[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003145170A - Method and apparatus for treating fluorine-containing wastewater - Google Patents

Method and apparatus for treating fluorine-containing wastewater

Info

Publication number
JP2003145170A
JP2003145170A JP2001344990A JP2001344990A JP2003145170A JP 2003145170 A JP2003145170 A JP 2003145170A JP 2001344990 A JP2001344990 A JP 2001344990A JP 2001344990 A JP2001344990 A JP 2001344990A JP 2003145170 A JP2003145170 A JP 2003145170A
Authority
JP
Japan
Prior art keywords
wastewater
fluorine
tank
flocs
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001344990A
Other languages
Japanese (ja)
Inventor
Masanori Ohigata
正憲 大日方
Hiroshi Hosokawa
弘 細川
Shinsuke Ozaki
伸介 尾崎
Tetsuo Machida
哲郎 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misuzu Industries Corp
Original Assignee
Misuzu Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misuzu Industries Corp filed Critical Misuzu Industries Corp
Priority to JP2001344990A priority Critical patent/JP2003145170A/en
Publication of JP2003145170A publication Critical patent/JP2003145170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating fluorine-containing wastewater, capable of easily clearing a new water quality standard. SOLUTION: The method for treating fluorine-containing wastewater includes a reaction process allowing wastewater preliminarily reduced in the concentration of fluorine by primary treatment to flow in a reaction tank 12 and adding an aluminum compound and a polymeric flocculant to wastewater to form flocs, a process allowing wastewater to flow in a floating separation tank 20 and supplying pressurized water in which air is dissolved under pressure to the floating separation tank 20 from the bottom thereof to float flocs by generated fine air bubbles and a process for removing floated flocs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はフッ素含有排水の処
理方法およびその装置に関する。
TECHNICAL FIELD The present invention relates to a method for treating fluorine-containing wastewater and an apparatus therefor.

【0002】工場排水、特にめっき工場や半導体工場か
らの排水にはフッ素を含む排水が多い。通常、高濃度の
フッ素を含む排水の排水処理は、消石灰で中和すること
で、フッ化カルシウムとして分離する方式が採用されて
いる。その他、アルミニウム化合物を用いる凝集沈殿法
や、特殊な場合にはイオン交換樹脂を用いる処理方法も
採用される。
[0002] Factory wastewater, especially wastewater from a plating factory or a semiconductor factory, often contains fluorine-containing wastewater. Usually, for the wastewater treatment of wastewater containing a high concentration of fluorine, a method is adopted in which calcium fluoride is separated by neutralizing with slaked lime. In addition, a coagulation sedimentation method using an aluminum compound and a treatment method using an ion exchange resin in a special case are also adopted.

【0003】[0003]

【発明が解決しようとする課題】上記消石灰を用いる方
法でのフッ素除去は、8〜15mg/l(ppm)程度
の濃度まで低減させることが可能である。従前の処理基
準は、15mg/l以下であったので、この方法でも対
応することができた。ところが、最近処理基準が見直さ
れ、フッ素濃度を8mg/l以下とすることに法改正さ
れたので、消石灰を用いての処理では対応できなくなっ
てきている。目下のところ希釈して対応するしかなく、
コストが上昇するという課題がある。また本質的な解決
策とはなっていない。
The removal of fluorine by the method using slaked lime can be reduced to a concentration of about 8 to 15 mg / l (ppm). Since the conventional treatment standard was 15 mg / l or less, this method could be used. However, since the treatment standard was recently reviewed and the law was revised to reduce the fluorine concentration to 8 mg / l or less, the treatment using slaked lime is no longer applicable. At present, it is necessary to dilute and deal with it,
There is a problem that the cost will rise. It is not an essential solution.

【0004】アルミニウム化合物を用いる凝集沈殿法で
もやはり8〜15mg/lが限度である。イオン交換樹
脂を用いることによって、原水によっては、かなりな程
度までフッ素を除去することが可能である。しかしなが
ら、この方法ではランニングコストが高くなり、工場排
水の処理には不向きである。また工場排水には、イオン
交換を阻害する種々のイオン種が混入していることか
ら、工場排水の処理は実際上不可能である。
Even in the coagulation-precipitation method using an aluminum compound, the limit is 8 to 15 mg / l. Depending on the raw water, it is possible to remove fluorine to a considerable extent by using an ion exchange resin. However, this method increases the running cost and is not suitable for treating industrial wastewater. Further, since various ionic species that inhibit ion exchange are mixed in the factory wastewater, it is practically impossible to treat the factory wastewater.

【0005】そこで本発明は上記課題を解決すべくなさ
れたものであり、その目的とするところは、新しい水質
基準を容易にクリアできる、フッ素含有排水の処理方法
およびフッ素含有排水の処理装置を提供するにある。
Therefore, the present invention has been made to solve the above problems, and an object of the present invention is to provide a method for treating fluorine-containing wastewater and a treatment apparatus for fluorine-containing wastewater which can easily meet new water quality standards. There is.

【0006】[0006]

【課題を解決するための手段】本発明に係るフッ素含有
排水の処理方法は、一次処理されて、あらかじめフッ素
濃度が低減された排水を反応槽に流入し、該排水にアル
ミニウム化合物および高分子凝集剤を添加し、フロック
を形成させる反応工程と、次いで前記排水を浮上分離槽
に流入し、浮上分離槽の底部から浮上分離槽中に、空気
を加圧して溶解させた加圧水を供給して、発生する微細
空気粒によりフロックを浮上させる工程と、浮上したフ
ロックを除去する工程とを含むことを特徴としている。
According to the method for treating fluorine-containing wastewater according to the present invention, the wastewater, which has been subjected to a primary treatment and having a reduced fluorine concentration in advance, flows into a reaction tank, and the aluminum compound and polymer aggregates in the wastewater. A reaction step of adding an agent and forming flocs, and then flowing the waste water into the flotation separation tank, and from the bottom of the flotation separation tank into the flotation separation tank, supplying pressurized water in which air is dissolved to be dissolved, The method is characterized by including a step of levitating the flocs by the generated fine air particles and a step of removing the levitated flocs.

【0007】前記一次処理された排水のフッ素濃度を8
〜100mg/lにまで低減させておく必要がある。初
期濃度があまり高すぎると除去しきれないからである。
また、前記反応工程でのpHを6〜7.5に調整する必
要がある。前記反応工程は、前記排水にアルミニウム化
合物を添加する第1の工程と、次いで高分子凝集剤を添
加する第2の工程とに分けてもよい。前記アルミニウム
化合物の添加量を、含有フッ素に対してアルミニウムの
モル比で1.1以上にすると好適である。モル比で最低
1.1が必要で、これよりも多くてもよいが、除去効率
はそれ程向上はしない。添加されるアルミニウム化合物
は、ポリ塩化アルミニウム、水酸化アルミニウム、硫酸
アルミニウム、アルミン酸ソーダから選ばれた1種もし
くは2種以上とすることができる。
The fluorine concentration of the wastewater subjected to the primary treatment is set to 8
It has to be reduced to ~ 100 mg / l. This is because if the initial concentration is too high, it cannot be removed completely.
Further, it is necessary to adjust the pH in the reaction step to 6 to 7.5. The reaction step may be divided into a first step of adding an aluminum compound to the waste water and a second step of subsequently adding a polymer coagulant. It is preferable that the addition amount of the aluminum compound is 1.1 or more in terms of a molar ratio of aluminum to contained fluorine. A molar ratio of at least 1.1 is required and may be higher, but the removal efficiency is not so improved. The aluminum compound added may be one or more selected from polyaluminum chloride, aluminum hydroxide, aluminum sulfate and sodium aluminate.

【0008】また本発明に係るフッ素含有排水処理装置
では、一次処理されて、あらかじめフッ素濃度が低減さ
れた排水が流入され、該排水にアルミニウム化合物およ
び高分子凝集剤が添加されてフロックを形成させる反応
槽と、該反応槽から前記排水が流入される浮上分離槽
と、該浮上分離槽の底部から浮上分離槽中に、空気を加
圧して溶解させた加圧水を供給する加圧水供給装置とを
具備し、加圧水から発生する微小空気粒によりフロック
を浮上、分離させることを特徴とする。前記反応槽は、
流入された排水にアルミニウム化合物が添加される第1
の槽と、該第1の槽から流入された排水に高分子凝集剤
が添加される第2の槽に分けることができる。
Further, in the fluorine-containing wastewater treatment apparatus according to the present invention, the wastewater that has been subjected to the primary treatment and having the fluorine concentration reduced in advance is introduced, and the aluminum compound and the polymer flocculant are added to the wastewater to form flocs. A reaction tank, a flotation separation tank into which the waste water flows from the reaction tank, and a pressurized water supply device for supplying pressurized water obtained by pressurizing and dissolving air from the bottom of the flotation separation tank to the flotation separation tank. However, the flocs are floated and separated by fine air particles generated from the pressurized water. The reaction tank is
First, aluminum compound is added to the inflowing wastewater
And a second tank in which the polymer flocculant is added to the wastewater introduced from the first tank.

【0009】また、本発明に係るフッ素含有排水処理方
法では、あらかじめフッ素濃度が低減された排水を反応
槽に流入し、該排水にアルミン酸ソーダおよび高分子凝
集剤を添加し、フロックを形成させる反応工程と、次い
で前記排水を沈殿槽に流入し、フロックを沈殿させる工
程と、フロックを除去する工程とを含むことを特徴とす
る。
Further, in the method for treating fluorine-containing wastewater according to the present invention, wastewater having a reduced fluorine concentration is introduced into a reaction tank, and sodium aluminate and a polymer flocculant are added to the wastewater to form flocs. The method is characterized by including a reaction step, a step of causing the waste water to flow into a settling tank to precipitate flocs, and a step of removing the flocs.

【0010】[0010]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基づいて詳細に説明する。本発明では、工
場排水等の各種の重金属やフッ素を含む原水の処理を目
的とする。この原水を一次処理する。一次処理では、硫
化ソーダ等の硫黄化合物、高分子凝集剤を原水に添加し
て、重金属を硫化物として沈殿除去し、また水酸化カル
シウムを添加してフッ素をフッ化カルシウムとして沈殿
させ、フッ素を除去する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The present invention aims to treat raw water containing various heavy metals and fluorine, such as factory wastewater. This raw water is primarily treated. In the primary treatment, a sulfur compound such as sodium sulfide and a polymer flocculant are added to the raw water to precipitate and remove heavy metals as sulfides, and calcium hydroxide is added to precipitate fluorine as calcium fluoride, thereby removing fluorine. Remove.

【0011】この一次処理により、フッ素を8〜15m
g/l程度に低減でき、従来はこの一次処理にて基準を
クリアーできた。なお、原水によっては、この一次処理
を行ってもフッ素を15mg/l以下に低減できない場
合もあるが、この場合には水で希釈して基準以下にして
放流するのが通常であった。しかし、この一次処理のみ
では、フッ素を新基準である8mg/l以下に安定して
処理するのは不可能であった。
By this primary treatment, fluorine of 8 to 15 m
It can be reduced to about g / l, and conventionally, the standard could be cleared by this primary treatment. Depending on the raw water, fluorine may not be reduced to 15 mg / l or less even if this primary treatment is performed, but in this case, it was usual to dilute it with water and release it below the standard. However, it has been impossible to stably treat fluorine to a new standard of 8 mg / l or less only by this primary treatment.

【0012】発明者等は、上記一次処理した排水を、一
次処理と同様の手段である凝集沈殿法によりさらに二次
処理することを試みた。すなわち、一次処理した排水に
アルミニウム化合物を添加してフロックを形成させ、こ
のフロックを沈殿させて除去するのである。しかしなが
らこのようなアルミニウム化合物を添加した凝集沈殿法
で二次処理をしても、フッ素は、若干低減させることが
できるものの、安定して新基準である8mg/l以下に
低減することはなかった。
The present inventors have tried to further subject the above-mentioned primary treated wastewater to a secondary treatment by the coagulating sedimentation method which is the same means as the primary treatment. That is, the aluminum compound is added to the wastewater subjected to the primary treatment to form flocs, and the flocs are precipitated and removed. However, even if the secondary treatment was carried out by the coagulation-sedimentation method in which such an aluminum compound was added, fluorine could be slightly reduced, but it was not stably reduced to the new standard of 8 mg / l or less. .

【0013】発明者等は、従来、水よりも軽い油分を含
む排水処理には一般的に用いられる加圧浮上処理法を上
記一次排水の処理に試みた。この加圧浮上処理は、重金
属を含む排水の処理には通常行われていない。その結
果、驚くべきことに、フッ素を新基準である8mg/l
以下に安定的に低減できることをつきとめた。
The inventors of the present invention have tried to treat the above-mentioned primary wastewater by a pressure flotation treatment method which has been generally used conventionally for treating wastewater containing oil lighter than water. This pressurized flotation process is not normally performed for treating wastewater containing heavy metals. As a result, surprisingly, the new standard of fluorine was 8 mg / l.
It was found below that stable reduction can be achieved.

【0014】すなわち、本発明ではまず、一次処理され
て、あらかじめフッ素濃度が低減された排水を反応槽に
流入し、該排水にアルミニウム化合物および高分子凝集
剤を添加し、フロックを形成させる(反応工程)。次い
で上記排水を浮上分離槽に流入し、浮上分離槽の底部か
ら浮上分離槽中に、空気を加圧して溶解させた加圧水を
供給して、発生する微細空気粒によりフロックを浮上さ
せるのである(加圧浮上処理)。この浮上したフロック
を除去することにより、浮上分離槽の中間層の排水は5
mg/l前後のフッ素濃度となり、新基準をクリアーで
きることがわかった。
That is, in the present invention, first, the wastewater, which has been subjected to the primary treatment and whose fluorine concentration has been reduced in advance, flows into the reaction tank, and the aluminum compound and the polymer coagulant are added to the wastewater to form flocs (reaction Process). Next, the waste water is introduced into the flotation separation tank, pressurized water obtained by pressurizing and dissolving air is supplied into the flotation separation tank from the bottom of the flotation separation tank, and flocs are levitated by the generated fine air particles ( Pressure levitation treatment). By removing the floating flocs, the drainage of the middle layer of the flotation separation tank is 5
It was found that the fluorine concentration was around mg / l and the new standard could be cleared.

【0015】上記のように、同じアルミニウム化合物を
添加し、フッ素を抱き込んだフロックを形成させ、これ
を沈殿させ、除去しても、フッ素を十分に除去処理でき
ないが、この凝集沈殿法ではなく、加圧浮上法によりフ
ロックを浮上させ、このフロックを除去することにより
新基準以下に安定的にフッ素の除去が行えるということ
は、加圧浮上法により発生する微細空気粒により、フロ
ックの生成がさらに促進され、これにより多くのフッ素
がフロックに抱き込まれ、除去率が向上されると考えら
れる。
As described above, even if the same aluminum compound is added to form flocs containing fluorine, and the flocs are precipitated and removed, the fluorine cannot be sufficiently removed, but this flocculation-precipitation method is not used. , It is possible to stably remove fluorine below the new standard by levitating the flocs by the pressure levitation method and removing these flocs, which means that the flocs are generated due to the fine air particles generated by the pressure levitation method. It is further promoted, and it is considered that a large amount of fluorine is included in the flocs and the removal rate is improved.

【0016】通常、工場排水には、数千〜数万ppmの
フッ素が含有されており、これをこのまま加圧浮上処理
をしても、フッ素の低減は行えない。上記の一次処理に
より、 フッ素濃度を8〜100mg/l程度にまで低
減させてから、上記二次処理の加圧浮上処理を行うこと
が肝要である。すなわち、出発排水のフッ素濃度があま
りに高いと、二次処理によっても取り除ききれないの
で、あらかじめ一次処理によって上記濃度にまで低減さ
せておく必要がある。
Usually, the wastewater in the factory contains fluorine in the range of several thousand to tens of thousands ppm, and even if it is subjected to the pressure floating process as it is, the fluorine cannot be reduced. It is important to reduce the fluorine concentration to about 8 to 100 mg / l by the above-mentioned primary treatment and then perform the above-mentioned pressure-levitation treatment of the above-mentioned secondary treatment. That is, if the fluorine concentration of the starting waste water is too high, it cannot be removed even by the secondary treatment, so it is necessary to reduce it to the above concentration by the primary treatment in advance.

【0017】前記アルミニウム化合物を添加する反応工
程では、排水に例えば苛性ソーダ等を添加して排水のp
Hを6〜7.5に調整することが必要である。また、反
応工程では、アルミニウム化合物と高分子凝集剤とを同
時に添加してもよいが、第1の槽でアルミニウム化合物
を添加して、第2の槽で高分子凝集剤を添加し、ゆっく
りとフロックを形成させるようにすると好適である。
In the reaction step of adding the aluminum compound, for example, caustic soda or the like is added to the waste water to remove p from the waste water.
It is necessary to adjust H to 6-7.5. Further, in the reaction step, the aluminum compound and the polymer coagulant may be added at the same time, but the aluminum compound is added in the first tank and the polymer coagulant is slowly added in the second tank. It is preferable to form flock.

【0018】アルミニウム化合物には、ポリ塩化アルミ
ニウム、水酸化アルミニウム、硫酸アルミニウム、アル
ミン酸ソーダを1種もしくは2種以上用いることができ
る。このアルミニウム化合物の添加量は、含有フッ素に
対してアルミニウムのモル比で1.1以上にすることが
好適である。なお、高分子凝集剤は、通常用いる凝集剤
でよく、特には限定されない。
As the aluminum compound, one kind or two or more kinds of polyaluminum chloride, aluminum hydroxide, aluminum sulfate and sodium aluminate can be used. The addition amount of this aluminum compound is preferably 1.1 or more in terms of a molar ratio of aluminum to contained fluorine. The polymer coagulant may be a coagulant that is usually used and is not particularly limited.

【0019】図1は処理装置10の全体概要図である。
12は反応槽であり、第1の槽13と第2の槽(沈殿
槽)14とからなる。第1の槽13には、重金属、フッ
素等が含有される工場排水等が、一次処理されて、重金
属およびフッ素があらかじめ低減された排水が流入され
る。この第1の槽13にアルミニウム化合物が添加され
る。これによりフッ素を抱き込んだフロックが形成され
る。なお、この第1の槽13では、適宜苛性ソーダ等を
添加し、pHを6〜7.5に調整する。15は撹拌装置
である。
FIG. 1 is an overall schematic view of the processing apparatus 10.
A reaction tank 12 is composed of a first tank 13 and a second tank (precipitation tank) 14. Factory wastewater containing heavy metals, fluorine, etc. is subjected to primary treatment into the first tank 13, and wastewater in which heavy metals and fluorine have been reduced in advance is introduced. An aluminum compound is added to the first tank 13. As a result, a floc containing fluorine is formed. In the first tank 13, caustic soda or the like is appropriately added to adjust the pH to 6 to 7.5. Reference numeral 15 is a stirrer.

【0020】排水は、第1の槽13からパイプ16によ
り第2の槽14に自然流入される。第2の槽14には高
分子凝集剤が添加され、これによりフロックがさらに大
きく成長する。17は撹拌装置である。
The drainage is naturally flowed from the first tank 13 into the second tank 14 through the pipe 16. A polymer flocculant is added to the second tank 14, whereby flocs grow larger. Reference numeral 17 is a stirrer.

【0021】排水は、第2の槽14から、パイプ18に
より浮上分離槽20に底部から自然流入される。浮上分
離槽20の底部からはスラリーが抜き取り可能になって
いる。浮上分離槽20は、内槽20aと外槽20bの2
槽構造となっており、両槽は中途部で連通しており、外
槽20bからパイプ21を通じて処理水が放流される。
22は掻落羽根であり、モータ23によって軸24を中
心に水面上で回転され、浮上してきたフロックを排出シ
ューター25に向けて掻き落し可能になっている。な
お、排出シューター25に排出されたスカムの一部を図
示しない返送パイプにより第1の槽13に戻すようにす
ると好適である。
The waste water is naturally flown from the second tank 14 into the floating separation tank 20 from the bottom through the pipe 18. The slurry can be extracted from the bottom of the floating separation tank 20. The floating separation tank 20 is composed of an inner tank 20a and an outer tank 20b.
It has a tank structure, and both tanks communicate with each other in the middle, and the treated water is discharged from the outer tank 20b through the pipe 21.
Reference numeral 22 denotes a scraping blade, which is rotated by a motor 23 around a shaft 24 on the surface of water so that the floating flocs can be scraped off toward a discharge shooter 25. It is preferable to return a part of the scum discharged to the discharge shooter 25 to the first tank 13 by a return pipe (not shown).

【0022】27は加圧水供給装置である。28は加圧
ポンプであり、パイプ29、30を通じて、外槽20b
からの排水の一部を加圧水タンク31に送り込む。32
はエアコンプレッサーであり、圧縮エアをパイプ33に
より、パイプ29とパイプ30を連絡するパイプ30a
に送り込む。圧縮エアは排水中に取り込まれ、加圧ポン
プ28により排水中に押し込まれ、排水中に溶け込んで
加圧水タンク31に送り込まれる。
Reference numeral 27 is a pressurized water supply device. 28 is a pressurizing pump, and through the pipes 29 and 30, the outer tank 20b
A part of the drainage from the tank is sent to the pressurized water tank 31. 32
Is an air compressor, and the compressed air is connected to the pipe 29 by the pipe 33.
Send to. The compressed air is taken into the drainage, pushed into the drainage by the pressurizing pump 28, melted in the drainage, and sent to the pressurized water tank 31.

【0023】加圧水タンク31中の加圧水はパイプ3
2、バルブ33を介してパイプ18を通じて浮上分離槽
20の底部に供給される。浮上分離槽20中は大気圧で
あるので、加圧水中に溶解されたエアは多数の微細空気
粒となって浮上する。この微細空気粒は浮上分離槽20
中のフロックに付着し、軽くなったフロックが浮上する
のである。また前記したように、微細空気粒がフロック
の形成を促進するものと考えられ、これによりより多く
のフッ素をフロック中に抱き込み、フッ素の除去率が高
まると考えられる。
The pressurized water in the pressurized water tank 31 is pipe 3
2. It is supplied to the bottom of the flotation tank 20 through the pipe 18 via the valve 33. Since the floating separation tank 20 is at atmospheric pressure, the air dissolved in the pressurized water floats as a large number of fine air particles. The fine air particles are floated and separated in the separation tank 20.
The lighter flock that adheres to the inner flock emerges. Further, as described above, it is considered that the fine air particles promote the formation of flocs, and thus it is considered that a larger amount of fluorine is held in the flocs and the removal rate of fluorine is increased.

【0024】なお、アルミニウム化合物の中でも、アル
ミン酸ソーダの場合は、加圧浮上法でなく、通常の凝集
沈殿法でも、フッ素を十分に除去できることがわかっ
た。すなわち、あらかじめフッ素濃度が低減された排水
を反応槽に流入し、該排水にアルミン酸ソーダおよび高
分子凝集剤を添加し、フロックを形成させ、次いで前記
排水を沈殿槽に流入し、フロックを沈殿させ、次いでフ
ロックを除去するようにするのである。アルミン酸ソー
ダは、アルカリ溶液中で、[Al(OH)4]-、あるいは[(HO)3
Al−O−Al(OH)3]2-に解離される。メカニズムは明らか
でないが、アルミン酸ソーダの場合には、凝集沈殿法で
も十分にフッ素の除去が行えた。
It has been found that among the aluminum compounds, in the case of sodium aluminate, fluorine can be sufficiently removed not only by the pressure floating method but also by the usual coagulating sedimentation method. That is, wastewater having a reduced fluorine concentration is introduced into a reaction tank in advance, sodium aluminate and a polymer coagulant are added to the wastewater to form flocs, and then the wastewater is introduced into a sedimentation tank to precipitate the flocs. Then, the flocs are removed. Sodium aluminate is the alkali solution, [Al (OH) 4] -, or [(HO) 3
It is dissociated into Al-O-Al (OH) 3 ] 2- . Although the mechanism is not clear, in the case of sodium aluminate, fluorine could be sufficiently removed even by the coagulation sedimentation method.

【0025】[0025]

【実施例】(実施例1)図1に示す処理装置により処理
を行った。工場排水(原水)を一次処理し、この一次処
理水(排水)中のフッ素濃度は、12.3mg/lであ
った。この一次処理水を第1の槽13中に流量7m3
hで供給し、さらに第1の槽13にポリ塩化アルミニウ
ム(PAC)を0.9l/hで供給し、反応させた。p
Hは苛性ソーダにより7〜8になるように調整した。第
1の槽13から自然流入により排水を第2の槽14中に
流入させ、この第2の槽14で排水に高分子凝集剤を添
加し、フロックを発生させた。さらにこの排水を浮上分
離槽20中に供給すると共に、加圧水タンク31から加
圧水を浮上分離槽20に供給し、フロックを浮上、分離
させた。放流水中のフッ素濃度は1.5mg/lに低減
できた。
EXAMPLE (Example 1) Processing was carried out by the processing apparatus shown in FIG. Factory wastewater (raw water) was subjected to a primary treatment, and the fluorine concentration in this primary treated water (effluent) was 12.3 mg / l. The flow rate of this primary treated water into the first tank 13 is 7 m 3 /
Then, polyaluminum chloride (PAC) was supplied to the first tank 13 at 0.9 l / h for reaction. p
H was adjusted to 7 to 8 with caustic soda. The waste water was allowed to flow into the second tank 14 by natural inflow from the first tank 13, and the polymer flocculant was added to the waste water in the second tank 14 to generate flocs. Further, this drainage was supplied into the flotation separation tank 20, and pressurized water was supplied from the pressurized water tank 31 to the flotation separation tank 20 to float and separate the flocs. The fluorine concentration in the discharged water could be reduced to 1.5 mg / l.

【0026】(実施例2)フッ素濃度が10.1mg/
lの一次処理水を実施例1と同じ加圧浮上法により処理
したところ、フッ素濃度を2.7mg/lにまで低減で
きた。
(Example 2) Fluorine concentration was 10.1 mg /
When the primary treated water (1) was treated by the same pressure floating method as in Example 1, the fluorine concentration could be reduced to 2.7 mg / l.

【0027】(実施例3)フッ素濃度が19.8mg/
lの一次処理水を実施例1と同じ加圧浮上法により処理
したところ、フッ素濃度を4.1mg/lにまで低減で
きた。
(Example 3) Fluorine concentration was 19.8 mg /
When 1 liter of the primary treated water was treated by the same pressure floating method as in Example 1, the fluorine concentration could be reduced to 4.1 mg / l.

【0028】(実施例4)フッ素濃度が20ppmの一
次処理水に、アルミン酸ソーダをアルミニウム分として
150ppm添加し、塩酸でpHを7.0に調整し、さ
らに高分子凝集剤を添加してフロックを形成させ、フロ
ックを沈殿除去することにより、フッ素濃度を約1pp
mに低減できた。
Example 4 150 ppm of sodium aluminate as an aluminum component was added to primary treated water having a fluorine concentration of 20 ppm, the pH was adjusted to 7.0 with hydrochloric acid, and a polymer flocculant was added to the flocs. And the flocs are removed by precipitation to reduce the fluorine concentration to about 1 pp.
It was possible to reduce to m.

【0029】(実施例5)フッ素濃度が20ppmの一
次処理水に、アルミン酸ソーダをアルミニウム分として
50ppm添加し、塩酸でpHを7.0に調整し、さら
に高分子凝集剤を添加してフロックを形成させ、フロッ
クを沈殿除去することにより、フッ素濃度を約2ppm
に低減できた。
(Example 5) To the primary treated water having a fluorine concentration of 20 ppm, 50 ppm of sodium aluminate was added as an aluminum content, the pH was adjusted to 7.0 with hydrochloric acid, and a polymer flocculant was further added to the flocs. Fluorine concentration of about 2ppm
Could be reduced to

【0030】(実施例6)フッ素濃度が45ppmの一
次処理水に、アルミン酸ソーダをアルミニウム分として
150ppm添加し、塩酸でpHを7.0に調整し、さ
らに高分子凝集剤を添加してフロックを形成させ、フロ
ックを沈殿除去することにより、フッ素濃度を約1.5
ppmに低減できた。
Example 6 150 ppm of sodium aluminate as an aluminum component was added to primary treated water having a fluorine concentration of 45 ppm, the pH was adjusted to 7.0 with hydrochloric acid, and a polymer flocculant was added to the flocs. And the flocs are removed by sedimentation to reduce the fluorine concentration to about 1.5.
It could be reduced to ppm.

【0031】(比較例1)実施例1と同じ一次処理水を
ビーカー中に50mlとり、これにポリ塩化アルミニウ
ムを0.05ml添加し、苛性ソーダにてpHが7〜8
になるように調整し、さらに高分子凝集剤を添加してフ
ロックを形成させた。この沈殿物をろ過したろ液のフッ
素濃度は7.4mg/lであった。
Comparative Example 1 50 ml of the same primary treated water as in Example 1 was placed in a beaker, 0.05 ml of polyaluminum chloride was added thereto, and the pH was adjusted to 7 to 8 with caustic soda.
Then, a polymer flocculant was added to form flocs. The fluorine concentration of the filtrate obtained by filtering this precipitate was 7.4 mg / l.

【0032】(比較例2)実施例3と同じ一次処理水を
比較例1と同様に処理したところ、フッ素濃度は10.
8mg/lにまでしか低減できなかった。
Comparative Example 2 When the same primary treated water as in Example 3 was treated in the same manner as in Comparative Example 1, the fluorine concentration was 10.
It could only be reduced to 8 mg / l.

【0033】(比較例3)フッ酸によりフッ素濃度が数
千ppmの原水を調整し、これに水酸化カルシウムを添
加して一次処理したところフッ素濃度が12.9mg/
lにまで低減した。この一次処理水を比較例1と同様の
凝集沈殿法により処理したが、フッ素濃度は9.3mg
/lにまでしか低減しなかった。
(Comparative Example 3) Raw water having a fluorine concentration of several thousand ppm was prepared with hydrofluoric acid, and calcium hydroxide was added to the raw water for primary treatment, whereby the fluorine concentration was 12.9 mg /
It was reduced to 1. This primary treated water was treated by the same coagulation-sedimentation method as in Comparative Example 1, but the fluorine concentration was 9.3 mg.
It was only reduced to / l.

【0034】(比較例4)フッ酸によりフッ素濃度を2
2.6mg/lに調整した液に、硫酸を添加してpH調
整した後、水酸化カルシウム、高分子凝集剤を添加して
フッ化カルシウムを沈殿させ、ろ過したろ液のフッ素濃
度は17.8mg/lであった。
(Comparative Example 4) The fluorine concentration was adjusted to 2 with hydrofluoric acid.
After adding sulfuric acid to the solution adjusted to 2.6 mg / l to adjust the pH, calcium hydroxide and a polymer coagulant are added to precipitate calcium fluoride, and the filtrate has a fluorine concentration of 17. It was 8 mg / l.

【0035】(比較例5)比較例4の液(22.6mg
/lのフッ素濃度)にポリ塩化アルミニウムを添加し、
苛性ソーダにてpHを調整し、高分子凝集剤を添加して
フロックを形成させ、ろ過したろ液のフッ素濃度は1
1.6mg/lであった。
Comparative Example 5 The liquid of Comparative Example 4 (22.6 mg)
/ L fluorine concentration), adding polyaluminum chloride,
Adjust the pH with caustic soda, add a polymer flocculant to form flocs, and filter the filtrate with a fluorine concentration of 1
It was 1.6 mg / l.

【0036】(比較例6)比較例4の液(22.6mg
/lのフッ素濃度)にポリ塩化アルミニウムを添加し、
苛性ソーダにてpHを調整し、高分子凝集剤を添加し、
さらにエアを吹き込んでフロックを形成させ、ろ過した
ろ液のフッ素濃度は11.5mg/lであった。以上の
ように、実施例はいずれもフッ素濃度を大幅に低減でき
たが、比較例はいずれも十分にはフッ素濃度を低減でき
ない。比較例6では、比較のためエアを吹き込んでみた
が(エアレーション)、大きな空気粒では、加圧浮上法
に比してフッ素濃度を満足できるほど低減できない。こ
のことは、フッ素濃度の低減には、単なる空気の作用で
はなく、微細な空気粒によってフロックを浮上させる際
に、フロックの生成を促進させる作用が働くことが必要
と考えられる。
Comparative Example 6 The liquid of Comparative Example 4 (22.6 mg)
/ L fluorine concentration), adding polyaluminum chloride,
Adjust the pH with caustic soda, add a polymer flocculant,
Further, air was blown in to form flocs, and the filtrate had a fluorine concentration of 11.5 mg / l. As described above, in all the examples, the fluorine concentration could be significantly reduced, but in all the comparative examples, the fluorine concentration could not be sufficiently reduced. In Comparative Example 6, air was blown in for comparison (aeration), but with large air particles, the fluorine concentration cannot be reduced to a satisfactory level as compared with the pressure floating method. From this, it is considered that the reduction of the fluorine concentration requires not only the action of air but also the action of promoting generation of flocs when the flocs are floated by fine air particles.

【0037】[0037]

【発明の効果】以上のように本発明によれば、一次処理
排水をアルミニウム化合物と反応させたうえで、加圧浮
上方式によって固液分離することで、フッ素を新基準以
下に安定的に低減できるという作用効果を奏する。同じ
アルミニウム化合物を添加し、フッ素を抱き込んだフロ
ックを形成させ、これを沈殿させ、除去しても、フッ素
を十分に除去処理できないが、この凝集沈殿法ではな
く、加圧浮上法によりフロックを浮上させ、このフロッ
クを除去することにより新基準以下に安定的にフッ素の
除去が行えるということは、加圧浮上法により発生する
微細空気粒により、フロックの生成がさらに促進され、
これにより多くのフッ素がフロックに抱き込まれ、除去
率が向上されると考えられる。なお、アルミニウム化合
物として、アルミン酸ソーダを用いる場合には、凝集沈
殿法でも十分にフッ素の除去が行える。また本発明装置
によれば、簡単なユニット式の除去装置で、従来の薬剤
添加、反応槽、固液分離装置がそのまま活用できる。
As described above, according to the present invention, the primary treatment wastewater is reacted with the aluminum compound, and then solid-liquid separation is performed by the pressure floating method, whereby fluorine is stably reduced to below the new standard. There is an effect that it can. Even if the same aluminum compound is added to form a floc containing fluorine, and the floc is precipitated and removed, the fluorine cannot be sufficiently removed.However, the floc is not removed by the pressure flotation method, but by this flocculation method. It is possible to stably remove fluorine below the new standard by levitating and removing this floc, which means that the generation of flocs is further promoted by the fine air particles generated by the pressure levitation method.
It is considered that this causes a large amount of fluorine to be entrapped in the flocs, thus improving the removal rate. When sodium aluminate is used as the aluminum compound, fluorine can be sufficiently removed even by the coagulating sedimentation method. Further, according to the device of the present invention, a simple unit type removal device can be used as it is as a conventional chemical agent addition, reaction tank, and solid-liquid separation device.

【図面の簡単な説明】[Brief description of drawings]

【図1】処理装置の全体の概要図である。FIG. 1 is a schematic diagram of an entire processing apparatus.

【符号の説明】[Explanation of symbols]

10 処理装置 12 反応槽 13 第1の槽 14 第2の槽 15、17 撹拌装置 16、18、21、29、30、30a、32 パイプ 20 浮上分離槽 28 加圧ポンプ 31 加圧水タンク 32 エアコンプレッサー 33 バルブ 10 processor 12 reaction tanks 13 First tank 14 Second tank 15,17 Stirrer 16, 18, 21, 29, 30, 30a, 32 pipes 20 Floating separation tank 28 Pressurizing pump 31 Pressurized water tank 32 air compressor 33 valves

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾崎 伸介 長野県長野市大字大豆島4020番地3 株式 会社みすず工業内 (72)発明者 町田 哲郎 長野県長野市大字大豆島4020番地3 株式 会社みすず工業内 Fターム(参考) 4D015 BA04 BA05 BA19 BA22 BA23 BB12 CA20 DA03 DA06 DA08 DA09 DB01 EA14 EA16 EA33 4D037 AB13 AB14 BA03 CA08 4D038 AA08 AB42 BA04 BB04 BB13 BB18    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinsuke Ozaki             Nagano City, Nagano City 4020 Soybean Island 3 Stocks             Company Misuzu Industry (72) Inventor Tetsuro Machida             Nagano City, Nagano City 4020 Soybean Island 3 Stocks             Company Misuzu Industry F-term (reference) 4D015 BA04 BA05 BA19 BA22 BA23                       BB12 CA20 DA03 DA06 DA08                       DA09 DB01 EA14 EA16 EA33                 4D037 AB13 AB14 BA03 CA08                 4D038 AA08 AB42 BA04 BB04 BB13                       BB18

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一次処理されて、あらかじめフッ素濃度
が低減された排水を反応槽に流入し、該排水にアルミニ
ウム化合物および高分子凝集剤を添加し、フロックを形
成させる反応工程と、 次いで前記排水を浮上分離槽に流入し、浮上分離槽の底
部から浮上分離槽中に、空気を加圧して溶解させた加圧
水を供給して、発生する微細空気粒によりフロックを浮
上させる工程と、 浮上したフロックを除去する工程とを含むことを特徴と
するフッ素含有排水の処理方法。
1. A reaction step in which wastewater, which has been subjected to a primary treatment and has a reduced fluorine concentration in advance, flows into a reaction tank, and an aluminum compound and a polymer coagulant are added to the wastewater to form flocs, and then the wastewater Flowing into the flotation separation tank, supplying pressurized water from the bottom of the flotation separation tank into the flotation separation tank by pressurizing and dissolving the air, and causing flocs to float by the fine air particles generated; And a step of removing the fluorine-containing wastewater.
【請求項2】 前記一次処理された排水のフッ素濃度が
8〜100mg/lであることを特徴とする請求項1記
載のフッ素含有排水の処理方法。
2. The method for treating fluorine-containing wastewater according to claim 1, wherein the wastewater subjected to the primary treatment has a fluorine concentration of 8 to 100 mg / l.
【請求項3】 前記反応工程でのpHを6〜7.5に調
整することを特徴とする請求項1または2記載のフッ素
含有排水の処理方法。
3. The method for treating fluorine-containing wastewater according to claim 1, wherein the pH in the reaction step is adjusted to 6 to 7.5.
【請求項4】 前記反応工程は、前記排水にアルミニウ
ム化合物を添加する第1の工程と、次いで高分子凝集剤
を添加する第2の工程とに分かれていることを特徴とす
る請求項1、2または3記載のフッ素含有排水の処理方
法。
4. The reaction step is divided into a first step of adding an aluminum compound to the waste water and a second step of subsequently adding a polymer coagulant to the waste water. The method for treating fluorine-containing wastewater according to 2 or 3.
【請求項5】 添加されるアルミニウム化合物がポリ塩
化アルミニウム、水酸化アルミニウム、硫酸アルミニウ
ム、アルミン酸ソーダから選ばれた1種もしくは2種以
上であることを特徴とする請求項1〜4いずれか一項記
載のアルミニウム含有排水の処理方法。
5. The aluminum compound to be added is one or more selected from polyaluminum chloride, aluminum hydroxide, aluminum sulfate and sodium aluminate, and any one of claims 1 to 4 is characterized in that The method for treating aluminum-containing wastewater according to the item.
【請求項6】 一次処理されて、あらかじめフッ素濃度
が低減された排水が流入され、該排水にアルミニウム化
合物および高分子凝集剤が添加されてフロックを形成さ
せる反応槽と、 該反応槽から前記排水が流入される浮上分離槽と、 該浮上分離槽の底部から浮上分離槽中に、空気を加圧し
て溶解させた加圧水を供給する加圧水供給装置とを具備
し、 加圧水から発生する微小空気粒によりフロックを浮上、
分離させることを特徴とするフッ素含有排水の処理装
置。
6. A reaction tank which is subjected to a primary treatment and in which wastewater having a reduced fluorine concentration is introduced in advance, and an aluminum compound and a polymer flocculant are added to the wastewater to form flocs, and the wastewater from the reaction tank. And a pressurized water supply device for supplying pressurized water obtained by pressurizing and dissolving air into the flotation separation tank from the bottom of the flotation separation tank. Ascend Flock,
A treatment device for fluorine-containing wastewater, characterized by being separated.
【請求項7】 前記反応槽は、流入された排水にアルミ
ニウム化合物が添加される第1の槽と、該第1の槽から
流入された排水に高分子凝集剤が添加される第2の槽か
らなることを特徴とする請求項6記載のフッ素含有排水
の処理装置。
7. The reaction tank comprises a first tank in which an aluminum compound is added to the inflowing waste water, and a second tank in which a polymer coagulant is added to the waste water inflowing from the first tank. 7. The apparatus for treating fluorine-containing wastewater according to claim 6, comprising:
【請求項8】 一次処理されて、あらかじめフッ素濃度
が低減された排水を反応槽に流入し、該排水にアルミン
酸ソーダおよび高分子凝集剤を添加し、フロックを形成
させる反応工程と、 次いで前記排水を沈殿槽に流入し、フロックを沈殿させ
る工程と、 フロックを除去する工程とを含むことを特徴とするフッ
素含有排水の処理方法。
8. A reaction step in which wastewater, which has been subjected to a primary treatment and has a reduced fluorine concentration in advance, flows into a reaction tank, and sodium aluminate and a polymer flocculant are added to the wastewater to form flocs, A method for treating fluorine-containing wastewater, comprising: a step of causing wastewater to flow into a settling tank to precipitate flocs; and a step of removing flocs.
JP2001344990A 2001-11-09 2001-11-09 Method and apparatus for treating fluorine-containing wastewater Pending JP2003145170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344990A JP2003145170A (en) 2001-11-09 2001-11-09 Method and apparatus for treating fluorine-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344990A JP2003145170A (en) 2001-11-09 2001-11-09 Method and apparatus for treating fluorine-containing wastewater

Publications (1)

Publication Number Publication Date
JP2003145170A true JP2003145170A (en) 2003-05-20

Family

ID=19158417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344990A Pending JP2003145170A (en) 2001-11-09 2001-11-09 Method and apparatus for treating fluorine-containing wastewater

Country Status (1)

Country Link
JP (1) JP2003145170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013863A (en) * 2003-06-25 2005-01-20 Sony Corp Waste water treating agent and waste water treatment method
JP2019122961A (en) * 2019-04-26 2019-07-25 住友重機械エンバイロメント株式会社 Wastewater treatment equipment and wastewater treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013863A (en) * 2003-06-25 2005-01-20 Sony Corp Waste water treating agent and waste water treatment method
JP2019122961A (en) * 2019-04-26 2019-07-25 住友重機械エンバイロメント株式会社 Wastewater treatment equipment and wastewater treatment method

Similar Documents

Publication Publication Date Title
KR100851456B1 (en) Method and apparatus for treatment of water
CA2671928C (en) Method for treating wastewater or produced water
US8679349B2 (en) Heavy metal removal from waste streams
CN111777220A (en) Novel softening treatment method for high-salinity and high-permanent-hardness wastewater
US6635182B1 (en) Floatation process for removal of heavy metal waste and associated apparatus
CN106630307A (en) System and method for treating coal gasification grey water
WO1991007354A1 (en) Water treatment method
JPH09192675A (en) Treatment of waste water
US20190185335A1 (en) Aluminum hydroxide coagulant recovery from water/wastewater treatment sludge
KR20040002594A (en) Liquid treatment method and apparatus
CN112159033A (en) Photovoltaic wastewater advanced treatment system and application method
CN112225355A (en) Shale gas recovery flowback fluid treatment process
JP2000140861A (en) Treatment of waste water incorporating fine abrasive grains-dispersed polishing liquid
JP5753702B2 (en) Formation method of initial mother floc in high speed coagulation sedimentation basin
JP2005125153A (en) Method and apparatus for treating fluorine-containing wastewater
JP2003145170A (en) Method and apparatus for treating fluorine-containing wastewater
CN111233208A (en) Desulfurization waste water resource recovery system
CN110862172A (en) A system and method for comprehensive purification of limestone-gypsum desulfurization wastewater
JP2002079004A (en) Aggregation method
JP2000301160A (en) Treatment method of oil-containing wastewater containing surfactant
KR20010079251A (en) Reuse process for hydroflouric acid waste water
JP4591641B2 (en) Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components
CN116143323B (en) A treatment system and method for wastewater from refining and chemical integration
JP2003170173A (en) Wastewater treatment method for coal storage yard
CN118145767A (en) Pretreatment process for treating sewage containing carbon black and paraffin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104