JP2003148170A - Method for controlling load of power plant - Google Patents
Method for controlling load of power plantInfo
- Publication number
- JP2003148170A JP2003148170A JP2002256523A JP2002256523A JP2003148170A JP 2003148170 A JP2003148170 A JP 2003148170A JP 2002256523 A JP2002256523 A JP 2002256523A JP 2002256523 A JP2002256523 A JP 2002256523A JP 2003148170 A JP2003148170 A JP 2003148170A
- Authority
- JP
- Japan
- Prior art keywords
- command value
- load control
- load
- fuel
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Turbines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は火力発電プラントの
負荷制御に係わり、特にガスタービンの燃料流量を調節
して負荷制御を行うプラントの調速負荷制御方式に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to load control of a thermal power plant, and more particularly to a speed-controlled load control system for a plant that controls load by adjusting a fuel flow rate of a gas turbine.
【0002】[0002]
【従来の技術】火力発電プラントは中央給電所からの発
電指令値に応じて、発電設備であるガスタービンの燃料
流量を制御、あるいは蒸気タービンの蒸気流量を制御す
る。この場合、系統周波数(東日本で50Hz、西日本
で60Hz)を安定させるため、調定率と言われる系統
寄与率に応じて、速度信号による発電量の調整を行い系
統周波数を安定させる。すなわち、系統の総負荷量の変
動に応じて変動する系統周波数の情報から、例えばガス
タービンの燃焼器に供給する燃料流量を系統寄与率に基
づいて制御し、系統周波数を安定させる。これは、調速
負荷制御あるいはガバナフリー制御と呼ばれている。2. Description of the Related Art A thermal power plant controls a fuel flow rate of a gas turbine, which is a power generation facility, or a steam flow rate of a steam turbine, according to a power generation command value from a central power supply station. In this case, in order to stabilize the system frequency (50 Hz in eastern Japan and 60 Hz in western Japan), the amount of power generation is adjusted by the speed signal according to the system contribution rate called the adjustment rate to stabilize the system frequency. That is, based on the information on the system frequency that changes according to the change in the total load of the system, for example, the flow rate of the fuel supplied to the combustor of the gas turbine is controlled based on the system contribution rate to stabilize the system frequency. This is called governor load control or governor-free control.
【0003】例えば、調定率5%の発電設備で100%
速度が50Hzであるとき、5%の速度である2.5H
z当りの発電定格出力100%分の燃料を、元の燃料流
量指令値に上乗せして調速負荷制御を行う。実際の系統
周波数は定格近辺では相対的に安定しているので、周波
数変動1%以下となるのが普通である。For example, 100% for power generation equipment with a regulation rate of 5%
2.5H, which is 5% speed when the speed is 50Hz
Fuel for 100% of the rated power output per z is added to the original fuel flow rate command value to perform the speed control load control. Since the actual system frequency is relatively stable near the rated value, the frequency fluctuation is usually 1% or less.
【0004】図10に示すように、調速負荷制御におけ
る系統周波数と燃料流量の関係は、仮に1%の周波数変
動があると、上記のように5%当り100%負荷調整と
なるため、1%に対しては定格の20%の燃料流量を元
の指令値に加/減することになる。また、調速負荷制御
の機能は系統周波数の安定化と共に、系統事故等により
タービンの回転数が急上昇した場合に燃料を絞り込むの
で、タービンあるいは発電機の過速度防止の働きも持っ
ている。調定率5%のプラントの場合、5%に対して1
00%負荷分の燃料流量を回転速度に応じて操作するた
め、過速度が105%になった時点で、瞬時に負荷出力
指令は0%となり、逆に105%を超える軸速度となっ
た時点で、出力的には負の値、つまり回転数にブレーキ
をかける働きとなる。As shown in FIG. 10, the relationship between the system frequency and the fuel flow rate in speed-regulating load control is 100% load adjustment per 5% as described above if there is a 1% frequency fluctuation. For%, the fuel flow rate of 20% of the rated value is added / subtracted to the original command value. Further, the function of the governor load control not only stabilizes the system frequency but also serves to prevent overspeed of the turbine or the generator because it narrows down the fuel when the rotational speed of the turbine suddenly increases due to a system accident or the like. For plants with a 5% regulation rate, 1 for every 5%
Since the fuel flow rate for 00% load is operated according to the rotation speed, the load output command instantly becomes 0% when the overspeed reaches 105%, and conversely when the shaft speed exceeds 105%. In terms of output, it has a negative value, that is, it works to brake the rotation speed.
【0005】一方、ガスタービン発電プラントは燃料と
圧縮空気を燃焼器に供給し、その燃焼ガスによってガス
タービンを駆動する。このとき調速負荷制御を行なう
と、系統周波数のわずかな変動に対して上述のように高
ゲインの燃料流量調節を行う。高ゲインによる燃料指令
値の変化が急激ないし頻繁になると、燃焼器の燃空比が
急変して燃焼不安定となり失火や逆火の原因となる。ま
た、燃料の供給量が増大して上限値を超える温度上昇や
熱応力が発生すると、ガスタービンの熱ストレスが増大
し、蓄積される。この熱ストレスは燃焼器やタービンブ
レードなど、機械設備の劣化の主要因となり、設備の寿
命が短くなる。On the other hand, a gas turbine power plant supplies fuel and compressed air to a combustor, and the combustion gas drives the gas turbine. At this time, if the speed-regulating load control is performed, the fuel flow rate with high gain is adjusted as described above with respect to a slight fluctuation of the system frequency. If the fuel command value changes abruptly or frequently due to high gain, the fuel-air ratio of the combustor suddenly changes and combustion becomes unstable, leading to misfire or flashback. Further, when the fuel supply amount increases and a temperature rise or thermal stress exceeding the upper limit value occurs, the thermal stress of the gas turbine increases and accumulates. This thermal stress is a main cause of deterioration of mechanical equipment such as combustors and turbine blades, which shortens the life of the equipment.
【0006】この対策として、例えば特開平8−218
897号では、ガスタービンの排ガス温度に上限値を設
定するとともに調速負荷制御の燃料供給指令にゲタをは
かせて、この上限値との温度差が零に近づくと温度負荷
制御を優先し、ガスタービンの負荷一定制御を行なう。
これにより、過大な熱ストレスを抑制するガスタービン
制御方式を提案している。As a countermeasure against this, for example, Japanese Patent Laid-Open No. 8-218
In No. 897, the upper limit value is set for the exhaust gas temperature of the gas turbine, the fuel supply command for speed governing load control is impaired, and when the temperature difference from the upper limit value approaches zero, priority is given to the temperature load control. Performs constant turbine load control.
As a result, we have proposed a gas turbine control method that suppresses excessive thermal stress.
【0007】[0007]
【発明が解決しようとする課題】従来の火力発電プラン
トにおけるガスタービン制御は、上述した調速負荷制御
や温度負荷制御の外に起動制御、停止制御、加速度制限
制御、ロードリミッタなどの制御出力を組み合わせ、運
転パターンやプラント状態に応じて低値となる制御信号
を選択して負荷制御を行なっている。In the conventional gas turbine control in a thermal power plant, control outputs such as start control, stop control, acceleration limit control and load limiter are provided in addition to the above-mentioned speed control load control and temperature load control. The load control is performed by selecting a control signal having a low value in accordance with the combination, the operation pattern and the plant state.
【0008】しかしながら、ガスタービンの定格負荷近
傍の運転では燃焼ガス温度が上限値に近づくため、引用
例のような制御方式では温度負荷制御が選択されて調速
負荷制御が機能しないため、系統の発電計画に基づいて
設定されている調停率を事実上維持できなくなる。一
方、温度負荷制御が選択されない部分負荷運転時にはガ
バナフリーとなるが、その制御指令の変化による燃焼不
安定を解消することができず、特に低Nox燃焼器のよ
うな燃空比制御の難しい設備では問題が多い。なお、上
述の熱ストレスの発生は特にタービンブレードに集中
し、蒸気流量の変動による蒸気タービンの場合にも同様
な問題がある。However, since the combustion gas temperature approaches the upper limit value in the operation near the rated load of the gas turbine, the temperature load control is selected and the speed governing load control does not function in the control method as in the cited example, so that the system The arbitration rate set based on the power generation plan cannot be effectively maintained. On the other hand, during partial load operation where temperature load control is not selected, it becomes governor-free, but combustion instability due to changes in the control command cannot be eliminated, and equipment with difficult fuel-air ratio control such as low Nox combustors is difficult to solve. Then there are many problems. In addition, the above-mentioned generation of the thermal stress is particularly concentrated on the turbine blade, and there is a similar problem in the case of the steam turbine due to the fluctuation of the steam flow rate.
【0009】このように、従来の火力発電プラントでは
熱応力による寿命低下や燃焼不安定を重視して温度負荷
制御を行なうと、系統の負荷変動に起因する周波数変動
を押さえることができない。一方、系統が不安定な場合
に系統の調停率を維持しようとする調速負荷制御を行な
うと、系統側が不安定な場合は負荷指令の変動も大きく
なるため、熱ストレスや燃焼不安定を増大させてしまう
というように、相反する問題点を抱えている。As described above, in the conventional thermal power plant, if temperature load control is performed with emphasis on life shortening due to thermal stress and combustion instability, it is not possible to suppress frequency fluctuation due to load fluctuation of the system. On the other hand, if speed regulating load control is performed to maintain the arbitration rate of the system when the system is unstable, fluctuations in the load command also increase when the system side is unstable, increasing thermal stress and combustion instability. There are conflicting problems, such as causing it.
【0010】本発明の目的は、上記した従来の技術の問
題点を克服し、調速負荷制御による系統寄与を維持しつ
つ設備の長寿命化、燃焼の安定化を可能にする火力発電
プラントの負荷制御方法及び装置を提供することにあ
る。An object of the present invention is to overcome the above-mentioned problems of the prior art and to provide a thermal power plant capable of extending the life of equipment and stabilizing combustion while maintaining the system contribution by controlling speed control load. A load control method and device are provided.
【0011】[0011]
【課題を解決するための手段】上記目的を達成する本発
明は、軸結されたタービンと発電機を持つ発電プラント
に対し、系統周波数の変動に応じて中給から指示される
発電指令値(MW指令)、発電電力や軸速度の計測値及
び所定の調停率(系統寄与率)とから調速負荷制御信号
を求めて、系統周波数を安定化するようにタービンの負
荷制御を行なう発電プラントの負荷制御方法において、
前記調速負荷制御信号にその変化を制限する負荷制限関
数を乗じて求めた操作指令値により、前記タービンの負
荷制御を行なうことを特徴とする。According to the present invention to achieve the above object, a power generation command value (instruction from intermediate supply according to fluctuations in the system frequency) is given to a power plant having a turbine and a generator coupled to each other. MW command), the measured value of generated power and shaft speed, and a predetermined arbitration rate (system contribution rate) to obtain a speed-regulating load control signal, and to control the load on the turbine so as to stabilize the system frequency. In the load control method,
It is characterized in that load control of the turbine is performed by an operation command value obtained by multiplying the speed control load control signal by a load limiting function for limiting the change.
【0012】前記タービンが燃焼器を具備するガスター
ビンの場合、前記操作指令値は燃料供給量であり、前記
負荷制限関数はガスタービンの熱応力及び不安定燃焼の
少なくとも一方を抑制するように設定する。また、前記
タービンが蒸気タービンの場合、前記操作指令値は蒸気
供給量であり、前記負荷制限関数は蒸気タービンの熱応
力を抑制するように設定する。When the turbine is a gas turbine having a combustor, the operation command value is a fuel supply amount, and the load limiting function is set to suppress at least one of thermal stress and unstable combustion of the gas turbine. To do. When the turbine is a steam turbine, the operation command value is the steam supply amount, and the load limiting function is set so as to suppress the thermal stress of the steam turbine.
【0013】また、前記負荷制限関数は、系統寄与率に
対して機械的イナーシャーなどから実効的に定まる有効
寄与率に応じて設定する。そして、有効寄与率と熱応力
の限界値あるいは燃焼安定度の兼ね合いから、シミュレ
ーション等により最適な制限値が設定される。The load limiting function is set according to the effective contribution rate that is effectively determined from the mechanical inertia or the like with respect to the system contribution rate. Then, an optimum limit value is set by simulation or the like from the balance of the effective contribution rate and the limit value of thermal stress or the combustion stability.
【0014】前記負荷制限関数は、前記調速負荷制御信
号の変化率を制限する係数、または前記調速負荷制御信
号の信号値に応じてその変化率を可変制限する関数によ
り設定する。あるいは、一時遅れなどの時定数によって
もよい。The load limiting function is set by a coefficient that limits the rate of change of the speed governing load control signal or a function that variably limits the rate of change in accordance with the signal value of the speed governing load control signal. Alternatively, a time constant such as a temporary delay may be used.
【0015】さらに、本発明は定格速度の所定範囲内で
定格負荷ないし部分負荷の運転を行なう通常時には、前
記負荷制限関数を乗じた前記操作指令値により前記ター
ビンの負荷制御を行なう。一方、前記軸速度が前記所定
範囲の上限を超える過速度時は、前記負荷制限関数によ
る制限をしない前の調速負荷制御信号、つまりガバナフ
リー制御信号を選択して前記タービンの負荷制御を行な
うことを特徴とする。Further, according to the present invention, during normal operation of the rated load or the partial load within a predetermined range of the rated speed, the load control of the turbine is performed by the operation command value multiplied by the load limiting function. On the other hand, when the shaft speed is overspeed exceeding the upper limit of the predetermined range, the speed control load control signal before the limit by the load limit function, that is, the governor-free control signal is selected to perform the load control of the turbine. It is characterized by
【0016】これにより、通常の定格運転またはその近
傍で、定格近傍の系統周波数のときは燃料指令値の急激
な変化を制限して燃焼不良や熱ストレスを回避し、軸速
度(系統周波数)が過速度時(例えば、定格の110%
超)は燃料供給を急速に絞り込んでプラントの過回転を
抑制することができる。As a result, during normal rated operation or in the vicinity thereof, when the system frequency is close to the rated value, rapid changes in the fuel command value are limited to avoid combustion failure and thermal stress, and the shaft speed (system frequency) is increased. Overspeed (for example, 110% of rating)
(Super) can rapidly narrow down the fuel supply to prevent over-rotation of the plant.
【0017】本発明の作用を原理的に説明する。火力発
電プラントのガバナフリー制御信号は系統周波数の変化
に高ゲインで追従してタービン負荷を制御し、系統周波
数の安定化に努めている。系統の周波数変動は系統上の
負荷の総量の変化分を意味し、発電設備がガスタービン
の場合、燃料流量指令値の変動分は主として系統の周波
数変動の値による。しかし、実測値によるとタービンな
ど機械設備が追従できる系統周波数の変化には限界があ
り、ある変化レート以上では調速負荷の働きを伸長する
ことなく発電設備に負担をかけ、熱応力や不安定燃焼を
引き起こす要因となっている。The operation of the present invention will be described in principle. The governor-free control signal of the thermal power plant follows the change of the system frequency with a high gain to control the turbine load and try to stabilize the system frequency. Frequency fluctuations in the system mean changes in the total amount of load on the system, and when the power generation equipment is a gas turbine, the fluctuations in the fuel flow rate command value are mainly due to the values of frequency fluctuations in the system. However, according to the measured value, there is a limit to the change of the system frequency that mechanical equipment such as turbine can follow, and above a certain change rate, the load of the power generation equipment is increased without extending the function of the governor load, and thermal stress and instability occur. It is a factor that causes combustion.
【0018】本発明はこの点に着目してなされたもの
で、調速負荷制御信号の変化を発電設備の追従可能な範
囲に制限することで、タービンの熱応力や不安定燃焼の
発生を抑制するとともに、定格負荷ないし部分負荷の運
転で常時、ガバナフリー制御を機能させている。このガ
バナフリーの制限の指標の一つとして、有効寄与率があ
る。The present invention has been made in view of this point, and suppresses the thermal stress of the turbine and the occurrence of unstable combustion by limiting the change of the governor load control signal to the range in which the power generation equipment can follow. In addition, the governor-free control is always functioning at the rated load or partial load operation. One of the indicators of this governor-free restriction is the effective contribution rate.
【0019】図2に、系統寄与率及び燃焼安定度と負荷
制限係数の関係を示す。ガバナフリー制御信号に乗ずる
負荷制限係数が0%(変化率が0)から、制限係数が1
00%(制限なし)まで、理論的な系統寄与率は図示の
実線のように0%〜100%となる。また、燃焼の安定
度は一般には変化が小さいほど安定するから、制限値が
0%(負荷一定制御)で最も高く、制限値100%に向
かって低下する。同様に、ストレスとなる熱応力も負荷
変化が小さいほど低下する。FIG. 2 shows the relationship between the system contribution rate and combustion stability and the load limiting coefficient. The load limit coefficient multiplied by the governor-free control signal is 0% (change rate is 0), and the limit coefficient is 1
Up to 00% (no limit), the theoretical system contribution rate becomes 0% to 100% as shown by the solid line in the figure. Further, the stability of combustion generally stabilizes with a smaller change, so that the limit value is highest when the limit value is 0% (load constant control), and decreases toward the limit value 100%. Similarly, thermal stress, which is stress, decreases as the load change decreases.
【0020】仮りに、±1%の系統周波数変化が0.5
%/秒の変動率で発生すると、発電設備の機械的イナー
シャーなどから実際の系統寄与率は点線のように鈍化
し、図示の例では制限値70%と制限値100%の有効
寄与率に大差がない。つまり、ガバナフリー制御信号の
変化率に制限を加えない場合も、70%制限を加えた場
合も、周波数変化を安定させる機能に実質的な差がない
ことになる。Assuming that the system frequency change of ± 1% is 0.5.
When it occurs at a fluctuation rate of% / sec, the actual system contribution rate becomes blunt as indicated by the dotted line due to the mechanical inertia of the power generation equipment, and in the example shown in the figure, there is a large difference in the effective contribution rate between the limit value of 70% and the limit value of 100%. There is no. In other words, there is no substantial difference in the function of stabilizing the frequency change regardless of whether the change rate of the governor-free control signal is limited or 70%.
【0021】したがって、変化率を70%に制限するリ
ミッタを介して調速負荷制御信号を出力して系統寄与率
を維持する一方で、変化率を70%に制限した分だけ燃
焼不良や熱ストレスを抑制低減できる。この結果、運転
熱特性の向上により、定格負荷ないしその近傍での調速
負荷制御が可能になる。Therefore, while the speed control load control signal is output through the limiter for limiting the rate of change to 70% to maintain the system contribution rate, the combustion failure and the heat stress are reduced by the amount of limiting the rate of change to 70%. Can be suppressed and reduced. As a result, the improved operating heat characteristics enable control load control at or near the rated load.
【0022】以上のように、本発明によればガバナフリ
ー制御に対する簡単な追加で常時その機能を発揮させ、
発電設備として系統寄与率を維持しながら(あるいは実
質的に向上させながら)、設備の長寿命化や燃焼の安定
化をはかることができる。As described above, according to the present invention, a simple addition to the governor-free control allows the function to be constantly exhibited.
While maintaining (or substantially improving) the system contribution rate as a power generation facility, it is possible to extend the life of the facility and stabilize combustion.
【0023】また、上述の制限機能を付加した場合、調
速負荷制御機能が持っている過速度緩和機能が低下する
が、過速度時に制限機能を解除するかまたは制限機能の
ない従来型の調速負荷制御機能を併用することで、フェ
イルセーフな運転が可能になる。Further, when the above-mentioned limiting function is added, the overspeed alleviating function of the governing load control function is lowered, but the limiting function is released at the time of overspeed or the conventional adjusting function without the limiting function is provided. Fail-safe operation becomes possible by using the fast load control function together.
【0024】[0024]
【発明の実施の形態】以下、本発明の実施形態につい
て、図面を参照しながら詳細に説明する。図3に本発明
を適用する火力発電プラントの構成を示す。本発電プラ
ントは負荷制御の対象となる燃焼器1と圧縮器2とター
ビン3を持つガスタービンと、1軸に構成される発電機
5からなる。LNGタンクからの燃料は燃料流量調節弁
4により調節され、圧縮器2からの空気とともに燃焼器
1に供給され、その燃焼ガスによってタービン3に回転
トルクを発生させる。タービン3からの排気は排熱回収
ボイラにより熱回収され、煙突より排気される。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 3 shows the configuration of a thermal power plant to which the present invention is applied. This power plant comprises a gas turbine having a combustor 1, a compressor 2, and a turbine 3 to be subjected to load control, and a generator 5 configured on one axis. The fuel from the LNG tank is adjusted by the fuel flow rate adjusting valve 4 and is supplied to the combustor 1 together with the air from the compressor 2, and the combustion gas thereof causes the turbine 3 to generate a rotational torque. Exhaust gas from the turbine 3 is subjected to heat recovery by an exhaust heat recovery boiler and exhausted from a chimney.
【0025】圧縮器2を介して燃焼器1に供給される空
気はIGV弁6より取り込まれる。ガスタービン制御で
は、圧縮機2が定格速度において常に一定負荷となるた
め、IGV弁6も一定開度となる。一方、ガスタービン
制御装置10による負荷制御信号によって燃料流量弁4
を制御し、燃料供給量の制御が行なわれる。一般に、燃
料流量弁の応答性はIGV弁より1桁以上も高い。ま
た、発電機5に具備する発電電力センサ7、軸速度セン
サ8、タービン3に具備する排ガス温度センサ9でそれ
ぞれ検出し、検出信号をガスタービン制御装置10に送
る。The air supplied to the combustor 1 via the compressor 2 is taken in from the IGV valve 6. In gas turbine control, since the compressor 2 is constantly loaded at a rated speed, the IGV valve 6 also has a fixed opening. On the other hand, the fuel flow valve 4 is activated by the load control signal from the gas turbine controller 10.
Is controlled to control the fuel supply amount. Generally, the response of the fuel flow valve is higher than that of the IGV valve by one digit or more. Further, the generated power sensor 7 provided in the generator 5, the shaft speed sensor 8 and the exhaust gas temperature sensor 9 provided in the turbine 3 respectively detect and send detection signals to the gas turbine control device 10.
【0026】図1に、一実施例によるガスタービン制御
装置の構成を示す。ガスタービンの燃焼器1の燃料流量
弁4に送られる燃料指令値10dは、調速負荷制御部1
00及び他の制御負荷部200の指令値に対する低値選
択部(LS)300の選択により与えられる。FIG. 1 shows the configuration of a gas turbine control device according to one embodiment. The fuel command value 10d sent to the fuel flow valve 4 of the combustor 1 of the gas turbine is the speed control load control unit 1
00 and the other control load unit 200 command values are given by the low value selection unit (LS) 300.
【0027】他の制御部200は、起動時に有効(指令
値が最小となる)となる起動制御部200−1、停止時
に有効となる停止制御部200−2、速度変動が上限
(110%)を越えた場合に有効となり過速度を回避さ
せる加速制限制御部200−3、発電指令値(MW指
令)が所定範囲外となったときに有効となり負荷の上下
限を抑制する負荷制限制御部(ロードリミッタ)200
−4、拝ガス温度が上限値を越えた場合に有効となり、
燃料供給を所定量にして排ガス温度を低下させ発電設備
を保護する排ガス温度制御部200−5を有し、これら
は従来と同様の構成である。The other control unit 200 has a start control unit 200-1 that becomes valid at the time of start (a command value becomes the minimum), a stop control unit 200-2 that becomes valid at the time of stop, and an upper limit of speed fluctuation (110%). Acceleration limit control unit 200-3 that becomes effective when the value exceeds the limit, and becomes effective when the power generation command value (MW command) goes out of a predetermined range, and a load limit control unit that suppresses the upper and lower limits of the load ( Road limiter) 200
-4, it becomes effective when the gas temperature exceeds the upper limit,
It has an exhaust gas temperature control unit 200-5 that protects the power generation equipment by lowering the exhaust gas temperature by setting the fuel supply to a predetermined amount, and these have the same configuration as the conventional one.
【0028】調速負荷制御部100は、中央給電司令所
などから指示される発電指令値101dと発電電力セン
サ7からのMW値102dとの偏差を求める加算器10
1、正負に一定値以上の偏差値を求めるモニタリレー
(MR)102、MRの出力に応じて予め設定されてい
る一定の変化レートにより負荷設定値103dを生成す
るアナログメモリ(AM)103と、負荷設定値103
dと発電機速度センサ8からの速度信号104dとの偏
差を求める加算器104と、この偏差値に調停率(R)
の逆数をかける乗算器105と、この乗算器出力に無負
荷オフセット値である定格無負荷燃料指令値(FSN
L)105dを加算して燃料流量指令値106dを出力
する加算器106と、燃料流量指令値106dの急激な
変化を抑制して調速負荷制御指令100dを出力する燃
料指令制限器107から構成されている。The speed governing load control unit 100 calculates the deviation between the power generation command value 101d instructed by the central power supply control office and the MW value 102d from the power generation power sensor 7 and the adder 10
1. A monitor relay (MR) 102 that obtains a positive or negative deviation value above a certain value, an analog memory (AM) 103 that generates a load set value 103d at a constant change rate that is preset according to the MR output, Load set value 103
d and the adder 104 for obtaining the deviation between the speed signal 104d from the generator speed sensor 8 and the deviation value (R)
Of the multiplier 105 and the output of this multiplier, which is the rated no-load fuel command value (FSN) which is the no-load offset value.
L) 105d is added to output a fuel flow rate command value 106d, and an adder 106, and a fuel command limiter 107 that suppresses a rapid change in the fuel flow rate command value 106d and outputs a governing load control command 100d. ing.
【0029】上記で、アナログメモリ103に設定され
る変化率には負荷信号の速度成分への変換を含み、この
速度成分で表わした負荷設定値103dはガバナ設定値
と呼ばれる。このガバナ設定値103dと軸速度104
dの偏差信号(ガバナフリー制御信号)105dを、燃
料指令値へ重畳することをガバナフリー制御と呼んでい
る。つまり、常に変動する負荷の総量を速度の変化とし
て捉え、その速度変動を抑制することで系統周波数の変
動を安定させる働きをする。この速度偏差に調停率Rの
逆数であるガバナゲインを乗じ、調停率に応じた負荷制
御を行なう。In the above, the rate of change set in the analog memory 103 includes conversion of the load signal into a speed component, and the load set value 103d represented by this speed component is called a governor set value. This governor set value 103d and shaft speed 104
Superimposing the deviation signal (governor-free control signal) 105d of d on the fuel command value is called governor-free control. In other words, the constantly changing total amount of load is regarded as a change in speed, and the change in speed is suppressed to stabilize the change in system frequency. This speed deviation is multiplied by a governor gain, which is the reciprocal of the arbitration rate R, to perform load control according to the arbitration rate.
【0030】例えば、調定率が5%の場合、1/Rは1
/0.05となる。したがって、定格に対し5%の速度
増が発生した時に、プラントの100%定格の燃料流量
を元の負荷設定値に対して重畳して200%の燃料を供
給し、反対に5%の速度減が発生すると0%の燃料供給
となる(オフセットのFSNLのみとなる)。For example, when the adjustment rate is 5%, 1 / R is 1
/0.05. Therefore, when a speed increase of 5% of the rated value occurs, the fuel flow rate of 100% rated of the plant is superimposed on the original load set value to supply 200% of the fuel, and conversely, a speed decrease of 5% is performed. Occurs, the fuel supply is 0% (only the offset FSNL is used).
【0031】次に、本調速負荷制御部100の特徴をな
している燃料指令制限器107の構成と動作を説明す
る。Next, the structure and operation of the fuel command limiter 107, which is a feature of the speed governing load controller 100, will be described.
【0032】図4に、燃料指令制限器の一実施例を示
す。燃料指令制限器107は、従来のガバナフリー制御
信号である燃料流量指令値107dと変化率制限後の前
回値106d’(100d)との差分に一定ゲインKを掛
ける乗算器111と、その乗算結果の変化率を上限・下
限設定値で制限するリミッタ(LIM)112と、制限
後の偏差値を前回値に積算する積分回路113から構成
されている。FIG. 4 shows an embodiment of the fuel command limiter. The fuel command limiter 107 is a multiplier 111 that multiplies the difference between the fuel flow rate command value 107d, which is a conventional governor-free control signal, and the previous value 106d ′ (100d) after the rate of change restriction by a constant gain K, and the multiplication result thereof. A limiter (LIM) 112 that limits the rate of change of the above with an upper / lower limit set value, and an integration circuit 113 that integrates the limited deviation value with the previous value.
【0033】これにより、燃料流量指令値106dの変
化率がLIM112の上限(上昇変化率の制限値)/下
限(下降変化率の制限値)以下の場合は、燃料流量指令
値106dがそのまま出力される。また、変化率が上限
/下限を超える場合は設定された変化率制限値に押さえ
られた指令値100dとなる。変化率の制限値は、例え
ばガスタービンの熱動特性による熱応力や燃空比の制約
と、系統寄与率の兼ね合いから設定される。As a result, when the rate of change of the fuel flow rate command value 106d is less than or equal to the upper limit (limit value of rising change rate) / lower limit (limit value of falling rate of change) of the LIM 112, the fuel flow rate command value 106d is output as it is. It When the rate of change exceeds the upper limit / lower limit, the command value 100d is held down to the set rate of change limit value. The limit value of the rate of change is set, for example, from the balance between the thermal stress and the fuel-air ratio due to the thermal dynamic characteristics of the gas turbine and the system contribution rate.
【0034】図7に、調速負荷制御によるプラントの挙
動を示す。(イ)は系統周波数、(ロ)は燃料指令、
(ハ)はガスタービンの熱応力の変化を示す。同図
(a)の挙動は、燃料指令制限器107を具備しない従
来型の調速負荷制御の例で、速度が定格100%に対し
て1%の範囲で変動する場合を示す。FIG. 7 shows the behavior of the plant under the controlled load control. (A) is the system frequency, (b) is the fuel command,
(C) shows changes in thermal stress of the gas turbine. The behavior of FIG. 10A is an example of the conventional governing load control without the fuel command limiter 107, and shows the case where the speed fluctuates within a range of 1% with respect to the rated 100%.
【0035】調定率5%のプラントは、1%の速度変動
に対しては20%の燃料指令を重畳させるので、(a)
の速度(系統周波数)変動に追従して(b)の燃料指令
値107dとなる。このとき、ガスタービンの熱応力は
燃料指令値、系統周波数の変動に応じた傾向を示し、
(c)のように燃料指令値の変化の大きいところで大き
な熱応力を発生し、設備仕様に基づいて設定される熱応
力限界値を超過することがある。A plant with a regulation rate of 5% superimposes a fuel command of 20% on a speed fluctuation of 1%, so that (a)
The fuel command value 107d of (b) follows the fluctuation of the speed (system frequency). At this time, the thermal stress of the gas turbine shows a tendency according to the fuel command value and the fluctuation of the system frequency,
As shown in (c), a large thermal stress may be generated where the fuel command value greatly changes, and the thermal stress limit value set based on the equipment specifications may be exceeded.
【0036】従来のガスタービン制御システムの調速負
荷制御では、熱応力がその限界値を越えても特に対策し
ないのが普通であり、発生した熱応力値の監視のみを行
い、観測された応力値のフィードバックにより寿命計算
など主機の耐久力を計算するにとどまっていた。あるい
は、従来技術に引用したように、調速負荷制御から排ガ
ス温度制御による負荷一定制御に切り替え、熱応力が限
界値以下となるように制御していた。In the governor load control of the conventional gas turbine control system, it is usual to take no countermeasure even if the thermal stress exceeds its limit value. Only the thermal stress value generated is monitored and the observed stress Only the durability of the main engine such as life calculation was calculated by feedback of the value. Alternatively, as quoted in the prior art, the load regulation control is switched from the governor load control to the exhaust gas temperature control so that the thermal stress is controlled to be equal to or less than the limit value.
【0037】図7(b)は本実施例によるプラントの挙
動を示し、調速負荷制御部100に燃料指令制限器10
7を設けた場合である。(a)の速度変化を同じとし
て、(b)の燃料指令100dが実線のように変化す
る。ここで、一点鎖線はLIM107による変化率制限
値を示している。燃料指令100dはその変化率が制限
値内に押えられているので、従来の指令値107d(点
線)より変化が緩やかになる。この結果、(c)のよう
に、熱応力はその限界値以下に抑制することができる。FIG. 7B shows the behavior of the plant according to the present embodiment, in which the speed control load control unit 100 is connected to the fuel command limiter 10.
This is the case where 7 is provided. The fuel command 100d in (b) changes as indicated by the solid line, with the same speed change in (a). Here, the alternate long and short dash line indicates the change rate limit value by the LIM 107. Since the rate of change of the fuel command 100d is held within the limit value, the change becomes slower than the conventional command value 107d (dotted line). As a result, as shown in (c), the thermal stress can be suppressed below its limit value.
【0038】なお、図示では燃料指令の変化率制限の効
果を熱応力の抑制の例で示したが、燃空比の急変による
燃焼不安定の回避に対しても、直接的な効果をもたらす
ことは言うまでもない。さらに、発電プラント全体の働
きとしては、速度(系統周波数)の変動分に対するガバ
ナフリー制御としての働きを保っている。ちなみに、L
IM107の変化率制限値が図2に示した有効寄与率の
範囲内であれば、ガバナフリー制御に対するLIM10
7の制限の影響は実質的には存在しない。In the figure, the effect of limiting the rate of change of the fuel command is shown as an example of suppressing thermal stress, but a direct effect is also provided for avoiding combustion instability due to a sudden change in the fuel-air ratio. Needless to say. Further, the operation of the entire power generation plant keeps the operation as governor-free control for the variation of speed (system frequency). By the way, L
If the change rate limit value of the IM 107 is within the range of the effective contribution rate shown in FIG. 2, the LIM 10 for the governor-free control
The effect of the 7 limitation is virtually nonexistent.
【0039】図5に、燃料指令制限器の他の実施例を示
す。図4との相違は、リミッタ112の上限・下限設定
値を一定値とせず、燃料流量指令値に対する関数値とす
るための関数発生器FG(1)、FG(2)を設けた点にあ
る。図5(b),(c)に、上限用の関数発生器FG
(1)と下限用のFG(2)について、燃料流量指令と制限
値の関係の一例を示す。FIG. 5 shows another embodiment of the fuel command limiter. 4 is different from FIG. 4 in that the function generators FG (1) and FG (2) for setting the upper limit / lower limit set values of the limiter 112 to constant values and to set the function values to the fuel flow rate command value are provided. . 5B and 5C, the function generator FG for upper limit is shown.
An example of the relationship between the fuel flow rate command and the limit value for (1) and the lower limit FG (2) is shown.
【0040】これにより、燃料流量指令値の変化率だけ
でなく、ガバナフリー制御によって重畳される燃料流量
指令値の絶対値をも考慮している。つまり、燃料指令値
が大きいときには上昇・下降設定値を下げることで変化
率をさらに押さえ、逆に燃料指令値が小さいときには上
昇・下降設定値を上げることで変化率の制限を緩める。
この結果、熱応力や燃焼不安定の発生しやすい高負荷運
転の範囲において制限値を大きくできるので、過大な熱
応力や燃焼不安定の発生を回避しながら、定格負荷近傍
でのガバナフリー性能をいくぶん低下させながらも維持
し、系統への周波数安定化機能を確保することができ
る。Thus, not only the rate of change of the fuel flow rate command value but also the absolute value of the fuel flow rate command value superimposed by the governor-free control is taken into consideration. That is, when the fuel command value is large, the rate of change is further suppressed by lowering the rising / falling set value, and conversely, when the fuel command value is small, the increase / falling setting value is increased to loosen the limit of the rate of change.
As a result, the limit value can be increased in the range of high load operation where thermal stress and combustion instability are likely to occur, so while avoiding excessive thermal stress and combustion instability, governor-free performance near the rated load can be achieved. It can be maintained at a somewhat lowered level, and the frequency stabilizing function can be secured for the grid.
【0041】図6に、燃料指令制限器のさらに他の実施
例を示す。本実施例の燃料指令制限器107は、図5
(b)のFG(1)、FG(2)の関数発生器の入力に、燃
焼器燃焼モード、燃料流量指令値、中給発電指令値、燃
焼温度などの1つまたは複数を取り込むもので、燃焼器
状態などに応じたよりきめ細かな制限を実現できる。FIG. 6 shows still another embodiment of the fuel command limiter. The fuel command limiter 107 of this embodiment is shown in FIG.
One or more of a combustor combustion mode, a fuel flow rate command value, an intermediately-charged power generation command value, a combustion temperature, etc. are taken into the input of the function generator of FG (1) and FG (2) of (b). More detailed restrictions can be realized according to the state of the combustor.
【0042】さらに、燃料流量指令値の変化率に加え、
燃料流量絶対値の制限を行なうLIM114を設け、そ
の上限値(正側の最大値)及び下限値(負側の最大値)
を設している。LIM114の上限値や下限値はプラン
ト側の状態による最適なパラメータ値が選択される。Furthermore, in addition to the rate of change of the fuel flow rate command value,
The LIM 114 for limiting the absolute value of the fuel flow rate is provided, and its upper limit value (the maximum value on the positive side) and its lower limit value (the maximum value on the negative side)
Has been set up. For the upper limit value and the lower limit value of the LIM 114, optimum parameter values are selected according to the state on the plant side.
【0043】以上のように、本実施形態の発電プラント
の負荷制御装置によれば、調速負荷制御による燃料流量
指令値に対しその変化率または変化率と絶対値を制限す
る機能を設けているので、指令値の急激な変化による燃
焼不安定や過大な熱応力の発生を抑制でき、調速機能を
維持しながらガスタービンの安定運転や長寿命化をはか
る効果がある。As described above, the load control apparatus for a power plant according to the present embodiment is provided with a function of limiting the rate of change or the rate of change and the absolute value of the fuel flow rate command value by speed governing load control. Therefore, it is possible to suppress the combustion instability and the generation of excessive thermal stress due to the abrupt change of the command value, and it is possible to achieve the stable operation and the long life of the gas turbine while maintaining the speed control function.
【0044】なお、理論的には燃料流量指令値の変化を
制限する分だけ系統寄与度が低下することになるが、機
械的イナーシャなどを考慮した有効寄与率との兼ね合い
で制限すれば、調速機能の実質的な低下は少ない。Theoretically, the system contribution will be reduced by the amount by which the change in the fuel flow rate command value is limited, but if it is limited in consideration of the effective contribution rate in consideration of mechanical inertia, etc. Substantial deterioration of quick function is small.
【0045】また、従来は燃料流量指令値の変化が大き
いと、定格負荷近傍では熱応力をもたらす限界温度値を
超えたり燃焼不安定になることが多く、これを回避する
ためには調速負荷制御を中断して温度負荷制御に切り替
える必要があった。しかし、本実施例によれば部分負荷
はもちろん、定格負荷ないしその近傍での調速負荷制御
が可能になり、実質的な系統寄与度を向上できる効果が
ある。Further, conventionally, when the change in the fuel flow rate command value is large, in the vicinity of the rated load, the limit temperature value causing thermal stress is often exceeded or combustion becomes unstable. It was necessary to interrupt control and switch to temperature load control. However, according to the present embodiment, not only partial load but also regulated load control can be performed at or near the rated load, which has the effect of substantially improving the system contribution.
【0046】次に、本発明による発電プラント負荷制御
装置の他の実施形態を説明する。発電機に接続される系
統負荷が急減した場合、運転モードが正常なときは燃料
流量指令値による供給量と負荷のバランスが取れている
ので、軸の回転速度は定格近辺で安定に制御される。し
かし、系統事故などにより負荷が急減した場合は、燃料
流量指令値と負荷のバランスが崩れるため、タービン回
転速度が急上昇する。Next, another embodiment of the power plant load control apparatus according to the present invention will be described. When the system load connected to the generator suddenly decreases, the supply amount and load are balanced by the fuel flow rate command value when the operation mode is normal, so the shaft rotation speed is controlled stably near the rated value. . However, when the load suddenly decreases due to a system accident or the like, the balance between the fuel flow rate command value and the load is lost, and the turbine rotation speed rapidly increases.
【0047】調速負荷制御機能はタービン速度を安定さ
せる制御であるから、タービンが過速度状態になった場
合に燃料を絞り込む働きをする。一般に、タービンの設
計としては定格の110%速度まではタービンブレード
が遠心力等の応力に耐えられるように設計され、このス
ピードを超える前にすみやかに停止させる必要がある。
この際、機械的な緊急停止よりも、燃料を絞り込んで停
止させる方が設備寿命の上で望ましい。Since the speed control load control function is a control for stabilizing the turbine speed, it functions to narrow down the fuel when the turbine is in an overspeed state. Generally, in turbine design, turbine blades are designed to withstand stress such as centrifugal force up to a rated speed of 110%, and it is necessary to stop the blades quickly before exceeding this speed.
At this time, it is preferable from the standpoint of facility life to stop the fuel by narrowing it down rather than mechanical emergency stop.
【0048】ところで、図1に示した調速負荷制御部1
00は燃料指令100dの急激な変化を制限しているの
で、過速度時の減速機能が十分に働かなくなる。図8
(a)に、この場合の系統事故発生時のプラントの挙動
を示す。系統事故発生直後より(イ)速度が急増する。
このとき、(ロ)燃料流量指令値が制限前の指令値10
6d(点線)から制限後の指令値100d(実線)に変
化するので、燃料の絞り込みが遅れて軸の回転速度が過
速度限界(一般的には110%)を超えてしまう。した
がって、調速負荷制御装置からの燃料指令は通常時には
変化率を制限し、過速時には制限しないことが望まし
い。By the way, the governing load control unit 1 shown in FIG.
Since 00 restricts the rapid change of the fuel command 100d, the deceleration function at the time of overspeed does not work sufficiently. Figure 8
In (a), the behavior of the plant when a system fault occurs in this case is shown. Immediately after the occurrence of the system accident, (a) the speed increases rapidly.
At this time, (b) the fuel flow rate command value is the command value 10 before the limit.
Since 6d (dotted line) changes to the command value 100d (solid line) after the restriction, the narrowing of the fuel is delayed and the rotational speed of the shaft exceeds the overspeed limit (generally 110%). Therefore, it is desirable that the rate of change of the fuel command from the speed governing load control device be limited during normal operation and not during overspeed.
【0049】図9に、本実施形態によるガスタービン制
御装置の構成を示す。本ガスタービン制御装置10は、
通常運転時に燃料流量指令値の変化を制限する図1と同
じ調速負荷制御部100と、過速時に燃料を絞り込んで
減速するバックアップ用調速器150を併せ持ってい
る。FIG. 9 shows the configuration of the gas turbine controller according to this embodiment. The gas turbine control device 10 includes
It has both the same governing load control unit 100 as in FIG. 1 that limits the change in the fuel flow rate command value during normal operation, and a backup governor 150 that decelerates by reducing the fuel when overspeeding.
【0050】バックアップ用調速器150は、AM10
3からの負荷設定値103dに信号発生器(SG)15
1からの補正用信号を付加した値と軸速度104dの偏
差によりガバナフリー制御信号を演算する加算器152
と、この制御信号にガバナゲイン(1/R)を掛ける乗
算器153と、無負荷オフセットのFSNL105dを
付加する加算器154と、通常時には過速度用調速器1
50の燃料流量指令150dが調速負荷制御部100の
指令値より高値となるように、待機用オフセット値を付
加する加算器155から構成されている。The backup speed governor 150 is the AM10.
Signal generator (SG) 15 to load set value 103d from 3
An adder 152 that calculates a governor-free control signal based on a deviation between the value added with the correction signal from 1 and the shaft speed 104d
A multiplier 153 that multiplies this control signal by a governor gain (1 / R), an adder 154 that adds a no-load offset FSNL 105d, and an overspeed governor 1 at normal times.
The fuel flow rate command 150d of 50 is composed of an adder 155 that adds a standby offset value so that the fuel flow rate command 150d becomes higher than the command value of the speed governing load control unit 100.
【0051】図8(b)はバックアップ調速器を設置し
たプラントの挙動を示している。(イ)の速度変化は、
同図(a)の場合と同じで、系統事故発生時点から急増
する。(ロ)の燃料流量指令値は、事故発生前には調速
負荷制御部100からの指令値100dとなる。このと
き、バックアップ調速器150の指令値150dは待機
用オフセットだけ高く設定されるので、低値選択回路3
00により選択されることはない。事故発生後は指令値
150dが急減するのに対し、指令値100dは変化率
制限により緩やかに低下する。このため、150d<1
00dとなるタイミングで、バックアップ調速器150
の指令値150dが選択され、燃料を急速に絞り込む。
この結果、(イ)のように速度が急減速され、過速度限
界への超過を回避できる。FIG. 8 (b) shows the behavior of the plant in which the backup speed governor is installed. The speed change in (a) is
As in the case of FIG. 9 (a), the number increases sharply from the time when the system fault occurs. The fuel flow rate command value in (b) becomes the command value 100d from the speed governing load control unit 100 before the accident occurs. At this time, since the command value 150d of the backup speed governor 150 is set high by the standby offset, the low value selection circuit 3
It is not selected by 00. After the accident, the command value 150d sharply decreases, whereas the command value 100d gradually decreases due to the change rate restriction. Therefore, 150d <1
At the timing of 00d, the backup speed governor 150
The command value 150d of is selected, and the fuel is rapidly narrowed down.
As a result, the speed is rapidly decelerated as in (a), and it is possible to avoid exceeding the overspeed limit.
【0052】なお、図9ではバックアップ調速器150
を別置したが、図1の調速負荷制御部100の燃料指令
制限器107にバイパスを設け、一定速度以上で制限器
107とバイパスの切り替えを行なうようにしてもよ
い。In FIG. 9, the backup speed governor 150 is shown.
Alternatively, the fuel command limiter 107 of the speed governing load control unit 100 in FIG. 1 may be provided with a bypass so that the limiter 107 and the bypass are switched at a certain speed or higher.
【0053】図11に、本実施例による系統周波数と燃
料流量の挙動を示す。系統周波数が50HZの±1%以
内で変化している通常時は、燃料流量は調速負荷制御部
100の指令値100dに従って実線のように変化す
る。このとき、バックアップ調速器150の指令値15
0dは、指令値100dより+20%増しとし、指令値
100dの上側となるようにして待機させている。1%
以上の過速時において150d<100dになると、燃
料流量は指令値150dに従う。ちなみに、+5%過速
の場合、指令値150dは定格100%分の絞り込みと
なるので、実際の燃料流量はオフセット値20%に向け
て急速に絞り込まれる。FIG. 11 shows the behavior of the system frequency and the fuel flow rate according to this embodiment. During normal times when the system frequency changes within ± 1% of 50 Hz, the fuel flow rate changes as indicated by the solid line in accordance with the command value 100d of the speed governing load control unit 100. At this time, the command value 15 of the backup speed governor 150
0d is increased by + 20% from the command value 100d, and is on standby so as to be above the command value 100d. 1%
When 150d <100d in the above overspeed, the fuel flow rate follows the command value 150d. By the way, in the case of + 5% overspeed, the command value 150d is narrowed down by 100% of the rated value, so the actual fuel flow rate is rapidly narrowed down toward the offset value of 20%.
【0054】以上、本発明による火力発電プラントの負
荷制御装置を、発電設備にガスタービンを利用する例で
説明したが、これに限られるものではない。例えば、コ
ンバインド・ガスタービンプラントにおいて後段のボイ
ラの熱応力を制限する調速器や、蒸気タービンの熱応力
を制限する調速器などとしても適用可能である。これら
の場合、負荷制御指令は蒸気流量とすればよい。The load control device for a thermal power plant according to the present invention has been described above by using an example in which a gas turbine is used for power generation equipment, but the present invention is not limited to this. For example, the present invention is also applicable as a speed governor that limits thermal stress of a boiler at a subsequent stage in a combined gas turbine plant, a speed governor that limits thermal stress of a steam turbine, and the like. In these cases, the load control command may be the steam flow rate.
【0055】[0055]
【発明の効果】本発明によれば、調速負荷制御信号の変
化を、その変化率や値について制限した操作指令値でタ
ービン負荷制御を行なうので、調速負荷制御を維持しな
がら発電設備の熱ストレスや燃焼不良を回避できる効果
がある。According to the present invention, the turbine load control is performed with the operation command value in which the change rate or the value of the speed governing load control signal is limited. It has the effect of avoiding heat stress and poor combustion.
【0056】この効果に加えて、定格負荷近傍での調速
負荷制御が可能になり、系統寄与率を実質的に向上でき
る。In addition to this effect, it becomes possible to control the speed governing load in the vicinity of the rated load, and the system contribution rate can be substantially improved.
【0057】さらに、通常時に調速負荷制御信号の変化
を制限し、過速時に制限を解除するので、ガバナフリー
制御が本来有している絞り込み作用を発揮でき、プラン
トをフェイルセーフに運転できる効果がある。Further, since the change of the governing load control signal is limited in the normal time and the limitation is released in the case of overspeed, the narrowing action originally possessed by the governor-free control can be exerted and the plant can be operated in a fail-safe manner. There is.
【図1】本発明の実施形態1による発電プラント制御シ
ステムの構成図。FIG. 1 is a configuration diagram of a power plant control system according to a first embodiment of the present invention.
【図2】本発明の負荷指令値の制限の一指標となる有効
寄与率の概念を示す説明図。FIG. 2 is an explanatory diagram showing a concept of an effective contribution rate which is one index of the limitation of the load command value according to the present invention.
【図3】本発明を適用する発電プラントの一例(ガスタ
ービン方式)を示す構成図。FIG. 3 is a configuration diagram showing an example (gas turbine system) of a power plant to which the present invention is applied.
【図4】燃料指令制限器の一実施例を示す構成図。FIG. 4 is a configuration diagram showing an embodiment of a fuel command limiter.
【図5】燃料指令制限器の他の実施例の構成と制限特性
を示す説明図。FIG. 5 is an explanatory diagram showing a configuration and a limiting characteristic of another embodiment of the fuel command limiter.
【図6】燃料指令制限器のさらに他の実施例を示す構成
図。FIG. 6 is a configuration diagram showing still another embodiment of the fuel command limiter.
【図7】従来の制御と実施形態1の制御によるプラント
挙動を示すタイムチャート。FIG. 7 is a time chart showing plant behavior under conventional control and control according to the first embodiment.
【図8】実施形態1及び2の制御による速度と燃料指令
の挙動を示すタイムチャート。FIG. 8 is a time chart showing the behavior of speed and fuel command under the control of the first and second embodiments.
【図9】本発明の実施形態2による発電プラント制御シ
ステムの構成図。FIG. 9 is a configuration diagram of a power plant control system according to a second embodiment of the present invention.
【図10】従来の調速負荷制御における系統周波数と調
停率分の燃料流量の関係を示す変化パターン図。FIG. 10 is a change pattern diagram showing the relationship between the system frequency and the fuel flow rate corresponding to the arbitration rate in the conventional governor load control.
【図11】実施形態2(実施形態1も含む)調速負荷制
御における系統周波数と調停率分の燃料流量の関係を示
す変化パターン図。FIG. 11 is a change pattern diagram showing the relationship between the system frequency and the fuel flow rate corresponding to the arbitration rate in the speed regulating load control according to the second embodiment (including the first embodiment).
1…燃焼器、2…圧縮器、3…タービン、4…燃料流量
弁、5…発電機、6…IGV弁、7…発電電力センサ、
8…軸速度センサ、9…排ガス温度センサ、10…ガス
タービン制御装置、100…提調速負荷制御部、10
1,104,106…加算器、102…モニターリレー
(MR)、103…アナログメモリ(AM)、105…
乗算器、107…燃料指令制限器(LIM)、111…
乗算器、112,114…LIM、113…積分器、1
50…バックアップ調速器、152,154,155…
加算器、153…乗算器、200…他の制御部、200
−1…起動制御部、200−2…停止制御部、200−
3…加速制限制御部、200−4…負荷制限制御部、2
00−5…排ガス温度制御部、300…低値選択部(L
S)、10d…燃料指令値、100d…調速負荷制御指
令、150d…バックアップ調速器の燃料指令値、10
1d…発電指令値(負荷デマンド)、102d…発電電
力(MW)、103d…負荷設定値(ガバナ指令値)、
104d…軸速度、105d…ガバナフリー制御信号、
106d…FSNL、107d…燃料流量指令値。1 ... Combustor, 2 ... Compressor, 3 ... Turbine, 4 ... Fuel flow valve, 5 ... Generator, 6 ... IGV valve, 7 ... Generated power sensor,
8 ... Shaft speed sensor, 9 ... Exhaust gas temperature sensor, 10 ... Gas turbine control device, 100 ... Proposed speed control load control unit, 10
1, 104, 106 ... Adder, 102 ... Monitor relay (MR), 103 ... Analog memory (AM), 105 ...
Multiplier, 107 ... Fuel command limiter (LIM), 111 ...
Multiplier, 112, 114 ... LIM, 113 ... Integrator, 1
50 ... Backup governor, 152, 154, 155 ...
Adder, 153 ... Multiplier, 200 ... Other control unit, 200
-1 ... Start control unit, 200-2 ... Stop control unit, 200-
3 ... Acceleration limit control unit, 200-4 ... Load limit control unit, 2
00-5 ... Exhaust gas temperature control unit, 300 ... Low value selection unit (L
S), 10d ... fuel command value, 100d ... speed control load control command, 150d ... backup speed governor fuel command value, 10
1d ... power generation command value (load demand), 102d ... generated power (MW), 103d ... load set value (governor command value),
104d ... Shaft speed, 105d ... Governor-free control signal,
106d ... FSNL, 107d ... Fuel flow rate command value.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成14年9月4日(2002.9.4)[Submission date] September 4, 2002 (2002.9.4)
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】発明の名称[Name of item to be amended] Title of invention
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【発明の名称】 発電プラントの負荷制御方法Title of the invention: Load control method for power plant
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【特許請求の範囲】[Claims]
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01D 17/00 F01D 17/00 Q 17/20 17/20 D F02C 9/46 F02C 9/46 (72)発明者 高橋 正衛 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 石田 武司 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 Fターム(参考) 3G071 AB01 BA02 BA04 BA09 BA11 BA22 BA31 CA09 DA05 FA01 FA02 FA05 GA01 GA04 GA05 GA06 HA01 HA02 HA04 JA03 JA04 Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01D 17/00 F01D 17/00 Q 17/20 17/20 D F02C 9/46 F02C 9/46 (72) Inventor Takahashi Masae 5-2-1 Omika-cho, Hitachi City, Ibaraki, Ltd. Inside the Omika Plant, Hitachi Ltd. (72) Inventor Takeshi Ishida 5-2-1 Omika-cho, Hitachi City, Ibaraki Prefecture F-term inside the Omika Plant, Hitachi Ltd. (Reference) 3G071 AB01 BA02 BA04 BA09 BA11 BA22 BA31 CA09 DA05 FA01 FA02 FA05 GA01 GA04 GA05 GA06 HA01 HA02 HA04 JA03 JA04
Claims (11)
発電プラントに対し、系統周波数の変動に応じて指示さ
れる発電指令値、発電電力や軸速度の計測値及び所定の
調停率とから調速負荷制御信号を求めて、系統周波数を
安定化するようにタービンの負荷制御を行なう発電プラ
ントの負荷制御方法において、 前記調速負荷制御信号にその変化を制限する負荷制限関
数を乗じて求めた操作指令値により、前記タービンの負
荷制御を行なうことを特徴とする発電プラントの負荷制
御方法。1. A power generation plant including a turbine and a generator connected to a shaft is adjusted from a power generation command value instructed according to fluctuations in the system frequency, a measured value of generated power or shaft speed, and a predetermined arbitration rate. In the load control method of the power plant that performs the load control of the turbine so as to stabilize the system frequency by obtaining the fast load control signal, the speed control load control signal was obtained by multiplying the load limiting function that limits the change. A load control method for a power plant, wherein the load control of the turbine is performed according to an operation command value.
前記操作指令値は燃料供給量であり、前記負荷制限関数
はガスタービンの熱応力及び不安定燃焼の少なくとも一
方を抑制するように設定することを特徴とする発電プラ
ントの負荷制御方法。2. The gas turbine according to claim 1, wherein the turbine is a gas turbine including a combustor,
The load control method for a power plant, wherein the operation command value is a fuel supply amount, and the load limiting function is set so as to suppress at least one of thermal stress and unstable combustion of the gas turbine.
蒸気供給量であり、前記負荷制限関数は蒸気タービンの
熱応力を抑制するように設定することを特徴とする発電
プラントの負荷制御方法。3. The steam turbine according to claim 1, wherein the operation command value is a steam supply amount, and the load limiting function is set to suppress thermal stress of the steam turbine. Load control method for power plant.
制限する係数、または前記調速負荷制御信号の信号値に
応じてその変化率を可変制限する関数により設定するこ
とを特徴とする発電プラントの負荷制御方法。4. The load limiting function according to claim 1, 2 or 3, wherein the load limiting function limits a rate of change of the speed governing load control signal, or the rate of change thereof in accordance with a signal value of the speed governing load control signal. A load control method for a power plant, wherein the load control method is set by a function for variably limiting.
し機械的イナーシャーなどから実効的に定まる有効寄与
率に応じて設定することを特徴とする発電プラントの負
荷制御方法。5. The load limiting function according to claim 1, 2, 3 or 4, wherein the load limiting function is set in accordance with an effective contribution rate that is effectively determined from a mechanical inertia or the like with respect to a predetermined system contribution rate of the power generation equipment. And a load control method for a power plant.
なう通常時は、前記負荷制限関数を乗じた前記操作指令
値により前記タービンの負荷制御を行ない、 前記軸速度が前記所定範囲の上限を超える過速度時は、
前記調速負荷制御信号により前記タービンの負荷制御を
行なうことを特徴とする発電プラントの負荷制御方法。6. The load control of the turbine according to any one of claims 1 to 5, at a normal time when a rated load or a partial load operation is performed in a predetermined range of a rated speed, by the operation command value multiplied by the load limiting function. When the axial speed exceeds the upper limit of the predetermined range,
A load control method for a power plant, wherein load control of the turbine is performed by the speed-regulating load control signal.
ガスタービンと、タービンと軸接続された発電機を具備
する発電プラントに対し、系統周波数の変動に応じて中
給から指示される発電指令値(MW指令)と発電電力と
の偏差を基にガバナ指令値を求め、このガバナ指令値と
軸速度の偏差に応じて調定率分の燃料指令値を求める調
速負荷制御手段を設け、系統周波数を安定化するように
ガスタービンの負荷制御を行なう発電プラントの負荷制
御装置において、 前記調速負荷制御手段に燃料指令制限手段を設け、前記
ガスタービンの熱応力や不安定燃焼を抑制するように前
記燃料指令値の変化を制限するようにしたことを特徴と
する発電プラントの負荷制御装置。7. A power generation command instructed from an intermediate supply in accordance with a change in system frequency to a power plant having a gas turbine having a fuel supply valve, a combustor, a turbine, and a generator axially connected to the turbine. A governor load control means for determining a governor command value based on a deviation between the value (MW command) and the generated electric power, and for determining a fuel command value for a regulation ratio according to the deviation between the governor command value and the shaft speed is provided. In a load control device for a power plant that performs load control of a gas turbine so as to stabilize the frequency, a fuel command limiting device is provided in the speed control load control device to suppress thermal stress and unstable combustion of the gas turbine. A load control device for a power plant, characterized in that the change of the fuel command value is limited.
定係数以内に制限する固定型リミッタ、前記燃料指令値
の変化率を所定入力を変数とする関数値以内に制限する
関数型リミッタとして構成したことを特徴とする発電プ
ラントの負荷制御装置。8. The fixed limiter according to claim 7, wherein the fuel command limiting means limits the rate of change of the fuel command value within a fixed coefficient, and the function having the rate of change of the fuel command value as a predetermined input variable. A load control device for a power plant, which is configured as a function-type limiter for limiting the value within a value.
とする発電プラントの負荷制御装置。9. The load control device for a power plant according to claim 8, wherein the fuel command value is used as the predetermined input.
限後に値を制限するリミッタを付加したことを特徴とす
る発電プラントの負荷制御装置。10. The load control device for a power plant according to claim 8 or 9, wherein the fuel command limiting means is provided with a limiter for limiting the rate of change of the fuel command value after limiting the rate of change.
の燃料流量指令値を求め、その燃料流量指令値にオフセ
ット値を付加し、通常時は前記燃料指令制限手段からの
第1の燃料指令値を上回るようにして第2の燃料指令値
とするバックアップ用調速手段と、前記第1の燃料指令
値と第2の燃料指令値の小さい方を選択する低値選択手
段を設け、 通常時は変化を制限した前記第1の燃料指令値により、
加速時は変化を制限しない前記第2の燃料指令値により
負荷制御を行なうことを特徴とする発電プラントの負荷
制御装置。11. The fuel flow rate command value for the first arbitration rate according to the deviation between the governor command value and the shaft speed according to claim 8, 9 or 10, and an offset value is added to the fuel flow rate command value. In the normal state, the backup speed adjusting means is set to exceed the first fuel command value from the fuel command limiting means to obtain the second fuel command value, the first fuel command value and the second fuel command value. Is provided with a low value selection means for selecting the smaller one, and in the normal time, the first fuel command value that limits the change,
A load control device for a power plant, wherein load control is performed by the second fuel command value that does not limit changes during acceleration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002256523A JP3872406B2 (en) | 2002-09-02 | 2002-09-02 | Power plant load control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002256523A JP3872406B2 (en) | 2002-09-02 | 2002-09-02 | Power plant load control method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13159998A Division JP3361053B2 (en) | 1998-05-14 | 1998-05-14 | Power plant load control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003148170A true JP2003148170A (en) | 2003-05-21 |
JP3872406B2 JP3872406B2 (en) | 2007-01-24 |
Family
ID=19196673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002256523A Expired - Lifetime JP3872406B2 (en) | 2002-09-02 | 2002-09-02 | Power plant load control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3872406B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008136425A1 (en) * | 2007-04-27 | 2008-11-13 | Mitsubishi Heavy Industries, Ltd. | Steam turbine operation control device |
JP2008291817A (en) * | 2007-05-28 | 2008-12-04 | Chugoku Electric Power Co Inc:The | Power generation plant and power generation method of power generation plant |
CN102654193A (en) * | 2011-03-02 | 2012-09-05 | 通用电气公司 | Turbine drive-train apparatus |
CN104747295A (en) * | 2015-01-28 | 2015-07-01 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Gas turbine power control method and gas turbine power control device |
CN107989665A (en) * | 2017-11-27 | 2018-05-04 | 上海华电电力发展有限公司 | The three side primary frequency modulation control methods and system of heat supply generating set |
US10801361B2 (en) | 2016-09-09 | 2020-10-13 | General Electric Company | System and method for HPT disk over speed prevention |
CN114135397A (en) * | 2021-11-05 | 2022-03-04 | 广州珠江天然气发电有限公司 | Diagnosis optimization method, device and system for gas-steam combined cycle performance |
CN115149590A (en) * | 2022-09-05 | 2022-10-04 | 西安热工研究院有限公司 | System and method for high-voltage plant direct-current controllable load to participate in thermal power frequency modulation |
CN115149589A (en) * | 2022-09-05 | 2022-10-04 | 西安热工研究院有限公司 | System and method for high-voltage plant alternating current controllable load auxiliary thermal power frequency modulation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6225833B2 (en) | 2014-05-26 | 2017-11-08 | 三菱日立パワーシステムズ株式会社 | GAS TURBINE FUEL CONTROL METHOD, CONTROL DEVICE FOR EXECUTING THE METHOD, GAS TURBINE EQUIPMENT HAVING THE CONTROL DEVICE |
-
2002
- 2002-09-02 JP JP2002256523A patent/JP3872406B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008136425A1 (en) * | 2007-04-27 | 2008-11-13 | Mitsubishi Heavy Industries, Ltd. | Steam turbine operation control device |
JP2008274819A (en) * | 2007-04-27 | 2008-11-13 | Mitsubishi Heavy Ind Ltd | Operation control device for combined power plant steam turbine |
JP2008291817A (en) * | 2007-05-28 | 2008-12-04 | Chugoku Electric Power Co Inc:The | Power generation plant and power generation method of power generation plant |
CN102654193A (en) * | 2011-03-02 | 2012-09-05 | 通用电气公司 | Turbine drive-train apparatus |
CN104747295A (en) * | 2015-01-28 | 2015-07-01 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Gas turbine power control method and gas turbine power control device |
US10801361B2 (en) | 2016-09-09 | 2020-10-13 | General Electric Company | System and method for HPT disk over speed prevention |
CN107989665A (en) * | 2017-11-27 | 2018-05-04 | 上海华电电力发展有限公司 | The three side primary frequency modulation control methods and system of heat supply generating set |
CN114135397A (en) * | 2021-11-05 | 2022-03-04 | 广州珠江天然气发电有限公司 | Diagnosis optimization method, device and system for gas-steam combined cycle performance |
CN114135397B (en) * | 2021-11-05 | 2023-04-25 | 广州珠江天然气发电有限公司 | Diagnosis optimization method, device and system for gas-steam combined cycle performance |
CN115149590A (en) * | 2022-09-05 | 2022-10-04 | 西安热工研究院有限公司 | System and method for high-voltage plant direct-current controllable load to participate in thermal power frequency modulation |
CN115149589A (en) * | 2022-09-05 | 2022-10-04 | 西安热工研究院有限公司 | System and method for high-voltage plant alternating current controllable load auxiliary thermal power frequency modulation |
US11799298B1 (en) | 2022-09-05 | 2023-10-24 | Xi'an Thermal Power Research Institute Co., Ltd | System and method for frequency modulation based on direct current controllable load |
Also Published As
Publication number | Publication date |
---|---|
JP3872406B2 (en) | 2007-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3361053B2 (en) | Power plant load control device | |
JP5457626B2 (en) | Method and system for detection and transmission for isolated operation of power | |
US5761895A (en) | Transient load controller for gas turbine power generator | |
US20100198419A1 (en) | Gas turbine operation control device and operation control method | |
US4625510A (en) | Stress limiter apparatus for a gas turbine engine | |
JPH03267528A (en) | Fuel control for gas turbine and device therefor | |
WO2015119135A1 (en) | Control device for gas turbine, gas turbine, and method for controlling gas turbine | |
US6792760B2 (en) | Method for operating a turbine | |
JP2003148170A (en) | Method for controlling load of power plant | |
JP4317651B2 (en) | Gas turbine plant and control method of gas turbine plant | |
US20040088966A1 (en) | 1-Axis type combined cycle plant | |
JP3887777B2 (en) | Governor-free control method and control apparatus for gas turbine power generation equipment | |
JP4458085B2 (en) | Gas turbine control device | |
JP4270763B2 (en) | Gas turbine control device | |
JP2006029162A (en) | Control device and control method of gas turbine | |
JP3160757B2 (en) | Gas turbine engine exhaust temperature control device and control method | |
JP2781407B2 (en) | Control device | |
JP3540422B2 (en) | Gas turbine controller | |
JP3792853B2 (en) | Combined cycle control device and gas turbine control device | |
JPH0932508A (en) | Combined cycle plant | |
JP4764489B2 (en) | Gas turbine plant and control method of gas turbine plant | |
KR102273982B1 (en) | Gas turbine control device and gas turbine and gas turbine control method | |
JP2004060615A (en) | Control device for gas turbine plant and operation control method for gas turbine plant | |
JP2774665B2 (en) | Combined cycle power plant and its overspeed prevention method and apparatus | |
JP2798533B2 (en) | Start control device for gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060718 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060914 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061019 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131027 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |