plate 40 and secondary electron detector 41,
42), which is capable of measuring an uneven portion having a large aspect ratio, and is a fine unevenness amount measuring device characterized by the above. According to the above-mentioned invention, it is possible to realize a fine unevenness amount measuring device capable of measuring the depth H of the concave portion, the height of the convex portion, and the like when the aspect ratio is large.

【0008】次に、第2の解決手段を示す。上記課題を
解決するために、被観察対象(試料)の表面を所定の既
知距離区間を電子ビームによって走査して得られる反射
電子信号プロファイルから試料の頂部と底部とを特定
し、これに基づいて試料の深さ若しくは高さである凹凸
量を測定する微細凹凸量測定装置において、試料に照射
した入射電子e1の反射による反射電子の中の、対物レ
ンズの内側を通過する反射電子の中で、所定角度領域内
の反射電子のみを通過させる反射電子開き角制限絞り5
0を具備し、上記反射電子開き角制限絞り50を通過し
てきた反射電子e5を受けて電気信号に変換する形状計
測用インレンズ型の反射電子検出手段を具備し、以上を
具備することを特徴とする微細凹凸量測定装置がある。
Next, a second solving means will be shown. In order to solve the above problems, the top and bottom of the sample are specified from the reflected electron signal profile obtained by scanning the surface of the observation target (sample) with a predetermined known distance section by an electron beam, and based on this, In the fine unevenness amount measuring device for measuring the unevenness amount which is the depth or height of the sample, in the reflected electrons passing through the inside of the objective lens among the reflected electrons due to the reflection of the incident electron e1 irradiated on the sample, Reflection electron opening angle limiting diaphragm 5 that allows only the reflection electrons within a predetermined angle region to pass therethrough
0, and includes a shape measuring in-lens type backscattered electron detection unit that receives backscattered electrons e5 that have passed through the backscattered electron opening angle limiting diaphragm 50 and converts the backscattered electrons e5 into an electric signal, and includes the above. There is a fine unevenness amount measuring device.

【0009】次に、第3の解決手段を示す。ここで第4
図は、本発明に係る解決手段を示している。上記課題を
解決するために、被観察対象(試料)の表面を所定の既
知距離区間を電子ビームによって走査して得られる反射
電子信号プロファイルから試料の頂部と底部とを特定
し、これに基づいて試料の深さ若しくは高さである凹凸
量を測定する微細凹凸量測定装置において、試料に照射
した入射電子e1の反射による反射電子の中の、対物レ
ンズの内側を通過する反射電子の中で、所定角度領域内
の反射電子のみを通過させる反射電子開き角制限絞り5
0を具備し、上記反射電子開き角制限絞り50を通過し
てきた反射電子e5を受けて電気信号に変換する、アス
ペクト比の大きな凹凸部位を検出担当する形状計測用イ
ンレンズ型の反射電子検出手段を具備し、入射電子e1
を照射した試料から反射する反射電子の中で、対物レン
ズの下側の所定角度領域の反射電子を検出して、アスペ
クト比の小さい凹凸部位を検出担当するアウトレンズ型
の反射電子検出器31、32を具備し、以上を具備する
ことを特徴とする微細凹凸量測定装置がある。
Next, a third solving means will be shown. The fourth here
The figure shows the solution according to the invention. In order to solve the above problems, the top and bottom of the sample are specified from the reflected electron signal profile obtained by scanning the surface of the observation target (sample) with a predetermined known distance section by an electron beam, and based on this, In the fine unevenness amount measuring device for measuring the unevenness amount which is the depth or height of the sample, in the reflected electrons passing through the inside of the objective lens among the reflected electrons due to the reflection of the incident electron e1 irradiated on the sample, Reflection electron opening angle limiting diaphragm 5 that allows only the reflection electrons within a predetermined angle region to pass therethrough
The in-lens type backscattered electron detection means for detecting the uneven portion having a large aspect ratio, which has the number 0 and receives the backscattered electrons e5 that have passed through the backscattered electron opening angle limiting diaphragm 50 and converts it into an electric signal. And the incident electron e1
Out-lens type backscattered electron detector 31, which is in charge of detecting backscattered electrons in a predetermined angle region under the objective lens among the backscattered electrons reflected from the sample irradiated with There is a fine concavo-convex amount measuring device comprising 32 and the above.

【0010】次に、第4の解決手段を示す。上述反射電
子検出手段の一態様は、所定角度領域の反射電子e5を
受けて、これに対応した二次電子e6に変換して放出す
る二次電子変換板40を具備し、上記二次電子e6を受
けて電気信号に変換して出力する二次電子検出手段を具
備し、以上を具備して、アスペクト比の大きな凹凸部位
を測定可能とすることを特徴とする上述微細凹凸量測定
装置がある。
Next, a fourth solving means will be shown. One mode of the above-mentioned backscattered electron detection means includes a secondary electron conversion plate 40 that receives backscattered electrons e5 in a predetermined angle region, converts the backscattered electrons e5 into corresponding secondary electrons e6, and emits them. There is a secondary electron detecting means for receiving and converting the output into an electric signal and outputting the electric signal, and by providing the above, it is possible to measure an uneven portion having a large aspect ratio. .

【0011】次に、第5の解決手段を示す。ここで第4
図は、本発明に係る解決手段を示している。上述二次電
子検出手段の一態様としては、試料の走査軸方向に対応
して所定に配設して備える2個の二次電子検出器41、
42である、ことを特徴とする上述微細凹凸量測定装置
がある。
Next, a fifth solving means will be shown. The fourth here
The figure shows the solution according to the invention. As one mode of the above-mentioned secondary electron detecting means, two secondary electron detectors 41 arranged and provided in a predetermined manner corresponding to the scanning axis direction of the sample,
42 is the above-mentioned fine unevenness amount measuring device.

【0012】次に、第6の解決手段を示す。上述二次電
子検出手段の一態様は、試料の一方の走査軸方向(X軸
方向)に対応して所定に配設して備える2個の第1の二
次電子検出器41、42を具備し、前記第1の二次電子
検出器41、42と直交して、試料の他方の走査軸方向
(Y軸方向)に対応して所定に配設して備える2個の第
2の二次電子検出器を具備し、以上を具備することを特
徴とする上述微細凹凸量測定装置がある。
Next, a sixth solving means will be shown. One mode of the secondary electron detecting means described above includes two first secondary electron detectors 41 and 42 which are provided in a predetermined manner in correspondence with one scanning axis direction (X axis direction) of the sample. Then, two second secondary devices which are orthogonally arranged to the first secondary electron detectors 41 and 42 and are arranged in a predetermined manner corresponding to the other scanning axis direction (Y-axis direction) of the sample. There is the above-mentioned fine unevenness amount measuring device including an electron detector and the above.

【0013】次に、第7の解決手段を示す。ここで第6
図は、本発明に係る解決手段を示している。対物レンズ
の後方に、一定エネルギー以上の反射電子は通過させ、
一定エネルギー以下の他の電子(例えば二次電子)は通
過阻止させるエネルギーフィルタ54を具備し、上記エ
ネルギーフィルタ54へ所定の負の減速電圧を供給する
減速電圧源56を具備し、以上を具備することを特徴と
する上述微細凹凸量測定装置がある。
Next, a seventh means for solving the problems will be described. 6th here
The figure shows the solution according to the invention. Behind the objective lens, the reflected electrons with a certain energy or more are passed,
An energy filter 54 for blocking passage of other electrons having a certain energy or less (for example, secondary electrons) is provided, a deceleration voltage source 56 for supplying a predetermined negative deceleration voltage to the energy filter 54 is provided, and the above is provided. There is the above-mentioned fine unevenness amount measuring device characterized by the above.

【0014】次に、第8の解決手段を示す。試料として
既知深さDs若しくは既知高さHsの基準チップを適用
し、上記反射電子検出手段で当該既知深さDs若しくは
既知高さHsの反射電子信号プロファイルを取得し、こ
れから算出される算出深さDx若しくは算出高さHxと、
既知深さDs若しくは既知高さHsとの差分から、測定系
を補正する補正値(例えば高さ算出係数tanθ2)を求
めて記憶しておき、以後における未知試料に対する測定
においては、記憶しておいた上記補正値に基づいて算出
補正処理することで、測定系の測定誤差要因や経時変化
要因を大幅に低減する、ことを特徴とする上述微細凹凸
量測定装置がある。
Next, the eighth solving means will be described. A reference chip having a known depth Ds or a known height Hs is applied as a sample, the reflected electron signal profile of the known depth Ds or the known height Hs is acquired by the reflected electron detection means, and the calculated depth calculated from this is obtained. Dx or calculated height Hx,
From the difference between the known depth Ds or the known height Hs, a correction value (for example, the height calculation coefficient tan θ2) for correcting the measurement system is obtained and stored, and stored in the subsequent measurement of the unknown sample. There is the above-described fine unevenness amount measuring device characterized in that the measurement correction factor and the change factor with time of the measurement system are significantly reduced by performing the calculation correction processing based on the correction value.

【0015】次に、第9の解決手段を示す。上述反射電
子開き角制限絞り50の一態様としては、当該反射電子
開き角制限絞り50を通過する反射電子e5の開口孔5
2の大きさを可変とする可変絞り機構、若しくは複数種
類の開口径に切り替え可能な可変絞り機構を備える、こ
とを特徴とする上述微細凹凸量測定装置がある。
Next, a ninth solving means will be described. As one mode of the above-described backscattered electron opening angle limiting diaphragm 50, the aperture 5 for the backscattered electrons e5 passing through the backscattered electron opening angle limiting diaphragm 50 is provided.
There is the above-mentioned fine unevenness amount measuring device characterized by comprising a variable diaphragm mechanism that can change the size of 2 or a variable diaphragm mechanism that can switch to a plurality of types of aperture diameters.

【0016】次に、第10の解決手段を示す。ここで第
9図と第10図は、本発明に係る解決手段を示してい
る。試料の測定部位の凸部エッジの特異点を特定するの
に試料から反射する反射電子の代わりに試料から放出す
る二次電子を検出して二次電子信号プロファイルを得る
ための二次電子検出器(例えば図9に示すインレンズ型
の二次電子検出器43、44若しくは図10に示すアウ
トレンズ型の二次電子検出器45、46、若しくは図9
と図10の両方を適用する二次電子検出器43、44、
45、46)を備える、ことを特徴とする上述微細凹凸
量測定装置がある。
Next, the tenth solving means will be described. Here, FIGS. 9 and 10 show a solving means according to the present invention. Secondary electron detector for detecting secondary electrons emitted from the sample instead of backscattered electrons reflected from the sample to identify the singularity of the convex edge of the measurement site of the sample to obtain a secondary electron signal profile (For example, the in-lens type secondary electron detectors 43 and 44 shown in FIG. 9 or the out-lens type secondary electron detectors 45 and 46 shown in FIG.
And secondary electron detectors 43, 44 to which both of FIG.
45, 46) is provided.

【0017】次に、第11の解決手段を示す。ここで第
8図は、本発明に係る解決手段を示している。試料の測
定部位が反射電子の影(シャドウ)が生じないような緩
斜面のときの一態様としては、当該測定部位にシャドウ
が生じるように、ステージ上の試料の角度を所定角度に
傾ける試料傾斜機構を備える、ことを特徴とする上述微
細凹凸量測定装置がある。
Next, the eleventh solving means will be shown. Here, FIG. 8 shows a solving means according to the present invention. As one aspect when the measurement site of the sample is a gentle slope where shadows of backscattered electrons do not occur, sample inclination is performed by inclining the angle of the sample on the stage to a predetermined angle so that a shadow is produced at the measurement site. There is the above-mentioned fine unevenness amount measuring device characterized by comprising a mechanism.

【0018】次に、第12の解決手段を示す。上述微細
凹凸量測定装置を適用して試料のアスペクト比の高いS
EM像を測定する構成を備える、ことを特徴とする走査
型電子顕微鏡がある。
Next, a twelfth solving means will be shown. By applying the above-mentioned fine unevenness amount measuring device, S with a high aspect ratio of the sample
There is a scanning electron microscope having a configuration for measuring an EM image.

【0019】尚、本願発明手段は、所望により、上記解
決手段における各要素手段を適宜組み合わせて、実用可
能な他の構成手段としても良い。また、上記各要素に付
与されている符号は、発明の実施の形態等に示されてい
る符号に対応するものの、これに限定するものではな
く、実用可能な他の均等物を適用した構成手段としても
良い。
If desired, the means of the present invention may be combined with the respective element means of the above-mentioned solving means as appropriate to form other practical means. Further, although the reference numerals given to the above respective elements correspond to the reference numerals shown in the embodiments of the present invention and the like, the present invention is not limited to this, and constituent means to which other practical equivalents are applied. Also good.

【0020】[0020]

【発明の実施の形態】以下に本発明を適用した実施の形
態の一例を図面を参照しながら説明する。また、以下の
実施の形態の説明内容によって特許請求の範囲を限定す
るものではないし、更に、実施の形態で説明されている
要素や接続関係等が解決手段に必須であるとは限らな
い。更に、実施の形態で説明されている要素や接続関係
等の形容/形態は、一例でありその形容/形態内容のみ
に限定するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment to which the present invention is applied will be described below with reference to the drawings. Further, the scope of the claims is not limited by the description content of the following embodiments, and further, the elements, connection relationships, and the like described in the embodiments are not necessarily essential to the solving means. Furthermore, the forms / forms of the elements, connection relationships, etc. described in the embodiments are merely examples, and the form / form contents are not limited only.

【0021】本発明について、図4〜図8を参照して以
下に説明する。尚、従来構成に対応する要素は同一符号
を付し、また重複する部位の説明は省略する。
The present invention will be described below with reference to FIGS. The elements corresponding to those of the conventional configuration are designated by the same reference numerals, and the description of the overlapping portions will be omitted.

【0022】図4は狭角に反射してくる反射電子のみを
左右方向に分離した状態で二次電子に変換し、その二次
電子を左右に分離させたまま二次電子検出器で検出する
形状計測用インレンズ型反射電子検出の原理構造図であ
る。この要部構成要素は、対物レンズ20と、反射電子
開き角制限絞り50と、二次電子変換板40と、二次電
子検出器41、42とを備える。
In FIG. 4, only the reflected electrons reflected at a narrow angle are converted into secondary electrons in the state of being separated in the left-right direction, and the secondary electrons are detected by the secondary electron detector while being separated in the left-right direction. It is a principle structure figure of in-lens type backscattered electron detection for shape measurement. The essential components include an objective lens 20, a backscattered electron opening angle limiting diaphragm 50, a secondary electron conversion plate 40, and secondary electron detectors 41 and 42.

【0023】反射電子開き角制限絞り50は、所定の狭
角範囲の反射電子のみを通過させる絞りであって、高い
アスペクト比の溝の深さHを測定可能とする。即ち、入
射電子e1の照射点を中心とした広い範囲の反射電子e
2の中で、開口孔52に対応する狭角通過角度θ4の領
域の反射電子e5のみを通過させて二次電子変換板40
へ供給する。これによれば、狭角通過角度θ4は例えば
2度〜5度程度の狭角にすることが可能である。従っ
て、この狭角領域の反射電子e5のみを検出対象とする
ことができる結果、高いアスペクト比の溝の深さHを測
定可能となる大きな利点が得られることとなる。
The backscattered electron opening angle limiting diaphragm 50 is a diaphragm that allows only the backscattered electrons in a predetermined narrow angle range to pass, and enables the depth H of a groove having a high aspect ratio to be measured. That is, the reflected electrons e in a wide range around the irradiation point of the incident electrons e1
2, the secondary electron conversion plate 40 is allowed to pass only the reflected electrons e5 in the region of the narrow angle passage angle θ4 corresponding to the opening hole 52.
Supply to. According to this, the narrow-angle passing angle θ4 can be set to a narrow angle of, for example, 2 degrees to 5 degrees. Therefore, as a result that only the reflected electrons e5 in this narrow-angle region can be detected, a great advantage that the depth H of the groove having a high aspect ratio can be measured is obtained.

【0024】図5は従来のアウトレンズ型反射電子検出
器の場合と、本発明の形状計測用インレンズ型反射電子
検出器の場合と、本発明の反射電子開き角制限絞り50
を適用した形状計測用インレンズ型反射電子検出器の3
つの形態における最大測定可能なアスペクト比を示す相
対的な説明図である。ここで、溝の幅dは、アウトレン
ズ型反射電子検出器の場合の試料の深さがh1の時の半
影シャドウ長とし、形状計測用インレンズ型反射電子検
出器の場合の試料の深さがh2の時の半影シャドウ長と
し、反射電子開き角制限絞りを適用した形状計測用イン
レンズ型反射電子検出器の場合の試料の深さがh3の時
の半影シャドウ長とする。従来の形状計測用アウトレン
ズ型反射電子検出器の場合には、図5Aに示すように、
試料の深さがh1まで測定可能であるからして、そのア
スペクト比R1は、R1=h1/dである。次に、本発
明の2方向またはそれ以上の反射電子を検出する形状計
測用インレンズ型反射電子検出器の場合には、図5Bに
示すように、試料の深さがh2まで測定可能であるから
して、そのアスペクト比R2は、R2=h2/dであ
る。次に、本発明の反射電子開き角制限絞り50を適用
した形状計測用インレンズ型反射電子検出器の場合には
図5Cに示すように、試料の深さがh3まで測定可能で
あるからして、そのアスペクト比R3は、R3=h3/
dである。従って、これら図5の対比からして、反射電
子開き角制限絞り50を備える場合は、格段に高いアス
ペクト比の深い溝等でも測定可能となる。このとき、開
口孔52の口径は所望に形成することができる。尚、実
用に際しては二次電子検出器が出力する検出対象の電気
信号と二次電子検出器等から発生するノイズ成分とのS
N比を考慮して最適な条件の絞り口径とすることが望ま
しい。
FIG. 5 shows the case of the conventional out-lens type backscattered electron detector, the case of the in-lens type backscattered electron detector for shape measurement of the present invention, and the backscattered electron opening angle limiting diaphragm 50 of the present invention.
Of in-lens type backscattered electron detector for shape measurement applying
It is a relative explanatory view showing the maximum measurable aspect ratio in one form. Here, the width d of the groove is the penumbra shadow length when the depth of the sample in the case of the out-lens backscattered electron detector is h1, and the depth of the sample in the case of the in-lens backscattered electron detector for shape measurement. Is the half shadow shadow length when h2 is the half shadow shadow length when the sample depth is h3 in the case of the in-lens type backscattered electron detector for shape measurement to which the backscattered electron aperture angle limiting diaphragm is applied. In the case of the conventional out-lens type backscattered electron detector for shape measurement, as shown in FIG. 5A,
Since the depth of the sample can be measured up to h1, the aspect ratio R1 is R1 = h1 / d. Next, in the case of the in-lens type backscattered electron detector for shape measurement which detects backscattered electrons in two or more directions of the present invention, as shown in FIG. 5B, the depth of the sample can be measured up to h2. Therefore, the aspect ratio R2 is R2 = h2 / d. Next, in the case of the in-lens type backscattered electron detector for shape measurement to which the backscattered electron aperture angle limiting diaphragm 50 of the present invention is applied, as shown in FIG. 5C, the depth of the sample can be measured up to h3. And the aspect ratio R3 is R3 = h3 /
d. Therefore, from the comparison of these FIG. 5, when the backscattered electron opening angle limiting diaphragm 50 is provided, it is possible to measure even a deep groove having a remarkably high aspect ratio. At this time, the diameter of the opening hole 52 can be formed as desired. In practical use, the S of the electrical signal to be detected output from the secondary electron detector and the noise component generated from the secondary electron detector, etc.
It is desirable to set the aperture diameter of the optimum condition in consideration of the N ratio.

【0025】図4に戻り、二次電子変換板40は、上部
からの入射電子e1を試料側へ通過させる孔を中心軸部
位に備え、また、上記反射電子e5を下側から受けて、
これに対応した二次電子e6を放出して左右の二次電子
検出器41、42へ供給するものである。
Returning to FIG. 4, the secondary electron conversion plate 40 is provided with a hole in the central axis portion for passing the incident electron e1 from the upper side to the sample side, and receives the reflected electron e5 from the lower side,
The secondary electrons e6 corresponding to this are emitted and supplied to the left and right secondary electron detectors 41 and 42.

【0026】二次電子検出器41、42はX軸方向(横
方向)の走査によりX軸方向で変化する二次電子の変化
を検出するものであって、電子ビーム軸に対して左右対
向するX軸上の位置に配設されていて、上記二次電子e
6を受けて所定に増幅した電気信号を出力する。
The secondary electron detectors 41 and 42 detect changes in secondary electrons which change in the X-axis direction (horizontal direction) by scanning in the X-axis direction (lateral direction). The secondary electron e is provided at a position on the X axis.
Upon receiving 6, the electric signal amplified to a predetermined level is output.

【0027】上述した図4の反射電子開き角制限絞りを
適用した形状計測用インレンズ型反射電子検出器の発明
構成例によれば、試料からの反射電子e2の中で、入射
電子e1を中心とする所定の狭角範囲の反射電子のみを
検出する構成としたことにより、格段に高いアスペクト
比の深い溝やエッジを良好に測定可能となる大きな利点
が得られる。無論、高いアスペクト比の深い穴等の凹凸
部位でも良好に測定可能となる。
According to the invention configuration example of the in-lens type backscattered electron detector for shape measurement to which the backscattered electron opening angle limiting diaphragm of FIG. 4 described above is applied, the backscattered electron e2 from the sample is mainly the incident electron e1. By adopting a configuration in which only backscattered electrons within a predetermined narrow angle range are detected, it is possible to obtain a great advantage that a deep groove or edge having a remarkably high aspect ratio can be satisfactorily measured. Needless to say, it becomes possible to satisfactorily measure even an uneven portion such as a deep hole having a high aspect ratio.

【0028】次に、図6は不要な低エネルギーの二次電
子を除去するエネルギーフィルタ54と減速電圧源56
とを追加して備える構成例である。エネルギーフィルタ
54は、一定エネルギー以上の高エネルギーの反射電子
は通過させ、一定エネルギー以下の無用の二次電子は減
速反発させて通過阻止させるものである。構造は細かい
網目状のグリッド電極であって、反射電子e5が通過す
る領域全面に平面的に配設する。この電極には、減速電
圧源56により所望の負の直流電圧を印加する。減速電
圧源56は、負の直流可変電源であって、外部からの制
御に基づいて、所望の負の減速電圧を上記エネルギーフ
ィルタ54へ供給する。この電圧制御を所望にすること
によって、受信に適した反射電子とそれ以外のノイズ的
要素となる二次電子とを効果的に分離できる利点が得ら
れる。
Next, FIG. 6 shows an energy filter 54 and a deceleration voltage source 56 for removing unnecessary low energy secondary electrons.
This is a configuration example in which and are additionally provided. The energy filter 54 allows high-energy reflected electrons of a certain energy or more to pass therethrough, and unnecessary secondary electrons of a certain energy or less decelerate and repel them to block passage. The structure is a fine mesh grid electrode, and is arranged in a plane over the entire region through which the reflected electrons e5 pass. A desired negative DC voltage is applied to this electrode by the deceleration voltage source 56. The deceleration voltage source 56 is a negative DC variable power supply, and supplies a desired negative deceleration voltage to the energy filter 54 under the control of the outside. By making this voltage control desired, there is an advantage that the reflected electrons suitable for reception and the secondary electrons which are other noise elements can be effectively separated.

【0029】上記図6のエネルギーフィルタを備える形
状計測用インレンズ型反射電子検出器の発明構成例によ
れば、エネルギーフィルタ54に減速電圧を印加し一定
エネルギー以下の二次電子は引き戻され通過できなくな
る。従って、減速電圧を所望条件に制御することによっ
て、受信に適した反射電子とそれ以外のノイズ的要素と
なる電子とを効果的に分離できる。従って、受信する電
気信号のSN比を向上できる結果、一層測定精度のよい
試料の高いアスペクト比の溝の深さHを測定できる利点
が得られる。
According to the invention configuration example of the in-lens type backscattered electron detector for shape measurement provided with the energy filter of FIG. 6, a deceleration voltage is applied to the energy filter 54, and secondary electrons having a certain energy or less can be pulled back and passed. Disappear. Therefore, by controlling the deceleration voltage to a desired condition, it is possible to effectively separate the reflected electrons suitable for reception from the other electrons that are noise factors. Therefore, as a result of improving the SN ratio of the received electric signal, there is an advantage that the depth H of the groove having a high aspect ratio of the sample with higher measurement accuracy can be measured.

【0030】尚、本発明の技術的思想は、上述実施の形
態の具体構成例、接続形態例に限定されるものではな
い。更に、本発明の技術的思想に基づき、上述実施の形
態を適宜変形して広汎に応用してもよい。例えば、上述
実施例では、試料の測定対象として溝の深さHとした具
体例であったが、図7Aに示すように、試料の凸部が複
数連続する場合の凸部の高さも上述同様にして測定でき
る。更に、図7Bに示すように、溝の底部に複雑な段差
を有する試料においても個々の段差を良好に測定可能で
ある。更に、極めて小径の丸穴を測定することも可能で
ある。
The technical idea of the present invention is not limited to the specific configuration examples and connection mode examples of the above-described embodiment. Furthermore, based on the technical idea of the present invention, the above-described embodiments may be appropriately modified and widely applied. For example, in the above-described embodiment, the depth H of the groove is used as the measurement target of the sample, but as shown in FIG. 7A, the height of the convex portion in the case where a plurality of convex portions of the sample are continuous is similar to the above. Can be measured. Further, as shown in FIG. 7B, even in a sample having a complicated step at the bottom of the groove, each step can be satisfactorily measured. Further, it is possible to measure a round hole having an extremely small diameter.

【0031】また、既知高さの基準チップを適用して測
定系の誤差要因を補正する補正手段を備えても良い。即
ち、既知高さHs(又は既知深さDs)の1種類若しくは
複数種類の高さ基準チップCsを適用して、定期的に若
しくは装置の電源投入後において、所定に走査して高さ
基準チップCsの反射電子信号プロファイルを取得す
る。これから求めた基準チップの真影シャドウ長Lf
(または半影シャドウ長Lh)と、当該基準チップの既
知高さHsから、高さ算出係数tanθ2=(Hs/Lf)、
(またはtanθ1=(Hs/Lh))を校正値として求め
る。以後は、この校正された高さ算出係数tanθ2(ま
たはtanθ1)を使用して未知の被試験試料の高さHxや
深さHxを、真影シャドウ長Lfまたは半影シャドウ長
Lhの測定から算出する。尚、上記高さ算出係数tanθ
2を校正値とする補正手段の代わりに、基準チップの測
定で求めた算出高さHxと既知高さHsとにより補正係数
Hx/Hsを求め、この補正係数に基づいて補正するよう
にしても良い。従って、既知高さの基準チップに基づい
て校正することにより測定系の様々な測定誤差要因や経
時変化要因を相殺できるからして、更なる高精度な微細
凹凸量測定装置が実現できる大きな利点が得られる。
Further, there may be provided a correction means for applying a reference chip having a known height to correct an error factor of the measurement system. That is, by applying one or more kinds of height reference chips Cs having a known height Hs (or a known depth Ds), the height reference chips are scanned in a predetermined manner periodically or after the power of the apparatus is turned on. Obtain the backscattered electron signal profile of Cs. True shadow length Lf of the reference chip obtained from this
(Or penumbra shadow length Lh) and the known height Hs of the reference chip, the height calculation coefficient tan θ2 = (Hs / Lf),
(Or tan θ1 = (Hs / Lh)) is obtained as a calibration value. After that, using this calibrated height calculation coefficient tan θ2 (or tan θ1), the height Hx and depth Hx of the unknown test sample are calculated from the measurement of the true shadow length Lf or the penumbra shadow length Lh. To do. The height calculation coefficient tan θ
Instead of the correction means having 2 as the calibration value, the correction coefficient Hx / Hs is obtained from the calculated height Hx obtained by the measurement of the reference chip and the known height Hs, and the correction is made based on this correction coefficient. good. Therefore, by calibrating based on the reference chip of known height, it is possible to cancel various measurement error factors and aging factors of the measurement system, which is a great advantage that a further highly precise fine unevenness amount measuring device can be realized. can get.

【0032】また、真影シャドウ長または半影シャドウ
長を求める際の凸部エッジによる特異点D1は斜面が緩
やかな時などの場合、反射電子より二次電子の方が正確
に定められることがある。このような場合、反射電子プ
ロファイルによる特異点A1(またはB1)と2次電子
プロファイルによる特異点D1から真影(または半影)
シャドウ長を求めて、高さを算出しても良い。
The singularity D1 due to the convex edge when the true shadow length or the penumbra shadow length is obtained is such that the secondary electron is more accurately defined than the reflected electron when the slope is gentle. is there. In such a case, a singular point A1 (or B1) based on the backscattered electron profile and a singular point (or penumbra) from the singular point D1 based on the secondary electron profile
The height may be calculated by obtaining the shadow length.

【0033】また、急角度では無い斜面のエッジパター
ン等の測定においては、走査しても二次電子検出器4
1、42の検出信号に有効な変化が得られない結果、エ
ッジパターンの変化点を検出できなくなる場合がある。
そこで、これに対処する手段としては、図4に示す反射
電子開き角制限絞り50における開口孔52の口径を可
変にできる可変絞り機構を備える。この可変絞り機構の
開口径は、第1に、ほぼ全開の開口径のときには絞りが
無いに等しい大きな開口径までを可能にし、第2に、実
用的に制御可能な最小の開口径までを可能とする。この
とき、入射軸の中心と、開口孔の中心とが一致するよう
に絞り機構は構成し、絞り量の制御をする。従って、開
口孔52の口径を可変とする可変絞り機構を備える場合
には、開口径を所望に制御することで、図5Bから図5
Cに示すように、比較的広いアスペクト範囲に対応可能
となる利点が得られる。
Further, in the measurement of the edge pattern of a slope which is not a steep angle, the secondary electron detector 4 is used even if it is scanned.
As a result, an effective change cannot be obtained in the detection signals 1 and 42, so that the change point of the edge pattern may not be detected.
Therefore, as means for coping with this, a variable diaphragm mechanism capable of varying the aperture diameter of the aperture hole 52 in the reflection electron aperture angle limiting diaphragm 50 shown in FIG. 4 is provided. Regarding the aperture diameter of this variable aperture mechanism, firstly, when the aperture diameter is almost fully opened, it is possible to achieve a large aperture diameter that is almost equal to that when there is no aperture, and secondly, to the minimum aperture diameter that can be practically controlled. And At this time, the diaphragm mechanism is configured so that the center of the incident axis and the center of the aperture hole coincide with each other, and the diaphragm amount is controlled. Therefore, in the case of including a variable diaphragm mechanism that makes the aperture diameter of the aperture hole 52 variable, by controlling the aperture diameter as desired, it is possible to reduce the aperture diameter of FIG.
As shown in C, there is an advantage that a relatively wide aspect range can be supported.

【0034】図8は、緩斜面の試料を傾ける試料傾斜機
構を説明する図である。図8Aに示すように、緩やかな
緩斜面のエッジパターン等においては反射電子取り出し
角度θ2以上の傾斜が存在しない場合がある。この場
合、当該エッジで反射電子の影(シャドウ)が生じない
ので、走査しても二次電子検出器41、42の検出信号
に変化が得られない結果、エッジパターンの変化点を検
出できなくなる。そこで、これに対応する手段として
は、図8Bに示すように、試料を保持して移動させるX
YZ軸方向へ移動可能なステージに対して、ステージ面
を傾ける機構を追加して備える。または、試料を保持し
て所望に傾ける機構を追加して備える。尚、他方の斜面
の測定は試料を反対に傾斜させて同様に行えば良い。従
って、試料を傾ける機構手段を備える場合には、入射電
子e1対して反射電子取り出し角度θ2以上(図8C参
照)とすることが可能となる結果、緩斜面のエッジパタ
ーン等も実用的に測定可能となり、この結果、測定可能
な傾斜範囲を大幅に拡大できる利点が得られる。
FIG. 8 is a view for explaining a sample tilting mechanism for tilting a sample on a gentle slope. As shown in FIG. 8A, there is a case where there is no inclination of the backscattered electron extraction angle θ2 or more in an edge pattern of a gentle gentle slope or the like. In this case, since the shadow of the reflected electrons does not occur at the edge, no change can be obtained in the detection signals of the secondary electron detectors 41 and 42 even when scanning, and as a result, the change point of the edge pattern cannot be detected. . Therefore, as a means for responding to this, as shown in FIG. 8B, X that holds and moves the sample is used.
A mechanism for tilting the stage surface is additionally provided for the stage movable in the YZ axis directions. Alternatively, a mechanism for holding the sample and tilting it as desired is additionally provided. The measurement of the other slope may be performed in the same manner by inclining the sample in the opposite direction. Therefore, when the mechanism means for tilting the sample is provided, it becomes possible to set the reflected electron extraction angle θ2 or more with respect to the incident electron e1 (see FIG. 8C). As a result, the edge pattern of the gentle slope can be practically measured. As a result, there is an advantage that the measurable tilt range can be greatly expanded.

【0035】また、所望により、形状計測用インレンズ
型反射電子検出器をX軸方向の測定用で2個の二次電子
検出器、Y軸方向の測定用として2個の二次電子検出
器、合計4個の二次電子検出器を備える構成とした微細
凹凸量測定装置としても良い。そして、X軸方向Y軸方
向へスキャンコイル70を偏向制御する。この構成の場
合には、試料を乗せたステージを90度回転させること
が不要となるので、ステージの位置決め誤差に伴う測定
誤差を無くすることができる結果、特に極微細な凹凸形
状を正確に測定できる利点が得られる。
Further, if desired, in-lens type backscattered electron detectors for shape measurement are used as two secondary electron detectors for measurement in the X-axis direction, and two secondary electron detectors for measurement in the Y-axis direction. The fine unevenness amount measuring device may be configured to include a total of four secondary electron detectors. Then, the scan coil 70 is deflection-controlled in the X-axis direction and the Y-axis direction. In the case of this configuration, it is not necessary to rotate the stage on which the sample is placed by 90 degrees, so that it is possible to eliminate the measurement error due to the positioning error of the stage. The advantage that can be obtained is obtained.

【0036】また、所望により、図4に示すように、従
来の反射電子検出器31、32と、本発明の二次電子検
出器41、42との両方を備えるように構成した微細凹
凸量測定装置としても良い。従って、アウトレンズ型反
射電子検出器と形状計測用インレンズ型反射電子検出器
との両方を併用する構成手段を備える場合には、試料に
おける垂直に近い凹凸部位から、緩斜面の凹凸部位まで
の幅広いエッジや凹凸部位を同時に測定できる大きな利
点が得られる。
Further, if desired, as shown in FIG. 4, the measurement of the fine unevenness amount which is configured to include both the conventional backscattered electron detectors 31 and 32 and the secondary electron detectors 41 and 42 of the present invention. It may be a device. Therefore, in the case where a constituent means that uses both the out-lens type backscattered electron detector and the in-lens type backscattered electron detector for shape measurement is provided, from the uneven portion close to vertical in the sample to the uneven portion on the gentle slope. The great advantage is that a wide range of edges and uneven parts can be measured simultaneously.

【0037】また、図9のインレンズ型の二次電子検出
器43、44を備える構成としても良い。この二次電子
検出器によっても高いアスペクト比の深い溝やエッジを
良好に測定可能となる。尚、所望により、反射電子検出
と二次電子検出を時間的に切り替えて使用しても良い
し、同時に使用しても良い。
The in-lens type secondary electron detectors 43 and 44 shown in FIG. 9 may be provided. Even with this secondary electron detector, it is possible to satisfactorily measure a deep groove or edge having a high aspect ratio. If desired, backscattered electron detection and secondary electron detection may be switched in time, or may be used simultaneously.

【0038】また、図10のアウトレンズ型の二次電子
検出器45、46を備える構成としても良い。この二次
電子検出器によっても高いアスペクト比の深い溝やエッ
ジを良好に測定可能となる。尚、所望により、反射電子
検出と二次電子検出を時間的に切り替えて使用しても良
いし、同時に使用しても良い。また、所望により、図9
のインレンズ型の二次電子検出器43、44と、図10
のアウトレンズ型の二次電子検出器45、46との両方
を備える構成としても良い。更に、2系統の二次電子検
出器を時間的に切り替えて使用しても良いし、同時に使
用しても良い。更に、反射電子検出と2系統の二次電子
検出を時間的に切り替えて使用しても良いし、同時に使
用しても良い。
Further, the out-lens type secondary electron detectors 45 and 46 of FIG. 10 may be provided. Even with this secondary electron detector, it is possible to satisfactorily measure a deep groove or edge having a high aspect ratio. If desired, backscattered electron detection and secondary electron detection may be switched in time, or may be used simultaneously. Also, if desired, FIG.
In-lens type secondary electron detectors 43 and 44 of FIG.
Both of the out-lens type secondary electron detectors 45 and 46 may be provided. Furthermore, the secondary electron detectors of the two systems may be switched in time and used, or may be used simultaneously. Further, the backscattered electron detection and the two-system secondary electron detection may be switched in time, or may be used simultaneously.

【0039】また、図11の対物レンズの収束効果によ
り曲がってくる反射電子e9を対象として検出するよう
に構成しても良い。この場合にも高いアスペクト比の深
い溝やエッジを良好に測定可能となる。
Further, the backscattered electron e9 which is bent due to the convergence effect of the objective lens shown in FIG. 11 may be detected. Also in this case, it is possible to satisfactorily measure a deep groove or edge having a high aspect ratio.

【0040】また、上述した微細凹凸量測定装置を内蔵
した構成の走査型電子顕微鏡を実現しても良い。この場
合には、被試験試料である回路チップの凹凸のアスペク
ト比の大きな部位に対して、より一層明瞭なSEM像を
取得することが可能となる大きな利点が得られる。
Further, a scanning electron microscope having a structure incorporating the above-described fine unevenness amount measuring device may be realized. In this case, there is a great advantage that it is possible to obtain a clearer SEM image with respect to a portion of the circuit chip, which is the sample to be tested, having a large aspect ratio of irregularities.

【0041】[0041]

【発明の効果】本発明は、上述の説明内容からして、下
記に記載される効果を奏する。上述した図4の反射電子
開き角制限絞りを適用した形状計測用インレンズ型反射
電子検出器の発明構成例によれば、試料からの反射電子
e2の中で、入射電子e1を中心とする所定の狭角範囲
の反射電子のみを検出する構成としたことにより、格段
に高いアスペクト比の深い溝やエッジを良好に測定可能
となる大きな利点が得られる。無論、高いアスペクト比
の深い穴等凹凸部位でも良好に測定可能となる。また、
上記図6のエネルギーフィルタを備える形状計測用イン
レンズ型反射電子検出器の発明構成例によれば、エネル
ギーフィルタ54に減速電圧を印加し一定エネルギー以
下の二次電子は引き戻され通過できなくなる。従って、
減速電圧を所望条件に制御することによって、受信に適
した反射電子とそれ以外のノイズ的要素となる電子とを
効果的に分離できる。従って、受信する電気信号のSN
比を向上できる結果、一層測定精度のよい試料の高いア
スペクト比の溝の深さHを測定できる利点が得られる。
また、既知高さの基準チップに基づいて校正することに
より測定系の様々な測定誤差要因や経時変化要因を相殺
できるからして、更なる高精度な微細凹凸量測定装置が
実現できる大きな利点が得られる。また、開口孔52の
口径を可変とする可変絞り機構を備える場合には、開口
径を所望に制御することで、図5Bから図5Cに示すよ
うに、比較的広いアスペクト範囲に対応可能となる利点
が得られる。また、試料を傾ける機構手段を備える場合
には、入射電子e1対して反射電子取り出し角度θ2以
上(図8C参照)とすることが可能となる結果、緩斜面
のエッジパターン等も実用的に測定可能となり、この結
果、測定可能な傾斜範囲を拡大できる利点が得られる。
また、アウトレンズ型反射電子検出器と形状計測用イン
レンズ型反射電子検出器との両方を併用する構成手段を
備える場合には、試料における垂直に近い凹凸部位か
ら、緩斜面の凹凸部位までの幅広いエッジや凹凸部位を
同時に測定できる大きな利点が得られる。従って、本発
明の技術的効果は大であり、産業上の経済効果も大であ
る。
The present invention has the following effects based on the above description. According to the invention configuration example of the in-lens type backscattered electron detector for shape measurement to which the backscattered electron opening angle limiting diaphragm of FIG. 4 described above is applied, the backscattered electron e2 from the sample is centered on the incident electron e1. Since only the backscattered electrons in the narrow angle range are detected, it is possible to satisfactorily measure a deep groove or edge having a remarkably high aspect ratio. Needless to say, it is possible to satisfactorily measure even an uneven portion such as a deep hole having a high aspect ratio. Also,
According to the invention configuration example of the in-lens type backscattered electron detector for shape measurement including the energy filter of FIG. 6, the deceleration voltage is applied to the energy filter 54, and secondary electrons having a certain energy or less are pulled back and cannot pass through. Therefore,
By controlling the deceleration voltage to a desired condition, it is possible to effectively separate the reflected electrons suitable for reception and the other electrons that are noise factors. Therefore, the SN of the received electrical signal
As a result of being able to improve the ratio, there is an advantage that the depth H of the groove having a high aspect ratio of the sample with higher measurement accuracy can be measured.
Further, by calibrating on the basis of a reference chip of known height, various measurement error factors and aging factors of the measurement system can be canceled out, so that there is a great advantage that a further highly precise fine unevenness amount measuring device can be realized. can get. Further, when a variable diaphragm mechanism that makes the aperture diameter of the aperture 52 variable is provided, by controlling the aperture diameter as desired, it becomes possible to cope with a relatively wide aspect range as shown in FIGS. 5B to 5C. Benefits are obtained. Further, when the mechanism means for tilting the sample is provided, it is possible to set the reflected electron extraction angle θ2 or more with respect to the incident electron e1 (see FIG. 8C), and as a result, it is possible to practically measure the edge pattern of the gentle slope. As a result, the merit that the measurable tilt range can be expanded is obtained.
Further, in the case of including a constituent means that uses both the out-lens type backscattered electron detector and the in-lens type backscattered electron detector for shape measurement in combination, from the uneven portion near vertical in the sample to the uneven portion on the gentle slope. The great advantage is that a wide range of edges and uneven parts can be measured simultaneously. Therefore, the technical effect of the present invention is great, and the economic effect in industry is also great.

【図面の簡単な説明】[Brief description of drawings]

【図1】反射電子の適用に基づく走査型電子顕微鏡の原
理構造図である。
FIG. 1 is a principle structural diagram of a scanning electron microscope based on the application of backscattered electrons.

【図2】所定の走査により試料の凸部形状の高さHを測
定する原理説明図である。
FIG. 2 is an explanatory view of the principle of measuring the height H of the convex shape of the sample by a predetermined scan.

【図3】スキャンコイルの走査により試料の凹部形状の
溝の深さHを測定する走査説明図である。
FIG. 3 is a scanning explanatory diagram for measuring a depth H of a concave groove of a sample by scanning with a scan coil.

【図4】本発明の、狭角に反射してくる反射電子のみを
二次電子検出器で検出する形状計測用インレンズ型反射
電子検出装置の原理構造図である。
FIG. 4 is a principle structural diagram of an in-lens type backscattered electron detection device for shape measurement in which only secondary electrons reflected at a narrow angle are detected by a secondary electron detector according to the present invention.

【図5】従来のアウトレンズ型反射電子検出器の場合
と、形状計測用インレンズ型反射電子検出器の場合と、
本発明の反射電子開き角制限絞りを適用した形状計測用
インレンズ型反射電子検出器の3つの形態における最大
測定可能なアスペクト比を示す相対的な説明図である。
FIG. 5 shows a case of a conventional out-lens backscattered electron detector and a case of an in-lens backscattered electron detector for shape measurement,
It is a relative explanatory view which shows the maximum measurable aspect ratio in three forms of the in-lens type backscattered electron detector for shape measurement to which the backscattered electron opening angle limiting diaphragm of the present invention is applied.

【図6】本発明の、不要な低エネルギーの反射電子を除
去するエネルギーフィルタと減速電圧源とを追加して備
える構成例である。
FIG. 6 is a structural example of the present invention in which an energy filter for removing unnecessary low-energy backscattered electrons and a deceleration voltage source are additionally provided.

【図7】本発明により測定可能な試料の複雑な凹凸や深
い穴を示す試料断面図である。
FIG. 7 is a cross-sectional view of a sample showing complex irregularities and deep holes of the sample that can be measured by the present invention.

【図8】本発明の、緩斜面の試料を傾ける試料傾斜機構
を説明する図である。
FIG. 8 is a diagram illustrating a sample tilting mechanism for tilting a sample on a gentle slope according to the present invention.

【図9】本発明の、インレンズ型の二次電子検出器4
3、44を備える構成例である。
FIG. 9 is an in-lens type secondary electron detector 4 of the present invention.
3 is an example of a configuration including 3, 44.

【図10】本発明の、インレンズ型の二次電子検出器4
5、46を備える構成例である。
FIG. 10 is an in-lens type secondary electron detector 4 of the present invention.
5 is an example of a configuration including 5 and 46.

【図11】本発明の、対物レンズの収束効果により曲が
ってくる反射電子を対象として検出する構成例である。
FIG. 11 is an example of the configuration of the present invention in which backscattered electrons that bend due to the convergence effect of the objective lens are detected.

【符号の説明】[Explanation of symbols]

20 対物レンズ 31、32 反射電子検出器(BSE検出器) 40 二次電子変換板 41〜46 二次電子検出器 50 反射電子開き角制限絞り 52 開口孔 54 エネルギーフィルタ 56 減速電圧源 60 コンデンサレンズ 70 スキャンコイル 100 ステージ 20 Objective lens 31, 32 Backscattered electron detector (BSE detector) 40 Secondary electron conversion plate 41-46 Secondary electron detector 50 Reflection electron aperture angle limiting diaphragm 52 Open hole 54 Energy Filter 56 Deceleration voltage source 60 condenser lens 70 scan coils 100 stages

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 被観察対象(試料)の表面を電子ビーム
によって走査して試料の深さ若しくは高さを測定する微
細凹凸量測定装置において、 試料に照射した入射電子の反射による反射電子の中の、
対物レンズの内側を通過する反射電子の中で、所定角度
領域内の反射電子のみを受けて電気信号に変換する形状
計測用インレンズ型の反射電子検出手段を備える、こと
を特徴とする微細凹凸量測定装置。
1. A fine unevenness measuring apparatus for measuring the depth or height of a sample by scanning the surface of an object to be observed (sample) with an electron beam, wherein the reflected electrons due to the reflection of incident electrons irradiated on the sample. of,
Among the backscattered electrons passing through the inside of the objective lens, there is provided an in-lens type backscattered electron detection means for shape measurement, which receives only backscattered electrons within a predetermined angle region and converts them into an electric signal. Quantity measuring device.
【請求項2】 被観察対象(試料)の表面を所定の既知
距離区間を電子ビームによって走査して得られる反射電
子信号プロファイルから試料の頂部と底部とを特定し、
これに基づいて試料の深さ若しくは高さである凹凸量を
測定する微細凹凸量測定装置において、 試料に照射した入射電子の反射による反射電子の中の、
対物レンズの内側を通過する反射電子の中で、所定角度
領域内の反射電子のみを通過させる反射電子開き角制限
絞りと、 該反射電子開き角制限絞りを通過してきた反射電子を受
けて電気信号に変換する形状計測用インレンズ型の反射
電子検出手段と、 を具備することを特徴とする微細凹凸量測定装置。
2. The top and bottom of the sample are specified from a backscattered electron signal profile obtained by scanning a surface of an object to be observed (sample) with a predetermined known distance section by an electron beam,
Based on this, in a fine unevenness amount measuring device that measures the unevenness amount which is the depth or height of the sample, in the reflected electrons due to the reflection of the incident electrons irradiated on the sample,
Among reflected electrons passing through the inside of the objective lens, a reflected electron opening angle limiting diaphragm that allows only reflected electrons within a predetermined angle region to pass, and an electric signal that receives reflected electrons that have passed through the reflected electron opening angle limiting diaphragm An in-lens type backscattered electron detection unit for shape measurement, which is converted into, and a fine unevenness amount measuring apparatus, comprising:
【請求項3】 被観察対象(試料)の表面を所定の既知
距離区間を電子ビームによって走査して得られる反射電
子信号プロファイルから試料の頂部と底部とを特定し、
これに基づいて試料の深さ若しくは高さである凹凸量を
測定する微細凹凸量測定装置において、 試料に照射した入射電子の反射による反射電子の中の、
対物レンズの内側を通過する反射電子の中で、所定角度
領域内の反射電子のみを通過させる反射電子開き角制限
絞りと、 該反射電子開き角制限絞りを通過してきた反射電子を受
けて電気信号に変換する、アスペクト比の大きな凹凸部
位を検出担当する形状計測用インレンズ型の反射電子検
出手段と、 入射電子を照射した試料から反射する反射電子の中で、
対物レンズの下側の所定角度領域の反射電子を検出し
て、アスペクト比の小さい凹凸部位を検出担当するアウ
トレンズ型の反射電子検出器と、 を具備することを特徴とする微細凹凸量測定装置。
3. The top and bottom of the sample are specified from the reflected electron signal profile obtained by scanning the surface of the object to be observed (sample) with a predetermined known distance section by an electron beam,
Based on this, in a fine unevenness amount measuring device that measures the unevenness amount which is the depth or height of the sample, in the reflected electrons due to the reflection of the incident electrons irradiated on the sample,
Among reflected electrons passing through the inside of the objective lens, a reflected electron opening angle limiting diaphragm that allows only reflected electrons within a predetermined angle region to pass, and an electric signal that receives reflected electrons that have passed through the reflected electron opening angle limiting diaphragm Of the in-lens type backscattered electron detection means for shape measurement, which is in charge of detecting uneven parts with a large aspect ratio, and backscattered electrons reflected from the sample irradiated with incident electrons.
An out-lens type backscattered electron detector for detecting backscattered electrons in a predetermined angle region below the objective lens to detect a recessed and projected portion having a small aspect ratio, .
【請求項4】 該反射電子検出手段は、所定角度領域の
反射電子を受けて、 これに対応した二次電子に変換して放出する二次電子変
換板と、 該二次電子を受けて電気信号に変換して出力する二次電
子検出手段と、 を具備することを特徴とする請求項1乃至3記載の微細
凹凸量測定装置。
4. The backscattered electron detecting means receives a backscattered electron in a predetermined angle region, converts the backscattered electron into a secondary electron corresponding to the backscattered electron, and emits the secondary electron. 4. The fine unevenness amount measuring device according to claim 1, further comprising: a secondary electron detecting unit that converts the signal into a signal and outputs the signal.
【請求項5】 該二次電子検出手段は、試料の走査軸方
向に対応して所定に配設して備える2個の二次電子検出
器である、ことを特徴とする請求項4記載の微細凹凸量
測定装置。
5. The secondary electron detecting means is two secondary electron detectors arranged and provided in a predetermined manner corresponding to the scanning axis direction of the sample, according to claim 4. Fine unevenness measuring device.
【請求項6】 該二次電子検出手段は、試料の一方の走
査軸方向(X軸方向)に対応して所定に配設して備える
2個の第1の二次電子検出器と、 前記第1の二次電子検出器と直交して、試料の他方の走
査軸方向(Y軸方向)に対応して所定に配設して備える
2個の第2の二次電子検出器と、 を具備することを特徴とする請求項4記載の微細凹凸量
測定装置。
6. The two secondary electron detectors are two first secondary electron detectors, which are provided in a predetermined manner in correspondence with one scanning axis direction (X axis direction) of the sample, and Two second secondary electron detectors, which are orthogonal to the first secondary electron detector and are arranged in a predetermined manner corresponding to the other scanning axis direction (Y-axis direction) of the sample; The fine unevenness amount measuring device according to claim 4, further comprising:
【請求項7】 対物レンズの後方に、一定エネルギー以
上の反射電子は通過させ、一定エネルギー以下の他の電
子は通過阻止させるエネルギーフィルタと、 該エネルギーフィルタへ所定の負の減速電圧を供給する
減速電圧源と、 を具備することを特徴とする請求項1乃至3記載の微細
凹凸量測定装置。
7. An energy filter which allows reflected electrons having a certain energy or more to pass therethrough and other electrons having a certain energy or less to pass behind the objective lens, and a deceleration for supplying a predetermined negative deceleration voltage to the energy filter. The fine unevenness amount measuring device according to claim 1, further comprising: a voltage source.
【請求項8】 試料として既知深さDs若しくは既知高
さHsの基準チップを適用し、該反射電子検出手段で当
該既知深さDs若しくは既知高さHsの反射電子信号プロ
ファイルを取得し、これから算出される算出深さDx若
しくは算出高さHxと、既知深さDs若しくは既知高さH
sとの差分から、測定系を補正する補正値を求めて記憶
しておき、 以後における未知試料に対する測定においては、記憶し
ておいた該補正値に基づいて算出補正する、ことを特徴
とする請求項1乃至3記載の微細凹凸量測定装置。
8. A reference chip having a known depth Ds or a known height Hs is applied as a sample, and the reflected electron signal profile of the known depth Ds or the known height Hs is acquired by the reflected electron detection means and calculated from this. Calculated depth Dx or calculated height Hx and known depth Ds or known height H
It is characterized in that a correction value for correcting the measurement system is obtained and stored from the difference from s, and in subsequent measurement of an unknown sample, calculation correction is performed based on the stored correction value. The fine unevenness amount measuring device according to claim 1.
【請求項9】 該反射電子開き角制限絞りは、当該反射
電子開き角制限絞りを通過する反射電子の開口孔の大き
さを可変とする可変絞り機構を備える、ことを特徴とす
る請求項2又は3記載の微細凹凸量測定装置。
9. The backscattered electron aperture angle limiting diaphragm is provided with a variable aperture mechanism that is capable of varying the size of an aperture hole of backscattered electrons passing through the backscattered electron aperture angle limiting diaphragm. Alternatively, the fine unevenness amount measuring device described in 3.
【請求項10】 試料の測定部位の凸部エッジの特異点
を特定するのに試料から反射する反射電子の代わりに試
料から放出する二次電子を検出して二次電子信号プロフ
ァイルを得るための二次電子検出器を備える、ことを特
徴とする請求項1乃至9記載の微細凹凸量測定装置。
10. A secondary electron signal profile is obtained by detecting secondary electrons emitted from a sample instead of reflected electrons reflected from the sample in order to identify a singular point of a convex edge of a measurement site of the sample. The fine unevenness amount measuring device according to claim 1, further comprising a secondary electron detector.
【請求項11】 試料の測定部位が反射電子の影(シャ
ドウ)が生じないような緩斜面のときは、当該測定部位
にシャドウが生じるように、ステージ上の試料の角度を
所定角度に傾ける試料傾斜機構を備える、ことを特徴と
する請求項1乃至10記載の微細凹凸量測定装置。
11. When the measurement site of the sample is a gentle slope where shadows of backscattered electrons do not occur, the sample on the stage is tilted at a predetermined angle so that the shadow is produced at the measurement site. The fine unevenness amount measuring device according to claim 1, further comprising a tilting mechanism.
【請求項12】 請求項1乃至11記載の該微細凹凸量
測定装置を適用して試料のアスペクト比の高いSEM像
を測定する構成を備える、ことを特徴とする走査型電子
顕微鏡。
12. A scanning electron microscope, comprising a structure for measuring an SEM image of a sample having a high aspect ratio by applying the fine unevenness amount measuring apparatus according to claim 1. Description:
JP2001354221A 2001-11-20 2001-11-20 Micro ruggedness value measurement device and scanning electron microscope Pending JP2003157790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354221A JP2003157790A (en) 2001-11-20 2001-11-20 Micro ruggedness value measurement device and scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354221A JP2003157790A (en) 2001-11-20 2001-11-20 Micro ruggedness value measurement device and scanning electron microscope

Publications (1)

Publication Number Publication Date
JP2003157790A true JP2003157790A (en) 2003-05-30

Family

ID=19166112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354221A Pending JP2003157790A (en) 2001-11-20 2001-11-20 Micro ruggedness value measurement device and scanning electron microscope

Country Status (1)

Country Link
JP (1) JP2003157790A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521461A (en) * 2003-07-30 2007-08-02 アプライド マテリアルズ イスラエル リミテッド Scanning electron microscope with multiple detectors and multiple detector-based imaging method
JP2007220317A (en) * 2006-02-14 2007-08-30 Jeol Ltd Electron beam inspection method and device
JP2008186689A (en) * 2007-01-30 2008-08-14 Hitachi High-Technologies Corp Scanning electron microscope
JP2009211961A (en) * 2008-03-05 2009-09-17 Hitachi High-Technologies Corp Scanning electron microscope
JP2012177654A (en) * 2011-02-28 2012-09-13 Advantest Corp Device and method for measuring pattern height
WO2013058077A1 (en) * 2011-10-20 2013-04-25 株式会社日立ハイテクノロジーズ Scanning electron microscope
JP2014022040A (en) * 2012-07-12 2014-02-03 Hitachi High-Technologies Corp Charged particle beam device
JP2015035500A (en) * 2013-08-09 2015-02-19 株式会社日立ハイテクノロジーズ Pattern length measurement device and pattern length measurement method
JP2015106530A (en) * 2013-12-02 2015-06-08 株式会社日立ハイテクノロジーズ Scanning electron microscope system, pattern measurement method arranged by use thereof, and scanning electron microscope
WO2017179138A1 (en) * 2016-04-13 2017-10-19 株式会社 日立ハイテクノロジーズ Pattern measurement device and pattern measurement method
US10121633B2 (en) 2014-09-24 2018-11-06 National Institute For Materials Science Energy discriminating electron detector and scanning electron microscope using the same
US11276554B2 (en) 2019-08-07 2022-03-15 Hitachi High-Tech Corporation Scanning electron microscope and method for measuring pattern
US11302513B2 (en) 2018-04-06 2022-04-12 Hitachi High-Tech Corporation Electron microscope apparatus, inspection system using electron microscope apparatus, and inspection method using electron microscope apparatus
US11545336B2 (en) 2018-04-06 2023-01-03 Hitachi High-Tech Corporation Scanning electron microscopy system and pattern depth measurement method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521461A (en) * 2003-07-30 2007-08-02 アプライド マテリアルズ イスラエル リミテッド Scanning electron microscope with multiple detectors and multiple detector-based imaging method
JP4662053B2 (en) * 2003-07-30 2011-03-30 アプライド マテリアルズ イスラエル リミテッド Scanning electron microscope with multiple detectors and multiple detector-based imaging method
JP2007220317A (en) * 2006-02-14 2007-08-30 Jeol Ltd Electron beam inspection method and device
JP2008186689A (en) * 2007-01-30 2008-08-14 Hitachi High-Technologies Corp Scanning electron microscope
JP2009211961A (en) * 2008-03-05 2009-09-17 Hitachi High-Technologies Corp Scanning electron microscope
JP2012177654A (en) * 2011-02-28 2012-09-13 Advantest Corp Device and method for measuring pattern height
US8604431B2 (en) 2011-02-28 2013-12-10 Advantest Corp. Pattern-height measuring apparatus and pattern-height measuring method
WO2013058077A1 (en) * 2011-10-20 2013-04-25 株式会社日立ハイテクノロジーズ Scanning electron microscope
JP2013089514A (en) * 2011-10-20 2013-05-13 Hitachi High-Technologies Corp Scanning electron microscope
JP2014022040A (en) * 2012-07-12 2014-02-03 Hitachi High-Technologies Corp Charged particle beam device
JP2015035500A (en) * 2013-08-09 2015-02-19 株式会社日立ハイテクノロジーズ Pattern length measurement device and pattern length measurement method
JP2015106530A (en) * 2013-12-02 2015-06-08 株式会社日立ハイテクノロジーズ Scanning electron microscope system, pattern measurement method arranged by use thereof, and scanning electron microscope
WO2015083548A1 (en) * 2013-12-02 2015-06-11 株式会社日立ハイテクノロジーズ Scanning electron microscope system, pattern measurement method using same, and scanning electron microscope
US9852881B2 (en) 2013-12-02 2017-12-26 Hitachi High-Technologies Corporation Scanning electron microscope system, pattern measurement method using same, and scanning electron microscope
US10121633B2 (en) 2014-09-24 2018-11-06 National Institute For Materials Science Energy discriminating electron detector and scanning electron microscope using the same
WO2017179138A1 (en) * 2016-04-13 2017-10-19 株式会社 日立ハイテクノロジーズ Pattern measurement device and pattern measurement method
JPWO2017179138A1 (en) * 2016-04-13 2018-12-06 株式会社日立ハイテクノロジーズ Pattern measuring apparatus and pattern measuring method
US10816332B2 (en) 2016-04-13 2020-10-27 Hitachi High-Tech Corporation Pattern measurement device and pattern measurement method
US11302513B2 (en) 2018-04-06 2022-04-12 Hitachi High-Tech Corporation Electron microscope apparatus, inspection system using electron microscope apparatus, and inspection method using electron microscope apparatus
US11545336B2 (en) 2018-04-06 2023-01-03 Hitachi High-Tech Corporation Scanning electron microscopy system and pattern depth measurement method
US11276554B2 (en) 2019-08-07 2022-03-15 Hitachi High-Tech Corporation Scanning electron microscope and method for measuring pattern

Similar Documents

Publication Publication Date Title
JP6668408B2 (en) System and method for SEM overlay measurement
US7329889B2 (en) Electron beam apparatus and method with surface height calculator and a dual projection optical unit
JP2003157790A (en) Micro ruggedness value measurement device and scanning electron microscope
US20060060781A1 (en) Charged-particle beam apparatus and method for automatically correcting astigmatism and for height detection
US8330104B2 (en) Pattern measurement apparatus and pattern measurement method
US20110147586A1 (en) Charged Particle Beam Device
JP2017010608A (en) Inclination correction method for charged particle beam, and charged particle beam device
US20020005484A1 (en) Apparatus and method for defect detection using charged particle beam
US20040256556A1 (en) Multiple electron beam device
JP4372339B2 (en) Irregular image forming apparatus and electron beam analyzer
JPH04132909A (en) Size measuring apparatus with electron beam
JP2000286310A (en) Method and apparatus for inspecting pattern defects
JP2019046567A (en) Charged particle beam device
JP3960544B2 (en) Beam adjusting specimen, beam adjusting method and beam adjusting apparatus
JP5372445B2 (en) Scanning electron microscope apparatus and focusing method thereof
US11183363B2 (en) Scanning electron microscope apparatus and operation method thereof
JP2001210689A (en) Method and apparatus for electron beam inspection
US11177112B2 (en) Pattern measurement device and non-transitory computer readable medium having stored therein program for executing measurement
US8605985B2 (en) Pattern measurement apparatus and pattern measurement method
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JPWO2002075246A1 (en) Pattern dimension measurement method
JP3946041B2 (en) Surface cross-sectional shape or three-dimensional surface shape measuring device and scanning electron microscope
JPH07286842A (en) Method and device for inspecting dimension
WO2021180473A1 (en) Leveling sensor in multiple charged-particle beam inspection
JP2010016007A (en) Charged particle beam adjustment method, and charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307